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The representation of the main physical phenomena of continuous sedimentation within a settling tank (hydrodynamics of two-phase suspensions) is essential for the further control design of the quality of the solid-liquid separation. The model is still made of non-linear partial differential equations after simplifying assumptions and considering a one dimensional settler. It comes from both mass and momentum balance equations and includes effective solid stress appearing when the solid particles concentration is above a given threshold which depends on the quality of the sludge. Then a mobile interface appears between two different behaviours. The settler is divided into two zones to represent this discrete phenomenon. Our goal is to develop a model that can be used for a further control design of the water quality at the top outlet of the settling tank. A hybrid state space representation is provided with the different dynamics in each of the two zones, the constitutive equations and the boundary conditions. The steady state profile is calculated. A simplified version of a settling tank model is simulated.

INTRODUCTION

Continuous sedimentation/consolidation is an important solid/liquid separation process widely used in wastewater treatment plants, mining, pulp and paper, chemical, food, and many other process industries as well as in estuarine or coastal zones. These processes have many features in common, particularly the relative flow of solid particles and fluid as the underlying basic principle, [START_REF] Burger | Phenomenological foundation and mathematical theory of sedimentation-consolidation processes[END_REF], [START_REF] Garrido | Settling velocities of particulate systems: 14. Unified model of sedimentation, centrifugation and filtration of flocculated suspensions[END_REF], [START_REF] Li | Research advances and challenges in one-dimensional modeling of secondary settling Tanks -A critical review[END_REF]. Inside the mixture, the solid particles settle and form a porous bed, from the depth at which their concentration reaches a given threshold named percolation value. The liquid phase flows through the porous network that leads to an increase of the drag force on the solid particles and reduces their settling velocity, [START_REF] Toorman | Sedimentation and self-weight consolidation: general unifying theory[END_REF]. The excess pore pressure slowly dissipates as the sludge bed is compacting, [START_REF] Chauchat | Modeling sedimentationconsolidation in the framework of a one-dimensional two-phase flow model[END_REF]. 1-D dynamic models of settling tanks represent yet the best compromise between complexity and the significance of the considered phenomena. Two types of models are described in the literature; first, the models that are based on solid particles mass balance coupled to a constitutive equation for the solid particles velocity, [START_REF] Diehl | On boundary conditions and solutions for ideal clarifier -thickener units[END_REF], [START_REF] Queinnec | Modelling and simulation of the steady-state of secondary settlers in wastewater treatment plants[END_REF], [START_REF] David | Modeling and numerical simulation of secondary settlers: A method of Lines strategy[END_REF], [START_REF] Burger | A consistent modelling methodology for secondary settling tanks: a reliable numerical method[END_REF], secondly the models that are based on both solid particles mass and momentum balances, [START_REF] Burger | Phenomenological foundation and mathematical theory of sedimentation-consolidation processes[END_REF], [START_REF] Chauchat | Modeling sedimentationconsolidation in the framework of a one-dimensional two-phase flow model[END_REF], [START_REF] Garrido | Settling velocities of particulate systems: 14. Unified model of sedimentation, centrifugation and filtration of flocculated suspensions[END_REF]. In the second case, constitutive equations have to be used for the pressure, the effective solid stress and the drag force. In the first case, [START_REF] Takacs | A dynamic model of the clarification thickening process[END_REF] extended the flux approach to low concentrations and proposed a double exponential settling velocity model based on Vesilind expression, Vesilind (1968). It has been used to model settling tanks in normal operating conditions. But [START_REF] Queinnec | Modelling and simulation of the steady-state of secondary settlers in wastewater treatment plants[END_REF] showed the limitation of this first approach where the constitutive equation for the solid particles velocity depends only on the solids concentration, [START_REF] Kynch | A Theory of Sedimentation[END_REF]. [START_REF] Cadet | Dynamic Modeling of Clarifier-Thickeners for the Control of Wastewater Treatment Plants: A Critical Analysis (I)[END_REF] concluded that the Takacs method often works satisfactorily in normal operating conditions but, during extreme events such as storms, the solid particles concentration may be decreasing with depth and the Takacs method fails. Moreover the simulations produced by the Takacs method are qualitatively different for different number of layers, and increasing the number of the layers deteriorates the model performance. All these observations highlight the need to deepen methods that effectively represent all operating conditions in continuous sedimentation/consolidation to be able to design a control effective at any time and in any operating condition. This paper presents a nonlinear PDE model of the settling tank with a moving interface. It considers neither the semi-empirical Vesilind hindered settling velocity, [START_REF] Vesilind | Design of prototype thickeners from batch settling tests[END_REF] nor the Takacs semi-empirical expression, [START_REF] Takacs | A dynamic model of the clarification thickening process[END_REF], and is based on dynamic mass and momentum balance equations. Our goal is to develop a model that can be used for a further design of a control of the water quality at the top outlet of the settling tank. To reach this goal, the model must take into account the various behaviours of the mixture inside the settling tank and not only the nominal operation. Therefore a null solid particles concentration at the top of the tank cannot be a boundary condition of the model but this is the target to be reached by the management system. Continuous and Boolean variables as well as the partial differential and algebraic equations to describe the main physical phenomena taking place in the settling tank (hydrodynamics of two-phase suspensions) have been identified and are presented in a structured way. A discontinuous phenomenon has been detected and integrated into the dynamic model which makes it hybrid, [START_REF] Valentin | A port-Hamiltonian formulation of physical switching systems with varying constraints[END_REF]. A first attempt was presented in [START_REF] Cadet | Dynamic Modeling of Clarifier-Thickeners for the Control of Wastewater Treatment Plants: A Critical Analysis (I)[END_REF], with a modeling approach that used the Vesilind equation.

A 1D DYNAMIC PHYSICAL MODEL

General 1D Mass and Momentum balances

The dynamic model describing the behaviour of the sludge in the settling tank comes from the mass and momentum balances under the following simplifying assumptions, commonly used in models of mineral sludge settling, [START_REF] Burger | Phenomenological foundation and mathematical theory of sedimentation-consolidation processes[END_REF], [START_REF] Garrido | Settling velocities of particulate systems: 14. Unified model of sedimentation, centrifugation and filtration of flocculated suspensions[END_REF], [START_REF] Chauchat | Modeling sedimentationconsolidation in the framework of a one-dimensional two-phase flow model[END_REF], [START_REF] Li | Research advances and challenges in one-dimensional modeling of secondary settling Tanks -A critical review[END_REF]. Some of these assumptions will certainly have to be adapted to wastewater treatment modeling in a future work:

1. The hydrodynamic regime is assumed to be plug flow. 2. There is no biological activity in the settling tank, [START_REF] Burger | Phenomenological foundation and mathematical theory of sedimentation-consolidation processes[END_REF]. 3. The solid particles have the same size and shape, [START_REF] Garrido | Settling velocities of particulate systems: 14. Unified model of sedimentation, centrifugation and filtration of flocculated suspensions[END_REF], [START_REF] David | Modeling and numerical simulation of secondary settlers: A method of Lines strategy[END_REF][START_REF] Diehl | On boundary conditions and solutions for ideal clarifier -thickener units[END_REF]. 4. There is a uniform particle concentration at a given depth, [START_REF] David | Modeling and numerical simulation of secondary settlers: A method of Lines strategy[END_REF], [START_REF] Diehl | On boundary conditions and solutions for ideal clarifier -thickener units[END_REF]. 5. The vessel wall friction is negligible. 6. Suspensions are floculated completely before sedimentation. 7. The solid particles are small with respect to the containing vessel and have the same density, [START_REF] Garrido | Settling velocities of particulate systems: 14. Unified model of sedimentation, centrifugation and filtration of flocculated suspensions[END_REF]. 8. Solid particles and fluid are incompressible (No creation of flocks or filaments), [START_REF] Garrido | Settling velocities of particulate systems: 14. Unified model of sedimentation, centrifugation and filtration of flocculated suspensions[END_REF], [START_REF] David | Modeling and numerical simulation of secondary settlers: A method of Lines strategy[END_REF]. Then solid density, ρ s , and liquid density, ρ l are constant, [START_REF] Diehl | On boundary conditions and solutions for ideal clarifier -thickener units[END_REF], [START_REF] Chauchat | Modeling sedimentationconsolidation in the framework of a one-dimensional two-phase flow model[END_REF]. 9. There is no mass transfer between the solid particles and the fluid, [START_REF] Garrido | Settling velocities of particulate systems: 14. Unified model of sedimentation, centrifugation and filtration of flocculated suspensions[END_REF]. 10. The settler has a constant cross-sectional area. 11. The liquid and solid phases completely fill the settler, then its volume is constant. 12. The inlet (sludge feeding) is modelled by a point and the mixture leaving the inlet is distributed instanta-neously and evenly over the entire cross-section, [START_REF] Diehl | On boundary conditions and solutions for ideal clarifier -thickener units[END_REF].

The settling tank is modelled by considering two zones, clarification and compression, associated with two different types of physical behaviours (with at least two different equations). It has one inlet (sludge feeding inside the tank) and two outlets (clarified water at the top and compressed sludge at the bottom). The sludge feeding takes place at z = z f , which is at the end of the feeding pipe. There is a moving interface at depth z = z c (t) where a change of behaviour takes place due to a compressive stress between the solid particles appearing when they are very close to each other. [START_REF] Burger | Phenomenological foundation and mathematical theory of sedimentation-consolidation processes[END_REF] assumes that the water is clear at the top of the tank (zero solid particles concentration), then a three zone schematic view is presented. But, as our goal is to develop a model for control design, a zero solid particles concentration at the top of the tank is the objective to reach and a third zone in the upper part of the tank is not taken into consideration. Let ε s (z, t) denote the solid particles volume fraction with t the time and z the depth from the settling tank surface. ε l (z, t) denotes the liquid volume fraction. The solide particles concentration is then Remark 1. To improve the readability, an abuse of notations is done by omitting (z, t) in the following equations.

C s (z, t) = ρ s ε s (z, t). Let V s (z, t) (m/
If ρ s is the solid phase (particles) density (kg/m 3 ) and ρ l the liquid phase density (kg/m 3 ), the mass balances can be written as the next two partial differential equations (PDE's) for the liquid phase and the solid phase, in the most general way:

Liquid phase mass Balance:

∂ t (ρ l ε l ) = -∂ z (ρ l ε l V l ) + f 1 (C f , Q f )δ(z -z f ) (1)
Solid phase mass Balance:

∂ t (ρ s ε s ) = -∂ z (ρ s ε s V s ) + f 2 (C f , Q f )δ(z -z f ) (2)
f 1 and f 2 are the contributions of the sludge feeding to the mass variation. They depend on the solid phase mass concentration of the sludge at the input, C f and on the sludge flow at the input, Q f . As well, The momentum balance equations can be written as two PDE's for the liquid phase and the solid phase, [START_REF] Chauchat | Modeling sedimentationconsolidation in the framework of a one-dimensional two-phase flow model[END_REF]:

Liquid phase momentum balance:

∂ t (ρ l ε l V l ) = -∂ z (ρ l ε l V 2 l ) + ε l ρ l g -∂ z P l -r(V l -V s ) + f 3 (C f , Q f )δ(z -z f ) (3) with: ε l ρ l g volumetric gravitational force (body force) -∂ z (P l )
gradient of the hydrodynamic pressure within the liquid phase -r(V l -V s ) Stokes like drag force i.e. liquid-solid dynamic interaction force standing for viscous friction between the two phases. r is the resistance coefficient. [START_REF] Garrido | Settling velocities of particulate systems: 14. Unified model of sedimentation, centrifugation and filtration of flocculated suspensions[END_REF], [START_REF] Chauchat | Modeling sedimentationconsolidation in the framework of a one-dimensional two-phase flow model[END_REF].

Solid phase momentum Balance:

∂ t (ρ s ε s V s ) = -∂ z (ρ s ε s V 2 s ) + ε s ρ s g -∂ z P s +r(V l -V s ) + f 4 (C f , Q f )δ(z -z f ) (4)
where f 3 and f 4 are the contributions of sludge feeding to the momentum variation. They depend on the solid phase mass concentration of the sludge at the input, C f and on the sludge flow at the input, Q f . As the sludge is a two-phase (liquid, solid) suspension, the following algebraic equation is valid:

ε l (z, t) + ε s (z, t) = 1 (5)
As solid particles and fluid are incompressible, the average volumetric velocity of the mixture, denoted V m (z, t), can be calculated by the following algebraic equation:

V m (z, t) = ε l (z, t)V l (z, t) + ε s (z, t)V s (z, t) (6)
Moreover by using assumption 8 and equation ( 5), the sum of both equations ( 1) and (2) gives:

∂ z V m (z, t) = f 1 (C f , Q f ) ρ l + f 2 (C f , Q f ) ρ s δ(z -z f ) (7)
Then V m is piecewise constant according to z and can be written:

V m (t) = ε l (., t)V l (., t) + ε s (., t)V s (., t) (8)
Therefore, ε l (z, t) can be calculated from (2) and ( 5), and V l (z, t) can be deduced from ( 4) and (8).

Constitutive equations

P s et P l pressures may be written by the two following algebraic expressions in terms of the pore pressure (hydrodynamic pressure) P and the effective solid stress σ e [START_REF] Burger | Phenomenological foundation and mathematical theory of sedimentation-consolidation processes[END_REF]:

P l = ε l P (9) P s = ε s P + σ e (10)
Constitutive (closure) expressions come from experimental data. Different equations have been proposed by various authors in several contexts (non-exhaustively):

For ∂ z P : [START_REF] Burger | Phenomenological foundation and mathematical theory of sedimentation-consolidation processes[END_REF], [START_REF] Garrido | Settling velocities of particulate systems: 14. Unified model of sedimentation, centrifugation and filtration of flocculated suspensions[END_REF] For σ e : [START_REF] Burger | Phenomenological foundation and mathematical theory of sedimentation-consolidation processes[END_REF], [START_REF] Garrido | Settling velocities of particulate systems: 14. Unified model of sedimentation, centrifugation and filtration of flocculated suspensions[END_REF], [START_REF] Burger | A consistent modelling methodology for secondary settling tanks: a reliable numerical method[END_REF], [START_REF] Chauchat | Modeling sedimentationconsolidation in the framework of a one-dimensional two-phase flow model[END_REF] For r: [START_REF] Garrido | Settling velocities of particulate systems: 14. Unified model of sedimentation, centrifugation and filtration of flocculated suspensions[END_REF], [START_REF] Chauchat | Modeling sedimentationconsolidation in the framework of a one-dimensional two-phase flow model[END_REF], [START_REF] Toorman | Sedimentation and self-weight consolidation: general unifying theory[END_REF] We selected the constitutive equations presented by [START_REF] Garrido | Settling velocities of particulate systems: 14. Unified model of sedimentation, centrifugation and filtration of flocculated suspensions[END_REF] related to the treatment of tailings from a Chilean copper mine for P and σ e . The constitutive equation for r is presented by [START_REF] Chauchat | Modeling sedimentationconsolidation in the framework of a one-dimensional two-phase flow model[END_REF] and based on [START_REF] Toorman | Sedimentation and self-weight consolidation: general unifying theory[END_REF]:

∂ z P = Q -1 0 ∆ρgε s (1 -ε s ) -np (V s -V m ) (11 
)

σ e = ασ 0 ε ns s -ε ns c ε ns c (12) r = ρ l g/K with K = A k ε -2/(3-nr)
s (13) with Q 0 , n p , σ 0 , n s , A k and n r different constant parameters characterizing the sludge (permeability K, ...) or the settling tank and α, a Boolean parameter which depends on the settler zone and defined as follows:

α(ε s ) = 0 for ε s ≤ ε c 1 for ε s > ε c (14)
Let us note that the constitutive equation of σ e depends on the zones of the settling tank as there is no effective solid stress in the clarification zone for small solid particles concentration. The formulation ensures that σ e is a continuous function at ε s = ε c . Then the mixture inside the settling tank has two different behaviours. The need for continuous and Boolean variables in the settler model makes it hybrid, [START_REF] Valentin | A port-Hamiltonian formulation of physical switching systems with varying constraints[END_REF]. A full discussion of the significance of expressions ( 11) and ( 12) can be found in [START_REF] Garrido | Settling velocities of particulate systems: 14. Unified model of sedimentation, centrifugation and filtration of flocculated suspensions[END_REF].

1D Hybrid Non Linear PDE Model

Then the settling tank hybrid nonlinear PDE's model can be written from:

• both solid particles mass and momentum general conservative balance equations ( 2) and ( 4), • the two algebraic equations specific to this system ( 5) and ( 8), • the four physical constitutive equations ( 11)-( 14)

• the simplifying assumptions 1 to 12.

According to assumption 8 and using expressions ( 8) and (10), equations ( 2) and ( 4) can be rewritten:

∂ t ε s = -∂ z (ε s V s ) + f 2 (C f , Q f ) ρ s δ(z -z f ) (15) ∂ t (ε s V s ) = -∂ z (ε s V 2 s ) + ε s g - ∂ z (ε s P ) ρ s - ∂ z σ e ρ s + r(V m -V s ) ρ s (1 -ε s ) + f 4 (C f , Q f ) ρ s δ(z -z f ) (16)

Boundary conditions:

As solid particles and fluid are incompressible and as the total sludge volume is constant, mixture mass conservation of the solid phase and of the liquid phase lead to the algebraic relation below:

Q f = Q e + Q u (17) P (0) = P atm (18)

THE HYBRID STATE SPACE MODEL

Now let us write the state space representation of the sludge settling in the secondary clarifier, with the two different dynamics in each of the two zones, clarification and compression. Equations ( 15) and ( 16) lead to the two following PDE's for ∂ t ε s and ∂ t V s :

∂ t ε s = -∂ z (ε s V s ) + f 2 (C f , Q f ) ρ s δ(z -z f ) ( 19 
)
∂ t V s = -V s ∂ z V s - ∂ z (ε s P ) ρ s ε s - ∂ z σ e ρ s ε s + g + r(V m -V s ) ρ s ε s (1 -ε s ) + f 41 (C f , Q f )δ(z -z f ) (20) with f 41 (C f , Q f ) = f4(C f ,Q f )-Vsf2(C f ,Q f ) εsρs
, and σ e (ε s , α), ∂ z P (ε s , V s , V m ), r(ε s ) and α(ε s ) given by the constitutive equations ( 11)-( 12)-( 13)-( 14).

After some manipulations of ( 19) and ( 20) and replacing ∂ z σ e with the derivative of equation ( 12), the hybrid non linear state space representation of the settling tank is:

∂ t X = A(X, ∂ z X, P (X, U ), r, α) + B(X, r)U + w Y = C(X) (21)
with the state

X = ε s (z, t) V s (z, t) ,
the output to regulate, Y , the input, U , that will be determined by the controller in the future (U (t) = V m (t)), the disturbance, w and:

A = A 1 (X, P (X, U ), α)∂ z X + A 2 (X, P (X, U ), r) (22) A 1 = - V s ε s P ρsεs + α σ0nsε ns -2 s ρsε ns c V s , ( 23 
)
A 2 = 0 g -∂zP ρs - rVs ρsεs(1-εs) , ( 24 
) B = 0 r ρsεs(1-εs) . ( 25 
) w = f 2 /ρ s f 41 δ(z -z f ) (26) 
The matrix C(X) depends on the control objectives, and ∂ z P (ε s , V s , U ), r(ε s ) and α(ε s ) are given by the constitutive equations ( 11), ( 13) and ( 14).

The determinant of A 1 (X, P (X, U ), α) is:

det(A 1 ) = V s (z, t) 2 - P (ε s , V s , U ) ρ s -α(ε s ) σ 0 n s ε s (z, t) ns-1 ρ s ε ns c (27)
Remark 2. Let us note that the constitutive equation of σ e and the control signal U (through the constitutive equation of P ) may change the nature of the system. Moreover, the determinant of A 1 depends on α which means that the nature of the system may depend on the zone of the settling tank, above or below the moving interface located in z = z c (t), where ε s (z, t) = ε c .

STEADY-STATE PROFILE

The steady-state profile is calculated with two objectives: check the correct behaviour of the system and be the initial profile for the dynamic simulations. It is obtained from the representation ( 21) with ∂ t ε s = 0 and ∂ t V s = 0:

∂ z ε s = 1 ρ s det(A 1 ) r(V s -V m ) (1 -ε s ) -ρ s ε s g + ε s ∂ z P -(ρ s ε s f 41 -V s f 2 )δ(z -z f ) (28) ∂ z V s = - V s ε s ∂ z ε s + f 2 ρ s ε s δ(z -z f ) (29) 
with ∂ z P (ε s , V s , U ), r(ε s ) and α(ε s ) given by the constitutive equations ( 11), ( 13) and ( 14).

From there, we consider that the feeding is located at the top of the tank, at z = 0 and that ε s (0 The difference between both is a smaller value of V m for the second profile (indexed by subscript a e.g. ε s,a , P a .) Fig. 2 shows that the sludge thickens and compresses regularly inside the tank. In the initial steady-state profile (solid line) the interface takes place at depth z c (t) = 2, 5m and, below the interface, the excess pore pressure slowly dissipates as the sludge bed is compacting.

, t) = C f /ρ s , V s (0 + , t) = V 0 and V m (z - b , t) = Q u /A T . It is
0 0.5 1 1.5 2 2.5 3 0.9 1 1.1 1.2 1.3 1.4 1.5 x 10 -4 z Velocities 0 V m0 V s V l V m,a V s,a V l,a
Figure 3. First velocities simplified steady-state profiles.

Fig. 3 shows that the solid particles reduce more significantly their settling velocity below the moving interface. Fig. 4 shows the presence of an effective solid stress and an increase of the drag force on the solid particles below the moving interface in the initial steady-state profile (for V m0 ), in the bottom zone where the liquid phase flows through the compressed porous network.

The following section is dedicated to the PDE's dynamic simulations.

DYNAMIC SIMULATIONS

The PDE's are simulated with a theta-scheme, also called Chang & Cooper scheme, that has shown good properties for granular media and in particular for this class of systems, [START_REF] Buet | A Conservative and Entropy Scheme for a Simplified Model of Granular Media[END_REF].

The first steady-state profile plotted in Fig. 2 with V m,0 , gives the initial conditions. A small variation is done on the input U (V m ) of the system, in order to reach the second steady-state profile, with V a . Let recall that the system is in open loop, and that no controller is implemented. The goal of this dynamic simulation is to validate the behaviour of the model in this context during t 6h. The results are shown in Fig. 5.

It can be observed in Fig. 5 that the second steady-state profile is not reached after six hours. It shows that the settling tank system is a very slow system, with delay phenomena.

Then, other initial and desired steady-state profiles are given Fig. 6, to show that the model developed takes into account more complicated cases. The goal of this dynamic The interface takes place at depths between 1.75m < z c (t) < 2, 25m. Fig. 7 shows that, below the interface, compaction of the sludge bed is more important than in Fig. 5. The simulation performs well.

CONCLUSIONS AND PERSPECTIVES

In this paper, a hybrid partial differential non linear equations (Hybrid NL-PDE's) representation of a continuous settling tank has been presented. It takes into account the moving interface between a bottom zone with compressed solid particles which form a porous network, and an upper zone with a lower concentration of solid particles. Our goal is to apply this structured Hybrid NL-PDE's representation of a settling tank to the secondary settler involved in wastewater treatment plants. Indeed in practice, settling tanks are still largely used but they may undergo dysfunction due to gravity settling problems or to the quantity or the quality of sludge. It is also often due to undesirable bacteria, which cause a phenomenon called sludge swelling (development of filamentous bacteria). Besides new technologies like membrane filtration are often proposed as 
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NOTATIONS

Index i stands for liquid phase or solid phase (particles). ε i (z, t) solid (liquid) phase volume fraction ε c solid volume fraction compression threshold, sludge blanket level ρ i (kg/m 3 ) solid (liquid) phase density ∆ρ (kg/m 3 ) solid and liquid density difference C i (z, t) (kg/m 3 ) solid (liquid) phase mass concentration, C i (z, t) = ρ i ε i (z, t) C f (t) (kg/m 3 ) solid phase mass concentration of the feeding mixture P i (z, t) (P a) solid (liquid) phase pressure P (z, t) (P a) excess pore pressure σ e (ε) effective solid stress function (P a) Q e (t) (m 3 /s) clarified water effluent volume flow Q f (t) (m 3 /s) sludge feeding volume flow Q u (t) (m 3 /s) compressed sludge discharge volume flow (it will be determined by the control system whose design is in progress) r (kg.m -3 .s -1 ) resistance coefficient of the drag force proposed by Darcy and Gersevanov in a two-phase model V i (z, t) (m/s) solid (liquid) phase average velocity V m (t) (m/s) mixture (bulk) average velocity z b (m) cylindric settling tank depth z f (m) feeding depth (fixed)

  s) denote the solid phase Eulerian average velocity and V l (z, t) (m/s) the liquid phase Eulerian average velocity. A schematic view is given in Fig.1.

Figure 1 .

 1 Figure 1. One-dimensional schematic view of a Settling Tank.

  called the simplified settling tank. Its parameters are A T = 707m 2 and z b = 3m. The sludge characteristic parameters are ρ s = 2590kg/m 2 , ρ l = 1000kg/m 2 , ε c = 0.23, and the values of the others parameters are in Garrido et al. (2003) and Chauchat et al. (2013) papers. Two steady-state profiles are given in Fig. (2), (3) and (4).

Figure 2 .

 2 Figure 2. First ε s and P simplified steady-state profiles.

Figure 4 .

 4 Figure 4. First effective solid stress and drag force simplified steady-state profile (for V m0 ).

Figure 5 .Figure 6 .

 56 Figure 5. First 3D simulation of solid phase volume fraction ε s and solid particles velocity V s .

Figure 7 .

 7 Figure 7. Second 3D simulation of solid phase volume fraction ε S and solid particles velocity V s alternatives to settling tanks but are not yet up to expectations. Therefore it is still interesting to model and optimize the behaviour of existing wastewater treatment unitary equipment's and to propose control strategies for a more efficient and compact installation. The variables and parameters ranges are very different from the treatment of tailings from mines (solid particles concentration and solid phase density are much lower, etc) which may change the model (especially the constitutive equations).
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