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Abstract—Recent trends in power systems and those envisioned
for the next few decades push Transmission System Operators
to develop probabilistic approaches to risk estimation. However,
current methods to solve power flows are too slow to fully attain
this objective. Thus we propose a novel artificial neural network
architecture that achieves a more suitable balance between
computational speed and accuracy in this context.

Improving on our previous work on Graph Neural Solver for
Power System [10], our architecture is based on Graph Neural
Networks and allows for fast and parallel computations. It learns
to perform a power flow computation by directly minimizing the
violation of Kirchhoff’s law at each bus during training. Unlike
previous approaches, our graph neural solver learns by itself and
does not try to imitate the output of a Newton-Raphson solver.
It is robust to variations of injections, power grid topology, and
line characteristics.

We experimentally demonstrate the viability of our approach on
standard IEEE power grids (case9, casel4, case30 and casell8)
both in terms of accuracy and computational time.

Index Terms—Power Flow, Solver, Artificial Neural Networks,
Graph Neural Networks, Graph Neural Solver

I. BACKGROUND & MOTIVATIONS

Transmission system operators such as RTE (Réseau de
Transport d’Electricité) are in charge of managing the power
system infrastructure. They perform security analyses that
rely on the “N-1” criterion: for every single outage that can
happen, they make sure that the grid remains stable. Recent
developments in the energy ecosystem in Europe, as well as
those envisioned for the next few decades (increasing amount
of uncertainty caused by intermittent sources of energy or by
a less predictible end consumer’s behavior, more open energy
markets, increasing automation of the grid, etc.) push TSOs
to rethink their approach to security analysis.

The GARPUR! consortium reports advocate for a prob-
abilistic approach to power system risk assessment, going
beyond the simple “N-1” criterion [1], [18]. Current methods
for power flow computations are too slow to enable this, and a
method that would be faster (at the cost of a reduced accuracy)
could help achieve a reasonable statistical evaluation of the
risk. Speeding up computations using artificial intelligence
seems to be a promising avenue to get closer to this goal.
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Pioneering work by Nguyen [23] demonstrated the feasibility
of such an approach. Donnot et al. continued in this direction,
and managed to encode atypical interventions on a given grid
[9], [3]. Duchesne et al. [11] also use Machine Learning
coupled with control variate to speed up a Monte Carlo
approach.

The artificial neural networks domain [14], [27] is very
proficient and has achieved several major breakthroughs in the
past decade, thanks to a proactive community of researchers
and to the exponentially-increasing computational capability of
modern computers. Application of artificial neural networks
to physics problems has also known a surge of interest in
recent years. Trajectories of interacting particles have been
modelled [19], fluid mechanics computations problems have
been accelerated [29], and applications to quantum mechanics
offer promising results [7], [22], [28].
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Fig. 1. Artificial Neural Network example - Artificial Neural Networks
consist in function approximations that typically look like the equation above.
The function o is a non linearity (typically ReLU or tanh), and parameters
of the model W; and b; are fitted by a stochastic gradient descent trying to
minimize the distance between the prediction and the ground truth.

We advocate for a meticulous approach to the way Al tools
are being developed for critical and industrial systems such as
power grids. More specifically, encoding the known invariants
and symmetries of a system directly inside the structure of
artificial intelligence models make them resilient by design.
More specifically, and to give a power system example, a
“black box” model that would be trained on a situation where
every line is connected, will most likely not be accurate
anymore if one of those lines were to be disconnected. On
the contrary, a model that directly encodes invariants and
symmetries will better withstand those perturbations. Our work
is intrinsically in line with Battaglia et al. [4], as we aim at
building a strongly generalizable neural network architecture
that interwines generic learning blocks in an instance agnostic
manner.



Graph Neural Networks are a class of Artificial Neural
Network that are designed to respect the permutation invariants
and edge symmetries of graph structures. They use neural
network functions such as the one described in figure 1 as
small learning blocks that will be used at several places of the
network (see figure 2). They were first introduced by Scarselli
et al. in [26] and further developed in [21], [13], and their
theoretical properties have been investigated in [17], [30].
They have been successfully applied to graph classification
[6], [8], [12], vertex classification [16], [20] and relational
reasoning [25]. [5] and [19] are examples of hybrid approaches
that blend deep learning and knowledge about the structure of
the problem.
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Fig. 2. Graph Neural Network - This novel domain of artificial intelligence
aims at dealing with graph-structured data. The input data x relies on a graph
structure presented at the top left of the figure, and our goal is to perform a
prediction g that is bore by the same graph structure. The key idea of Graph
Neural Networks is to iteratively propagate messages through the edges of the
graph structure. These propagations can be seen as “correction” updates. The
structure of the Graph Neural Network that we used in our previous work is
presented at the bottom part of the figure and is organized as follows :
(1) First, the input message x; of each bus ¢ is converted into a message m?
using a common encoder (which is a neural network similar to the one shown
in figure 1).
(2) Secondly, those messages are iteratively updated by common neural
networks L* that take as an input - for each bus 4 - the sum of the messages
of its neighbors j € N/(i). There are K “correction” updates, and each of
the K neural networks L* are different.
(3) Finally, the resulting messages mf are all decoded into the prediction g;
by applying another common neural network D.
All the K + 2 neural network blocks (F, Lo, .., LK, D) are then all jointly
trained by a gradient descent learning process. In the figure above, we have
K = 2. The shape of the inputed graph (amount of nodes and adjacency
matrix) directly impacts the shape of the graph neural network.

Our previous work on the Graph Neural Solver [10] laid
the ground for a strongly generalizable fast neural solver. It
relies heavily on graph neural networks, and consists in three
main parts : first an embedding of the input (injections at
each line side), then a message propagation, and finally a
decoding part that converts the resulting messages into flows
through lines. The overall architecture is presented in figure
2. We experimentally demonstrated that our Graph Neural
Solver architecture was able to learn on randomly generated

power grids of 30 buses, and infer (with a better accuracy
than the DC approximation) on random power grids of sizes
ranging from 10 to 110 buses, thus achieving a form of zero-
shot learning [24]. This architecture is by design robust to
power grid topology perturbations, and variations of injections,
and has the property to be fully differentiable as it relies
exclusively on neural networks.

However, there were some limits to this first investigation
that were left for future research. First of all, the strong hypoth-
esis that all power lines share the same physical characteristics
was made, to simplify the problem. Secondly, the datasets that
were used both for training and testing were data that were
already processed by RTE’s proprietary power flow solver
Hades2 to ensure a global active equilibrium. Another issue
was the need to perform expensive calls to a Newton-Raphson
solver to generate a dataset that was later used to train the
Graph Neural Solver. Finally, the computational speed was
not significantly better that the one of a classical approach.

One contribution of this paper is to build a neural network
architecture that answers all the previously mentioned issues.
Moreover, our previous work relied on minimizing the distance
between our neural network’s predictions and the results of
a classical Newton-Raphson method. The main novelty of
our present work is that we no longer try to imitate the
output of another solver and we directly penalize the
violation of physical laws during the training process.
Our approach is thus completely independent from any other
algorithm, and stands as a new way of performing a power
flow. Moreover, we moved closer to the classical equations of
the power systems literature, thus enabling the incorporation
of line characteristics variations in our model. We ensure a
global active equilibrium directly as a part of our architecture.
Finally, a better implementation of the architecture using the
deep learning framework Tensorflow [2], and the use of GPUs
allowed to drastically decrease the computational time (during
inference), and thus make our Graph Neural Solver a relevant
new method for power systems operation.

This paper is organized as follows. First we introduce
the notations, explain the structure of our proposed neural
network architecture, and how our learning algorithm will be
trained. Then we experimentally demonstrate the viability of
our approach on a set of IEEE power grids of different sizes.
Finally we develop on the encountered limits, on how this
work should be further improved, and on how the properties
of this new solver (computational speed and differentiability)
can be exploited.

II. PROPOSED METHODOLOGY

In this section, we develop on the overall architecture and
equations of our proposed Graph Neural Solver. We also give
details about some power grid modelling choices, and about
the concept of message propagation.

A. Graph Neural Solver structure

Our goal is to predict v and 6 at each bus of a power grid.
We set ourselves in a steady-state setup. We take as input (see



Appendix and subsection II-B for more details about those
quantities):

« a base apparent power : base MV A;

o alist of buses : (4, Py, Qd.i, Gs,i, Bs,i);

o alist of lines : (from_bus,to_bus,r,z,be, T, Ospitt);

o a list of generators : (gen_bus,?g’i,ﬂgw]039’1-71;9’1-).

We choose the following convention for the notations: quan-
tities such as v, 6, etc. have a superscript k that corresponds to
the “correction” update k, and a subscript ¢ that corresponds
to the bus 7 of the power grid (there are N buses on the grid).
The absence of a subscript ¢ denotes the vector (or matrix in
the case of the messages m defined in subsection II-C) that
concatenates the corresponding quantity for all buses.

Our goal being to develop a power flow solver based on
artificial neural network, we choose to use the same data
structure and power grid modelling as MATPOWER [31].
More details about notations and power grid modelling are
available in the Appendix. All notations and equations are
compliant with the MATPOWER modelling of a power grid.

Our proposed architecture is an iterative process that per-
forms “correction” updates on the variables v, # and m of each
bus of a power grid. These “correction” updates are analogous
to the iterations performed by a Newton-Raphson solver.

Previous attempts at using artificial intelligence to tackle
physical problems tried to mimic the behavior of another
solver. In this work, we go a step further and break free
from the need to imitate a classical solver. This is the main
contribution of this paper : instead of minimizing the
distance between our prediction and the output of a solver,
we directly minimize the violation of physical laws (i.e.
Kirchhoff’s laws) at training time. This is achieved at the
cost of incorporating directly into the architecture the physics
equations that model the behavior of power grids.

Our algorithm is a novel hybrid approach that stands directly
at the interface between artificial intelligence and optimization.
During training, our model is never told what the actual
solution is. We let it perform a prediction, we compute
its error, and tell it how it should alter its neural network
blocks to decrease it. This way, it crystallizes a behavior that
minimizes the physical laws violation. At inference time, it
has no access whatsoever to the global objective function, but
only mechanically applies the behavior that it has previously
learned.

Our architecture consists in an initialization followed by
loops of global active compensations, local power imbalance
computations and neural network updates. It intricates both
learnable neural network parts and non-learnable physics-
based parts. The learnable parts (which are neural networks)
are trained through a learning process detailed below. The
overall idea of the architecture is to iteratively and locally min-
imize the violation of physical laws, while ensuring a global
active equilibrium. A full description of how the different steps
are laid out is shown in figure 3.

The amount of “correction” updates K, the dimension of
the messages d and the discount factor ~y are hyperparameters
of the model.

1) Initialization: All voltages are set to 1 p.u. (with the
exception of the buses that are connected to a generator, whose
voltage is set to the generator’s voltage set point), phase angles
to 0 rad, and messages (see subsection II-C) to a d-dimensional
Zero message.

Details in the green equations (1) — (3) of Figure 4.

2) Global active compensation: This step ensures a global
active equilibrium. It finds the value of the global parameter
A that ensures this equilibrium. As detailed later in subsection
II-B, X is a global parameter that controls the active power
output of every generator on the grid. First, we need to
compute the global consumption, including the losses via
Joule’s effect, and then solve a simple linear system. We
also enforce a local reactive equilibrium at each generator by
modifying their reactive power outputs.

Details in the orange equations (4) — (11) of Figure 4.

3) Local power imbalance computation: The local power
imbalance at bus ¢ and at update iteration k is defined by
ASF = APF + {AQF (where i is such that {2 = /—1).
This term is computed at each K “correction” updates, and
its modulus is then incorporated in the Total Loss (see the
right part of figure 3).

Details in the blue equations (12) — (17) of Figure 4.

4) Neural Network Update: This step consists in updating
(or “correcting”) v¥, 8% and m¥ based on their current values,
the local power imbalance, and the sum of messages of their
direct neighbors. These updates are performed by learnable
neural network blocks that are specific to their corresponding
“correction” update layer (thus the superscript k), and common
to every bus in the power grid. However, the voltage of the
buses that are connected to a generator remain fixed at their
generator’s voltage set point.

Details in the red equations (18) — (20) of Figure 4.

The outputs of the model are the vs and s of the K-th
correction update.

B. Power grid modelling

The reactive power limits of the generators (Qg min and
Qg,maz) are not considered here, to be consistent with the
default behavior of MATPOWER.

Ensuring a global active equilibrium is an important part
of the proposed Graph Neural Solver architecture. There are
multiple ways of ensuring that production is equal to loads
and losses, and all of them are models of reality.

A basic approach in most text books is to choose a “slack”
bus, which will be in charge of providing all the missing active
power to ensure a global active equilibrium. This approach
introduces a distinctive behavior at a single bus of the grid.
This is not compliant with the idea of building a “delocalized”
power flow solver that relies only on local exchange of
information.

Another common approach is to assign a coefficient to each
generator and have all of them contribute proportionally to
maintaining a global active equilibrium. However, generators
are limited by their respective maximum and minimum active
power. When such a threshold is encountered by one generator,
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Fig. 3. Overall architecture of the Graph Neural Solver — This diagram
details all the different operations performed inside the proposed Graph Neural
Solver. The term input refers to the following pieces of information : a base
apparent power, a list of buses, a list of lines and a list of generators.

1) At first, the algorithm performs an Initialization, that sets all s to O rad, all
messages to [0, . . ., 0], and all voltages v to 1 p.u. (except for buses connected
to generators: they are set to their corresponding voltage set points).

2) The Global Active Compensation estimates the value of A (defined in
subsection II-B) to ensure a global active equilibrium of the power grid. It
also forces buses that are connected to generators to be at a reactive power
equilibrium.

3) The Local Power Imbalance is computed by estimating the mismatch in
both active and reactive power at each bus.

4) Then variables v, 6 and m (defined in subsection II-C) are updated by a
Neural Network Update.

The equations of each of these steps are displayed on figure 4, in a similar
color code. All these operations are fully differentiable, which allows gradients
to flow from the Total Loss to each Neural Network Update during the training
process. Only the Neural Network Updates are learnt during the training
process, while all other parameters remain fixed. Unlike our previous approach
detailed in figure 2, we no longer use encoders and decoders, and directly act
on the variables v, 6 and m.

input

all the others have to compensate a little more. This requires
to check a number of conditions that scales linearly with the
number of generators on the power grid, which would be quite
hard to encode into a differentiable neural network.

To address the issues above, the compensation rule needs to
be both delocalized (i.e. have all generators contribute), and
differentiable (in order to let gradients flow through it during

the training process). This is achieved by the following rule:

P ()\) _ Bg)i + 2 (ﬁgvi - Bg,i) Ay if )\ < %
9” 2159#' - Fg,i +2 (Fg,i - pg,z') A, otherwise
2D

All productions of the power grid depend on a single
common parameter A. It ensures that all productions are at
their respective minimum values Eg,i for A\ = 0, at their
initial set points ]Bgﬂ' for A = % and at their maximum values
Py ; for A = 1. As detailed hereafter, the proposed Graph
Neural Solver architecture will update the global parameter
A to constantly ensure a global active equilibrium. This rule
is illustrated in figure 5. Constant power generators such as
wind turbines and solar panels can be modelled as negative
consumptions so that they are not affected by .

C. Message propagation

In addition to well-known variables such as voltage modulus
v and voltage angle 6, our algorithm also relies on the
propagation of messages m. These vectors have no direct
physical meaning. [10] experimentally demonstrated that the
propagation of such variables was a suitable way to perform
the power flow computation. These messages are defined in
R?, where d is an hyperparameter® of the architecture.

This can be seen as a way of encoding in an abstract
continuous space the state of a bus. They capture information
about the current state, the history of updates, and information
about neighbors as well as their respective history. They can
be viewed as an implicit memory and neighbor-awareness
variable.

D. Training algorithm

The violation of Kirchhoff’s law is computed at the end of
each “correction” update layer, for each bus of every sample of
a minibatch of T" samples (let ¢ be the index of a sample). The
Total Loss? that will be minimized during the training process
is a weighted average of those Kirchhoff’s law violations and
is defined by:

1 T K g_r N
Total Loss = T ; kzz:l 77 ; IASE, |2 22)
1 T K ’YK_k N ) ,
=720 2 (AP (ak)] @)
t=1 k=1 im1

The way this loss is integrated into the overall architecture
is shown on the right part of figure 3.

The discount factor v in Equation (23) puts a stronger
emphasis on the accuracy of the later “correction” update
layers, while still allowing gradients to flow to the first few
“correction” update layers. We experimentally observed that
penalizing the physical laws violation at every “correction”

2Hyperparameters are parameters of a neural network that are not learnt
during the training process.

3The term “loss” refers to the error of a model in the machine learning
literature
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Fig. 5. Active production of generator i - The active power of every
generator of a power grid instance depends on a global parameter A.

update with this discount factor, instead of only the last update,
helped converging to a better solution. v is a hyperparameter
of the model.

During the training process, a set of T' different power grids
(each defined by injections, topology and line characteristics)
is fed to the model (the ¢nput variable of figure 3). The model
performs a prediction on each of these 1" power grids for v and
0 of each bus. The Total Loss (i.e. physical laws violations)
is estimated using the output of each Local Power Imbalance
(cf. the blue blocks of figure 3). Then, the gradients of this
Total Loss with regards to the weights of each Neural Network
Update L*, LE and L%, (cf. the red blocks of figure 3) is
estimated using the back-propagation rule [15]. The neural
network ¢ shown in equations (18) — (20) is trained jointly
with the others in the same process. These gradients are then
used to modify the weights of the Neural Network Updates
(gradient descent step). This process is repeated on randomly
sampled power grids, until the Total Loss no longer decreases.

E. Compatibility with varying input size

As detailed in our first paper about Graph Neural Solver,
any instance of our model is mathematically compatible with
any size and shape of power grid. Unlike fully connected
neural networks (similar to the one in figure 1), a graph neural
network is able to deal with changes in the shape of its input
data.

III. EXPERIMENTS

This section details the experimental protocol used to val-
idate the proposed approach, the way data is generated from
standard power grids, and discusses the obtained results, as
well as the current limits of the proposed architecture.

To validate the approach, we use several standard IEEE
power grids, and add some noise on both injections and power
line parameters to generate a variety of situations. For every
power line, 7, z and b are uniformly sampled between 90%
and 110% of their initial values. The ratio 7 of each line
(which are seen as transformers, see Appendix) are uniformly
sampled between 0.8 and 1.2, and the shifting phase 0,5 ¢ is
uniformly sampled between 0.2 and —0.2 rad. The maximum
and minimum values of active power of each generator remain
untouched, while their voltage set points v, are uniformly
sampled between 0.95 p.u. and 1.05 p.u., and their initial active
powers P, are uniformly sampled between 25% and 75% of
their allowed range. The active demands P; are first uniformly

sampled between 50% and 150% of their initial values, and
are then all multiplied by a common factor to make sure that
the demand is equal to the consumption. The reactive demands
Qq are uniformly sampled between 50% and 150% of their
initial values. This choice of noise amplitude was motivated
by the fact that it created situations outside of the validity
domain of the DC-approximation (as will be experimentally
shown by large errors for the latter method).

The proposed Graph Neural Solver is compared to two
baselines: the DC approximation, and the Newton-Raphson
methods of PYPOWER (which is a port of MATPOWER in
python). All of these 3 methods solve different versions of
the same problem (the DC approximation ignores the reactive
part of the problem and the Graph Neural Solver uses an
atypical global active equilibrium mechanism). We do not have
access to a “ground truth”, so it is impossible to compare
all three models to the same thing. However, we believe that
the Newton-Raphson method can be considered as the most
precise and trustworthy, so we have decided to compute for
the two remaining models the percentage of error in terms
of active flow (which are easily deduced from v and 6) with
regards to the Newton-Raphson solver.*

A. Standard experiment

In this first experiment, our models are tested on the
same neighborhood they were trained on. We trained 10
distinct instances of the proposed Graph Neural Solver (dur-
ing 10,000 learning iterations) on the neighborhoods of the
following standard IEEE power grids: case9, casel4, case30
and casel18. The same set of hyperparameters is used for each
of these instances : the amount of correction updates K is set
to 30, the latent dimension d (which is both the size of the
messages, and the size of latent space of neural networks) is
set to 10, each learning block has 2 layers and leaky ReLU
activation function. These values were chosen empirically
after a random hyperparameter search. The optimizer used is
Adam with standard Tensorflow parameters. Each instance was
trained using a Nvidia Titan XP GPU. A learning curve from
these experiments is displayed in figure 6. The test set contains
only power grids that converge with a Newton-Raphson solver.

The results of these experiments are shown on figure 7.
The blue points correspond to our proposed Graph Neural
Solver, the green ones to the DC-approximation and the red
ones to the Newton-Raphson method. Indeed the latter has a
0 percentage of error. The percentage of error can explode
for small flows, so we only kept the 50% of largest values
in absolute value. One can see that our proposed method
achieves a significant gain in terms of computational time with
a reasonable percentage of error (keeping in mind that the scale
is logarithmic).

In figure 8 are shown 2d histograms of the outputs of the
DC approximation and of our Graph Neural Solver versus the
output of a Newton-Raphson method. One can see that our

4One should keep in mind that our proposed architecture does not try to
imitate a Newton-Raphson solver.
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terms of active flow with regards to the output of a Newton-Raphson solver.
Circles correspond to case9, stars to casel4, triangles to case30 and squares
to casel18. Since the % of error is a comparison with the Newton-Raphson,
the error of this solver are indeed at 0%. One can observe from this plot that
our proposed method offers a significant gain in terms of computational time,
while achieving a better accuracy than the DC approximation.

Orders of magnitude for the error of the DC approximation can seem
surprisingly large. However, the noise we apply on the standard power
grids makes most of the generated datapoints “unrealistic”, thus pushing the
snapshots far from the domain of validity of the DC approximation.

method is generally more linearly correlated with the Newton-
Raphson. Their predictions are highly similar (correlation
higher than 0.995 for all 4 cases).

Figure 9 offers an example of how our proposed architecture
updates the v and 0 of a power grid, and how it affects the vi-
olation of Kirchhoff’s law. It starts with a simple initialization,
which cause large physical laws violation (many red buses).
After 10 “correction” updates, the model has changed the vs
and fs so as to decrease the physical laws violation (many
green buses).

B. Generalization from one grid to another

As demonstrated in previous work [10], a key property of
the proposed architecture is the ability to learn on one power
grid and perform decently on another, regardless of their sizes
or shapes. Even though this aspect is not the key point of the
present paper, we display on figure 10 some statistics about
the percentage of error with regards to a Newton-Raphson
solver for models that were trained in the neighborhood of one
power grid and then tested on the neighborhood of another.
The results on the diagonal (red points) are indeed the same as
those that were shown in figure 7. From this figure we can see
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Fig. 8. Correlation with Newton-Raphson output - In this figure are

displayed 2d histograms (logarithmic color scale). At the top, the output of
our Graph Neural Solver is plotted against the output of a Newton-Raphson
for all 4 power grid neighborhoods. At the bottom, the output of the DC-
approximation is plotted against the output of a Newton-Raphson. One can
observe that our proposed architecture has a higher correlation with the output
of a Newton-Raphson solver than the DC approximation on the test set (0.995
for GNS vs. 0.876 for DC on casel88).

that model instances trained on large power grids tend to have
a good accuracy on smaller power grids, while the opposite is
not necessarily true.

C. Discussion

A major limitation of the current work is the lack of
empirical proof of the scalability of the approach on real-life
power grids, and is an open area for future research.

Some preliminary work has been done as preparation of the
present paper to generate power grids with completely random
injections, topologies and line characteristics so as to observe
a much broader domain during the training of the model.
However, it appears that many of those generated power grids
were unrealistic and lead to non-converging situations. We
have thus chosen to stay within the neighborhood of well
known power grids.

The goal of the present paper is to provide empirical
validation of the viability of the approach, and to try to develop
some intuitions about how it works. The theoretical aspects
and properties should be further developed in future work,
so as to build more confidence in the behavior of this novel
method as well as its proper use.

IV. CONCLUSION

The main contribution of this paper is to propose a novel
method that lies at the direct interface between artificial intelli-
gence and optimization to solve the power flow problem, while
achieving a substantial gain in terms of computational time.
A traditional algorithm such as Newton-Raphson has access
to the global objective function and proceeds by iteratively
minimizing it by directly acting on the variables. Our method
is quite different: the model (which is basically a long differ-
entiable function) tries to predict v and 6 everywhere, based on
the inputs (injections and power grid characteristics). During
training, the model tries to minimize the global objective
function, not by directly acting on the variables v and 6 like
traditional optimization, but by altering itself (i.e the weights
of its neural network blocks). The model learns a behavior that
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Fig. 9. Graph Neural Solver on the IEEE case30 - This figure presents how a previously trained Graph Neural Solver modifies its predictions across its
“correction” updates, and how it succeeds in iteratively reducing the violation of Kirchhoff’s law. The instance of Graph Neural Solver has 10 “correction”

updates (K = 10).
(1) On the left panel are displayed the voltages v in p.u.. One can see that it is

uniformly initialized at 1 p.u. except for buses that are connected to generators

(those are set to their generator’s voltage set points). The voltage then evolves across “correction” updates until it reaches its final prediction at “correction”

update 10.

(2) On the middle left panel are displayed the phase angles 6 in rad. It is at first initialized at O rad, and then evolves across “correction” updates until it

reaches its final prediction.

(3) On the two right panels are displayed the Kirchhoff’s law violation |[AS| in MVA. The boxplot displays the minimum, 25th percentile, median, 75th
percentile and maximum value of the very same |AS| displayed on the graph. One should keep in mind that the quality of a prediction depends on the
maximum value of |AS| on the power grid. This maximum value starts quite high at “correction” update 0 (i.e. before any correction is applied, there are
many red buses), and decreases with the amount of “correction” update (all buses are green at the end).
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Fig. 10. From one case to another - In this plot, we display the % of
error (20th percentile, median, 80th percentile) in active flow with regards to
a Newton-Raphson solver for Graph Neural Solver models that were trained
on the neighborhood of one power grid, and then tested on another.

minimizes at test time (inference time) the desired objective,
without solving an optimization problem.

We experimentally demonstrated that our proposed architec-

ture is able to perform predictions faster than methods such
as the DC approximation or Newton-Raphson (up to 2 orders
of magnitude). Predictions in terms of active flow are very
similar to the output of a Newton Raphson method (correlation
of 0.995 on casel18).

An interesting property of our Graph Neural Solver is
the fact that it will always predict something. Some early
experiments showed that in the case where a classical solver
simply does not converge, the graph neural solver shows the
voltage magnitudes collapse everywhere on the grid. This
empirical observation should be investigated in the future, but
falls out of the scope of the present paper.

Our Graph Neural Solver is a fully differentiable function
that predicts power flows. This differentiability could open
the door for gradient-descent optimization and control of the
power grid. This could also become a part of a larger decision
making process.

Another possible avenue would be to train a decentralized
controller to perform some kind of optimization (such as
minimizing power losses caused by Joule’s effect), jointly with
the learning of the Graph Neural Solver. There would be two
different types of gradients flowing through the architecture:
one that aims at minimizing the violation of Kirchhoff’s law
and that affect the neural network updates of v and 6, and
another one that would minimize another objective function,
and that would affect the decentralized controllers.
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APPENDIX

In this appendix we give more details about the MATLAB
notations and modelling that we use.

1) Base apparent power: Each power grid instance has a
parameter baseMV A in MVA which will serve to normalize
the power. We will denote by P, ), S the active, reactive and
complex power in respectively MW, MVAr and MVA, and by
p, ¢ and s their equivalents normalized by base MV A. The
same convention is used for the shunt active and reactive power
G and By (thus denoted by gs and by in their normalized
versions), and should not be mistaken with the total charging
susceptance of a line b..

2) Bus: Loads and shunts are encoded at the bus. A bus
is thus defined by: its index i, its active load Py ; (MW), its
reactive load QQq,; (MVAr), its active shunt load G ; (MW at
1.0 p.u.) and its reactive shunt load —B; ; (MVAr at 1.0 p.u.).

3) Line: MATPOWER adopts a common framework for
transmission lines and transformers. A line is thus defined by:
its “from” bus index, its “to” bus index, its resistance 7 (p.u.),
its reactance x (p.u.), its total charging susceptance b. (p.u.),
its transformation ratio 7 (p.u.) and its shift angle 0,5, (rad).
Transformers are on the “from” side.

We also use the convention to write each of these quantities
with the subscript ij to denote the line between buses ¢ and j.
Moreover we define the following quantities : y;; = ﬁ

ij ij
and OShift’ij = atUﬂ’LQ(’I’ij,SL‘Z‘j).

4) Generator: A generator is defined by: its bus index 1,
its maximum provided active power ngi (MW), its minimum
provided active power P, ; (MW), its active power set point

15_q7i (MW) and its voltage set point V; ; (p.u.).



