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Origin of Regular Networks of Joints: Experimental
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A. I. Chemenda1

1University of Côte d'Azur, CNRS, OCA, IRD, Geoazur, Valbonne, France

Abstract Experimental data show that inelastic straining occurs even at very low pressure before and
during brittle fracturing. This process is therefore investigated within the framework of elastoplasticity
using 2‐D, three‐layer finite difference modeling. The constitutive model includes both tensile and shear
failure mechanisms coupled at the level of the strain softening law. The modeling results show that sets of
parallel joints initiate as pure dilation bands, the narrow σ3‐normal bands of localized dilatant damage
(inelastic deformation). The band thickness, length, and the initial strain softening degree within it are
proportional to the ductility of the material, which increases with the effective stress level (σ1) or pressure.
The strength reduction within the bands is accelerated at a certain stage, and the strength locally reaches
zero resulting in fracture initiation. The initial fracture then propagates in Mode I following the propagating
band. The fracture (joint) appears thus as a band of damaged material with the increased porosity,
which is maximum along the axial zone of the band where the material is completely broken. The damage is
due to both tensile and shear mechanisms. The role of shear failure increases with the ductility (pressure)
increase, which also leads to the band thickness increase. These processes can result in small (band
thickness)‐scale oblique shear fractures within the band, causing the increase in the roughness of fracture
walls organized in plumose patterns typical of both natural and experimentally generated joints.

1. Introduction

Planner fractures (joints) with no shear displacement along them often form spectacular parallel sets or
more complex (e.g., orthogonal) networks, which affect weakly deformed tabular sedimentary series.
Good geological images can be found, for instance, in Pollard and Aydin (1988), Rives et al. (1992),
Engelder et al. (2009), Jorand et al. (2012), and Fossen (2016). One of them is shown in Figure 1. It reveals
the fracture hierarchy in 3‐D, which otherwise is hardly visible and which was also obtained in the numer-
ical models in this paper and the laboratory experiments (see below). The regularity of the spatial organi-
zation of joints suggests uniformity of the material properties and straining during jointing, which also
means a uniform stress field. On the other hand, the commonly accepted jointing mechanism, Mode I frac-
turing, treated within the framework of Linear Elastic Fracture Mechanics (LEFM), requires the presence
of stress concentrators, that is, the initial flaws from which the fractures (joints) propagate in Mode I (e.g.,
Bai & Pollard, 2000; Olson et al., 2009; Pollard & Aydin, 1988; Savalli & Engelder, 2005; Segall & Pollard,
1983). In the numerical studies explaining joint propagation within the framework of LEFM (i.e., assuming
that the complete material rupture directly follows the elastic loading in a very small zone at the fracture
tip), unrealistically high initial flaw sizes (lengths) a have to be adopted. For example, Olson et al. (2009)
assumed a = 10 cm; Bai and Pollard (2000) obtained that for Mode I cracks to form with a spacing less
than the bed thickness H of several tens of centimeters, a should be of a centimeter scale. To obtain smaller
spacing, a should be larger. The minimum possible spacing was predicted to be ~0.3H. These conclusions
were obtained for the favorable case when the initial cracks are normal to σ3. If they are inclined to σ1, the
fracturing will be more complicated (involving the formation of curvilinear wing cracks; e.g., Ashby &
Sammis, 1990; Petit & Barquins, 1988). The actual size of the initial flaws should to be comparable to
the grain size, although macroflaws (that can be stress concentrators) can exist as well (McConaughy &
Engelder, 2001).

In many cases, joints are not opened at all and appear as discontinuities with no discernable relative displa-
cements (Blès & Feuga, 1986; Griggs & Handin, 1960; Ramsay & Huber, 1987) that can correspond to poros-
ity or dilation (dilatancy) bands (Chemenda et al., 2011b). This type of band, although not related to joints,
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also was documented in Du Bernard et al. (2002) and Fossen et al. (2007).
These discontinuities can be very closely spaced (e. g., Rawnsley et al.,
1998) up to almost constituting a rock fabric (Figure 3c in Jorand et al.,
2012). It is difficult to imagine that at the origin of each of the closely
spaced joints, there is a specific flaw of a centimeter scale.

Walls of joints are frequently decorated by plumose marks analyzed in
detail in many studies (e.g., Bahat, 1991; Pollard & Aydin, 1988;
Savalli & Engelder, 2005; Woodworth, 1896). Pollard and Aydin (1988)
and numerous authors since suggest that the plumose morphology of
joints results from mostly Mode I joint propagation with contribution
of Modes II and/or III. Unfortunately, no direct evidence of this exists.
Since we do not know (cannot observe or measure) the actual condi-
tions and mechanisms of natural jointing, such evidence could be pro-
vided by laboratory experiments reproducing joint‐like fractures with
plumose marks in rock or rock‐like (i.e., granular, porous, frictional,
dilatant, and cohesive) materials under geologically meaningful physical
conditions. We are aware only of a few relevant experimental studies
presented below.

1.1. Experimental Constraints on Jointing Mechanisms

As joints are believed to be formed under extension, themost relevant are data from extension tests of porous
rocks. Bobich (2005) reported results from conventional (axisymmetric) triaxial extension tests of hard Berea
sandstone under different, relatively low confining pressure Pc (which is equal in this test type to the major
σ1 and the intermediate σ2 stresses), corresponding to brittle fracture (we use a rock mechanics convention,
for which σ1 ≥ σ2 ≥ σ3, the compressive stress is positive and the tensile stress is negative). Both joints and
shear fractures were obtained in these tests (for joints, the angle ψ between the fracture and the σ1‐direction
is approximatively zero, whereas shear fractures are inclined to σ1).

Chemenda et al. (2011a) conducted similar tests on Granular Rock Analogue Material (GRAM1) made of
very small bonded TiO2 grains (Nguyen et al., 2011). The mechanical properties of this material have been
extensively studied (Mas & Chemenda, 2014, 2015; Nguyen et al., 2011). It was shown to behave very simi-
larly to hard rocks, showing the same pressure dependence of properties (Figure 2) and variation of the dila-
tancy factor from positive to negative values with Pc increase. GRAM1, however, is much weaker (about 2
orders of magnitude) than real rocks as can be seen in Figure 2.

Fractures of the same types as in Berea sandstone were generated in the GRAM1 extension tests. The mini-
mum stress σ3 at fracturing is shown in Figure 3 as a function of σ1 for both GRAM1 and Berea sandstone
with the indication of the domains of jointing and shear fracturing (defined by the ψ value). In spite of
the very different nature and strength of these materials, the curves have similar trends (as is also the case in
Figure 2 under different loading conditions).

Figure 4 shows surfaces of the σ3‐normal (ψ = 0) fractures generated in GRAM1 extension tests. One can
clearly see that the roughness of these surfaces increases with Pc, which suggests that the thickness of the
failure zone (or band) increases as well with Pc (it is logical to suppose that the amplitude of the roughnesses
is related/proportional to the thickness of the failure zone). These roughnesses are organized in plumose pat-
terns (Figures 4d–4f) that reflect a propagating character of the rupture. The plumosemorphology of fracture
surfaces was not reported in the Berea sandstone tests. A possible reason could be a large grain size of the
sandstone, ~200 μm. The grain size of GRAM1 is sufficiently small (~0.3 μm) for the plumose features to
be well displayed on small specimen sections of ~3 cm of diameter (the Berea sandstone specimens have
the same diameter). What are the causes of the roughening of the fracture surface (the thickening of the frac-
ture zone or band)? The stress‐strain curves in Figure 5 from the described tests suggest a possible answer.
This figure shows that even at a very small pressure corresponding to what is called brittle fracturing, the
curves deviate from linearity before the fracture formation for both GRAM1 and Berea sandstone. This
deviation increases with Pc = σ1 (which is particularly well seen for GRAM1) and attests to the inelastic
deformation (material damage) preceding the rupture and certainly accompanying it. The latter, however,

Figure 1. Joints in a thick shale bed (Taughannock Falls State Park, New
York) emanating from the bed top and propagating downward to different
distances. Compass is for the scale. From Younes and Engelder (1999) and
Engelder et al. (2009). A photo of the same outcrop is given by Pollard and
Aydin (1988).
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cannot be derived directly from the nominal (average) stresses and strains measured in the tests and
presented in Figure 5. On the other hand, a more ductile character of fracture (lesser stress drop) at
higher Pc is seen in Figure 5a.

It is the increase of inelastic strain (or ductility) with Pc that is likely responsible for the thickening of the
rupture zone (band) and roughening the surface of the final fracture. In any case, the rupture does not follow
directly the elastic straining (as is assumed in LEFM) but is preceded and accompanied by an inelastic defor-
mation (for both GRAM1, Figure 5a, and a hard rock, Figure 5b) that must be taken into account. In fact, the
increase of ductility (reduction of brittleness) with Pc is well known from the numerous experimental studies

Figure 3. Minimum principal stress σ3 versus confining pressure Pc = σ1 at fracturing/rupture in conventional (axisymmetric, σ1 = σ2) extension tests of GRAM1
(a) and Berea sandstone (b). Data for sandstone are from Bobich (2005) and for GRAM1 from Nguyen et al. (2011) and Chemenda et al. (2011a). ψ is the angle
between the fracture plane and σ1 direction; σ0t and σ

0
c are the initial tensile and uniaxial compression strengths; σ0

int is the abscissa of the intersection point of the
horizontal and inclined blue lines approximating the experimental data.

Figure 2. Comparison of the stress‐strain curves obtained from conventional axisymmetric compression tests for GRAM1
(a and c; from Nguyen et al., 2011) and Solnhofen limestone (b and d; from Baud et al., 2000) at different Pc indicated
near the corresponding curves in MPa. q is the differential stress (q = σ1 − σ3, σ3 = σ2 = Pc), ε and εax are the nominal
volume and axial strains, εax = ε1.
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and results in the transition from σ1‐parallel (ψ ≈ 0) to σ1‐oblique (shear, ψ > 0) fracturing (e.g., Bésuelle
et al., 2000; Fortin et al., 2006; Nguyen et al., 2011; Wong et al., 1997; Wong & Baud, 2012). The plots in
Figure 5 show that this is true even within a narrow range of small Pc corresponding to the same fracture
orientation (or type), ψ ≈ 0. Thus, the plumose morphology obtained in the experimental fracture surfaces
at elevated pressure (Figures 4d–4f) is likely to be due to the increase in ductility of the fracture process.
Therefore, the elastoplastic framework seems to be more suitable than LEFM to address this process. The
macrofracturing is of course affected by the defects/flaws intrinsic to geomaterials at micro (grain and grain

Figure 4. Surfaces of σ3‐normal fractures generated in GRAM1 specimens in axisymmetric extension tests under different confining pressures Pc (from Chemenda
et al., 2011a).

Figure 5. Nominal stress‐strain curves from axisymmetric extension tests on GRAM1 (Chemenda et al., 2011a) and Berea
sandstone (Bobich, 2005) at different confining pressures Pc = σ1 indicated on the plots in MPa. E is the Young modulus
for GRAM1, E = 6.7 × 108 Pa (Mas & Chemenda, 2014).
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agglomerate) scale, but not in the way that one (or a few) defects give rise to amacrofracture. The actual frac-
turing (e.g., jointing) process seems rather occur by the interaction and coalescence (localization) of numer-
ous defects (heterogeneities) distributed within the deforming volume. These cannot be analyzed
individually, and the challenge is to formulate a constitutive model that on the one hand is sufficiently sim-
ple and physically transparent, and on the other hand, correctly captures the material damage resulting
in macrofracturing.

It is important to distinguish the formation of regular fracture networks in tabular sedimentary piles over
vast areas from that of local individual fractures that can be related to the local stress perturbations (concen-
tration) of different origin. We focus on the fracture network formation, which can hardly be understood as a
simple sequential addition of individual brittle cracks (Rives et al., 1992). A mechanism should exist that
would enable the development of a regular damage pattern within a sedimentary volume from the begin-
ning. Such a process (initiation of regular networks of deformation localization bands evolving to fractures)
can occur in elastoplastic materials (Chemenda, 2007, 2009), resulting from a material (or constitutive)
instability (Rudnicki & Rice, 1975; Rice, 1976). For this mechanism to work, the inelastic straining before
fracturing is a necessary ingredient, which exists according to the curves in Figure 5. This is an additional
motivation to apply an elastoplastic approach.

Finally, in the presented axisymmetric extension tests, only one fracture can be generated, which does not
correspond to the sets of parallel joints observed in nature. The reason is in the boundary conditions applied
in these tests to the cylindrical surface of specimens; pressure is applied by the confining fluid with no stiff-
ness. In nature, the most common situation is when jointing affects certain layers within a multilayer sedi-
mentary pile, and so a more pertinent experimental setup should include at least three layers, with the
central one undergoing fracturing. This setup was used in the plane strain extension tests by Jorand et al.
(2012), where a layer of GRAM2 material (similar to but weaker than GRAM1) was sandwiched between
two rubber layers. Sets of parallel plumose‐bearing joints were generated in these experiments
(Figure 6a). A similar setup is used in the numerical models in this paper.

2. Constitutive Framework for Modeling of Jointing
2.1. Yield Function

The shape of the yield surface for the tensile fracturing follows from the experimental data in Figure 3. They
can be approximated by two linear segments, the horizontal and the inclined ones as is done in Figure 3. The
horizontal segment is defined by one parameter, the tensile strength σt (or the initial tensile strength σ0

t

shown in Figure 3a), and the inclined segment, by two parameters, the slope αc and the uniaxial (or

Figure 6. Set of parallel joints (a) normal to σ3 generated in a GRAM2 layer sandwiched between two rubber layers in
plane‐strain experiments using true 3‐D loading device (GRAM2 is similar to but somewhat weaker than GRAM1).
Three‐layer model initially prestressed in three directions hydrostatically was unloaded in the σ3 direction under plane‐
strain conditions at constant vertical stress σ1 = 0.22 MPa. The principal stress directions shown refer only to (a). The
fracture surfaces in (b and c), formed in this experiment, are normal to σ3. These results are from (Jorand et al., 2012).
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unconfined) compression strength σc (assuming the Mohr‐Coulomb
model, αc and σc can be expressed in terms of internal friction angle and
cohesion).

Since we consider low‐pressure loading conditions corresponding to the
dilatant‐brittle deformation regime, the inelastic straining should lead to
material softening (strength reduction). Assume that αc remains constant,
and both strengths σt and σc reduce linearly with the accumulated inelas-
tic extension or volume εp strain, reaching zero at εp = ε0 (superscript p
stands for plastic or inelastic). The composite yield function is plotted in
Figure 7 and reads

F ¼ Ft ¼ σt þ σ3 if σ1 ≤ σint
Fs ¼ αcσ3 þ σc−σ1 if σ1 > σint

�
(1)

where Ft and Fs are the yield functions for the tensile and shear failure
mechanisms, respectively (Figure 3), and σt, σc, and σint are functions of
εp (Figure 7)

σt εpð Þ ¼ σ0t κ εpð Þ; σc εpð Þ ¼ σ0cκ εpð Þ; σint εpð Þ ¼ σ0intκ εpð Þ if εp ≤ ε0

σt εpð Þ ¼ σc εpð Þ ¼ σint εpð Þ ¼ 0 if εp > ε0
(2)

where κ(εp) = 1 − εp/ε0, σ0c , and σ0
int are the initial values of σt, σc, and σint (see Figure 3a).

2.2. Plastic Potential Function

A dominant damage mechanism of compact rocks in axisymmetric compression tests at low‐stress levels
(both in terms of Pc and σ1 during the loading compared to the values of these stresses at failure) is domi-
nantly σ1‐parallel microfracturing (e.g., Dunn et al., 1973; Hallbauer et al., 1973; Katz & Reches, 2004;
Tapponnier & Brace, 1976; for a review see Paterson &Wong, 2005). More relevant, although very scarce axi-
symmetric extension (Rodriguez, 2005) and true 3‐D (Chang &Haimson, 2000; Ma&Haimson, 2016) experi-
mental studies show that σ1‐parallel and σ3‐normal microcracking occurs to higher stress levels. Within the
framework of a classical elastoplasticity theory, this process corresponds to the negative (extension) inelastic

strain εp3, whereas ε
p
1 and εp2 can be neglected up to a certain stress level that we assume to be σ1 = σint.

The flow rule in the principal stress space reads

dεpi ¼ dλ
∂Φ
∂σi

(3)

where Φ is the plastic potential function, dλ is the nonzero scalar function (dλ is different for the different
failure mechanisms introduced), and i = 1,2,3. Since for the tensile failure only dεp3≠0, the corresponding
plastic potential Φt is equal to Ft; that is, the plasticity is associated and the inelastic strain increment is nor-
mal to the yield surface. Assume also the normality rule for the shear failure mechanism in the brittle‐
dilatant deformation regime considered. Then the composite plastic potential Φ is simply equal to F from
(1) with an accuracy up to constant coefficients.

The above constitutive formulation is similar to the classical one based on Rankine (cutoff) and Mohr‐
Coulomb criteria. The novelty is that both tensile and shear failure mechanisms are coupled in the presented
model by a synchronous evolution of both strengths (σt and σc) during the inelastic straining: if one
decreases, the other does the same and, when one reaches zero, the other does as well (Figure 7). One can
further rectify (and hence complicate) the model to incorporate more experimental observations. For exam-
ple, ε0 can be introduced as a function of the stress level (of σ1 or the mean stress) so that ε0 (or ductility)
increases with σ1 as stated in the Introduction and follows from Figure 5. However, we prefer to keep the
model as simple as possible and to test the influence of ε0 on the failure (fracturing) processes by simply vary-
ing this parameter in the numerical models. For the same sake of simplicity, we use the Mohr‐Coulomb‐type

Figure 7. Composite yield surface σ3(σ1, ε
p). The gray semitransparent

plane shows a zero‐level σ3.
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yield function for shear failure/damage, which is justified by the fact that in this paper we focus on the frac-
turing that is mostly defined by the tensile failure mechanism. For fracturing at higher pressure where the
shear failure mechanism plays a major role, more adequate (but more complex as well) three‐invariant,
σ2‐dependent constitutive models (e.g., Chemenda & Mas, 2016; Rudnicki, 2017) should be used.

Since εp2 ¼ 0 and εp1 is either zero (for the tensile failure mechanism) or small (for the dilatant‐shear defor-

mation), εp≈εp3≈γp , where γp is the maximum inelastic shear strain (γp ¼ εp3−ε
p
1 ). Therefore, either of

strains εp; εp3, or γ
p can be used to track the history of inelastic deformation and to define the softening.

The numerical simulations lead to practically the same results in all these cases. As is seen from the
expressions (2), we use εp in this paper.

2.3. Integration of Mesh Element Size of Numerical Models Into the Constitutive Formulation

The failure/fracturing process we study results from a mechanical instability leading to deformation loca-
lization. The numerical finite difference (FD) or finite element modeling of this process is known to be
mesh dependent (e.g., Needleman, 1988; Pijaudier‐Cabot & Bažant, 1987). The thickness of the deforma-
tion localization bands (of the failure zone) is directly proportional to the mesh element size Δz and typi-
cally is equal to (1–4)Δz depending on the orientation of the mesh anisotropy axes with respect to the
orientation of the forming deformation bands (e.g., Chemenda, 2007). The solution therefore does not
converge with mesh refinement. To reduce (remove) the mesh dependency, different regularization (nota-
bly nonlocal/gradient) techniques are applied (e.g. Chen & Schreyer, 1987; Needleman, 1988; Nguyen &
Korsunsky, 2008; Pijaudier‐Cabot & Bažant, 1987; Poh & Swaddiwudhipong, 2009; Vardoulakis, 1989) in
order to smooth the deformation field and thereby stabilize the band thickness when refining the grid.
This is done through the introduction of an intrinsic length, which should ideally be the grain size.
Using these techniques, the numerical band thickness d can indeed be stabilized and include as many grid
zones as necessary. The stress‐strain response of the model during band formation and evolution does not
change in this case with the grid refinement. However, for the same constitutive model, this response will
change with d change and will approach the response of the modeled (physical) object as d approaches
the physical (real) band thickness dR, which is typically very small and equal to several grain sizes.
This means that the discretization should be finer than dR, which is impossible when addressing most
of the real‐life geological problems. Therefore, exact modeling is impossible in this case with or without
regularization. Rather sophisticated, computationally expensive regularization procedures that do not
always have a clear physical meaning therefore lose their initial attractiveness as a means of obtaining
more rigorous solutions. On the other hand, since the mechanical response of the numerical model is
Δz‐dependent, this parameter has to be an integral part of the constitutive formulation. It should be noted
that discrete element method models do not escape from this requirement either. They were shown to be
particle size (and also particle shape) dependent. Ideally, this size should be comparable to the grain size
of the modeled rock (which is impossible in most cases) or at least be included in the constitutive formu-
lation (e.g., Potyondy & Cundall, 2004).

In the FDmodels reported in this paper,Δz is included into the constitutive description in the following sim-
ple manner. Since the thickness of a strain localization band (failure zone) is proportional to Δz, the strain
rate, and hence the material softening rate within the failure zone, is inversely proportional to Δz. In other
words, to produce the same softening in the model within the band with different mesh element sizes Δz0
and Δz1 (Δz1 < Δz0), less work by the external (boundary) forces is needed when Δz is smaller, that is, when
Δz= Δz1. The softening rate and the dynamics of strain localization (of failure) are defined by the hardening
modulus h. For the tensile failure

h ¼ 1
G
∂σt
∂εp

(4)

whereG is the shear modulus. To obtain the same softening in themodels with differentΔz at the same load-
ing stage, h should be scaled as h0Δz1 = h1Δz0. Considering relations (2), obtain from (4)

ε01 ¼
Δz0
Δz1

ε00 (5)

where subscripts 0 and 1 correspond to different mesh element sizes (or mesh resolution). The simple way
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thus to reduce the mesh dependency of the deformation pattern and its evolution in numerical models is to
express ε0 in the constitutive relations as

ε0 ¼ ε̃0ðC=ΔzÞ (6)

where C is a constant coefficient, and eε 0 is equal to ε0 when Δz = C.

The formulated constitutive model has been implemented into the FD dynamic time‐matching explicit code
FLAC3D (Itasca, 2013) used for the numerical modeling in this work. The elastic properties are modeled by
Hooke's equations. Numerous simulations were carried out in quasi‐static, large‐strain mode with different
model parameters. Below we report representative results.

3. Modeling Setup

A plane‐strain, three‐layer model is subjected to the velocity and stress boundary conditions, as shown in
Figure 8a. Layers 1 and 3 are purely elastic, and layer 2 has elastoplastic properties described above. The
adjacent layers are totally coupled. The model parameters are close to those in GRAM experiments in
Chemenda et al. (2011a) and Jorand et al. (2012). The elastic properties of all the layers in the presentedmod-
els are the same, E = 6.7 × 108 Pa and ν = 0.25 and are those for GRAM1 (E is Young's modulus and ν is
Poisson's ratio); σ0t , σ

0
c , σ

0
int, and αc are defined from the plot in Figure 3a to be σ0t ¼ 7×104 Pa, σ0c ¼ 6:5×

105 Pa, and σ0int ¼ 5:1×105 Pa, αc = 2 (see also Figure 7). The models are prestressed to the initial stresses

σinixx and σinizz ¼ σiniyy ; σ
ini
xx is set close to (but less negative than) −σ0t to approach the failure point in order to

save the calculation time, and σinizz ¼ σiniyy are varied, but in the presented models they are σinizz ¼ σiniyy ¼ 3:5×

105 Pa (the average of the values applied in the GRAM1 experiments in Figure 4), except in the model in

Figure 13, where σinizz ¼ σiniyy ¼ 6×105 Pa. The vertical stressσzz ¼ σinizz is applied to the upper model boundary

as shown in Figure 8a. The parameter ε0 is difficult to define from the experimental data, and in addition,

it is mesh‐dependent (equation (6)). Therefore, it is varied in a wide range by varying eε0 from 5 × 10−2

to 5 × 10−4, the coefficient C being set to 2.5 × 10−4 m. The model size is given in the caption of
Figure 8. The model resolution (numerical grid size) was varied as well. It is given in the figure captions
by the number of grid elements Nx in the x direction.

Figure 8a shows the complete modeled structure, but to reduce the calculation time, most of the simulations
have been carried out with the model reduced to a quarter shown in Figure 8b. The boundary conditions
applied to these models also are shown in this figure.

Although the models are 2‐D, they have two attached grid layers in the y direction with different geometry of
grid elements of layer 2 (Figure 8c). This considerably reduces the grid anisotropy that may affect
strain localization.

It should be noted that although themodels were run with the specifiedmodel parameters, the results will be
the same for other parameters with the dimension of stress (Pa) if they are properly scaled. The most

Figure 8. Setup of three‐layer 2‐D numerical models. (a) The entire model. (b) A quarter of the entire model. (c) The
attached two layers of the grid used to reduce the grid anisotropy that can influence the strain localization. The velocity
and stress boundary conditions applied are shown in (a) and (b); Vx and Vz are the velocities in the corresponding direc-
tions. σinizz is the initial stress in the z direction to which the models are prestressed; this stress is also applied to the upper
boundary of the models during the deformation. Layers 1 and 3 are purely elastic, and their thickness is 0.5 cm. Layer 2 is
elastic‐plastic; its thickness is 1 cm. The length of the entire model is 4 cm.
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important thing is to keep the same σ0c=σ
0
t ratio, which is equal to ~9 for the chosen (GRAM1) parameters.

This value is typical for brittle rocks.

4. Modeling Results

Below we present results from nine numerical simulations, run with the parameters given above and in
the captions of the corresponding figures. Figure 9 shows the complete fractured model corresponding to
the setup in Figure 8a, and Figure 10 presents the evolution of a quarter of this model (corresponding to

the setup in Figure 8b) for the relatively brittle material behavior (small eε0 value, equal to 10−3). A syn-
chronous evolution of σt, σ3, and of the mechanical state during the horizontal extension, showing
damage/failure mechanisms (tensile or shear) and their history, is presented in Figure 10. At the initial
stages of fracture formation, σt within them is close to σ0t ¼ 7×104 Pa and then decreases to zero when
the fracture is completely formed. The two fractures at the model ends in Figure 9 (the leftmost fracture

Figure 9. The result of fracturing (expressed in terms of the tensile strength σt(ε
p)) of the entire model (corresponding to

Figure 8a) after horizontal extension run at eε0 = 10−3, Nx = 640, and σinizz ¼ σiniyy ¼ 3:5×105 Pa. Here and below, only the
middle layer (layer 2, Figure 8a) is shown.

Figure 10. Five stages (lines a to e) of the evolution of σt, the mechanical state, and σ3 during the horizontal extension in a quarter of the entire model correspond-
ing to the setup in Figure 8b. Mechanical state (elastic and elastic‐plastic) plots show damage/failure or inelastic deformation mechanism (tensile or shear) and its
history. Different colors in these plots correspond to different damage mechanisms and their succession. For example, “tens‐n (n means now), shear‐p, tens‐p (p
means past)” indicate that the corresponding zones undergo a tensile damage at the stage shown, but they already underwent shear and tensile damage during
previous deformation stages (in the past). Zones shown as pure elastic did not undergo inelastic straining at all. Nx = 320.
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in Figure 10, first column) are formed first due to the boundary effect, which is very small in the models,
but does exist. In the second column in Figures 10a and 10b (mechanical state), one can also see the
initiation of a regular pattern of subvertical bands that are not seen on the σt plots, since the σt reduction
within these bands is very small at the early stages compared to the fractures already formed (these bands
appear on the σt maps after the change in color scale). At the next stage, the middle fracture in Figure 9
(the rightmost fracture in Figure 10b, first column) is formed. In the following description, we will refer
only to the quarter model results. On the σ3 plots (the third column in Fig. 10), one can see the formation
of stress shadows at the sides of the formed fractures.

The sets of deformation bands (that are pure dilation bands) evolve further during the loading but very irre-
gularly. In some of them, the failure along the most damaged axial zones is rapidly accelerated at certain
deformation stages and ends in complete local material rupture (when σt reaches zero) close to the upper
boundary of the layer. Fractures emanating from these failed band segments propagate, with the tensile
stress being concentrated at their tips (the third column in Figure 10).

In the above model the hardening modulus is very negative, h = − 0.26 (eε0 is very small). In the model in

Figure 11,eε0 is an order of magnitude larger, 10−2 (h= − 0.026). This model therefore is more ductile, which
explains more gradual (or slow) fracturing. One can notice that the dilation bands are much thicker and
longer than in the previous model (compare Figures 10a, 10b, and 11a, second column). There is a smaller
number of underdeveloped (not crossing the entire model) fractures. On the contrary, the damage of the
material is more distributed and involves practically the entire model (the second column in Figure 11), par-
ticularly within and in the vicinity of the fractures where inelastic deformation occurs due to both tensile
and shear failure mechanisms (Figure 11e), unlike the previous model where only tensile mechanism is
active (Figure 10) outside the bands. Another difference between the two models consists in the locations
of the fracture initiation and the propagation direction. In Figure 11, the first six fractures propagate from
the model bottom (which corresponds to the middle of the entire model) upward. The later fractures are
initiated in the upper part of the model and propagate mostly downward, but upward as well. In
Figure 10 all the fractures are initiated near the layer top. In spite of the differences in the fracturing

Figure 11. Five stages (lines a to e) of the evolution of σt, the mechanical state, and σ3 during the horizontal extension of the model in Figure 8b. This model is more
ductile than that in Figure 10 (eε0 = 10−2 instead of 10−3 in the previous model).
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processes in the above models, the number of fractures cutting the whole
model is not very different, eight in Figure 10 and seven in Figure 11. The
total number of fractures (including the underdeveloped ones) is much

greater in the more brittle model in Figure 10. The increase of eε0 to
5 × 10−2 further increases the ductility, but the number of fractures

remains practically the same. Reducing eε0 to 5 × 10−4 results in the
reduction of the thickness of the upper part of the model affected by the
dilation banding at the early stages, but this does not have a significant
effect on the deformation process.

The models in Figures 10 and 11 reveal the role of ductility in structuring
the fracture set. These models are homogeneous, so one might think that
heterogeneous models with preexisting stress concentrators could behave
differently (i.e., that the development of a fracture set could be prevented).
Therefore, we present the model where the initial tensile strengthσ0t is not
uniform but follows a Gaussian distribution over the numerical grid ele-
ments with a mean value of 7 × 104 Pa (as in the other models) and a stan-
dard deviation of 2 × 103 Pa. The stress and strain fields do indeed become
heterogeneous in this case (Figure 12), particularly at the initial deforma-
tion stages, but strain localization and fracturing finally occur similar to
the model in Figure 10.

To complete the picture, we present one more model (Figure 13) run at a

higher stress level (σinizz ¼ σini
yy ¼ 6×105 Pa) corresponding to shear fractur-

ing. The fracture in this model again starts with the formation of deforma-
tion localization bands (dilatant‐shear this time), which is followed by the

Figure 12. Five stages (lines a to e) of the evolution of σt, the mechanical state, and σ3 during the horizontal extension of the model in Figure 8b. This model is the
same as that in Figure 10 with the only difference that the initial tensile strengthσ0t is not uniform in this case but follows a Gaussian distribution over the numerical
grid elements with a mean value of 7 × 104 Pa (as in other models) and a standard deviation of 2 × 103 Pa.

Figure 13. Stages of the evolution (a to c) of σt during the horizontal exten-
sion of the model in Figure 8b loaded to higher stresses σinizz ¼ σiniyy ¼ 6×105

Pa. Nx=320, eε0=10‐2.
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evolution of certain bands to shear fractures when σt reaches zero
(Figure 13c).

Finally, in Figure 14 four more models are presented that differ only by
the numerical resolution. They were run to the same horizontal extension
x‐displacement (or nominal horizontal strain) in order to reveal the mesh
dependence of the modeling results. There is clear and expected mesh
dependence of dilation band and fracture thicknesses (that are propor-
tional to the grid element size). However, there is a very weak, practically
negligible mesh dependence of a fracture pattern and its evolution, except
that with Nx increase, the number of the resolved short fractures initiated
at the model top increases. At Nx < 200, the mesh dependence becomes
more significant. This suggests that the grid element size is satisfactorily
taken into account in the constitutive formulation.

5. Discussion

The fracture (joint) sets generated in the numerical models resemble nat-
ural and experimental ones including some details (compare, for example,
Figures 1, 6a, and 9 showing parallel joints propagated to different dis-
tances across the layer from its top and bottom). The fracture initiation
in the initially homogeneous models is due to a constitutive instability
that occurs under tensile stress and results in the localization of inelastic
strain (damage) and the formation of pure dilation bands in a strain soft-
ening regime. The material strength (and hence the absolute value of the
tensile stress) locally reduces to zero within the band during its evolution,
which also causes a release of the tensile stress at the sides of a fractured
band segment (formation of a stress shadow predicted by Bai & Pollard,
2000). The fractures spontaneously initiated in this way propagate along
their strike in Mode I or opening mode. Fracture initiation is thus pre-
ceded by localized damage within dilation bands, and fracture propaga-
tion follows band propagation as can be seen in Figures 10–12. The
fractures in these figures (models) correspond to σt = 0, and the dilation
bands, to 0 < σt < 7 × 104 Pa. The process zone in front and around the

fracture tip therefore does not appear as a result of the stress concentration at the tip of the propagating frac-
ture. This process zone is the result of deformation localization and formation of a dilation band that pre-
cedes and prepares the fracture. Therefore, the fractures propagate more easily in these elastoplastic
models compared to what is predicted by LEFM that does not take into account inelastic strain and its evo-
lution. Indeed, the minimum fracture spacing normalized by the layer thickness is 0.17 in Figure 9 and 0.13
in Figure 14d (or much less taking into account the underdeveloped fractures), whereas the minimum nor-
malized spacing predicted from LEFM is about twice of that (Bai & Pollard, 2000). LEFM predictions should
approach the modeling results as ε0 approaches zero, although the necessity to introduce the initial flaws
explicitly (specifying their sizes, orientations, and distribution) will remain a major drawback of the
LEFM approach.

5.1. Fracture Orientation

The presented results show that the primary process is not the direct fracture of a material (in the sense of
separation of the two walls), but the initiation of deformation (damage) localization within narrow bands,
the dilation bands. To induce jointing, these bands should be oriented normal to σ3; otherwise, the bands
will be shear and will lead to shear fracturing, Figure 13 (which occurs not as Mode II cracking but results
from the propagation and evolution of dilatant‐shear strain localization bands). What defines the orientation
of the bands and more generally, what defines their formation? Deformation banding is caused by a material
(or constitutive) instability resulting in deformation bifurcation that occurs at some point of elastoplastic
loading when the hardening modulus h reaches its critical value hcr (Rudnicki & Rice, 1975). These authors
have also shown that the orientation of the deformation bands in the stress space is defined by a constitutive

Figure 14. Four fractured models (a to d) that differ only by the grid resolu-
tion (by Nx). eε0 = 10−3 and σinizz ¼ σiniyy ¼ 3:5×105 Pa. All models correspond
to the setup in Figure 8b, and were run to the same nominal horizontal
extension strain of −3 × 10−3.
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model and its parameters (such as the internal friction and dilatancy coefficients) and by the deviatoric stress
state. In this paper, we use a composite constitutive model (equations (1) and (2)), describing tensile and
shear failure mechanisms. In both cases hcr can be shown to be zero (Ottosen & Runesson, 1991;
Vardoulakis, 1980 ; Vermeer, 1982), meaning that the strain localization can occur only at a nonpositive
(in practice, negative) h value, that is, in strain softening regime. Our numerical models confirm this conclu-
sion and in all the presentedmodels h< 0. The angle ψ the deformation band forms with σ1 (which is vertical
in the models) is predicted to be zero for the tensile failure model used (Ottosen & Runesson, 1991); that is,
the forming bands should be pure dilation bands, and

ψ ¼ ±
1
2

π
2
−asin

αc−1
αc þ 1

� �� �
(7)

for shear failure mechanism as can be obtained from (Vardoulakis, 1980; Vermeer, 1982). For the parameter
values adopted in the present work, equation (7) yields ψ = ± 35.3°, which are exactly the values measured
on Figure 13. Since the initiation of joints in the present numerical models is only due to the tensile failure
mechanism (which can be inferred from theMechanical State plots in Figures 10 and 11), the corresponding
deformation bands are oriented at ψ = 0°; that is, they are pure dilation bands. The numerical models con-
firm that there is no shear displacement along these bands. Further evolution of the bands involves shear
failure mechanism both within (Figures 10 and 11c–11e) and outside (Figures 11d and 11e) them, which
does not change the fracture orientation at the macroscale (the contribution of the shear mechanism
increases in the models with both ε0 and the stress level). At a smaller scale (comparable to the initial band
thickness d), the shear failure mechanism may result in both shear banding and fracturing, but these pro-
cesses cannot be resolved by the continuum modeling.

As mentioned, the predictions of deformation bifurcation analysis (of the ψ value in particular) depend on
the constitutive model. A question arises naturally, do other (than the used associated cutoff) models predict
ψ= 0° and what will be the difference in the modeling of jointing when using these models? In fact, the dila-
tion bands (bands with ψ = 0°) were initially theoretically predicted using the Drucker‐Prager constitutive
model (Issen & Rudnicki, 2000; Ottosen & Runesson, 1991; Perrin & Leblond, 1993). According to the results
of bifurcation analysis in these papers, the condition for the formation of the dilation bands can be written

β≥
3N 1−2νð Þ þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4−3N2

p
−2μ 1þ νð Þ

2 1þ νð Þ (8)

where β is the dilatancy factor, μ is the internal friction coefficient, and N is the deviatoric stress state para-
meter that can vary from−1=

ffiffiffi
3

p
to 1=

ffiffiffi
3

p
corresponding to axisymmetric extension and compression, respec-

tively (this parameter can be expressed via the Lode angle). Assuming for N its average value of N = 0,
corresponding to the pure shear, and the typical for rocks values μ = 0.8 and ν = 0.25, obtain from (8)
β ≥ 1.6. This is an unrealistically high value that has never been measured experimentally. In addition, it
can be shown that such high β values (β > μ) can lead to negative energy dissipation during plastic deforma-
tion, which violates the second law of thermodynamics. For axisymmetric extension,N ¼ −1=

ffiffiffi
3

p
, β is smal-

ler, β = 0.93, and for N ¼ 1=
ffiffiffi
3

p
, β = 1.63. Therefore, the dilation (or dilatancy) bands obtained

experimentally in Chemenda et al. (2011a) remained unexplained. A very simple associated cutoff model
was not applied to tackle dilation banding. This model, however, now appears to be more adequate to
describe dilatant failure at low pressure. Plastic energy dissipation is always nonnegative, and the dilatancy
factor has a reasonable value for this model. Indeed, β is defined as β ¼ dεp=dγp, where dγp is the increment
of inelastic equivalent shear strain;

dγp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 dεp1−dε

p
2

� �2 þ dεp1−dε
p
3

� �2 þ dεp2−dε
p
3

� �2h i
=3

r
:

As only dεp3≠0 (see section 2.2), β ¼ ffiffiffi
3

p
=2≈0:87 for any stress state.

It is interesting that the introduction of an arbitrary disorder into the model properties (and hence into the
stress state during the inelastic straining) does not affect its capacity to generate regular band‐fracture sets
(Figure 12) as long as, obviously, an amplitude of this disorder does not exceed a certain value (its
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wavelength is important as well). In Figure 12 this amplitude is already far from being negligible: The
maximum relative spatial variation of the tensile strength at a numerical grid element scale
(corresponding to an assembly of grains) is ~24% (Figure 12a). Larger heterogeneities in the properties
can completely change the fracture pattern (Chemenda et al., 2018).

5.2. Fracture Thickness

There is no actual opening of the tensile fractures forming in the numerical models as they are continuum.
The space that should be opened is filled in these models with the stretched material, which acquires an
increased porosity. The fracture corresponds to the completely failed material for which σt = 0. The porosity
of the failed numerical zones acquired during deformation (in addition to the preexisting porosity) is equal to
the accumulated inelastic volume strain εp shown in Figure 15. The equivalent aperture Δl of the fracture
(joint) can be evaluated as

Δl ¼ ∫
Δd
0 εp xð Þ−ε0� 	

dx if εp xð Þ>ε0 (9)

where Δd is the total thickness of the completely failed zones and x is oriented across the band. At the indi-
cated position in Figure 15, the band thickness is d = 5 × 10−4 m, Δd = 1.4 × 10−4 m, and εp(x) is obtained
from Figure 15 (note that the band thickness that appears in this figure is much smaller than the actual one,
d, seen in Figure 11a, second column, because of a very strong εp(x) gradient). Substituting these into equa-
tion (9), obtain Δl = 4 × 10−5 m=40 μm. The apparent aperture of the same fracture decreases upward and
reaches ~10 times smaller value at the layer top.

As indicated, the fracture corresponds to the axial zone of the dilation or porosity band with strongly

increased porosity. The band thickness d increases with the increase of eε0 or of the ductility, which itself
grows with the stress level or pressure. The contribution of shear failure mechanism in inelastic deformation

both within and outside deformation bands also increases witheε0 (Figure 11e) and with pressure (Figure 13).
This deformation is distributed smoothly in the models, but in reality, it should bifurcate and lead to small
(micro) deformation bands and fractures of different types that cannot be resolved in continuum models as
indicated above. These features should roughen the fracture walls, and it is logical to suppose that the
thicker the fracture‐related damage zone (deformation band), the greater the amplitude of the roughnesses
that are organized into plumose patterns as suggested by both experimental (Figures 4, 6b, 6c) and field
observations. Such an organization is due to the fact that the bands in the models are propagating features;
the fractures propagate within the bands with a certain delay.

5.3. Fracture Propagation Direction

The location of fracture initiation points and the propagation direction again depend on thematerial ductility
(on ε0). At a relatively small ε0 (low pressure), the fractures are initiated near the top and bottom of the layer
and propagate toward its center (Figures 9 and 10). This was also predicted by Bai and Pollard (2000). In a
more ductile material (larger ε0), the first fractures are initiated in the middle of the layer and propagate
to the top and the bottom (Figure 11). The next fractures are initiated in the lower and upper parts of the
layer (the upper part in Figure 11e). Thus, the initiation points can be located anywhere, which also

Figure 15. Contour plot of the accumulated inelastic volume strain εp (equal to the porosity change induced by the inelas-
tic deformation) corresponding to the last deformation stage in Figure 11. Δl is the equivalent aperture of the fracture at
the indicated location.
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seems to be the case for natural joints, although joint initiation at bed boundaries is more common (de
Joussineau et al., 2005; Helgeson & Aydin, 1991; Savalli & Engelder, 2005). This is the case in the GRAM
experiment in Figure 6 as well. Careful inspection of the photo in Figure 6a (which has a sufficiently high
resolution) reveals several underdeveloped fractures emanating from the top and bottom of the layer, very
like as in the model in Figure 9. A similar natural fracture pattern (and likely history as well) is seen in
Figure 1 in 3‐D and was also documented in basaltic lava affected by columnar jointing (Aydin &
DeGraff, 1988).

5.4. Fracture Spacing

Although the total number of fractures cutting the entire model layer does not much depend on the ductility
degree or on ε0 (compare Figures 10 and 11), the capacity of fracture generation is clearly higher in a more
brittle material (with lower ε0). Most of the fractures propagate to a certain distance but do not cut comple-
tely the model. This propagation in the presented 2‐D models occurs only in the vertical direction. In a 3‐D
context, the fracture propagation also should occur in the horizontal direction as is the case in nature (e.g.,
de Joussineau et al., 2005; Pollard & Aydin, 1988; Savalli & Engelder, 2005). This can increase fracture den-
sity in each σ2‐normal section.

All stresses in this paper should be obviously considered as effective, but the actual modeling of the coupling
between pore pressure and deformation may allow further increase of fracture density. The influence of the
softening rule (equation (2)) should be investigated as well. We assumed a simple linear rule (as there are
neither experimental nor theoretical constraints on it), but other functions can be tested as well. The contrast
in the elastic moduli and the thicknesses of the adjacent layers can also affect the results, although we made
several tests that did not show any significant impact. On the other hand, the thickness of the fracturing
layer H clearly affects the fracture spacing, which scales with H. This is in agreement with the conclusions
made on the basis of LEFM (Bai & Pollard, 2000). The underdeveloped fractures obtained in the models may
grow during the unloading (related to exhumation, for example) due to the spatial variation of the inelastic
volume (porosity) acquired during the jointing. This can be tested in future modeling and may explain (at
least partially) the apparent lack of barren joints in subsurface compared to outcrops (Gale et al., 2014).
Finally, integrating into the models of the cementation (strengthening) of fractures during their opening
due to the mineral fill (Fall et al., 2015; Gale et al., 2014) can change both the evolution of a fracture set
and the fracture density.

6. Conclusions

This study suggests that regular joint sets or networks widely present in outcrops (notably in sedimentary
series, but in other rocks as well) do not form as the addition of individual brittle cracks emanating from pre-
existing material or structural heterogeneities (stress concentrators). They result from a material instability
leading to the initiation of a network of narrow bands of localized dilatant damage (inelastic deformation)
within large rock volumes. These bands are pure dilation bands that are normal to σ3. They form (are
initiated) due to the inelastic (plastic or ductile) straining of a rock volume that occurs even in a brittle defor-
mation regime (very low pressure). The band thickness, length, and the initial (before a phase of rapid frac-
ture) gradual strength reduction (failure) within them increase with thematerial ductility, which grows with
the effective stress level (σ1) or pressure. The strength reduction within the bands is accelerated at a certain
stage of their evolution and locally reaches zero, resulting in fracture initiation. The initial fracture then pro-
pagates in Mode I within the band following the band propagation. The delay of fracture propagation with
respect to the band propagation (the distance between the fracture and band tips, which corresponds to the
process zone) increases with the material ductility (with pressure). The fracture (joint) appears thus as a
band of damaged material with increased porosity, which is maximum along the band axial zone where
the material is completely broken. The material within the band undergoes both tensile and shear damage.
Shear damage increases with ductility increase, which also leads to band thickness increase in the numerical
models. We believe that these processes can result in small (band thickness)‐scale oblique shear fractures
within the band, which are not resolved by the continuum models and which can cause an increase in
the roughness of fracture walls as is evidenced by the laboratory experiments. Since the dilation bands
and the fractures that follow them are propagating features, these roughnesses create a sort of streamlines
organized in plumose patterns typical of both natural and experimentally generated joints.
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Nomenclature

E Young's modulus
ν Poisson's ratio
G Shear modulus
εp Accumulated inelastic (plastic) volume strain
γp Accumulated inelastic equivalent shear strain

σt(ε
p) Tensile strength which is function of εp

σ0t Initial (at εp = 0) tensile strength
σc(ε

p) Unconfined (uniaxial) compression strength
σ0c Initial value of σc
αc Parameter in Coulomb‐type yield function (equation (1) and Figure 2)

σint(ε
p) Equal to σ1 at the intersection of tensile and shear yield envelopes in Figures 3 and 7

σ0int Initial value of σint
ε0 Inelastic volume strain at which both σt and σc reach zero
Pc Confining pressure
σi Principal stresses, compression positive, i = 1,2,3

q = σ1 − σ3 Differential stress
F, Ft, Fs Yield functions defined in equation (1)

Φ Plastic potential
h Hardening modulus

Δz Numerical grid element (zone) size
d Thickness of the deformation band in numerical models
dR Real thickness of deformation bands in laboratory experiments or nature
Δd Total thickness of the completely failed numerical grid zones within a deformation band
Δl Equivalent fracture opening in the numerical models
H Bed (layer) thickness
λ Fracture spacing

C, eε0 Defined in equation (6)
εpi Inelastic principal strains, i = 1,2,3
ψ Angle between fracture or deformation band and σ1 direction
β Dilatancy factor
μ Internal friction coefficient
N Deviatoric stress‐state parameter

σinixx , σ
ini
yy , σ

ini
zz Initial stresses applied in the numerical models

GRAM Granular Rock Analogue Material
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