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ABSTRACT

The orbits of Solar System objects are subject to external perturbations by other
massive bodies and slowly precess about a forced (averaged) plane. Warps in the plane
come from the effects of the total planetary system, so discrepancies from expectation
can show the presence of any unseen planets. We investigate the orbital inclination
distribution from 42.4 au to 150 au with the non-resonant trans-Neptunian discoveries
and the survey simulator of the Outer Solar System Origins Survey (OSSOS). We
statistically determine local forced planes and the widths of the populations’ inclination
distributions. Between the ν18 and the 2:1 resonance at 47.5 au, the derived forced plane
and the expected forced plane (from secular perturbations due to the known planets)
match very well. As in previous studies, we reject the ecliptic as the forced plane.
We also reject the invariable plane inside of 44.4 au beyond which the forced plane
starts approaching the invariable plane. From 44.4 au to 150 au the forced plane is
consistent with the invariable plane, as expected based on the known planets. The
dynamically cold Kuiper Belt (between the ν18 and the 2:1 resonance) is best fit with
a free inclination width of only ' 1.75◦, strongly limiting its past perturbation. The
dynamically excited populations have broader inclination distributions: the hot Kuiper
Belt is ' 14◦ wide, and non-resonant orbits in the semimajor axis range beyond the 2:1
resonance out to 150 au have an inclination width of ' 17◦. The OSSOS data does not
strengthen claims of present additional Mars-mass planets within ∼ 100 au.

Corresponding author: Christa Van Laerhoven
cvl@phas.ubc.ca, c.vanlaerhoven@gmail.com

http://orcid.org/0000-0002-0786-7307
http://orcid.org/0000-0001-8736-236X
http://orcid.org/0000-0001-7032-5255
http://orcid.org/0000-0003-0407-2266
http://orcid.org/0000-0003-3257-4490
http://orcid.org/0000-0003-4143-8589
http://orcid.org/0000-0001-7244-6069
mailto: cvl@phas.ubc.ca, c.vanlaerhoven@gmail.com


2 Van Laerhoven et al.

Keywords: solar system — Kuiper Belt — dynamics — surveys

1. INTRODUCTION

Heliocentric keplerian orbits precess due to the small perturbations that are exerted by planetary
bodies, which results in orbits that do not close. For small perturbations, one aspect of this precession
is that each small-body orbital pole (angular momentum vector) precesses at a constant inclination
relative to a local ‘Laplace pole’, where the Laplace pole steadily changes as a function of orbital
semimajor axis. This ‘Laplace pole’ is the vector about which the small-body’s angular momentum
vector will precess. Equivalently, one can talk about the ‘forced plane’, the plane perpendicular to
the Laplace pole. If all the planetary masses and orbits are known, one can compute the expected
position of the local Laplace pole. Inversely, if one is able to determine via bias-free observation of
small bodies what pole they are symmetrically distributed about, one can empirically find the local
Laplace pole. Lastly, if one can do both, then a disagreement between the expected pole and the
empirical symmetric pole from observations would detect the presence of an unseen mass (or masses)
that are perturbing the heliocentric orbits. In addition, the dispersion of orbital inclinations, relative
to this pole, yields information on the processes that have excited random velocities in the small-body
population.

In the trans-Neptunian Kuiper Belt, the limiting case (once one is far beyond all the planetary
orbits) is that the small-body Laplace pole is the total angular momentum vector of the planetary
system. The plane perpendicular to this, in which small body orbits would precess in perihelion
direction but maintain a constant zero relative inclination, is called the invariable plane. As one
approaches the planetary system, the Laplace pole position steadily moves, in a way that is calculable
via standard Laplace-Lagrange secular perturbation theory (see Section 2.1).

Unfortunately, it is not possible to simply take all observational data of known trans-Neptunian
objects (TNOs) and average them to find the center of the distribution (though, such a process is
possible for the Asteroid Belt, see Saverio & Malhotra 2018). This is because any telescopic survey
with a small range of ecliptic latitude and longitude is strongly biased towards detecting only a subset
of all possible orbital inclinations and ascending nodes. Concluding the actual forced plane would
thus require very precise understanding of survey performance: detection efficiency as a function of
depth in magnitudes, for each examined region of sky. Brown & Pan (2004) proposed a method to
try and counter the observational biases and applied it to the Kuiper Belt as a whole, finding an
‘averaged Kuiper Belt plane’ that was distinct from the invariable plane — as expected by a sample
of TNOs dominated by objects with semimajor axes in the range 42–47 au (due to the influence of the
ν18 secular resonance, see Section 2.1). COUPLE SENTENCES DESCRIBING BROWN AND PAN
METHOD HERE? Elliot et al. (2005) applied several other methods to a larger TNO sample. They
derived a different result for the entire Kuiper Belt, but pointed out it was necessary to eventually
interpret these results on smaller sub-samples, because the forced plane is semimajor axis dependent;
using only the objects of the ‘classical belt’ matched the expected secular location. Chiang & Choi
(2008) used a restricted TNO sub-sample at two narrow semimajor ranges (near a = 38 au and
a = 43 au) to demonstrate that the several degree difference in the forced plane location for these
two semimajor axes was detectable. Most recently, Volk et al. (2017) calculated the mean plane of
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non-resonant TNOs from the Minor Planet Center1 catalog, using the Brown & Pan (2004) method
on all objects available in the worldwide sample by this time, and found that most of the Kuiper
Belt follows what is expected from Laplace-Lagrange secular theory. However, for semimajor axes
a=50–80 au the method indicated that the forced plane was not the (expected) invariable plane, at
more than 95% confidence. Their analysis indicated that the forced plane was instead offset by ∼ 9◦

in a particular direction. This departure would be evidence for non-negligible mass in this region of
the Solar System.

Some of the assumptions inherent in these approximate methods (for example, needing to assume
the inclination distribution rather than fitting for it) can be avoided if one uses a characterized
survey. In this paper we use the Outer Solar System Origins Survey (OSSOS), a well characterized
survey of 155 square degrees to limiting magnitudes in the range mr =24-25, which tracked all TNOs
discovered in the survey to avoid tracking biases (Bannister et al. 2018). When discussing the outer
trans-Neptunian belt we supplement OSSOS with characterized TNOs from CFEPS (Petit et al.
2011), HiLat (Petit et al. 2017)), and Alexandersen et al. (2016). A characterized survey can assess
both the detection and non-detection of objects. It is thus a powerful tool in constraining allowed
mean planes. For any hypothesised trans-Neptunian belt, one can determine if that hypothesised
belt would result in detection of abundant numbers of TNOs with ascending nodes at a certain
longitude. If such objects are not detected by the calibrated surveys then that hypothesised trans-
Neptunian belt can be rejected. A characterized survey that reports all of its detections is also free
from ‘reporting bias’, where incomplete reporting of all detections can skew the derived forced plane.
In order to understand the expected signal of the forced plane in a characterized survey, we first
briefly review how secular perturbations affect small bodies in the outer Solar System. We then
explain how we compare detected TNOs from calibrated surveys with models of various portions of
the trans-Neptunian belt, to determine if we find any departures from the theoretical expectation.

2. METHODS

2.1. The Expected Plane from Secular Theory

The orientation of an orbital plane is described via the inclination (i) and the longitude of ascending
node (Ω). The inclination sets how tilted the orbit is from the reference plane, and the longitude
of ascending node describes where the orbital plane and reference plane intersect. Often it is more
convenient to describe the orientation of the orbital plane via the rectangular coordinates

q = sin i cos Ω (1)

p = sin i sin Ω (2)

where i is the inclination and Ω is the longitude of ascending node, which we will reference to the
J2000 ecliptic coordinate system. q and p are defined only on the interval [-1,1]. (The reader should
note that that while q and p are defined with sin i dependence on the inclination, most figures in this
paper use i cos Ω and i sin Ω as coordinates for ease of interpretation.)

In a multi-body system, the inclinations of any given body are not constant. The massive bodies
exchange angular momentum and their inclinations change. Any massless test particle has an incli-
nation that is the vector sum of an inclination forced by the massive bodies, and a free inclination.

1 https://www.minorplanetcenter.net/
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According to classical second-order secular theory (Murray & Dermott 1999) the forced inclination
of a massless test particle is

(q0, p0) = (sin i0 cos Ω0, sin i0 sin Ω0) (3)

=
8∑
i=1

µi
fi − f0

( cos(fit+ γi), sin(fit+ γi) ) (4)

where f0 is the nodal precession rate of the test particle, fi are the planetary system’s secular
inclination eigenfrequencies, γi are the eigenmode phases, and µi is a weighting factor for each secular
eigenmode. The secular eigenfrequencies, fi, depend only on the masses and semi-major axes of the
eight major planets and the mass of the sun. These frequencies are essentially the natural frequencies
of the planetary system. The inclinations of the massive bodies vary with these frequencies. The test
particle’s nodal precession frequency, f0, involves the masses and semi-major axes of the planets and
additionally the semi-major axis of the test particle (once its eccentricity, e, and inclination,i, become
sufficiently large, the test particle’s precession rate can also depend on its own e and i). (Note that
the subscript 0 refers to the test particle.) The eigenmode phases, γi, depend on the planet masses,
semi-major axes, inclinations and nodes. The weighting factors, µi, depend on all of the planetary
parameters (masses, semi-major axes, inclinations, and ascending nodes) and also the test particle’s
semi-major axis.

The free inclination represents residual vertical motions relative to the local forced plane. If an
object has no free inclination its orbit resides in the forced plane. If an object does have a non-zero
free inclination that object will precess about the forced plane at its nodal precession rate f0. For any
given semi-major axis, the average of many objects’ orbital planes, or the long-term average orbital
plane of a single object will be the forced plane.

Figure 1 shows how q0 and p0 vary as a function of the test particle’s semi-major axis, using
planetary inclination information from Murray & Dermott (1999). At large semi-major axes (q0,p0)
converges to the invariable plane (the total angular momentum plane of the solar system). But at
35 and 40.3 au the expected forced plane is strongly warped due to secular resonance. These are
places where f0, essentially the test particle’s natural frequency, is very similar to one of the secular
frequencies (fi).

Note that the forced plane has a time dependence. Like the inclination vectors of the planets
themselves, the forced inclination of a test particle is a vector sum of contributions from the secular
inclination eigenmodes, which each rotate in (q,p) space. The test particle also generally has a
free inclination that adds another vector to this vector sum. Thus, the (total) inclination of a test
particle will oscillate around the forced inclination, which in turn will ultimately oscillate around the
invariable plane.

2.2. Survey Simulation

If all Kuiper Belt objects were known, then the symmetry center of all objects in (q, p) space would
correspond to the current forcing plane. However, surveys of the Kuiper Belt can only provide an
observationally biased subset of the population, introducing effects which skew the derived plane
(Brown & Pan 2004; Volk et al. 2017). Any given survey only points in certain directions, only
detects objects to a certain limiting magnitude, only looks for objects that move at certain rates,
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Figure 1. The expected forced i0 cos Ω0 (blue) and i0 sin Ω0 (orange) of a test particle as a function of its
semi-major axis, given the 8 known planets (from Eqn 4). The features evident at a ≈34.8 and 40.5 au
are caused by secular resonances with the planetary system. The large-a limit is the invariable plane, with
(iI cos ΩI , iI sin ΩI) and iI = 1.578o and ΩI = 107.58o in J2000 ecliptic coordinates.

and then any given object might not be recovered by subsequent observations (i.e. be ‘lost’). Most
of the detections available in the compilation of TNOs in the IAU Minor Planet Center cannot be
tied to a survey for which detection efficiency as a function of orbit and absolute magnitude could
be calculated. However, ‘characterized’ surveys (Petit et al. 2011; Jones et al. 2006) provide the
information which allows one to compute if an object with given orbit and absolute magnitude would
be visible in a survey (or at least a probability of detection as a function of the resulting apparent
magnitude on an observation date where the object is in the field). Use of a ‘survey simulator’ (Petit
et al. 2011; Lawler et al. 2018) then enables direct comparison of a model trans-Neptunian belt to
the real observed trans-Neptunian objects.

Our primary characterized survey is OSSOS, whose 838 characterized detections are by far the
largest characterized set available for study (Bannister et al. 2018). This survey provides a huge
number of non-resonant TNOs, with orbits measured at higher precision than most in the MPC, and
completely dominates the statistics for our studies of the main classical Kuiper Belt. We consider
only the single-color r band survey of OSSOS for the main trans-Neptunian belt as including other
characterized surveys adds complications (e.g. making assumptions about TNO colors), while not
significantly affecting the results.

Because we know the sky coverage of each group of survey pointings along with the probability
of detection as a function of TNO magnitude and rate of motion, we can evaluate the probability
of detecting any given TNO. Repeating this evaluation over very large number of simulated objects
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drawn from a specified underlying distribution builds up the population of ‘simulated detections’.
These simulated detections can then be compared to the real OSSOS detections, to ascertain whether
the proposed trans-Neptunian belt is consistent with the real trans-Neptunian belt.

Beyond a=50 au, however, the wide distribution of inclinations (Gulbis et al. 2010; Petit et al. 2017)
and lower overall detection frequency (due to their more distant orbits) results in in fewer detected
objects in the invariable-plane-focused sky coverage of OSSOS, and better statistics are required. We
supplement OSSOS detections in a > 50 au with those of three smaller characterized surveys:

• The Canada-France Ecliptic Plane survey (CFEPS), which is a wider but shallower survey
mostly in g band near the ecliptic (Petit et al. 2011);

• The CFEPS High Latitude extension (HiLat, Petit et al. 2017), which explored the sky away
from the ecliptic, to strongly constrain the form of the tail of the inclination distribution;

• The study of Alexandersen et al. (2016), which targeted the near-ecliptic sky ahead of Neptune
to maximize detections of leading Neptune trojans and Plutinos.

All of these works provide the information needed to do the modelling described herein. The earlier
survey of Schwamb et al. (2010) would provide a small number of additional a > 50 au non-resonant
TNOs, but as it has a comparatively low-precision detection efficiency function, we elected not to
incorporate it.

The orbital distribution models we use here can remain simple, as our testing showed that the
results were largely insensitive to assumptions about the orbital distributions, outside the parameter
space of orbital inclination and longitude of ascending node. Because we are trying to constrain the
distribution of orbital planes (or, equivalently, angular momentum unit vectors), major changes in
semi-major axis distribution, orbital eccentricity and argument of perihelion made only tiny differ-
ences to the simulated distribution of detected nodes and orbital inclinations. We always assumed
that the mean anomalies were uniformly distributed, and that the nodal longitudes were uniformly
distributed in angle around the hypothesized forced plane. Because it continues to provide adequate
fits to the observational data, we use the common parameterization of the inclination distribution
(Brown 2001; Kavelaars et al. 2009; Petit et al. 2011; Gulbis et al. 2010; Petit et al. 2017) which has
the probability density function

f(i) = sin i
1√
2πσ

e−i
2/(2σ2) , (5)

with the width σ thus being the only parameter. Figure 2 shows example inclination distributions
for different widths. While this formulation may not be reality, the data as yet provide no compelling
reason to move to something else.

We have confirmed that assumptions about the absolute magnitude (Hr) distribution make little
difference to our results. This is not surprising, because the largest physical effect for in- or near-plane
surveys like OSSOS is simply whether the ascending node is in the direction of the survey or 180
degrees away (for objects at their descending node in the survey). For most of our studies we used a
single exponential distribution with dN ∝ 10αH with α=0.8, but we also tested in several cases that
our conclusions about the forced plane did not change if we used the best fit ‘knee’ distribution from
Lawler et al. (2018) in which α=0.9 for Hr < 7.7 and α=0.4 above.
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Figure 2. Examples of inclination distributions generated by the survey simulator, of the functional form
sin i times a Gaussian (Eqn 5). The black, grey, and light grey distributions have widths of 1.5, 2.0, 2.5
degrees, respectively.

In this paper we compare the real detections from the survey (or surveys) being simulated to the
population of simulated detections via a bootstrapped Kolmogorov-Smirnov (KS) statistic. (We also
computed the Anderson-Darling (AD) statistics, and got similar results, so we do not present this
less-familiar statistic). For every survey simulation we generate 15000 simulated detections. Of these
we randomly pick out a sample equal to the number of real detections, and compare the KS statistic
of the real TNOs to the KS statistic of the simulated-detected subsample for each of the q, p, i, and
Ω cumulative distributions. The distribution of this boot-strapped statistic provides 95% and 99%
confidence ranges with which the rejectability of the real sample can then be judged. Because q and
p are defined on the interval [−1, 1] and the signal is ‘in the middle’ of this range, the KS test is
well adapted to these variables. Because both the q and p distributions need to be non rejectable,
we construct a single ‘joint’ statistic for any given comparison by taking the most rejectable of these
two 1-D distributions. (This is because a distribution which is fine in one variable but terrible in the
other should be rejected by the joint test, and we found that the ‘worst of the two’ approach gave
the most sensible answers when we examined the distributions of the dynamical variables). We thus
extract random subsamples 3000 times and compute the joint q, p statistic of that sample relative to
the entire simulated sample, in order to create the bootstrap. If the joint KS value of the real sample
(relative to the entire simulated detection sample from that assumed model) is beyond 95%/99% of
the bootstrap KS values, we reject that model at 95% or 99% significance, respectively.

In principle, the q, p distributions should contain the same information as the i,Ω distributions.
However, the KS test is best at discerning how different the centers of the compared distributions
are. Thus, expressing the orbit planes in terms of q, p versus i,Ω can yield slightly different results
for the bootstrapped KS statistic. In particular, q, p are good at locating what q, p are allowed as
forced planes, while i,Ω provides information on whether the distribution of TNOs in q, p space is too
narrowly or widely concentrated. For example, this difference appears in Figure 3 versus Figure 4.

3. THE MAIN BELT

In this section we concentrate on the ‘main belt’ between the 3:2 and 2:1 resonances with Neptune,
seeking to determine if the true forced plane is consistent with the expected forced plane from secular
theory and to determine what the width of the inclination distribution is for the dynamically ‘cold’
and ‘hot’ populations.
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Because the forced plane location is semi-major axis dependent (Fig. 1) the comparison of the
real sample to the theoretical prediction is most easily done after binning the objects by orbital a.
In previous studies, workers have chosen for their semimajor axis bins either small ranges around
important values of a to illustrate the secular effect (Chiang & Choi 2008), essentially no bins at all
(Brown & Pan 2004), or a combination of divisions based on the secular structure and round numbers
(Volk et al. 2017). Because the data set is now larger, we are able to study the variation of the plane
with a and have elected to use dynamical structures observed in the main-belt’s semi-major axis
distribution to set the semi-major axis bins, and we also separate the dynamically ‘hot’ and ‘cold’
populations (how these populations are separated is discussed in detail below). Because the values
of a and e have only a small effect on detectability on either side of any bin boundary, the divisions
we chose make no real influence on the conclusions.

Several previous studies have investigated what the mean plane and inclination widths of the main
belt’s subpopulations. Brown (2001) showed that the inclination distribution could be reasonably
represented by two dominant components, each of Eq. 5’s form, (around the ecliptic in that paper)
with a ‘cold’ component of width 2.2◦ and a hot component of width 18◦. Brown & Pan (2004) derive
that the inclination width of the ‘classical belt’ (with no precise orbital element range supplied) is
1.3◦ and 12.0◦ for the cold and hot components. They referred all objects’ inclinations to a ‘Kuiper
Belt plane’ that they calculated and after debiasing the objects with respect to that plane using the
Brown (2001) method. Elliot et al. (2005) do not derive inclination widths, but derive mean planes
for a variety of subsets of the TNO population detected in the Deep Ecliptic Survey (DES), with
wide semi-major axis bins which are centered in the range ∼40–45 au. Their results disagree with the
‘Kuiper belt plane’ calculated by Brown & Pan (2004) at the roughly 2 sigma level. (Adams et al.
(2014) do derive inclination widths for the DES.) Gulbis et al. (2010) find a cold width of 2.0±0.5◦

upon further analysis of the DES data set. Volk et al. (2017) showed how the mean plane in the
main-belt region appears to follow the expected secular solution, pointing out that the Brown & Pan
(2004) method requires an assumption on the widths to estimate uncertainties in the derived mean
plane. In this context, we seek to provide an independent analysis of the main-belt region’s forced
plane using the almost entirely independent OSSOS sample, while using a method that is directly
sensitive to the inclination widths.

For the semi-major axis bins, we have elected to use the the knowledge of the cold main-belt’s
substructure discovered in CFEPS (Petit et al. 2011) and confirmed by OSSOS (Bannister et al.
2016). Specifically, between the 3:2 and 2:1 resonances the cold belt has discernible (a, e) substructure
with a concentrated ‘kernel’ from 43.8 to 44.4 au superposed on a wider ‘stirred’ population from 42.4
to 47.0 au (see below how this is used in a study of how the forced plane moves with semimajor axis).
Thus, for the ‘cold’ component we split the region into three bins: 42.4 – 43.8 au, 43.8 – 44.4 au, and
44.4 – 47 au. For the ‘hot’ cosmogonic component of the main belt, we lump all objects into one bin
spanning 42.4 – 47.0 au. Here the much larger inclination width means that the expected change in
the forced plane position over the classical belt’s semi-major axis range is only a small fraction of
the inclination width.

3.1. The Cold Population

Because in the main classical Kuiper Belt both the cold and hot populations coexist as two overlap-
ping components in parameter space, to study the cold population we first need to isolate it somehow
in the observed sample. At low inclinations the cold component will dominate and at high inclinations
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the hot population will dominate, but no simple i cut can perfectly separate the populations. Adding
compositional information (which can be revealed through observations of a TNO in multiple color
filters) can aid in distinguishing unique components (e.g. Pike et al. 2017), but only the brightest
∼ 10% of OSSOS discoveries yet have additional colour observations (Schwamb et al. 2018). Here we
segregate the ‘cold component’ by considering only objects within 4o of each proposed forced plane.
This is equivalent to limiting ourselves to objects with free inclinations < 4o relative to each proposed
forced plane. With such a cut, we will get very few interlopers from a hot population. We also tried
a cut of 5o and found substantially similar results. Our choice of cut is motivated by Dawson &
Murray-Clay (2012) Figure 2, showing contamination of the cold population by the hot population
as a function of inclination cut.

The location of the forced plane moves over this range of semimajor axes, so we split the sample
into a number of semi-major axis bins. As discussed above, we have chosen to split the main belt
into three semimajor axis bins: 42.4 – 43.8 au, 43.8 – 44.4 au, and 44.4 – 47 au. Because we cut in
inclination relative to each hypothetical forced plane, the number of real objects we compare to each
survey simulated sample will depend on forced plane as well as the semimajor axis bin. Assuming
the forced plane is that expected from secular theory, the aforementioned bins have 107, 82, and 67
real cold (ifree < 4o) objects.

3.1.1. The Forced Plane

From Figures 3 and 4, we can see that most of the forced planes we tested are rejectable (white
boxes in these figures are rejected at 99% confidence). Only a confined region around the expected
secularly forced plane is steadily consistent with the observed OSSOS sample. The only case where
the expected secularly forced plane becomes rejectable is if the width of the inclination distribution
(σ) is too narrow or too wide, as tested by the i,Ω distribution (Figure 4). (Exactly what inclination
widths are allowed depends on the semimajor axis bin, details of which are discussed in the next
section.)

In the 42.4 – 43.8 au and 43.8 – 44.4 au semi-major axis ranges, the allowed (non-rejectable) values
for the forced plane cluster in q, p space around the expected q0, p0 from secular theory, while both
the ecliptic plane and invariable plane are rejected for all inclination widths. At these semimajor
axes, the difference between the expected forced plane and the invariable plane is due to the influence
of the ν18 secular resonance. In the 44.4 – 47 au range the forced plane (and the inclination width,
σ) is less constrained due to fewer ifree < 4 objects. Here, the invariable plane is not rejectable, but
in this region the expected secularly forced plane is not so different from the invariable plane since
as semi-major axis increases the secularly forced plane approaches the invariable plane (Figure 1).

Overall, we agree with Volk et al. (2017) that the main Kuiper Belt nicely follows the expected
secularly forced plane. Volk et al. (2017) note that in their two (overlapping) outermost bins in
this region they see a weak discrepancy from the expected forced plane. While we do not see such a
discrepancy, disagreements of this weak statistical significance are reasonable when comparing results
from two independent data sets.

3.1.2. The Width of the Cold Inclination Distribution

Previous understanding of the inclination distribution was achieved by finding widths of the dis-
tribution that were non-rejectable (Petit et al. 2011; Gulbis et al. 2010). There were simply too few
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Figure 3. Joint bootstrapped KS statistic for the q, p distributions, for different semi-major axis bins
(columns), width of the inclination distribution (rows), and forced planes (i cos Ω,i sin Ω). Any bootstrapped
statistic above 0.05 displays as dark grey, bootstrapped statistics between 0.05 and 0.01 are light grey (i.e.
95% and 99% confidence limits, respectively). The red E, I, and S denote the ecliptic, invariable, and
expected secular forced plane, respectively. The displayed S is the expected forced plane for a TNO with
semimajor axis at the mid point of each semimajor axis bin. Note that because of dependence on TNO
semimajor axis (Eqn 4) the location of S is different in the different semimajor axis ranges, and also within
each semimajor axis range.
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Figure 4. Joint bootstrapped KS statistic for the i,Ω distributions, for different semi-major axis bins
(columns), width of the inclination distribution (rows), and forced planes (i cos Ω,i sin Ω), c.f. Figure 3.
Note that the values of σ shown (rows) are different in this figure versus Figure 3. Not obvious from the
diagram is that the inclination distribution is much more sensitive than the node (Ω) distribution. That is,
the boundary between rejected and not-rejected is usually caused by the i distribution being rejectable or
non-rejectable, the Ω distribution is more permissive (see the text in Section 3.1.2).
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Figure 5. Reduced χ2 of the simulated-observed free inclination distribution of the cold component of the
main belt compared to the real-observed free inclination distribution vs width of the inclination distribution
(σ) for dotted: 42.4 to 43.8 au, dashed: 43.8 to 44.4, solid: 44.4 to 47.0 au. The minimum χ2 is for σ of 1.5
to 2.0 degrees, and thus inclination distributions of sin(i) times a Gaussian (uniformly distribution around
the forced plane predicted by the secular dynamics from the 4 giant planets) provide completely acceptable
fits to the detections.

objects from a characterized sample to differentiate among non-rejectable widths. However, OSSOS
has now produced a large enough characterized sample to determine the ‘best fit’ inclination width.

From Figure 4, which shows which forced planes are allowed based on the i,Ω distribution, it is
clear that the allowed forced planes vary with the width of the inclination distribution, (σ). The q, p
distribution (Figure 3) is not so sensitive to the width of the inclination distribution (as the KS test
is most sensitive to the center of a distribution and somewhat less sensitive to that distribution’s
shape), and allows a greater range of σ. It is the i,Ω distribution which is most sensitive to whether
the width of the inclination distribution is too narrow or too wide. For example, for a = 42.4-43.8 and
43.8-44.4 au, both inclination widths of 1.25o and 2.25o have q, p distributions that allow forced planes
near the expected forced plane, but the i,Ω distribution fails. Specifically, it is the i distribution
that determines if a given forced plane is rejected or not. For all of these survey simulations, the
Ω distribution is only rejectable if the i distribution is also rejectable. This permissiveness of the Ω
distribution is a consequence of the fairly flat shape of this distribution over a wide range of proposed
forced planes. This means the Ω cumulative distribution doesn’t change too much and the KS test
yields a non-rejectable value.

Given that the ‘expected’ (computed from the four giant planets) forced plane is generally non-
rejectable, we now consider what width of the inclination distribution works best assuming that the
expected forced plane is the true forced plane. Figure 5 shows a χ2 test of how well the survey
simulated free inclination distribution matches the observed inclination distribution for different
inclination widths (σ in Eqn 5). As done earlier, we only consider TNOs with ifree < 4o in this fit.
From this figure it is apparent that the cold population is best fit by an inclination width near 1.75o.
The 43.8 to 44.4 au semi-major axis bin, where the CFEPS L7 kernel (Petit et al. 2011) is located,
prefers a slightly lower inclination width but all three bins are satisfactorily represented by σ = 1.75o,
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Figure 6. Acceptable forced planes derived from the hot population over the semimajor axis range 42.4–
47.0 au, with i > 9o relative to the proposed forced plane. Left: bootstrapped statistic based on the i and
Ω distributions. Right: similarly for the q and p distributions. The hot population of the main Kuiper Belt
does not provide any additional constraint on which forced planes are non-rejectable. Note that the scale of
these figures is much wider than for Figures 3 and 4. Any bootstrapped statistic above 0.05 displays as dark
grey, bootstrapped statistics between 0.05 and 0.01 are light grey. The ecliptic (E) and invariable plane (I)
are marked in red. The location of the expected forced plane varies appreciably over this range of semimajor
axes so we do not mark it on this figure.

which we thus adopt. Although it is possible that the dynamical kernel is indeed more concentrated,
more data would be required to prove this.

A narrow width of the inclination distribution limits how much the cold population has been stirred.
For example, imagine that a TNO starts with zero free inclination. If the planetary configuration
changes suddenly, the TNO’s forced inclination will also change suddenly. This induces a free inclina-
tion equal to the vector-difference between the new and old forced inclinations. Batygin et al. (2011)
suggests it is possible to keep the inclination excitement to reasonable levels during the late stages
of migration by controlling the g8 precession rate (primarily controlled by the locations of Neptune
and Uranus). Regardless of that, in models of hot object emplacement, the narrow width of the cold
population is a very strong constraint that the vertical velocity kicks must have been very low.

3.2. The Hot Population

As discussed above, there is both a cold population and a hot population in the mid Kuiper Belt.
We isolated the cold population by only considering TNOs within 4o of each proposed forced plane.
Similarly, we isolate the hot population by considering only TNOs that are more than 9o from each
proposed forced plane (we also tried cutting at 7o and did not get substantially different results).

Due to the lower number of real detections to compare against, splitting into the three semi-major
axis bins used for the cold population yields no constraints on the forced plane. When these bins are
amalgamated into one (42.4 to 47 au), the forced plane is constrained, but it is a laxer constraint (see
Figure 6). The forced planes allowed using only the hot population are consistent with the results
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Figure 7. Reduced χ2 vs width of the inclination distribution (σ) of the hot main belt population for 42.4
to 47.0 au. The poorer quality of fit is likely caused by the assumption of a single forced plane over the
entire range; see text for discussion.

from the cold population, but the lax constraint from the hot population means that we do not glean
any additional information from the hot population on what forced planes are ultimately allowed
versus the constraints we have from the cold population.

Like for the cold classicals, we ran a set of survey simulations using a forced plane equal to the
expected forced plane for the middle of the bin (here 44.7 au) with a variety of widths for the inclina-
tion distribution (σ in Eqn 5). We then calculate the goodness of fit of the inclination distribution.
As done earlier, we consider here only TNOs with ifree > 9o. As can be seen in Figure 7, the best
fit width for the hot population is ∼ 13o, but 14o is nearly as good. That said, the fit quality is
somewhat worse than for the cold classicals. Part of the reason for this less-good fit is because we
lumped all the hot classicals from 42.4 to 47 au into one bin, and performed survey simulations with
only one q0,p0 for the forced plane; in reality the expected secular forced plane changes noticeably
over the 42.4 to 47.0 au range used. Alternatively, the relatively poorer fit here may also hint that
the inclination distribution for the hot classical population is not well fit by a simple inclination
distribution of the form in Eqn 5. We however did not explore alternates to Eqn 5, as we feel a larger
number of hot classical TNOs would be required to clearly differentiate between different shapes of
the inclination distribution.

4. THE OUTER KUIPER BELT

The outer Kuiper Belt stretches outwards from the 2:1 resonance with Neptune. In this region, the
expected secularly forced plane rapidly asymptotes towards the invariable plane (see Figure 1). Figure
8 shows our results for allowed forced planes using TNOs with a = 50 - 80 au (57 objects), and Figure
9 shows our results for 48 - 150 au (83 objects), assuming the width of the inclination distribution
(σ in Eq. 5) is 17o (see Figure 11 and discussion on the width of the inclination distribution for this
population later in this section for why we chose this value of σ). In both cases, we consider all
non-resonant TNOs in the specified (barycentric) semimajor axis bin. The survey simulations here
used a single power law of slope 0.8 for the H magnitude distribution, had semimajor axes drawn
uniformly over the specified range, and had perihelion distances drawn uniformly from 34.0 to 50 au.
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Figure 8. Bootstrapped statistics based on the joint q and p distributions for 50-80 au, non-resonant TNOs,
with σ = 17o. Any bootstrapped statistic above 0.05 displays as dark grey, bootstrapped statistics between
0.05 and 0.01 are light grey. The blue dot is Volk et al. (2017)’s nominal result for 50-80 au. The observed
sample is consistent with the mean plane being the invariable plane, and inconsistent with the nominal result
of Volk et al. (2017). See the text for more details.

is
in

W

-10 0 10

-10

0

10

E
I

KS Hq,pL 48-150au Σ=17°

i cosW

Figure 9. Bootstrapped statistics based on the joint q and p distributions for 48-150 au, non-resonant
TNOs, with σ = 17o. Any bootstrapped statistic above 0.05 displays as dark grey, bootstrapped statistics
between 0.05 and 0.01 are light grey. The blue dot is Volk et al. (2017)’s nominal result for 50-150 au. The
observed sample is consistent with the mean plane being the invariable plane, and rejects at 99% confidence
the nominal result of Volk et al. (2017). See the text for more details.

To check if our results depend on the H magnitude distribution we ran sets of survey simulations
with the best fit ‘knee’ distribution from Lawler et al. (2018), having a bright slope of 0.9, with a
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Figure 10. An example simulation of survey observations of populations for 50-80 au, where the forced
plane is the invariable plane and the underlying inclination distribution is has a width of 17o. Small points
are simulated observed objects, large circles are real observed objects. Each point is coloured by their
observational survey: OSSOS in purple, CFEPS in orange, Alexandersen et al. (2016) in green, and HiLat
in blue.

knee at H = 7.7 to a faint slope of 0.4. This choice slightly alters the proportion of objects detected
by each of the surveys, but did not have any impact on which forced planes are rejectable.

We also checked if the distribution of perihelion distances would make a difference to our results
by running a set of survey simulations with all TNOs’ perihelia equal to 34 au. This extreme case
also did not significantly affect the rejectability of various forced planes.

The layout of the entire set of non-rejectable regions in Figures 8 and 9 is a result of an observa-
tional sensitivity (or lack thereof) in the different q, p quadrants. Consider Figure 10, which shows
q = sin i sin Ω and p = sin i cos Ω of survey simulated detections and real detections. Surveys with
pointings at low ecliptic latitudes (like CFEPS and OSSOS) find distant moving objects that are
crossing the ecliptic at the observed longitude. A TNO going ‘up’ (from below the ecliptic to above
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Figure 11. Reduced χ2 vs width of the inclination distribution (σ) of the outer Kuiper Belt (50-80 au). A
17 degree width around the invariable plane is a good match to the free inclination distribution.
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Figure 12. Cumulative distributions for the inclination and longitude of node for the survey simulation
shown in Figure 10 (50 – 80 au, σ = 17o, invariable as the forced plane). Blue shows the simulated-observed
TNOs, red shows the observed TNOs. This model is not rejectable, with a KS statistic of 0.198 for the joint
q, p distributions and of 0.42 for the joint i,Ω distributions.
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the ecliptic) will have its ascending node (Ω) at the observed longitude, while a TNO going ‘down’
will have its descending node there. There is no bias favouring TNOs going ‘up’ versus those going
‘down’ (or vice versa), so low latitude surveys populate linear rays on Figure 10 that originate from
(near) the origin. Surveys with pointings at higher ecliptic latitudes (like the high latitude block of
Alexandersen et al. 2016) also make rays, but these rays are centered off the origin. In such high
latitude surveys, the lowest inclination TNO that is observable has inclination equal to the mini-
mum latitude of the pointing. Assuming the survey is north of the ecliptic and orbits are not too
non-circular, the lowest-i TNO would have an ascending node 90o behind the observed longitude.
For southern latitudes, the lowest-i TNO would have an ascending node 90o ahead of the observed
longitude. Higher-i TNOs that are observed have their ascending nodes shifted ahead or behind the
lowest-i case. The higher a TNO’s inclination, the more its ascending node needs to be shifted from
the lowest-i case. Future similar-depth surveys like LSST will provide detections in the upper-left
and lower-right q, p quadrants, which will improve our ability to test forced planes in those directions.

The pointings of the OSSOS blocks give us strong sensitivity to ascending nodes in the lower left
and upper right q, p quadrants. While CFEPS (Petit et al. 2011), HiLat (Petit et al. 2017), and
Alexandersen et al. (2016) add some coverage in other quadrants, these surveys were either not as
deep or did not cover as much sky. There are approximately as many real objects in the lower left
quadrant as in the upper right, and this feature is what makes forced planes in the lower left or
upper right of Figures 8 and 9 fail. However, putting the forced plane in the upper left or lower right
is consistent with the observed symmetry, making such forced planes non-rejectable by the suite of
surveys we have available.

The most important test is to determine if we can reject the invariable plane as the center of the
distribution (that is, the expected result if the particle precession is dominated by the four known
giant planets). We are unable to do so; the invariable plane is perfectly acceptable as a mean plane
given the suite of data sets we use, for both sets of semimajor axis ranges. The reduced chi-squared
of the inclination distribution is less than one for the best-match model (Figure 11), and the match
of the inclination and nodal longitude distribution is also excellent (Figure 12). We cannot reject
the null result: this data set provides no compelling evidence against the invariable plane being the
mean plane beyond Neptune (out to 150 au at least).

Assuming the real forced plane is the invariable plane, Figure 11 shows the goodness of fit for the
observed inclination distribution versus width σ (Eqn 5). Inclination widths that are too narrow
overproduce TNOs with low inclinations, whereas a larger width puts too many TNOs in the high-i
tail. We find that the best-fit inclination width is 17o, indicating (albeit weakly) that this distribution
is perhaps wider than for the hot classicals (where the preferred width is 14o; Figure 7). As can be
seen in Figure 12, the cumulative distributions of i and Ω for σ of 17o match very well with what
is observed. While the difference in nominal width for the hot classicals and outer non-resonant
populations is intriguing, this result is not conclusive proof that the outer Kuiper Belt has a different
width than the hot main belt. From Figures 7 and 11, a width of ∼ 15o, for example, is acceptable
for both of these populations.

4.1. Constraints on Additional Planets

Volk et al. (2017) found that, using the Brown & Pan (2004) method, the MPC sample of TNOs
indicates that the forced plane for a = 50-80 and 50-150 au is in the lower left q, p quadrant. Their
uncertainty in the forced plane was moderately large, though they found it to be inconsistent with the
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invariable plane at > 95% confidence. Using a largely independent data set and a different analysis
method we do not reproduce this rejection of the invariable plane, which we instead find completely
acceptable. Our results rule out the nominal forced plane derived for the a=50–80 au MPC sample
at > 99% confidence (Figure 8), and most of the lower left q, p quadrant that said nominal forced
plane lies in. The 50–150 au sample’s nominal forced plane derived with the Brown & Pan (2004)
method is rejected at > 99% confidence by our method applied to the OSSOS sample, but lies near
a region that we can reject at only at 95% (Figure 9). There is no compelling evidence from the
analysis of the independent data set that a warp in the direction and amplitude found by Volk et al.
(2017) is preferred, although we cannot rule out smaller warps in that direction. Our result is that
the expected invariable plane is consistent with the OSSOS data set.

Given the tension between the results Volk et al. (2017) and the results presented here, one could
ask where the difference between our conclusions could come from. One possibility is that the set
of TNOs Volk et al. (2017) were working with, from the Minor Planet Center (MPC) database,
contains systematically incomplete object reports from some surveys. The Brown & Pan (2004)
method cannot correctly derive the true forced plane with an incompletely reported data set; it
assumes that all TNOs discovered in the survey have had orbits reported. So if some survey(s)
did not report all TNOs they discovered to the MPC before Volk et al. (2017) did their analysis,
then Volk et al. (2017) would be working with an incomplete data set. For example, several TNOs
appeared after the Volk et al. (2017) analysis in Minor Planet Electronic Circulars2, but several other
TNOs from the same dark run had been reported to the MPC prior to the Volk et al. (2017) analysis.
This is interesting especially because these three newly reported TNOs have large inclinations and
ascending nodes in the opposite half space of the warp derived by Volk et al. (2017). Incomplete
reporting happens for a large variety of reasons, but in this context it means that the set of MPC
objects cannot be taken at face value. A final resolution of the tension between these two results for
the a=50–80 au sample will require complete data sets, but because we know that the OSSOS data
set is calibrated and complete we have reasonable confidence in our model rejection estimates.

Constraining the presence of an additional planet from these results is tricky given the large range
of TNO semi-major axes considered here, in particular because the forcing plane varies as a function
of the TNO’s semi-major axis (see Section 2.1). In the presence of an additional planet in the ∼100 au
region, this dependence would be quite dramatic for the TNOs considered here. It is also reasonable
to assume that with this additional planet present, the width of the inclination distribution would
change as a function of semi-major axis, and is perhaps not at all well described by Eqn 5. For
example, if these TNOs are put in place via scattering or resonant interactions with Neptune, they
would start symmetrically distributed about Neptune’s mean plane. As time progressed, these TNOs
would subsequently precess around the forced plane dictated by their new semimajor axis, which in
the presence of an additional planet would not be the invariable plane. Such an emplacement would
give the TNO inclination distribution a dependence on TNO semimajor axis. While it is true that
our analysis indicates the inclination distribution may be wider for the outer Kuiper Belt than for
the hot main classical belt, as would be expected from such a situation with an additional mass, the
difference in these populations’ inclination widths is not statistically significant enough to be viewed
as evidence of an additional planet in the ∼ 100 au region.

2 Minor planet electronic circulars 2018-K-118, 2018-K-119, and 2018-K-120 reporting the discoveries/orbital deter-
mination of TNOs 2015 FK172, 2015 KG172, and 2016 FX58.
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With regards to more distant planets, possible planets at several hundred au will not strongly
affect the forced plane for TNOs with semi-major axes below ∼100 au. For example, Batygin &
Brown (2016)’s “Planet 9” is too distant to cause a warp in the mean plane at these distances. A 10
Earth-mass planet with a semi-major axis of ∼700 au, and inclined at 30o doesn’t pull the expected
forced plane more than a degree off the invariable plane until about a = 130 au3. Only if the planet
is at the closer, more massive, and higher inclination end of those ranges does it significantly pull
the expected forced plane away from the invariable at ∼100 au.. (This is, of course, why Volk et al.
(2017) postulated a closer, smaller planet.)

5. CONCLUSIONS

We make use of characterized surveys via the survey simulation technique to determine the forced
plane of the main classical trans-Neptunian belt and the outer trans-Neptunian belt. Everywhere we
look, the expected forced plane from secular theory is consistent with the observed sample.

The forced plane of the cold main belt is constrained to be within ∼ 0.5o of that expected from
secular theory. In the outer belt, our results again are consistent with the predictions of secular
theory. The nominal warp found by Volk et al. (2017) is strongly ruled out, though a mild warp in
that general direction is still possible. We cannot rule out dramatic warps in directions we are not
sensitive to with OSSOS (Bannister et al. 2016, 2018), CFEPS (Petit et al. 2011), Alexandersen et
al. (2016), and HiLat (Petit et al. 2017). Our results do not indicate the presence of an additional
Mars-mass planet within ∼100 au, as distributing TNOs with a = 50–150 au about the invariable
plane provides a good match to observations from the characterized surveys we use. The results
are robust against changes in the H magnitude distribution (i.e. the size distribution), and in the
distribution of perihelion distance. The purported ‘Planet 9’ (Batygin & Brown 2016) is too distant
to affect the TNOs we consider.

Assuming the true forced plane is that expected from secular theory and assuming an underlying
inclination distribution of the form found in Eqn 5, we find that the inclination distribution of the
cold classical main belt is very narrow, with a best fit width of ∼ 1.75o. Such a narrow width implies
that this population was not much disturbed as the giant planets migrated. The best fit width of
the hot main belt population is ∼ 14o. The outer trans-Neptunian belt (50 – 80 au) is very well fit
with width ∼ 17o.

CVL acknowledges funding from the NSERC CREATE grant Technologies for Exo-Planetary Sci-
ence (TEPS). MTB appreciates support from UK STFC grant ST/P0003094/1.
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