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Abstract: 

The purpose of this study is to evaluate and compare the ability of various composite structures to 

dissipate the energy generated during a crash. To this end, circular composite tubes were tested in 

compression in order to identify their behavior and determine their absorbing capabilities using the 

Specific Energy Absorption (SEA) (energy absorbed per unit weight). Several composite tubular 

structures with different materials and architectures were tested, including hybrid composition of 

carbon-aramid and hybrid configuration of 0/90 UD with woven or braided fabric. Several inventive 

and experimental trigger systems have been tested to try and enhance the absorption capabilities of 

the tested structures. SEA values up to 140 kJ.kg-1 were obtained, achieving better than most 

instances from the literature, reaching around 80 kJ.kg-1. Specimens with 0°-oriented fibers 

coincidental with the direction of compression reached the highest SEA values while those with no 

fiber oriented in this direction performed poorly. Moreover, it has consequently been established 

that in quasi-static loading, a unidirectional laminate oriented at 0° and stabilized by woven plies 

strongly meets the expectations in terms of energy dissipation. Incidentally, an inner constrained 

containment is more effective in most cases, reducing the initial peak load without drastically 

reducing the SEA value. 
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Introduction: 

CFRP are known to be effective energy absorbing structures, due to the highly dissipative damage 

mechanisms involved during severe solicitations [1-4]. For that reason, in addition to their lightness 

combined with interesting mechanical properties, they are present in various domains: automotive 

[5-7], railway [8-9], aeronautics aircrafts [10-11], and helicopters [12-14], all of which may be 

subjected to brutal impact resulting in a violent crash. 

Damage mechanisms resulting from the crushing of composite structures have been identified on 

CFRP plates [15-17] and tubes [2-3,10,18-20] structures. 

Failure mechanisms that contribute the most to the energy dissipation depend on various factors 

that include delamination, bending, kinking and fracture of the fibers as well as fracture of the matrix 

[5]. 

Two main failure mechanisms for composite tubular structures have been identified as either 

catastrophic or progressive failure (Fig. Figure 1) [2,18]. For the latter failure mode, a distinction can 

be made as the composite tube may undergo progressive folding or progressive crushing [19] (Fig. 

Figure 1). During the first case, composite tube walls progressively fold under successive local 

buckling (similar to shell buckling) when loaded in axial compression. The extremity of the tube yields 

in buckle mode, leading to hinge formation and progressive folding; the folded zone then grows 

progressively down the tube wall. For the second case, the tube collapses as a result of successive 

brittle fractures. The extremity of the tube breaks leading to the splaying of the tube’s wall and 

multiple fragmentations. Local fracture occurs at the crush front; splaying and micro-fractures then 

propagate down the tube [19]. Such a rupture mode tends to generate random sized debris. 

 

Figure 1: Catastrophic (a) and progressive (b) failure [2,18], progressive folding (c) and crushing (d) 

[19]. 

In progressive crushing mode, damage mechanisms at the structural scale may be summed up into 

three types: (i) splaying, (ii) fragmentation and (iii) debris creation and accumulation [17,19,20] (Fig. 

Figure 2). 
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Figure 2: Major damage mechanisms occurring at the crush zone (adapted from [19]). 

Fragmentation might occur at two levels: under the tip of the plies (due to micro-buckling of fibers 

for 0° plies and to multiple shear micro-cracks for 90° plies) or within the plies as intra-laminar 

failure, fiber breakage and matrix cracks (due to a combination of compression, bending and shear) 

[17,19] (Fig. Figure 2). 

The internal stress generated in the splayed fronds lead to at least four identified failure modes, 

according to [19]. Although it is dependent on the fracture strengths of the material, for a 

unidirectional lamina ply, those failure modes are (a) tensile failure on the surface normal to the 

fronds, (b) compressive or shear fracture, (c) compressive buckling, and (d) intra-laminar shear 

fracture parallel to the fibers (Fig. 3). 

In addition, [20] links the cracks density – and therefore the energy absorbed – to the radius of 

curvature of the splayed parts. A large radius of curvature leads to a lower number of cracks, hence 

less energy absorbed, whereas a small radius of curvature leads to high crack density and higher 

energy absorbed. 

 

Figure 3: Four identified failure modes for splayed fronds (adapted from [19]). 

The successive stages of composite tube progressive crushing have been well identified [19,21,22] as 

displayed in Figure 4. 
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Figure 4: Consecutive crushing stages from [21]. 

The localized fragmentation at the tip of the plies is pointed as the mechanism leading to the 

definition of the ply Mean Crushing Stress (MCS) [16,17], corresponding to a stable crushing level 

(Fig. 4(f)), occurring after the yielding peak (Fig. 4(b,c)) and stabilization phase (Fig. 4(e)). 

Recent studies take their interest in the Mean Crushing Stress characterization [16,17] on standalone 

plies and within laminates as well as the influence of fibers orientation or braided structure effect 

and the use of mix or hybrid materials on the crushing level. 

Most research works focus on means to increase the Energy Absorbed while reducing the initial peak 

load to enhance crushing performances. To that end, a multitude of factors have been studied. 

The crashworthiness properties and energy absorption characteristics of structures with different 

cross-sectional shapes and geometries have been studied [23], including in particular, sine-wave 

beams [10,13], semi-hexagonal specimens [24], columns specimens [25], conical shells [26-28] or 

various tubular shapes [26-30] and corrugated tubes [26,27,31,32]. 

Foremost tubular shapes tested are circular [1-5,8-9,18,26-27,39-43] or squared [5,18,26-27,37,44-

49]. Most studies find the energy absorption capability of squared tubular structures to be 0.5 times 

lower than that of circular ones. 

Tube scaling [5,35], and especially the effect of thin-walled tubes and the influence of wall thickness 

[14,20,23,25,28,42,46-50] have been considered, generally highlighting an energy absorption 

increase trend with the increase of the wall thickness. 

Investigations have also been carried out on materials types used to manufacture the structures, 

mainly including Carbon, Glass and Aramid fibers, with a various range of polymeric resin: Carbon 

[7,10,47] Carbon/Epoxy [2,5,10,13,16-20,33-37,45], Carbon/PEEK [3,33,35,52], Carbon/Vinylester 

[37,41,46], Carbon/Polyamide [40], Glass/Epoxy [10,12,18,28,31,38,43], E-glass/Polyester [5,24,26-

27,44], Glass/Vinylester [26], Glass/Polypropylene [40], Kevlar/Epoxy [1,5,8,9], hybrid materials [1,5], 

composite metal-fibers [23,48], hybrid Aramid/Carbon/Epoxy [13] or even woven silk/Epoxy [49]. 

[53] proposes a review of the energy absorption capability and the crashworthiness of composite 

material and metal structures, giving values recorded for axially compressed FRP and metal tubes 

clearly highlighting the superiority of FRP structures over steel structures. 

A comparison with steel and aluminum, with SEA values of 15 and 30 kJ.kg-1, respectively [20] places 

FRP energy absorption capacity significantly above. [33] reports a value of 53 kJ.kg-1 for 45° oriented 

Carbon fibers/Epoxy tubes while values range from 50 to 80 kJ.kg-1 for a variety of Glass fibers 



5 
 

reinforced thermosetting resin composites [33]. He also presents a value of 110 kJ.kg-1 obtained for 

Carbon/Epoxy tubes [19]. This in accordance with [34] reporting values of 85 to 120 kJ.kg-1 for 

Carbon/Epoxy tubes. Those values are significantly below the 127 kJ.kg-1 obtained for 30° oriented 

carbon fibers/PEEK tubes and the 180 kJ.kg-1 obtained in the 0° carbon fibers/PEEK tubes [33]. 

The effect of fibers orientation [1,5,7,11-14,25,32-39,45-46], as well as the laminate stature, UD 

[5,7,11,13,16,17,26,27,30,39,43], 2D woven or braided structure [7,20,26,27,31,34,37,40,42,43,47] 

and even triaxially braided composite tubes [36,37,40,41,46] have also been tested in previous 

works. 

The crushing behavior of composite tubes is found to be dependent on the fiber content and the 

fiber architecture [33-34]. Tubes with lower fiber contents crushed irregularly whereas tubes with 

fiber contents above 15% crushed progressively [34]. 

The relative amounts of 0° and 90° fibers as well as their position in the stratification of the tube’s 

wall is a major factor that determine the geometry of the crush zone and therefore the specific 

energy absorption [33]. 

Similarly, previous works demonstrated that a fiber orientation along the axis of the composite tube 

absorbed more energy than other orientations [1,12,32]. In that sense, many studies report a 

significant decrease of the energy absorption capacity with greater fiber orientation for 

Carbon/Epoxy tubes [12,36]. 

Congruently, [36] finds that when varying the braided angle of composite laminate structures for 

composite tubes, the smallest braiding angles produce the highest specific energy absorption, up to 

89 kJ.kg-1 for a 20° angle, (and 100 kJ.kg-1 for 15° [12]) and reports a clear decline of the SEA value as 

the braiding angle increases, down by almost 50% to 45 kJ.kg-1. 

[34] concludes that the specific energy absorption capability increases with an appropriate fiber 

content and that the insertion of inlay fibers into the knitted fabric is an effective method of 

improving the energy absorption capability of fabric composite tubes. 

Improving the crushing initiation with specific trigger geometries or profiles [44], tulip shape [49], 

notched outlines [1,26,27], different tapered angles [43], SMA trigger (shape memory alloy wires) 

[39], inserting lateral circular cutouts [50] or by chamfering or beveling the edge [1,3,12,16-20,26-

27,33-36,46] or using a double-chamfer trigger (chamfered at both ends) [38] has been attempted. 

The use of plug initiators [20,37,41-42,46-47] is also a recurring attempt to initiate and enhance the 

crushing. 

Finally specific boundary conditions with chamfer external triggers [42] or semi-circular cavity 

external trigger [42] have recently been tested. [42] states that the energy absorption is improved by 

53% by replacing a chamfer trigger with innovative trigger, with values ranging from 45 up to 102 

kJ.kg-1 for 2D-braided Carbon/Epoxy tubes. 

To jump over the main points, two significantly exploitable axes of interest are standing out: 

materials and fibers orientation choice on one hand and trigger initiation and boundary conditions 

optimization on the other. These are the two aspects presented in this study (Part A and Part B). 

The present study will relate to the experimental testing results of several circular composite tubes 

of different compositions and stratification. More specifically various combinations of unidirectional 

and woven structures as well as hybrid Carbon-Aramid reinforcement fibers are being tested. A first 
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part will focus on the effect of different stratification and materials in a simple free-face crushing 

configuration (Part A). 

A second part will present the effect of different trigger initiation systems on the crushing 

performances using mainly one singular sample, before highlighting specific features for each tube 

sample in some of the configurations (Part B). 

The work presented in this study therefore aims at comparing the results in Energy Absorption 

capability of hybrid composite circular structures with different fibers orientations and of different 

natures (UD, woven) using specific boundary conditions and trigger initiation systems. 

Experimental testing: 

Specimens and materials 

A variety of fiber/Epoxy tubes were acquired for testing, with different fibers orientations and fibers 

types. These fiber-reinforced tubular structures were studied in axial compressive crushing. In total, 

five specimens with different structures and different compositions were tested in various crushing 

configurations. Structural and material basis for the specimens include 12K HR carbon fibers and 

polymer Epoxy resin. Fibers orientation and laminate stratification differ from one specimen to 

another as shown in Figures 5 and Figure 6 and summarized in Table 1. Provided tubular structures 

were machined and shaped in tubes of 100 mm length as pictured in Figure 5. Medium diameter was 

set at an average of 50 mm, with inner diameter varying from one sample to another due to stacking 

differences. Stratification layout and tube wall thickness are summarized in Table 1 for each sample. 

The Carbon/Epoxy combination was selected with Epoxy resin as a matrix because of its low density 

and for its high strength and good mechanical properties with reliable chemical stability, as well as its 

worthy performance regarding energy absorption based on the literature review and due to the 

aeronautical context. 

 

Figure 5: Picture of the five tube specimens with dimensions. 

In order to verify and establish the composition and stratification of the composite tubes specimens, 

samples were polished and observed using a high resolution optical microscope. Measurements and 

images acquisitions were performed using an Alicona Infinite Focus SL microscope system with a x10 
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to x50 magnification. Resulting observations are displayed in Figure Figure 6, along with a lay-up 

schematization. 

     

     

     

     

Figure 6: Microscopic observations of the five specimens section and corresponding schematic 

representations with their stratification. 

For the laminate lay-up schematization presented in Figure Figure 6, the 0° direction of the fibers was 

chosen to coincide with the longitudinal axis of the tube and subsequently with the axial crushing 
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direction. Plies dimensions are given as an averaged best approximation since plies thickness is not 

even and regular. That is supposedly the results of the fabrication process. 

Table 1 reports the structural specificities and geometrical properties for the 5 tube specimens. 

 

C: Carbon   A: Aramid 

Table 1: Tubes specimens stratifications and properties. 

When looking at the density values from Table 1, it can be pointed out that they are relatively low for 

some samples (sample 1 especially, and to a lesser extent, sample 3). This is allegedly strongly related 

to the high porosity observed in the samples (Fig. Figure 6) and also lower fiber density (or fraction 

volume vf) in some areas of the samples. 

Table 2 intends a comparison in Stiffness and Compressive strength failure between experimentally 

and theoretically obtained values for all five samples. Both the experimental and theoretical methods 

used to achieve those results are presented below. The magnitude referred to as Stiffness (in MPa) 

relates to the elastic compressive modulus (Young’s modulus). 

 

Table 2: Stiffness and Compressive strength properties for tube sample stratifications. 

Ply – Tube

1 - Inner 0/90° weave C 0° C 90° C 90° C 90° C

2 0° C 90° C 90° C 90° C 90° C

3 0° C 90° C 20° C 20° C 20° C

4 0° C 0° C 20° C 20° C 20° C

5 0° C 37° weave C 30° weave C 20° C 20° C

6 0° C 20° C 20° C

7 0° C 30° weave C 30° weave C

8 0° C 30° weave A 30° weave A

9 0° C  (30% cover) 30° weave A

10 - outer 0/90° weave C (100% cover)

Wall thickness  (mm) 2 1.8 1.1 1.85 2.45

Int.  Diameter  (mm) 46 46.5 50 45 45

Ext. Diameter  (mm) 50 50 52 48.5 49.5

density    (kg.m
-3

) 1.34×10
3

1.69×10
3

1.43×10
3

1.5×10
3

1.39×10
3

Specimen 1 Specimen 2 Specimen 3 Specimen 4 Specimen 5

Stiffness 

(MPa)

Compressive 

strength (MPa)

+2800 +100
 - 5200  - 139

+4900 +65
 - 3100 -102

+8700 +47
 - 8600  - 92

+6800 +44
 - 6000  - 59

+3600 +29
 - 5400  - 41

Theoretical

Compressive 

strength (MPa)

Experimental

Tube 1 43 700 -350 54 200 -650

Tube 2

Tube 3

Tube 4

Tube 5

54 300

30 200

27 300

24 700

-652

-265

-259

-250

Stiffness 

(MPa)

-340

-170

-180

-200

52 100

22 800

24 500

23 600
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For the five tubular specimens (and especially for tube samples 1 and 2) materials and fibers 

properties are not well known and identified nor completely mastered. Compressive experimental 

testing shows that fibers mechanical properties are less resistant than usually encountered in current 

modern composite materials. 

In order to better estimate the mechanical properties of the materials used to manufacture these 

samples, and to correlate the theoretical and experimental stiffness, Classical Lamination Theory was 

used. Taking a failure criterion expressed in fibers compression strain, chosen at failure = -0.0125 for 

all the plies, an estimated stress failure value was calculated for each sample, for the first ply 

reaching failure, and reported in Table 2. For the woven plies of the structures, mechanical properties 

were also calculated using the Classical Lamination Theory but the related plies were approximated 

as two superposed oriented unidirectional plies of half the thickness. The mechanical stiffness 

properties used for the theoretical calculations with the Classical Lamination Theory are reported in 

Table 3, where El is the longitudinal modulus, Et the transverse modulus, Glt the shear modulus and 

lt Poisson’s ratio. 

 

Table 3: Mechanical properties used for the Classical Lamination Theory calculations. 

When comparing values from the theoretical calculations to the experimental data (Table 2), the 

latter reflects lower values in stress failure, although it can be noted that they remain in the same 

order of magnitude. Besides, the experimental compressive strength values that are reported in 

Table 2 are rather related to a failure in crushing mode than pure compression. 

Figure Figure 7 presents the experimental mechanical stiffness modulus obtained from quasi-static 

axial compression testing of samples 1 to 5 positioned under 2 crushing plane. 

El  (MPa) Et (MPa) Gl t (MPa) l t

Carbon

UD 62 000 7 700 4 200 0.25

Woven 35 000 35 000 4 200 0.05

Aramid 

UD 61 000 4 200 2 900 0.35

Woven 30 000 30 000 2 900 0.30
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Figure 7: Compression stiffness from experimental testing of axial crushing for tubes 1 to 5. 

Those compression tests were performed on each sample along the axial direction and a 

compression stiffness modulus was experimentally evaluated while the materials remained in their 

elastic deformation, as presented in Figure Figure 7 and reported in Table 2. 

Results reported in Table 2 show that the compression stiffness is lower than anticipated for 3 of the 

5 CFRP specimens, especially for specimens 1 and 3. Compression failure is also lower than 

estimated, especially for specimens 1 and 2 that incidentally mainly present 0°-oriented fibers. 

This supports the hypothesis of poor fibers’ properties used to manufacture the tubular specimens, 

and it can also be explained by the high porosity inherent to many samples, as observed on the 

microscopic images (Fig. Figure 6). This is also most obvious for tube specimen 1, for which braided 

thread remnants from the manufacturing process are visible too. In addition, experimental 

compressive failure values resulting from the performed compression tests could rather be affected 

by a bearing phenomenon under the tip of the plies and resulting from the crushing nature of the 

solicitation than related to a pure compressive mode, hence the observed discrepancy in 

compression strength failure, which thereafter seems more rational. 

 

Test set-up and configurations 

Quasi-static crushing tests were carried out using a 250 kN Schenck hydraulic testing machine in 

compression testing mode, through a constant loading speed of 0.2 mm.s-1 (Fig. Figure 8). To account 

for reproducibility, tube specimens were tested at least 3 to 5 times on average (and up to 10 times) 

for each sample and each configuration. 
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Figure 8: Quasi-static crushing test set-up and equipment. 

Experimental results: 

Part A 

This first part presents the experimental results for the free face axial compressive crushing of the 5 

CFRP circular tubes mentioned above between two plane surfaces. 

Figure Figure 9 represents the Stress-Displacement curve resulting from such trials, for tube 

specimen 1. The stress thereby represented corresponds to an average value from multiple trials for 

the same specimen and the same testing configuration, with the dispersion range indicated on both 

sides of the curve. 

 

Figure 9: Stress-Displacement curve and dispersion for tube 1. 

Generally it can be noted a relatively good repeatability in the trials, especially for composite 

material, with a dispersion averaging -12% and +32% compared to the medium value, as illustrated in 

Figure Figure 9. Overall, less than 2% of the total of tested samples has been discarded for being 

deemed aberrant. 

A crushing curve such as the ones displayed in Figures Figure 9 and Figure 11 can be divided into 

three main parts: a loading phase ending by the main rupture of the structure and leading to a peak, 

a stabilization phase and a stable crushing phase [19,22]. Sometimes, when crushing is extended long 



12 
 

enough, a last phase known as compaction of debris or densification may occur, matching an 

increase of the end of the curve. 

Once reached, the level of the crushing threshold or Mean Crushing Stress (MCS) [Erreur ! Source du 

renvoi introuvable.,Erreur ! Source du renvoi introuvable.] is very steady and regular from one trial 

to another. The compression stiffness is also mainly identical from one trial to another. However, it 

can be observed a large dispersion on the peak value itself, with random values being reached before 

a structure failure. 

In practical terms, this uncontrolled dispersion on the crushing peak and its higher values are not 

wanted for a crash absorption system, as it produces important accelerations for the structure and 

therefore the passengers. With this standpoint in consideration, several configurations and crushing 

initiations have been tested in order to limit this main peak. 

 

Figure 10: Crushed CFRP tubes specimen 1 to 5, from the top (above) and from the side (below) 

Apart from the multitude of resin and fibers debris generated during crushing, splaying (both inward 

and outward) and large bands of material resulting from intra-laminar shear are a consequence of 

composite laminate crushing, as seen on picture in Figure Figure 10. 

A difference can be observed between tubes samples 1 and 2 presenting both inner and outer 

spreading of splayed parts and tubes samples 3, 4 and 5 mainly presenting outer spreading. This can 

be explained mostly by the core structure of the tubular samples, with oriented-fibers pattern 

(specimens 1 and 2) and unoriented-fibers pattern (specimens 3, 4 and 5).  

Additionally, a specificity can be mentioned for samples with an aramid overlayer (tube specimens 4 

and 5) as this latter acts as a girdle, drawing the shattered composite parts, resulting in a closer 

folding and wrapping around itself. 

Figure Figure 11 presents the crushing stress over the axial displacement for the 5 tube specimens in 

axial crushing. 
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Figure 11: Stress-Displacement curves of axial crushing of tubes 1 to 5. 

Two groups of CFRP tube specimens can be made from the Stress-Displacement curves resulting 

from axial compression, with tubes 1 and 2 averaging a higher value of nearly 140 MPa for the MCS 

plateau and tubes 3 to 5, lowering at 75 MPa. This is directly resulting from the structure and 

stratification of the tubes specimens, which can consequently be separated into two groups: group 1: 

oriented-fibers tubes (tube specimens 1 and 2) and group2: unoriented-fibers tubes (tube specimens 

3, 4 and 5). 

Overall, this result seems rational as composite fibers need to be unidirectionally oriented in the 

loading direction (in this case, 0°) to return a maximal stress value. This is in accordance with 

previous studies [1,12,32-34,36]. Nevertheless, some transversally oriented fibers are still required to 

stabilize the whole structure, as it is the case for tube specimen 1, where the woven pattern for the 

upper and lower ply is present to stabilize the unidirectional core and which coincidentally happens 

to be the strongest sample. 

Finally, it can be noted that the length of the stabilization phase is directly linked to the wall 

thickness of the tube specimens; it corresponds to approximately twice the thickness (Fig. Figure 11, 

Table 1). 
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Figure 12: Stress/density over Displacement curves of experimental crushing for tubes 1 to 5. 

One means to characterize and compare the absorbing capability of materials is through the Specific 

Energy Absorption (SEA), also referred to as Specific Sustained Crush Stress. The SEA value is given by 

the following equation (Eq. 1): 

SEA =  
EA

m
 =  

1

. u
∫ (u∗)du∗
u

0

 Eq. (1) 

where EA is the Energy Absorbed (given by the area under the force-displacement curve), divided by 

the mass of the crushed mater m.  is the compression stress, u the crushing distance, and  the 

density of the material. 

It can be established that the SEA value can be very closely approximated as an instantaneous value 

using the crushing stress cr divided by the density  of the crushed material (Eq. 2). 

SEA 
 → 𝑐𝑜𝑛𝑠𝑡
→        

𝑐𝑟


 Eq. (2) 

Although displaying a similar stress level value for the MSC plateau (Fig. Figure 11), when related to 

their respective density, tube 1 and 2 differ greatly in term of absorption capability (Fig. Figure 12), 

with tube 1 presenting an average of 110 kJ.kg-1 and tube 2 of 80 kJ.kg-1 while the second group of 

specimens show lower values, near 55 kJ.kg-1. 

Similarity in behavior and energy absorbing capability for specimens 3, 4 and 5 are not incoherent 

when referring to Table 1, which shows the same basis structure for those specimens. Outer aramid 

covering does not improve or worsen the general behavior or energy absorbing capability. 

Once the transition phase has passed, the SEA value tends toward a constant value, as displayed in 

Figure Figure 13. The influence of the peak can be noticed at the very beginning of the curve and a 

displacement of at least 10 mm is needed to erase the effect of this peak. 
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Figure 13: SEA evolution for 5 CFRP tube specimens submitted to pure axial crushing. 

The histogram chart shown in Figure Figure 14 displays the average SEA values for each tube sample 

in free axial crushing. They are presented side-by-side with a factor, referred to as overshoot, and 

defined by the crushing stress initial peak maximum value divided by the density (Eq. 3). This 

indicator was chosen to represent and compare the overflow of energy for each sample. 

Overshoot =  
 𝑚𝑎𝑥


 Eq. (3) 

As the overshoot is uniform to the SEA (kJ.kg-1) a direct comparison between these two values is 

possible and it can be revealed that for each specimen, the overshoot is at least twice as high as the 

SEA value (x2 for tube specimen 3, x2.5 for tube specimen 1 and up to x2.8 for tube specimen 5). 

 

Figure 14: SEA values for 5 CFRP tubes submitted to pure axial crushing and overshoot value. 
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Some instances in the literature refer to the Load Uniformity or Trigger Ratio defined as Fmax / Fmean 

or Crushing Load Efficiency defined as Fmean / Fmax [54]. The overshoot parameter was deemed more 

suited to represent the overflow of energy than the other parameters or ratios from the literature. 

Furthermore, as it is homogenous to the SEA, the comparison between the two magnitudes is made 

easier. 

In order to limit the peak and therefore reduce the overshoot, several boundary conditions and 

crushing initiations have been tested. 

Intermediate conclusion 

To summarize the first part of this experimental work, the following observations can be made. 

Failure mechanisms remained similar for all tube samples, with moderate to significant splitting, 

delamination and multiple brittle crack paths, leading to large debris creation. 

Tubular specimens with 0° fibers oriented in the loading axial direction perform better in 

compressive strength and therefore return higher SEA values. 

Woven fabric plies help containing and guiding the unidirectional plies, restraining them from 

splaying too easily. 

Aramid fibers bring no additional rigidity or energy dispersion capability but aramid covered tube 

samples contain the fragmented carbon/matrix wreckages better, avoiding large spillage. 

 

Part B 

Several configurations were tested for crushing initiation improvement and hopeful energy 

absorption enhancement. Tubular structures were clamped and encased at one end at the top, while 

several options were tested for the other end at the bottom. They were (a) let free on a plane 

surface, (b) also encased, (c) encased while guided through a conic shape, (d) positioned on a conic 

plug initiator, and (e) submitted to pure flaring, where the structure gradually becomes wider from 

one end to the other, as a conic part passed through. Figure Figure 15 presents the five 

configurations tested. 

 

Figure 15: Experimental testing configurations (a) to (e). 

((a) free Crushing, (b) Inner Crushing, (c) Inner Conic Crushing with sloping initiation, (d) Outer Conic 

Crushing with plug initiation, (e) pure plug flaring) 
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For the two conic-shaped configurations ((c) and (d)), specific conic-shape parts were designed and 

machined for each specimens according to the specificity of each tube’s internal diameters (Table 4), 

with a goal of expressing a hoop strain of 20000 µ and –15000 µ respectively via the gradual slope. 

Those values are usual approximations of tension and compression stain ruptures for composite 

materials. A detailed schematization (Fig. Figure 16) gives the diametric information that is reported 

in Table 4. 

 

Figure 16: Outer (left) and Inner (right) conic-shaped parts used to change the boundary conditions. 

 

Table 4: Conic-shaped parts specifications and dimensions for inner and outer cones. 

For the outer cone (forcing a hoop strain of 0.020), the diameter of the base of the conic part (D int) 

was made to match the Interior diameter (Int. diam.) of the tube and for the inner cone (forcing a 

compressive hoop strain of – 0.015), the diameter of the base of the conic-shaped part (d ext) was 

made to match the Exterior Diameter (Ext. Diam.) of the tube. Specifications are reported in Table 4. 

 

Figure 17: Crushed CFRP tubes (1) showing outer spreading (left) and inner folding (right) 

based on boundary condition (a) free crushing and (b) Inner crushing, respectively. 

Tube Specimen 1 Specimen 2 Specimen 3 Specimen 4 Specimen 5

Int.  diameter   (mm)  46  46.5  50  45  45

Ext. Diameter  (mm)  50  50  52  48.5  49.5

Outer Cone (20 000 µ) Outer Cone 1 Outer Cone 2 Outer Cone 3 Outer Cone 4 Outer Cone 5

Outer Cone  d int  (mm)  44  44.6  47.9  43  43

Outer Cone  D int (mm)  46.9  47.5  50.9  45.9  45.9

Inner Cone (15 000 µ) Inner Cone 1 Inner Cone 2 Inner Cone 3 Inner Cone 4 Inner Cone 5

Inner Cone  D ext (mm)  52  52  54  50.5  51.5

Inner Cone  d ext  (mm)  49.3  49.3  51.2  47.8  48.8
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As an illustration, the pictures in Figure Figure 17 present the difference in crushing behavior for the 

same CFRP tube specimen (tube 1) submitted to axial crushing under the first two configurations ((a) 

and (b)) presented in Figure Figure 15. Both underwent progressive crushing. The first (left) 

corresponding to configuration type (a) presents both inner and outer spreading of splayed parts, 

whereas the second (right) corresponding to configuration (b), reveals the whole bundle of splayed 

parts folding towards the inside of the tube. 

Configuration type (d), with a cone-shaped plug initiator, does not differ much from configuration 

type (a) apart from the fact that the entire splayed bundle spreads on the outside and configuration 

type (c), with an inner-conic-shaped part, does not differ from configuration (b). This can also be 

correlated by the tomographic images. 

 

Figure 18: Stress/density over Displacement curves of experimental crushing for tube specimen 1 

submitted to axial crushing under 5 configurations. 

Figure Figure 18 displays the Stress/density over Displacement results for tube specimen 1, for the 5 

described configurations. In case of inner-crushing confinement (b), a slight but still significant 

increase of the curve can be noted towards the end, starting at 40 mm (). This rise should even be 

starting sooner, at about 23 mm (half the tube’s interior diameter)(), when the wall’s inferior end 

meets at the center of the tube (Fig. Figure 19). 

Surprisingly, this outcome is not seen for configuration (c) (inner conic crushing) where the end of 

the tube’s wall also meets at the center. This might be explained by the fact that the tube’s wall’s 

ends are too damaged or too much fractured by the friction and the progressive confinement 

induced by the conic sloped part. 
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Figure 19: Schematic representation of the tube’s wall convergence and collision, for the inner-

crushing configuration (with tube specimen 1 dimensions). 

This increase of the stress at the end could be beneficial and valuable for a surge in the SEA value: 

the densification of partially crushed material inside the tubular structure stabilizes the crushing 

process, resulting in an increase of the mean crushing stress and therefore the SEA. 

For configurations with a conic initiation (inner or outer), (c) and (d) respectively, hoop stress is first 

generated, and axial crushing force takes longer to apply as the interior diameter of the tubular 

structure slides along the conic slope, before being axially loaded, as can be seen on Figure Figure 18 

for configurations (c) and (d), between 0 and 3 mm displacement. 

 

Figure 20: Outer and inner conic parts and initial tube position. 

The very beginning of the Stress-Displacement curve for those two configurations matches the last 

configuration (e), where the conic-shaped plug widens the extremity of the tubular structure. This 

setback is incidental to the height of the conic shape () (Fig. Figure 16, Figure 20). 

Pure flaring (configuration (e)) was tested to try and take advantage of the crimping property of 

woven structures in braided composite tubes (Fig. Figure 21). Furthermore, the idea was to compare 

configuration (d) with configurations (a) and (e) and evaluate if the total energy dissipated by (d) was 

the summation of (a) and (e). Needless to say when referring to Figure Figure 18, that this is hardy 

the case, with configuration (e) only dissipating 1 or 2% of the energy compared to pure axial 

crushing (configuration (a)). 

 

Figure 21: Crimping schematization. 
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In braided or woven patterns, the crimping can be characterized by the ratio of the real length of the 

fully deployed fiber (B) divided by the actual length of this fiber within the woven pattern (A) (Fig. 

Figure 21, Eq. 4): 

Crimping =  
B𝑙𝑒𝑛𝑔ℎ𝑡 × 100

A𝑙𝑒𝑛𝑔ℎ𝑡
 Eq. (4) 

Overall, although trying to make the most of the crimping configuration in woven patterns seemed 

promising and worth investigating, this attempt unfortunately proved to be unpractical and non-

optimal in terms of energy dissipation afterwards. 

The histogram chart shown in Figure igure 22 displays the average SEA values side-by-side with the 

overshoot for tube specimen 1 for the 5 crushing configurations. 

 

Figure 22: SEA and overshoot values for tube specimen 1 for the 5 configurations. 

For each axial compression tests, a stiff peak can be observed on the Stress/density-Displacement 

curves as showed in Figure Figure 18, when the structure yields before it starts collapsing by 

progressive crushing at a stable and constant stress, as reflected by the continuous plateau level. 

Ideally the gap between the peak and plateau value has to be reduced to a minimum, as a small gap 

and constant plateau level means an optimized dissipation of energy for a fixed and given load value. 

In case of outer crushing, the use of a conic plug initiator (d) to introduce a radial flaring of the tube 

structure before it is submitted to crushing does not improve the energy absorbing capability, 

compared to pure and plain crushing (a), as shown in Figure Figure 18 and igure 22. Configuration (d) 

does not reduce the overshoot either (Fig. igure 22). Moreover, this configuration worsens the 

energy absorbing capability at it significantly lowers the SEA value (Fig. Figure 18 and igure 22). At 

last, the use of the conic plug alone, passing through the tube along its whole length and inducing an 

axial flaring of the structure (configuration (e)) hardly dissipate any energy, leading to the conclusion 

that the expansion of the crimping fibers is not a primordial mechanism in composite absorption 

capability. For this reason, results from configuration (e) will mostly be disregarded in the following 

discussions. 
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However, notwithstanding the current results, it is essential to keep in mind that configurations (d) 

and (e) are highly dependent on the dimensions of the conic plug initiator, which may have been 

improperly chosen to achieve the goal of reducing the overshoot. A more complete and focused 

study on more adequate dimensions of the conic slope may be needed, with a series of tests 

imposing a gradual strain deformation (0.005, 0.010, 0.015, 0.020, 0.025…) for instance. 

Tomographic imaging 

Post-testing X-Ray micro-measurement observations were conducted to observe and determine the 

damage mechanisms involved during crushing on the inside of the tubes’walls thickness. X-Ray 3D-

micro-computed tomography images were performed using a Micro-Tomography EasyTom 130 

machine, manufactured by RX Solutions, France. The tubular specimens were placed at a distance of 

91.3 mm from the source. The source has a voxel size of 18 μm. Each specimen was scanned through 

a 360° rotation using a Varian PaxScan 1313DX imager to capture layer-by-layer 2D X-ray images used 

for full-scale 3D reconstruction. RX Solutions X-Act 2.0 software was used for 3D reconstruction and 

post-processing. Due to the samples size and dimensions the maximum possible and workable 

resolution was 18 μm. 

The source-object distances (sod) and source-detector distances (sdd) were 91.3 mm and 643.9 mm 

respectively, which determine the magnification (sdd/sod) at 7.05. The X-ray voltage and current 

were set to 60 kV and 133 mA respectively. Each sample was scanned for 160 min with 0.6 s per 

projection. 

  

Figure Figure 23 (a): free Crushing 

  

Figure Figure 23 (b): Inner Crushing 
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Figure Figure 23 (c): Inner Conic Crushing 

  

Figure Figure 23 (d): Outer Conic Crushing 

Figure 23: Tomographic images and schematizations of crushed CFRP tubes showing major damage 

and plies dispersion for specimen 1 in four configurations ((a), (b), (c) and (d)). 

Figure Figure 23 highlights major occurring damage mechanisms resulting from progressive crushing 

instigated by quasi-static axial compression load for tube specimen 1 through the means of 

tomographic imaging for four different crushing modes ((a), (b), (c) and (d) when referring to Figure 

Figure 15). Inner (a), (b), (c) and outer (a), (d) splaying of fragmented or un-fragmented parts are 

clearly visible, as well as debris accumulation. 

The high porosity of the tube specimen is also visible, black shaped holes and lines on the inside of 

the tube’s wall, confirming the visual observations from the microscopic images. 

The crushing plane surface is schematized by a discontinued line on all pictures in Figure Figure 23. It 

is strongly suspected that for each tube samples, folded plies at the end of the tube walls between 

the sane part of the tubes and the crushing surface moved back downward when the crushing force 

was unloaded, due to a spring-back effect. Hence an estimated positioning of the crushing surface 

appearing to be situated within the tube and entering inside the tube structure. Similarly, positions 

of the boundary parts and conic-shaped parts were added. 

For the first configuration (a), a pyramidal-shaped debris accumulation can be observed at the center 

under the tube wall, between the tube section and the crushing surface, where the laminate plies 

spread towards the inside or the outside of the tubular structure. This debris accumulation forms 
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from the void created by the plies splaying from the center under the tube wall then subsequently 

helps further and heighten this splaying. 

At the contact surface between the tube circular section and the plane surface, micro-bucking occurs 

progressively and successively, resulting in matrix and/or fibers fragmentation for the laminate plies 

that undergo such splaying. This damage mode increases the debris formation. As observed and 

mentioned in previous study, the formation and the evacuation or accumulation of debris remains 

rather random. 

For the second test configuration (b), damage mechanisms are similar in type and classification, but 

are all shifted toward the inside of the tube, since the outer wall is encased, leaving no leeway for 

splayed plies to spread that way. Incidentally, although major occurring damage are the same, their 

origin varies somewhat. Bending and folding resulting from the compression generate the splaying of 

the composite plies, and therefore the fracture and fragmentation for those sustaining a higher 

stress. Fragmentation still generates an important number of debris that varies in forms and shape, 

but those are freely evacuated from the crushing zone under the tube section to the inside of the 

tube. They do not form a tip that parts the laminate wall and split it, as observed with the pyramidal 

debris accumulation on the first configuration. 

At the extremity of the tube wall, where the folding appears, outer plies seem to be more submitted 

to bending whereas inner plies undergo plain compression and break through intra-laminar fracture. 

According to the tomographic imaging, configuration (c) is almost identical to configuration (b) but 

appears to be less densified at the center, on the inside of the tube’s wall. This might explain why no 

increase of the crushing stress is observed on the crush-displacement curves for that configuration. 

The inner slope inclination favored the “folding” of the inner fabric ply by guiding it, contrary to 

configuration (b) where it was more abruptly fractured. 

For the last test configuration (d), outer splaying is mainly predominating, since the conic shape 

blocked the inner splaying and spreading towards the interior of the tube. On the interior side of the 

tube, splaying is almost nonexistent. However fragmentation is intensified, with large fractures, of 

both the fibers and the matrix. Additionally, the tube wall went back to its initial position, once the 

metallic conic part was withdrawn, due to a vertical spring back effect and the wall’s rigidity. 

It appears from images in Figure Figure 23, that for every configuration tested (except configuration 

(e)), there are always 3 or 4 plies damaged by fragmentation while the 7 or 6 remaining plies are only 

bent in splaying. The 3 or 4 fragmented plies are always inside plies of the tube’s structure. 

Those inner plies are the most impacted and the most solicited plies during crushing, creating a 

localized fragmentation that leads to a localized crushing which characterizes the Mean Crushing 

Stress defined by [Erreur ! Source du renvoi introuvable.,Erreur ! Source du renvoi introuvable.]. 

This would explain the overall crushing stress (crushing) always averaging around 150 MPa, for every 

configuration tested (except configuration (e), which underwent no crushing at all.) as displayed in 

Figure Figure 24. It can be inferred from that observation that this definite number of fragmented 

plies is optimum in order to optimize the SEA value. 
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Figure 24: Mean Crushing Stress values for tube specimen 1 for the 5 configurations. 

Some notable observations were made for other tube specimens in other configurations, as pointed 

out in the following section. 

For the inner-crushing configuration (b), tubes specimens 3, 4 and 5 displayed two major modes of 

failure. Figure Figure 25 presents that distinction in failure behavior mode observed for some 

samples in inner-crushing configuration (b) using tube specimen 3 as an example. Those two modes, 

namely catastrophic failure and progressive crushing, were reported to occur by [2,18], and 

previously illustrated in general crushing case by Figure Figure 1 (a) and (b). 

 

Figure 25: Stress-Displacement curve and dispersion for tube specimen 3 and inner-crushing 

configuration. 

Although in most instances tube specimens 3, 4 and 5 behaved according to a usual progressive 

crushing mode, in some cases, they underwent catastrophic failure from a middle point of the 

tubular structure and without undergoing progressive crushing from one end. Visual illustrations of 
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the catastrophic failure mode demonstrated by those samples are given with pictures in Figure 

Figure 26. 

This unwanted failure mode drastically lowers the SEA value for these samples in this particular 

configuration to 13.1 kJ.kg-1 for specimen 3 and 26.5 and 27.4 kJ.kg-1 for specimen 4 and 5, while they 

stand at 52.8, 44.7 and 52.8 kJ.kg-1 respectively when progressive crushing occurs in this 

configuration. 

The ratio of catastrophic failure stands at 25%, 33% and 50% for tube specimens 3, 4 and 5 

respectively, in inner-crushing configuration (b), when these tubes displayed a 99.8% progressive 

crushing successful behavior in all other configurations. 

 

Figure 26: Pictures of CFRP tubes specimen 3, 4 and 5 which underwent catastrophic failure for inner-

crushing configuration (b). 

In practical terms, inner-crushing configurations reduced the production and scattering of debris, as 

the undamaged part of the tube act as a sheath as can be seen on pictures in Figure Figure 17. To 

that extend, tube specimens 4 and 5 (the two specimens that have an aramid cover on top of the 

carbon structure) do not present any interest regarding the SEA value, but the aramid cover acts as a 

girdle, helping in folding and containing the fragmented parts, both in case of inner and outer 

crushing. This comes at the expense of a lower compression stiffness and a lower tubular section to 

conserve a similar density, when comparing with tube sample 3 and referring to Table 1. 

Figure Figure 27 summarizes the Specific Energy Absorption average values obtained for all tube 

samples (1 to 5) in all configurations ((a) to (e)), with dispersion marks for each testing. 
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Figure 27: SEA average values for the 5 CFRP tube specimens submitted to axial crushing  

in 5 configurations. 

For tube specimen 1 inner-crushing (b) seems to enhance the SEA while inner-conic crushing (c) 

lowers the value (for the chosen conic dimensions). A complementary study on the conic slope 

inclination might be needed to test different angle dimensions and confirm that result. 

For tube specimen 2 inner-crushing (b) enhances the SEA and inner-conic crushing (c) seems to 

improve it a little more (with the margin of dispersion taken into account). This improvement might 

come from the 90°-oriented plies that are more solicited in confined compression. As a result, the 

overall crushing stress increases and therefore so does the SEA. 

Tube specimen 3 performs the most irregularly. In addition to the catastrophic failure mode 

observed for configuration (b) – which has been discarded for the SEA average calculation in Figure 

Figure 27 – tube specimen 3 shows the biggest dispersion, especially in configuration (b) (Inner 

Crushing). The lowest SEA values obtained for this sample may be the result of some crushing 

instabilities, which might be the consequence of the small thickness of the tube’s wall, as that 

specimen displays the thinness wall thickness when referring to Table 1. Too thin a wall thickness 

may lead to some unstable crushing phenomena and most notably affect the buckling modes. 

Inner-conic crushing (c) seems to work better for specimens with 90°-oriented fibers (specimens 2, 4 

and 5, except specimen 3) for the same reasons mentioned above (i.e. confined compression and 

adequate tube wall thickness), while it can also be noted that they all contain some plies with a fiber 

orientation at 0° or close to 0° (specimen 2 has 0°-oriented fibers, specimens 4 and 5 have 20°-

oriented fibers). 

It can also be surprisingly noted that tubes specimens 4 and 5 performed well in configuration (c) 

whereas tube 3 performed poorly in that configuration and that they performed poorly on any other 

configurations too. This is all the more surprising as they are both covered with Aramid layer(s) and 

that Aramid fibers are known to withstand weakly in compression. This can be explained by their 

relatively bigger thickness (Table 1 and Fig. Figure 6), about twice as much as tube 3, and the increase 

of 20°-oriented plies in number, doubling from specimen 3 (Fig. Figure 6). 
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For all samples (1 to 5), outer-conic crushing (d) lowers the SEA value and degrades the structure 

absorbing capacity. Failure phenomena involved are primarily the same as described by [19] and 

presented in Figure 3. For this configuration, while fiber rupture in traction is energetically very 

dissipative, it is also very localized, whereas crushing, which is slightly less dissipative, could 

repeatedly happen on a whole area. 

The difference in results between inner and outer crushing (both in plain and conical configurations) 

is fully in accordance with the statement formulated by [20] on the relation between cracks density 

and the radius of curvature of the splayed parts.  

Conclusions: 

Quasi-static axial crushing tests were performed on composite circular tubes with 5 different 

structural compositions and using 5 different trigger initiation configurations. 

SEA values up to 140 kJ.kg-1 were obtained, achieving better than most instances from the literature, 

averaging around 50 kJ.kg-1 and reaching up to around 100 kJ.kg-1 for braided Carbon/Epoxy 

structures. 

Specimens with 0°-oriented fibers in the axial loading direction achieved better in energy absorption 

than specimens with no fibers in that direction. It has consequently been established that in static 

loading, a unidirectional laminate oriented at 0° and stabilized by woven plies strongly meets the 

expectations in terms of energy dissipation. Incidentally, an inner constrained containment is more 

effective in most cases, reducing the initial peak load without drastically reducing the SEA value. 

Woven reinforcement on the inner and outer wall structure proved more effective than solid 

strengthening supports such as metal constraints or poured resin in providing stability to the 

structure. Additionally, the woven plies help containing the 0°-oriented fibers from splaying and 

flaring too easily. Moreover, as such woven plies are structurally required for stability reasons, it is 

opportune to try and put them in beneficial use, hence the inner oriented crushing concepts, which 

load and stress these fibers in crushing. 

However, the additional aramid draping was proven needless in term of energy absorbing capacity. 

Yet this overlapping covering may be valuable in acting as a net to refrain outer spreading by 

directing splayed chunks and debris towards the inside and keep brittle parts within the inside of the 

tubular structure, avoiding expelled debris, as could be required in an aeronautical context. 

In order to complete this study and provide complementary understanding regarding the crushing of 

fiber-reinforced composite tubes and SEA enhancement, considerations may be given to the 

following actions: 

- varying the strain rate and conducting a study on dynamic crushing, 

- varying the slope inclination and the conic dimensions, especially for the inner-conic concept, 

- chamfering the samples and combining that trigger initiation technique with the presented 
boundary conditions, 

- using mechanically known fibers and materials, that is to say constituents for which properties are 
independently tested and identified to permit the best selection. 
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