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Résumé :
Ce travail s’inscrit dans une idée plus générale consistant à construire un modèle macroscopique de
croissance de grain dont les variables d’état contiennent en chaque point matériel, des descripteurs
statistiques de la microstructure, par exemple la distribution de désorientation cristalline, la distribu-
tion de taille et forme des grains. Il s’agit de fabriquer statistiquement des potentiels d’énergie libre
et de dissipation macroscopiques, sur la base d’un très grand nombre de calculs à l’échelle locale du
polycristal. On en déduit in fine des lois d’évolution macroscopiques enrichies. Pour faire simple, on
se place dans le cadre de la croissance de grain d’un métal monophasé sans diffusion ou ségrégation
d’éléments d’alliage. Pour tester cette idée de changement d’échelle, il est donc nécessaire d’établir un
outil de simulation à l’échelle du polycristal qui soit suffisamment simple et rapide pour autoriser un
grand nombre de simulations sur des microstructures très variées, quitte à négliger certains détails se
produisant à cette échelle. Les modélisations de croissance de grain reposant sur les éléments finis mo-
biles, les fonctions de niveau, les champs de phase ou la dynamique moléculaire sont trop coûteux pour
être utilisées dans ce cadre. Cet article se focalise donc sur la construction d’un modèle “jouet” simple
de croissance de grain. On utilise en général des outils de tessellation pour générer une approximation
d’une microstructure polycristalline. On peut donc approximer l’évolution réelle de la microstructure
comme une succession d’approximations par tessellation. Il devient alors assez naturel de tenter d’écrire
les lois d’évolution de la microstructure directement sur les paramètres définissant la tessellation. Le
modèle simplifié obtenu est très léger en terme calculatoire et permet de calculer un très grand nombre
d’évolutions, dans une optique de changement d’échelle statistique.

Abstract :

This work is part of a more general idea consisting in developing a macroscopic model of grain growth
whose state variables contain for each material point the statistical descriptors of the microstructure
(e.g., disorientation, grain size and shape distributions). The strategy is to determine macroscopic free
energy and dissipation potentials on the basis of a large number of computations at the scale of the
polycrystal. The aim is to determine enriched macroscopic evolution laws. For sake of simplicity, this
contribution only deals with grain growth of a single phased metal without diffusion or segregation of
alloying elements. In order to test this upscaling strategy it is necessary to establish a simulation tool at
the scale of the polycrystal. It should be sufficiently simple and fast to enable a large number of simu-
lations of various microstructures, even if it leads to neglect some phenomena occurring at this scale.
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Usual grain growth models relying on mobile finite element modeling, level set functions, phase field or
molecular dynamics are too computationally costly to be used within the proposed framework. There-
fore, this paper focuses on the development of a “toy” model. Tessellation techniques are usually used to
approximate polycrystalline microstructures. Therefore, one can approximate the real evolution of the
microstructure as a succession of tessellation approximations. It then becomes quite natural to attempt
to establish the evolution law of the microstructure directly on the parameters defining the tessellation.
The obtained model is very light in terms of computational cost and enables to compute a large number
of evolutions within the framework of the proposed statistical upscaling method.

Key words : Grain Growth, Voronoi-Laguerre Tessellation, Grain Boundary
Energy, Dissipation, Grain Mobility

1 Introduction
This work is part of a more general idea consisting in developing a macroscopic model of grain growth
whose state variables contain for eachmaterial point the statistical descriptors of the microstructure (e.g.,
disorientation, grain size and shape distributions). Statistical distributions are too much detailed to be
processed at each material point, thus reduced information is considered instead : means and variances
at each material point. This ambition arises as very few information about microstructure is usually pro-
cessed at the macroscopic scale. The general framework is the standard generalized media characterized
by a free energy per unit mass and a dissipated power potential. These two potentials arise in the balance
energy equation combining the first and second laws of thermodynamics. The balance energy equation
should be verified for all possible virtual evolution. The two potentials depend on macroscopic state
variables and their time derivatives. The determination of the macroscopic free energy and dissipation
potentials enables to establish the evolution laws of the state variables characterizing the microstructure
evolution at macroscale.

The strategy is to determine macroscopic free energy and dissipation potentials not axiomatically (with
parametric functions) and calibration with experiments at macroscale, but on the basis of a large number
of computations at the scale of the polycrystal. The aim is to quantify for each microstructure evolution
the total grain boundary energy and the total dissipated power as a function of the macroscopic state
variables that characterize the statistical distribution of the microstructure in order to determine enri-
ched macroscopic evolution laws. For sake of simplicity, this contribution only deals with grain growth
of a single phased metal without diffusion or segregation of alloying elements. In order to test this ups-
caling strategy it is necessary to establish a simulation tool at the scale of the polycrystal. It should be
sufficiently simple and fast to enable a large number of simulations of various microstructures, even if it
leads to neglect some phenomena occurring at this scale. Usual grain growth models relying on cellular
automaton [1–4], mobile finite element modeling [5], level set functions [6, 7], phase field [8–11] or
molecular dynamics [12–14] have been intensively studied and very interesting results have been ob-
tained. However, the computational cost of such approaches is usually incompatible with an intensive
use as suggested within the proposed framework. Vertex methods [15–18] consist in establishing the
evolution law directly at the triple junctions and are sufficiently simple in two dimensions to reach short
computation time. However, the extension in three dimensions is very difficult.

Evolution of polycrystalline microstructures (such as grain growth) involves coupled mechanisms at
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different scales : (i) the atomic scale (crystal lattice), (ii) the microscale including mechanisms at grain
boundaries (iii) the mesoscale revealing the grain structure ( i.e., polycrystalline Representative Volume
Element) and (iv) the macroscopic scale modeled as a continuous medium. Thus, this paper focuses on
the development of a “toy” model formulated at mesoscale and enabling to simulate grain growth within
short computation time.

Voronoi-Laguerre tessellation techniques are usually used to approximate polycrystalline microstruc-
tures at mesoscale. Very efficient algorithms have been developed with the possibility of controlling
statistical distributions of grain size and shape. Crystal lattice orientation can also be specified for each
grain. The tessellation equipped with such an orientation field is called an Orientated Tessellation (OT).
One can approximate the real evolution of the microstructure as a succession of OT approximations.
It then becomes quite natural to attempt to establish the evolution law of the microstructure directly
on the parameters defining the OT. This modeling strategy is called in this contribution the Orientated
Tessellation Updating Method (OTUM).

As grain growth during annealing is essentially viscous, the time derivatives of the OT parameters are
obtained as a function of the thermodynamic forces defined as the partial derivatives of the total grain
boundary energy with respect to the OT parameters. This mesoscale evolution law is obtained through
the energy balance equation by specifying two mechanisms at microscale : (i) the grain boundary energy
(disorientation) and (ii) the dissipated power by crystal visco-plasticity through any grain boundary vir-
tual motion. For sake of simplicity, crystal lattice rotation through crystal visco-plasticity is not conside-
red in this contribution. In addition, plane polycrystals are considered with three slip directions in each
grain. Thus, the crystal lattice is plane hexagonal. This configuration corresponds to the plane 〈1, 1, 1〉
of a face-centered cubic (fcc) crystal, as shown in figure 1. Disorientation between two neighboring
grains (characterized by five parameters in 3D) is characterized only by two parameters in 2D : the
disorientation angle ∆θ and the orientation of the grain boundary ϕ. Thus, the grain boundary energy
considered in this paper is computed from fcc crystals sharing the same orientation 〈1, 1, 1〉 (asymmetric
tilt boundaries).

A
B

C

1,0,0< > 0,1,0< >

0,0,1< >

1,1,1< >

1,0,1< > 0,1,1< >

1,1,0< >

Figure 1 – FCC and slip directions in 〈1, 1, 1〉 plane

The dissipative mechanism at microscale is calibrated to correspond to the classic notion of grain boun-
dary mobility. The overall mesoscale grain growth model is validated by comparison with the classical
curvature driven shrinkage of a spherical grain. The proposed model is very light in terms of computa-
tional cost and enables to compute a large number of microstructure evolutions, which is useful for the
general statistical upscaling method.
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2 Orientated Tessellation Updating Method
A tessellation is defined by n seeds whose Cartesian coordinates are denoted by (xj , yj) and n weights
(homogeneous to the square of a radius) denoted bywj (where 1 ≤ j ≤ n). The tessellation is completely
determined by the parameter vectors x = (x1, · · · , xn), y = (y1, · · · , yn), w = (w1, · · · , wn). Each
cell (or grain) denoted byCj (where 1 ≤ j ≤ n) is defined by Voronoi-Laguerre tessellation as follows :

Cj =


(
x

y

)
∈ R2, ∀k ∈ {1, · · · , n} ,

∥∥∥∥∥ x− xj
y − yj

∥∥∥∥∥
2

− wj ≤

∥∥∥∥∥ x− xk
y − yk

∥∥∥∥∥
2

− wk

 (1)

It is clear from the definition (1) that weights are defined up to a constant. Thus, the following constrain
is added to obtain a univocal definition :

n∑
j=1

wj = 1 (2)

Thus, weightsw lie in an affine hyperplane of dimension n−1 and denoted by P (n−1)
a , whose support is

the hyperplane denoted by P (n−1). In addition, it should be noted that a cell Cj may be empty as shown
in figure 2. This property will be intensively used as some grains should disappear during grain growth.

Seed

Empty cell

Figure 2 – Seed and weight in tessellation

The crystallographic orientation is denoted by θ = (θ1, · · · , θn). Since the crystal lattice is plane hexa-
gonal ∀j ∈ {1, . . . , n} , θj ∈

[
0, π3

]
. The parameter set POT defining the OT reads :

POT =
{
α = (x,y,w,θ) ∈ Rn × Rn × P (n−1)

a ×
[
0,
π

3

]n}
(3)

A total energy E(T,α) is associated to the OT, where T is the temperature. In this contribution, the
total grain boundary energy per unit depth is considered. The Orientated Tessellation Updating Method
consists in computing a time evolution of the OT characterized by POT by deriving an evolution law of
the form :

α̇ = −M(T,α).
∂E(T,α)

∂α
(4)

whereM(T,α) is a second order tensor to be defined by introducing a dissipative mechanism at mi-
croscale and ∂E(T,α)/∂α is the driving force. This paper is limited to the evolution of weights (i.e.,
seeds and orientations are fixed parameters : ẋ = ẏ = 0 and θ̇ = 0), the only state variable is w.
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3 Microscale mechanisms
As mentioned in the introduction, the mesoscopic evolution law (4) is determined by introducing two
local mechanisms at microscale : (i) the grain boundary energy and (ii) the dissipated power by crystal
visco-plasticity through any grain boundary virtual motion. Grain boundaries are indexed by pairs (i, j)

where i and j denote two neighboring grains. The set of pairs of neighboring grains defining grain
boundaries is denoted by IGB :

IGB =
{

(i, j) ∈ {1, · · · , n}2 , j ≥ i, Ci ∩ Cj 6= ∅
}

(5)

The condition j ≥ i is meant to count each grain boundary only once (otherwise if (i, j) ∈ IGB then
(j, i) would also be an element of IGB).

The grain boundary energy per unit area of each grain (i, j) ∈ IGB is denoted Eij .

Eij = E(T,∆θij , ϕij) (6)

where ∆θij is the crystal lattice disorientation between grains i and j defined by :

∆θij = |θj − θi| ∈
[
0,
π

3

]
(7)

In addition ϕij is the angle of the grain boundary as shown in figure 3.

Grain boundary

 θjj

 θiφ
i,j

 θi

 θjjΔθij

Δθ  /2ij

Δθ  /2ij

Figure 3 – Notations

Several analytical formulations have been proposed for E. The simplest and most widely used function
is the Read & Shockley formula [19] :

E(T,∆θ, ϕ) = E0(T, ϕ)∆θ [a(ϕ)− ln (∆θ)] (8)

However, the range of validity of the Read & Shockley formula is limited to small disorientation angles
and do not account for the energy cusps at certain disorientation angles. To overcome this difficulty,
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Wolf [20] introduced a piecewise interpolation function for the grain boundary energy per unit area of
the form : E(T,∆θ, ϕ) = EM (T, ϕ) sin

(
π

2

∆θ −∆θm
∆θM −∆θm

)[
1− a(ϕ) ln

(
sin

(
π

2

∆θ −∆θm
∆θM −∆θm

))]
(∆θm ≤ ∆θ ≤ ∆θM )

(9)
This interpolation function is usually fitted on atomistic simulations. Other interpolations have been
proposed within a three dimensional framework [21]. Since the main goal of this contribution is to
demonstrate the capability of the OTUM and not to present a study on a specific metal, a simplified grain
boundary function is directly defined in the form of (9). Since the crystal lattice is plane hexagonal, a
cusp is introduced at π/3. In addition it is assumed that the dependance on ϕ is negligible. The grain
boundary energy per unit area is defined as follows :

E(T,∆θ) =
G(T )

G(0)
γ(∆θ) (10)

where G(T ) is the shear coefficient. In this paper, data for pure iron [22] are used to calibrate G(T ) :

G(T ) = aG T + bG (11)

where bG ≈ 88134MPa and aG ≈ −24MPa.K−1. The temperature dependenceG(T )/G(0) is a simple
choice similar to [23]. In addition :

γ(∆θ) = γπ
6

sin (3∆θ) [1− a1 ln (sin (3∆θ))](
0 ≤ ∆θ ≤ π

6

)
γ(∆θ) = γπ

6
sin (π − 3∆θ) [1− a2 ln (sin (π − 3∆θ))](π

6
≤ ∆θ ≤ π

3

) (12)

where a1 = a2 = 1 and γπ
6

= 1 J.m−2, which roughly corresponds to pure iron. The resulting simplified
grain boundary energy per unit area is presented in figure 4.

π
0

1

0.2

0.4

0.6

0.8

0.1

0.3

0.5

0.7

0.9

(J.m   )-2γ

(rad)Δθ

3
π
6

π
2

2π
3

5π
6

π0

Figure 4 – Grain boundary energy per unit area at T = 0 K

In addition to the grain boundary energy per unit area, the dissipated power per unit area through any
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virtual grain boundary motion should be specified. Consider v∗ij a virtual normal velocity of the grain
boundary (i, j) ∈ IGB . The dissipated power per unit area reads :

D∗ij = D(T,∆θij , v
∗
ij) (13)

where [24, 25] used crystal plasticity to determine D analytically (for plane hexagonal crystals) when
the boundary between two semi-infinite crystals moves at the virtual velocity v∗ij :

D(T,∆θij , v
∗
ij) = τcX(∆θij)

∣∣v∗ij∣∣ (14)

where τc is the critical shear stress and X : ∆θ 7→ X(∆θ) is the following function :

X(∆θ) =
6

π

(
π

3
+ 2
√

3 ln

(√
3

2

))
min

{
∆θ,

π

3
−∆θ

}
(15)

Since grain growth is viscous, the analytical computation proposed by [24, 25] is simply adapted for
crystal visco-plasticity by considering that the critical shear stress τc linearly depends on

∣∣∣v∗ij∣∣∣ :
τc =

∣∣∣v∗ij∣∣∣
m(T )

(16)

where the functionm(T ) is homogenous to a grain mobility (m4.J−1.s−1). Hence the dissipated power
per unit area :

D(T,∆θij , v
∗
ij) =

X(∆θij)

m(T )

[
v∗ij
]2 (17)

It should be noted from (9) and (15) that : γ(∆θ) ∼
∆θ→0

A∆θ ln (∆θ)

X(∆θ) ∼
∆θ→0

B∆θ
(18)

In other words, the driving force (proportional to γ(∆θ)) tends to zero when the disorientation tends to
zero. However, the dissipative cost (proportional toX(∆θ)) that resists to the driving force, tends to zero
much faster because of the logarithmic term in (18). Thus, for arbitrarily small disorientation, the grain
boundary is unstable as the driving force is arbitrarily large in comparison to the resistive mechanism
(the ratio is in ln (∆θ)).

4 Mesoscale evolution law
The mesoscale evolution law is derived by considering the total grain boundary energy per unit depth
and the total dissipated power per unit depth through any virtual grain boundary normal velocity field,
which are defined as follows : 

E(T,α) =
∑

(i,j)∈IGB

lijEij

D(T,α,v∗) =
∑

(i,j)∈IGB

lijD
∗
ij

(19)
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where lij the joint length and v∗ =
(
v∗ij

)
(i,j)∈IGB

. The dependance on α = (x,y,w,θ) comes from

the grain boundary lengths lij that depend on (x,y,w) and Eij , D∗ij that depend on θ. The number
of grain boundary is nGB = card [IGB]. There exists a bijection between IGB and {1, · · · , nGB} that
defines the numbering of grain boundaries. Thus, for each grain boundary denoted by (i, j) ∈ IGB there
exists a unique pij ∈ {1, · · · , nGB}. Therefore the total dissipated power per unit area reads :

D(T,α,v∗) = v∗.
χ(α)

m(T )
.v∗ (20)

where χ(α) is a diagonal second order tensor of size nGB × nGB of diagonal :

∀pij ∈ {1, · · · , nGB} , χpij (α) = lijX(∆θij) (21)

As seeds and crystalline orientations are fixed (i.e., ẋ = ẏ = 0 and θ̇ = 0) and considering any virtual
variation of weights ẇ∗, it is straightforward to demonstrate that :

v∗ij =
ẇ∗i − ẇ∗j

2dij
(22)

where dij is the distance between seeds :

dij =

∥∥∥∥∥
(
xi

yi

)
−

(
xj

yj

)∥∥∥∥∥ (23)

It is clear in (22) that for each grain boundary an arbitrary choice is made for the positive direction of
the normal velocity v∗ij , which has no consequence as the square of the virtual velocity arises in the
dissipated power. Hence :

v∗ = K(α).ẇ∗ (24)

whereK(α) is a second order tensor of size nGB × n, which can be evaluated analytically :

K(α) =


i j

...
...

...
...

...
...

...
...

...
...

...
pij 0 · · · 0 1

2dij
0 · · · 0 − 1

2dij
0 · · · 0

...
...

...
...

...
...

...
...

...
...

...

 (25)

The constrain (2) leads to :
n∑
j=1

ẇ∗j = 0 (26)

which defines a hyperplane of dimension n− 1 denoted by P (n−1), whose normal vector is denoted by
1 = (1, · · · , 1) ∈ Rn. It is clear that the kernel of K(α) is ker (K(α)) = 1R. The total dissipated
power per unit depth reads :

D(T,α,v∗) = ẇ∗.
R(α)

m(T )
.ẇ∗ (27)

whereR(α) = K(α)T .χ(α).K(α) is a second order tensor of size n× n.

The “real” weight variation ẇ (considered as the solution among all possible virtual weight variations
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ẇ∗) is determined for isothermal (i.e., Ṫ = 0) and homogenous temperature fields (i.e., ∇T = 0) by
using the general energy balance equation (combining the first and second thermodynamic laws), which
reads :

Ė +D = 0 (28)

Hence :
[ẇ] .

(
∂E
∂w

+
R(α)

m(T )
.ẇ

)
= 0 (29)

Using the maximum dissipation principle, the evolution law reads :

R(α).ẇ = −m(T )
∂E(T,α)

∂w
(30)

The evolution law (30) should be inverted. HoweverR(α) is not invertible because of the constrain (26).
The kernel ofR(α) is ker (R(α)) = 1R. Thus, there are n−1 strictly positive singular values ofR(α)

denoted by (λ1, · · · , λn−1) and there exist two orthogonal tensors U and V such as :

R(α) = U .


λ1 · · · 0
... . . . ...
0 · · · λn−1

0

0 0

 .V (31)

The singular value decomposition is computed in Scilab [26] and gives (λ1, · · · , λn−1),U and V . The
Moore-Penrose pseudo-inverse matrix is introduced as follows :

Σ† =



1

λ1
· · · 0

... . . . ...

0 · · · 1

λn−1

0

0 0


(32)

Hence the evolution law :
ẇ = −m(T )M(α).

∂E(T,α)

∂w
(33)

where :
M(α) =

(
V T .Σ†.UT

)
(34)

5 Driving force
The driving force involved in the evolution law (33) should be evaluated. An analytic solution is derived
in this section, which contributes to reach short computation time. From (19) and (10) one obtains :

E(T,α) =
G(T )

G(0)

∑
(i,j)∈IGB

lijγ(∆θij) (35)

Hence :
∂E(T,α)

∂w
=
G(T )

G(0)

∑
(i,j)∈IGB

∂lij
∂w

γ(∆θij) (36)
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Consider the set of triple junctions :

I3 =
{

(i, j, k) ∈ {1, · · · , n}3 , Ci ∩ Cj ∩ Ck 6= ∅
}

(37)

There is no condition such as k ≥ j ≥ i, thus if (i, j, k) ∈ I3 then all permutations are also in I3.
Consider the third order tensor δ :

δ̃ijk =

{
1 if (i, j, k) ∈ I3

0 if (i, j, k) /∈ I3
(38)

Thus, the third order tensor β representing angles at the triple junctions as shown in figure 5 are defined
as follows :

βijk =

{
βijk if (i, j, k) ∈ I3
π

2
if (i, j, k) /∈ I3

(39)

where the following symmetry rule holds βijk = βkji.

i j

k

m

βjik βijk

βikj

βjim

βimj

βijm

lij

Figure 5 – Triple junctions

Consider a virtual weight variation ẇ∗ ∈ P (n−1) (i.e., verifying the constrain (26)). One obtains :

l̇ij =
tan

(
βijk − π

2

)
+ tan

(
βijm − π

2

)
2dij

ẇ∗i +
tan

(
βjik − π

2

)
+ tan

(
βjim − π

2

)
2dij

ẇ∗j

− 1

2djk cos
(
βijk − π

2

) ẇ∗k − 1

2djm cos
(
βijm − π

2

) ẇ∗m (40)

Moreover :
l̇ij =

(
∂lij
∂w

)
.ẇ∗ (41)

Hence by combining (40) and (41) and ∂lij/∂w = (∂lij/∂wq)q∈{1,··· ,n} :

∂lij
∂wq

=
n∑
p=1

δ̃ijp

(
tan

(
βijp − π

2

)
2dij

δiq +
tan

(
βjip − π

2

)
2dij

δjq −
δpq

2djp cos
(
βijp − π

2

)) (42)
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where δ is the Kronecker symbol.

6 Calibration
The proposed approach is calibrated by comparison with the classic curvature driven grain growth.
Within this framework, the driving force acting on any grain boundary reads :

F̃ =
G(T )

G(0)
γ(∆θ)

(
1

RI
+

1

RII

)
(43)

Where RI and RII are the radii of curvature along the principal directions (in three dimensions). For
plane polycrystals RI = R and RII = ∞. A simple linear evolution law accounting for viscosity is
usually used :

ṽ = m̃(T,∆θ) F̃ (44)

Where ṽ is the inward normal speed of the considered grain boundary and m̃(T,∆θ) the classical grain
boundary mobility for the curvature driven model (where the symbol .̃ refers to the curvature driven
model). In the following, a circular grain shrinkage is compared to an hexagonal configuration as shown
in figure 6 in order to determine the mobilitym(T ) introduced in the dissipated power (16) as a function
of m̃(T,∆θ). Thus for the curvature driven model the inward normal speed reads :

ṽ = m̃(T,∆θ)
G(T )

G(0)

γ(∆θ)

R
(45)

θ2

R

θ1
θ1D

θ2
θ2

θ2
θ2

θ2

θ2

1

2

3

4

5

6

7

Figure 6 – Validation by comparison to curvature driven spherical grain shrinkage

The proposed approach is applied to the hexagonal situation. The partial derivative (42) reads :

∀j ∈ {2, · · · , 7}
∂l1j
∂w1

=
∂l1j
∂wj

= − ∂l1j
∂wj−1

= − ∂l1j
∂wj+1

=
1

2
√

3R

(46)
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Hence :

∂l12

∂w
=

1

2
√

3R
(1, 1,−1, 0, 0, 0,−1)T

∂l13

∂w
=

1

2
√

3R
(1,−1, 1,−1, 0, 0, 0)T

∂l14

∂w
=

1

2
√

3R
(1, 0,−1, 1,−1, 0, 0)T

∂l15

∂w
=

1

2
√

3R
(1, 0, 0,−1, 1,−1, 0)T

∂l16

∂w
=

1

2
√

3R
(1, 0, 0, 0,−1, 1,−1)T

∂l17

∂w
=

1

2
√

3R
(1,−1, 0, 0, 0,−1, 1)T

(47)

The driving force (36) reads :

∂E(T,α)

∂w
=
G(T )

G(0)

γ(∆θ)

2
√

3R
(6,−1,−1,−1,−1,−1,−1)T (48)

The second order tensorK introduced in (25) reads for this configuration :

K =



1 2 3 4 5 6 7

p12 −1 1 0 0 0 0 0

p13 −1 0 1 0 0 0 0

p14 −1 0 0 1 0 0 0

p15 −1 0 0 0 1 0 0

p16 −1 0 0 0 0 1 0

p17 −1 0 0 0 0 0 1


1

4R
(49)

The second order tensor χ introduced in (21) reads :

χ =
R√
3
X(∆θ)I (50)

where I is the identity of size 6× 6. The second order tensorR introduced in (27) reads :

R = KT .χ.K =
X(∆θ)

16
√

3R



6 −1 −1 −1 −1 −1 −1

−1 1 0 0 0 0 0

−1 0 1 0 0 0 0

−1 0 0 1 0 0 0

−1 0 0 0 1 0 0

−1 0 0 0 0 1 0

−1 0 0 0 0 0 1


(51)

Thus, the second order tensorM introduced in (34) reads :

M = m(T )
16
√

3R

X(∆θ)

1

49



6 −1 −1 −1 −1 −1 −1

−1 41 −8 −8 −8 −8 −8

−1 −8 41 −8 −8 −8 −8

−1 −8 −8 41 −8 −8 −8

−1 −8 −8 −8 41 −8 −8

−1 −8 −8 −8 −8 41 −8

−1 −8 −8 −8 −8 −8 41


(52)
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Hence the evolution law (33) for the hexagonal situation :

ẇ = −m(T )
8

7

G(T )

G(0)

γ(∆θ)

X(∆θ)
(6,−1,−1,−1,−1,−1,−1)T (53)

Thus, by using (22) one obtains the inward normal speed according to the proposed model :

v = m(T )
2

R

G(T )

G(0)

γ(∆θ)

X(∆θ)
(54)

The comparison between the inward normal speed from the curvature driven model (45) and from the
proposed approach (54) reads :

m(T ) = m̃(T,∆θ)
X(∆θ)

2
(55)

For sake of simplicity it is assumed that m̃(T,∆θ)X(∆θ) does not significantly depend on the diso-
rientation :

m̃(T,∆θ)X(∆θ) ≈ ˜̃m(T ) (56)

Hence :

m(T ) ≈
˜̃m(T )

2
(57)

where ˜̃m(T ) is the grain boundary mobility without dependence on grain disorientation. The pure iron
grain boundary mobility has been determined by [27] :

˜̃m(T ) = β
DFe(T )Vmδ

b2RT
(58)

where the molar volume of fcc-Fe is Vm = 7.09.10−6 m3, the boundary thickness is δ = 1 nm, the
burgers vector is b = 2.48.10−10 m, the gas constant is R = 8.3144621 J.mol−1.K−1. In addition,
DFe(T ) is the diffusivity of Fe atoms along the grain boundary (for fcc) and follows an Arrhenius law :

DFe(T ) = D0
Fe exp

(
− Q

RT

)
(59)

where the pre-factor is D0
Fe = 1.5.10−4 m2.s−1 the activation energy is Q = 148 kJ.mol−1.

7 Time discretization and numerical results
The temperature kinetics is imposed in the following, thus T (t) is a known function. Voronoi-Laguerre
tessellations (x,y,w) are generated with the free software Neper [28] and orientations θ are set in
Scilab [26]. Weights are initially set to a common value and are updated at each time step according
to the evolution law (33) and the driving force (42). The numerical discretization consists in a simple
explicit scheme with adaptive time step in order to capture accurately growth rate variations. The time
step is determined as follows :

N =

∥∥∥∥M(T,α).
∂E(T,α)

∂w

∥∥∥∥ (60)

dt =
δw
N

(61)

where δw > 0 is a constant value. As the simple model proposed in this paper is purely viscous, even
though the temperature is maintained constant, grain growth never stops strictly speaking. The evolution
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becomes only slower and slower. Thus, a stopping criterion needs to be defined. The algorithm is simply
presented in figure 7.

Initialization
Generate OT
x, y, w, θ

Time derivative
w
.

Driving Force
∂ℰ
∂w

Optimal time step
dt

Updating

w=w+wdt
.

t=t+dt

Generate OT

x, y, w, θ

Stopping criterion

Figure 7 – Algorithm

Different Orientated Tessellations with different distributions of sphericity and grain size are generated.
The orientation field correspond to a disorientation distribution very similar for each OT as shown in
figure 8. The temperature is set to T = 800 K and grain growth is simulated by Orientated Tessellation
Updating Method during approximatively 4 hours. The code is not optimized as Scilab has been used
to compute the evolution law and Neper to generate tessellations. (Computation time is roughly 15 min
for 1000 time steps and is mainly due to writting and reading text files between Scilab and Neper. Thus,
a unifed code not relying on text files would significantly reduce computation time.)

Grain growth at 800 K is presented for three OT (denoted by OT1, OT2, OT3) in figures 9,11 and 12
(orientations are in degrees). Simulations show grain coarsing and are consistent with experimental
observations [29] on an other material (tantalum). Grain growth is heterogeneous depending on the
local disorientation and grain size arrangement leading to heterogenous grain size distribution during the
transiant state. Of course, grain size heterogenities eventually reduce as bigger grain tends to grow at the
expense of smaller grains. In addition, the disorientation distribution tends to favor small disorientations
as shown in figure 8. Sphericity tends to increase as shown in figure 11 but this may be due to the fact
that weights w are the only state variables. Future developments will include seeds x and y as state
variables, which will enable to consider additional degrees of freedom to approximate more accurately
grain shape evolution. In addition, orientations θ can also be added as state variables with an associated
dissipative mechanism related to crystal plasticity in the grain bulk. Thus, reorientation is likely to occur
for small grain sizes as suggested by molecular dynamics [14] because reorientation involves dissipated
energy per unit volume although grain boundary migration involves dissipated energy per unit area.



24ème Congrès Français de Mécanique Brest, 26 au 30 Août 2019

Grain growth is a thermally activated process as captured by the Arrhenius law (59). This is illustrated
by simulating the same OT as those presented in figure 9 at 700 K. The resulting evolution is much
slower than at 800 K as shown in figure 10.
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Figure 8 – Disorientation distributions of three OT at 800 K

Figure 9 – Grain growth of the OT1 at 800 K during approximatively 4 hours
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Figure 10 – Grain growth of the OT1 at 700 K during approximatively 4 hours

Figure 11 – Grain growth of the OT2 at 800 K during approximatively 4 hours
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Figure 12 – Grain growth of the OT3 at 800 K during approximatively 4 hours

8 Conclusion
In this paper theOrientated Tessellation Updating Method has been introduced to simulate grain growth
at mesoscale (i.e., at the scale of the polycrystalline structure) . The method relies on Voronoi-Laguerre
tessellation techniques and energetic contributions at microscale (i.e., at the scale of the grain boun-
dary), namely the grain boundary energy due to the crystal disorientation and the dissipated power by
crystal plasticity for any virtual motion of the grain boundary. The method is very light in terms of
computation cost. Even though 2D structures have been studied in this contribution, the extension in
3D is straightforward and future works will focus on this aspect. In addition, the only state variables
are the weights of the tessellation. Thus, further developments including seeds and orientations as state
variables are needed to approximate more accurately structural evolution of polycrystals. Furthermore,
tessellation techniques include options to generate subgrain structures that could also be introduced in
the framework presented in this paper.
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