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Single Nanoparticle Growth from Nanoparticle Tracking
Analysis: From Monte Carlo Simulations to Nanoparticle
Electrogeneration
Vitor Brasiliense,*[a, b] Jean-Marc Noël,[a] Kevin Wonner,[c] Kristina Tschulik,[c]

Catherine Combellas,[a] and Frédéric Kanoufi*[a]

By scrutinizing the trajectory of individual nanoparticles (NPs) in

solution, NP tracking analysis (NTA) allows sizing individual NPs

and providing meaningful complementary information to single

NP electrochemistry. Herein, a model is developed to extend

NTA to allow dynamic NP sizing and to analyze the kinetics of

growth of NPs in solution. Interpreting the NP trajectories as

scaled Brownian motion, Monte Carlo simulations produce

stochastic trajectories of growing NPs (under diffusion-con-

trolled growth). These trajectories are grounds for determining

a strategy to estimate the growth parameters of individual NPs

from the time evolution analysis of the mean square displace-

ment (MSD) curves. In particular, we evaluate the accuracy and

precision of the parameter estimates from MSD analysis. In

addition, the strategy is illustrated to depict the homogeneous

electrosynthesis of silver NPs from the oxidation of a sacrificial

Ag ultramicroelectrode (UME) in Fe2+ solution.

1. Introduction

The last decade has seen increasing interest in the interrogation

of electrochemical behavior at the single NP level. It has been

fueled by the development of ultrasensitive electroanalytical

detection methods, such as NP impact electroanalysis (NIE),

able to count and size individual NPs based on the measure-

ment of stochastic current transients while the NPs collide at

miniaturized electrodes.[1] Compared to ensemble averaged NP

measurements, usually performed on electrode-immobilized

NPs, NIE not only gives a picture of charge transfer processes at

the single entity level but it also adds new insights into

transport phenomena, for example occurring in the vicinity of

the electrode-electrolyte interface. Far beyond the implication

of transport on molecular electrochemistry, NP electrochemistry

is complexified because NPs are often larger than the tunneling

distance to the electrode and comparable to or smaller than

the viscous layer of the electrolyte. Most NIE and NTA experi-

ments must therefore deal with complex NP transport when

the NPs reach the vicinity of the electrode. Indeed, experimen-

tal evidences,[2,3] supported by Monte Carlo simulations,[4, 5]

show that during its excursion within the electrode area a

single Ag NP may explore the tunneling region several times,

leading to multiple reactive collisions, before it is fully oxidized.

Moreover, other phoretic or directed motion of NPs to electro-

des have been illustrated from such single NP electrochemical

studies.[6,7] It generally shows the level of complexity brought

by the consideration of single NP transport into the charge

transfer problem, explaining likely why NIE studies were mostly

devoted to model reactions or model NP materials (e.g.

electrocatalysis at Pt NPs, electrodissolution of Ag NPs). These

studies provide promising means for scrutinizing also the

chemistry of NPs in solution and highlight the advantages of

complementing NIE studies by optical tracking of NPs motion

for deriving dynamically chemical information.

Classical solutions to analyzing the motion of colloidal NPs

in solution used various optical monitoring (light scattering or

fluorescence).[8] These methods, performed most of the time ex

situ, complement NIE studies from indirect hydrodynamic sizing

of particles. They address the flocculation of colloidal NPs

solution in concentrated electrolytes.[9–13] The real time in situ

monitoring of individual NP transport during NIE studies was

obtained by hyphenation of 2D or 3D high resolution (dark-

field or fluorescence) optical microscopies[14–18] implemented

with spectroscopic monitoring.[19] They allowed studying how

the transport of NPs can be affected by the presence of a

polarized collecting electrode.

If single NP electroanalytical studies have mostly focused on

NP impacts on electrodes, electrochemical strategies have also

been reported for the synthesis of NPs from the electro-

generation of metal salt by the sacrificial oxidation of a metallic

electrode in the presence of a solution-phase reducer.[20] It can

also be considered as a mean to chemically etch or transform

NPs in solution from electrogenerated reactants.
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We propose here a strategy to quantitatively depict such

electrochemically generated process at the single entity level.

While NIE may be inefficient to characterize the electrogenera-

tion of NPs from an electrode, owing to the large current

associated to reactant electrogeneration, we propose to rely on

the inspection of NTA strategies. In this respect, a model is

proposed to account for the growth of individual NPs during

their reactive trajectory in solution. It considers the diffusion-

controlled growth of NPs in solution (although not limited to

such situation), characterized by two parameters: the NP size at

the onset of the NP tracking, r0, and its growth rate, k. Monte

Carlo simulations are used to produce simulated stochastic

trajectories of growing NPs which are analyzed through MSD

curves. To evidence the time-evolution of the NP size, rp(t), and

extract the growth (r0 and k) from MSD curves, each NP

trajectory is divided into shorter sub-trajectories. Particular

attention is given to the determination of minimum criteria for

the applicability of the analysis (long enough trajectories, short

enough sampling times), and optimization of the analysis

parameters. Finally, the strategy is illustrated on an experimen-

tal example where Ag NPs are electrogenerated in solution

from the oxidation of a sacrificial Ag ultramicroelectrode, UME,

in a reducing Fe2+ solution.

2. Results and Discussion

2.1. Principle of the MSD Kinetic Analysis

We propose a strategy to extend the MSD analysis of the

trajectory of constant size NPs, following Brownian motion, to

growing (or dissolving) particles. Under pure Brownian motion

(neither growth nor dissolution), the total displacement of a NP,

during the time lapse Dt, can be described by a Gaussian

random variable with zero mean and variance 2dDDt, where d

is the dimensionality of the displacement (for a 2D trajectory

d=2) and D is the diffusion coefficient of the NP. It follows that

the MSD scales linearly with the elapsed time, proportionally to

2dD. Therefore, an estimation of MSD allows determination of D

yielding, from Stokes-Einstein relationship (1), an estimate of

the NP hydrodynamic radius r [Eq. (1)]:

D ¼ kBT

6phr
ð1Þ

where kB is the Boltzmann’s constant, T the temperature and h

the viscosity of the solution.

The regular MSD analysis consists in assuming that time

averages are equivalent to statistical averages, and taking the

time-averaged mean square displacement (noted d2) as

estimator of hd2i ¼ 2dDDt. Implicitly, this procedure assumes

that the properties of the system (in particular D) do not evolve

with time which does not hold for a growing particle.

This difficulty can be dealt with under the (much weaker)

hypothesis that both time and statistical averages are commut-

able, meaning that h d2 i ¼ hd2i: Then, the time-averaged

MSD curve is proportional to 2d(DDT , allowing measurement of

the averaged diffusion coefficient (D (from (1) the average

particle size (r) during the measurement time. This is also

corroborated by Monte Carlo simulations (described in the

following section), which reveal only minor discrepancies

between the diffusion coefficient as measured by time-

averaged MSD analysis and the actual (D (typically <10%), as

discussed in the supporting information, SI, section S1 and

shown in Figure S1.

A corollary of this conclusion is that, in order to analyze the

time-evolution of the size of a growing particle, one can analyze

kinetically a long trajectory by separating it in concatenated

sub-trajectories. The procedure is valid provided the original

whole trajectory is long enough. This work describes how such

trajectory segmentation can be used to describe the kinetics of

NP growth in solution, focusing more particularly on a growth

controlled by molecular diffusion from a solution phase,

detailed in the next section. We then describe quantitatively

the segmentation approach using Monte Carlo simulations.

2.2. Diffusion-Limited Growth

We focus on the case of diffusion limited growth of a NP of

initial (at t=0) radius r0 and diffusion coefficient D0. The

transposition to other growth kinetics models is straightfor-

ward. Similarly, the extension to dissolution of NPs is trivial, by

considering negative values of the NP growth rate. In this

diffusion limited case (DL), one assumes that the growth

(dissolution, resp.) of a NP in solution is limited by diffusional

transport of a molecular reactant, M, to (from, resp.) the NP

surface. Owing to the small size of the growing NP, and the fast

diffusion of the molecular reactants (typically DM~10@5–
10@6 cm2/s) the diffusion layer develops quickly and a steady-

state is reached within less than a millisecond (~ r02/DM, typically

0.1 ms for r0=100 nm).

The growth dynamics of the radius, r(t), of an individual

spherical NP under diffusion control can be obtained, as in

previous works,[21] by considering the mass-transport limited

flux, j, of arrival of the reactant M (or leave of product for

dissolution) at the NP. This flux is obtained by analogy to the

mass-transport limiting current Ilim for the electrochemical

transformation of M (by 1-electron exchange) at a spherical

nanoelectrode [Eq. (2)]:

Ilim=F ¼ 4pr2j ¼ 4p M½ ADM r ð2Þ

where F is the Faraday constant and [M] is the bulk

concentration of the molecular species producing the NP of

molecular volume Vm. The flux j can also be defined from the

change in NP volume, V [Eq. (3)]

dV

dt
¼ Vm4p r2j ð3Þ

The combination of Equations (2) and (3) yields Equa-

tion (4):
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dr

dt
¼ k

4pr
ð4Þ

where k=4pVmDM[M] within the present model corresponds to

the NP surface area growth rate, expressed in mm2/s. Assuming

that the particle has a radius r0 at the onset of its tracking

defined by time t=0, the solution of this differential equation is

[Eq. (5)]:

r2 tð Þ ¼ r20 : k
2p

t or
r tð Þ
r0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1: k

2pr20
t

r
ð5Þ

where the +or @sign corresponds to NP growth or dissolution

respectively. This provides a model for the NP diffusion

coefficient evolution, which is to be extracted from MSD

analysis [Eq. (6)]:

D tð Þ
D0

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1: k

2pr2
0
t

q ð6Þ

2.3. Monte Carlo Simulations

To test the precision of the segmentation approach, the

trajectories of growing particles are simulated using Monte

Carlo procedures. The simulation consists in discretizing the

time in small time increments Dt (selected according to the

sampling rate in experiments), and obtaining a sequence of

positions for the NP from random variables simulating the

processes at stake. In the present case, two physical processes

affect the particle position: diffusion and growth. Diffusion is

modeled as a stochastic process that determines the particle

position. At each discrete time step ti (ti= ixDt), the ith time

increment after the trajectory onset, a direction and a displace-

ment are randomly picked according to Brownian motion

statistics.[22]

For a 3D motion, the direction is uniformly distributed on a

unit-radius sphere (a unit circle for 2D motion, or between @1/
+1 occurrence for 1D random walk), while the displacement is

chosen from a normally distributed random variable with zero

mean and variance 2dD tð ÞDt. We particularly validate the

Monte Carlo simulation by showing that for a constant value of

the diffusion coefficient D0, the uniform distribution in the

sphere produces the classical MSD for a Brownian particle with

a correct estimate of D0 from the MSD slope.

The growth process is accounted for by updating the value

of the diffusion coefficient. At each time step a new value of

D(ti) is calculated from the growth kinetics model, and updated

accordingly. In the present case, (5) can be discretized and

approximated by first-order Taylor expansion (with precision of

order Dt) into (7), which yields the updated value of r(ti) from

its value at the preceding time step r(ti-1). As shown in Figure S2

in SI, the error introduced by the approximations is minimal

[Eq. (7)].

r tið Þ ¼ r ti@1ð Þ þ k

4pr ti@1ð ÞDt ð7Þ

2.4. Anomalous Diffusion and Scaled Brownian Motion

A large number of trajectories (ntraj=500) of growing NPs is

generated by this Monte Carlo procedure, with a same initial

radius, r0, and growth rate, k. An example with a relatively slow

growth rate (k=0.01 mm2/s, r0,=50 nm) is given in Figure 1. If

analyzed by the classical time-averaged MSD, d2, procedure, all

trajectories (blue lines in Figure 1A, with their average in red)

show in a log-log representation an apparent Brownian motion.

This allows extracting an apparent diffusion coefficient, (D;

which characterizes the average size of the NPs, hd2i ¼ 2d(DDt.

By interpreting the motion as a Scaled Brownian Motion

(SBM),[22,23] this hypothesis is indeed verified (for a detailed

justification see Section S3 in SI). Simply inferring the growth of

the NPs directly from the time averaged MSD curves is then

precluded, as it depends on two unknowns (r0 and k).
For time-dependent situations, anomalous sub or super

diffusion behavior may be observed, characterized by MSD

varying as ta, with a<1 or >1 respectively.[8,23] The time

averaged MSD plots of the simulated growing NPs (Figure 1A),

however, suggest a=1. This results from the change in NP size

that can be seen as a continuous scaling of the diffusion

coefficient compensating the change in the length or timescale

of the movement (SBM). In other words the particle displace-

ment can be written as the product of some scaling function

[e.g. Eq. (6) here, see section S3 in SI] and a regular Brownian

motion, which does not alter the intrinsic properties of the

diffusion process. Moreover, the time averaged MSD analysis

focuses on short time correlations, where the change in particle

size is not expressive and anomalous effects are negligible.

The anomalous diffusion behavior can rather be expressed

by averaging MSDs over a large number of NPs, providing a

statistic representation, hd2i, given in Figure 1B. It provides a

Figure 1. Temporal (A) and statistic (B) MSDs in log–log plot of the Monte
Carlo trajectories simulating the growth of NPs in solution. A) The temporal
MSDs for each NP are obtained from their individual trajectories (red line:
average of all trajectories). An average Brownian Motion is observed for all
NPs (slope 1). B) Statistic MSD: for each time lag, d2 is averaged over all NPs
trajectories. Two limiting behaviors are observed: pure diffusion at short
timescale (red dashed line) replaced by sub-diffusion at longer times (black
dashed line). Simulations of ntraj=500 trajectories of each Nt=5000
successive time steps of Dt=1/30s, D0=5 mm2/s (r0=50 nm) and
k=0.01 mm2/s.
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full expression of the time-variation of the MSD, which can

depict the dynamics of the competing transport and reaction

processes,[24] for example described by the dimensionless eq. 6.

Typically in the statistic MSD presented in Figure 1B, the NPs

are freely diffusing (slope a=1) at short times with a diffusion

coefficient consistent with their initial size (or size in the

absence of growth), r0. While for longer times the displacement

of the NPs becomes anomalous (a<1), the MSD follows a t1/2

evolution (slope a= 1=2). The latter is consistent with the long

time limit of eq. 6 (D tð Þ ' D0r0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2p=kt

p
yielding hd2i varying asffiffiffiffiffiffiffi

t=k
p

). These two limiting behaviors depend on a characteristic

time, t & 2pr20=k, representing the dynamics of the growth

process: for t <0.3t the MSD is Brownian; it becomes

anomalous above and fully governed by the growth dynamics

for t >3t. These limiting behaviors can be used, for large

number of trajectories, to extract both r0 and the growth rate

at short and long time respectively from the MSD slopes. Even

though insightful, this strategy requires that all trajectories are

obtained for NPs possessing the same initial radius at the start

of the tracking procedure, which is rather difficult to obtain

experimentally.

2.5. Kinetic MSD Analysis of Monte Carlo Simulated Curves

To extract kinetic information from the trajectories of individual

NPs, individual trajectories are submitted to the kinetic mean

square displacement (KMSD) analysis procedure illustrated in

Figure 2, for example with a fast growth rate. The simulated

trajectories, of length Nt, are segmented into sub-segmented

trajectories (either correlated or uncorrelated, see comparison

in section S4 in SI), corresponding to subsequences of Ns (Ns<

Nt) consecutive time steps. The key idea of the KMSD method is

to perform a MSD analysis in each of these sub-segments.

In the segmentation procedure, each individual trajectory is

divided into nseg=Nt@Ns+1 sub-segmented trajectories. For

1,k,nseg the MSD analysis performed within the kth sub-

segment of duration NsDt starting at tk= (k@1)Dt and ending at

tk+NsDt allows estimating the average NP diffusion coefficient

(and corresponding size) for the average time of the sub-

segment tk’= tk+NsDt/2 yielding D(tk’) and r(tk’)). For example in

Figure 1B, a trajectory consisting of Ntot=300 points, is

segmented into nseg=241 intermediate trajectories of Ns=60

points. The MSD analysis performed on the first segment of

Ns=60 points will provide an average diffusion coefficient D(t1’)
during the first fifth of the overall trajectory. Equivalently, the

last MSD over the last 60 points will generate an average

diffusion coefficient (D(t241’)) on the last fifth of the overall

trajectory.

The precision of each estimated D(tk’) and r(tk’) depends on
the number of points per sub-segment, and therefore Ns is

critical to determine the precision and resolution of KMSD

methods. A tradeoff between the precision and temporal

resolution is to be observed: smaller values of Ns allow a higher

number of sub-segments to be estimated (high value of nseg

and therefore of temporal resolution), but each point is less

precisely estimated, introducing random noise and decreasing

the fitting performance.

An estimation of the procedure precision is given in

Figure 2B,C by analyzing 300 Monte Carlo generated trajecto-

ries. Figure 2B shows the distributions of all values of NP radii,

r(tk’), from all the 300 trajectories simulated with a unique set of

(r0, k) parameters. These values of r(tk’) are compared to the

expected time-variation given by eq. 5. The 50th percentile (the

median) of the distribution for each given time tk’ is a

meaningful estimate of the true value of r(tk’) for a large

population of identical particles. For each time, t’k, the r(tk’)-
distributions are all centered at the true value of r(tk’), indicating
that the method is unbiased (distributions shown in section S5

in SI). From the obtained curves, r0is determined by the first

estimation of rðti), while k is evaluated by a one-parameter fit

of eq. 5, performed using least-squares. Figure 2C shows two

examples of such r(tk’) plot for two given trajectories with their

best fit (red curves). The distribution of the fitted values of

growth parameter, k, for the whole 300 Monte Carlo trajectories

is given in Figure 2D.

2.6. Error Estimation on Individual NP Growth Parameters

A crucial point in single entity analysis is how the stochasticity

impacts the distribution of behavior observed and to what

extent the diversity of size or of kinetic behavior can be

estimated meaningfully from the behavior of single entities.

Our ability to detect this diversity of behavior, however,

Figure 2. A) Procedure of segmentation of a given trajectory by overlapping
sub-segments: within each sub-segment (arrow between vertical bars) an
instantaneous diffusion coefficient D(t’k) is estimated yielding, in (B), the
evaluation of the discretized time-evolution of r. B) Application to 300 Monte
Carlo simulated trajectories. Each green dot on the graph represents one
estimate of r at the different average time of the sub-segment. The dashed
lines represent from top to bottom the 95th, 75th, 50th; 25th, 5th percentiles of
the distribution. The analytical solution given by Equation (5) (red line)
agrees with the median, showing that the method is not biased. The
parameters used for the simulations are Nt=300, Ns=60 steps, Dt=0.033 s
with D0 ¼ 5 mm2=s and k ¼ 0:1 mm2=s. C) Two examples of r(t) evolutions
(fits in red) from two trajectories with the same parameters. D) Distribution
of the growth rate k obtained from the fit of the r(t) evolutions. The
distribution fitted by a Student-law yields k ¼ 0:10: 0:04 mm2=s.
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depends on the precision of the determination of ðr0; kÞ pair.
From the standard deviation s of each measurement r, and

from the values of r0 and k extracted from the fit, one can

determine the standard deviation of k (details in S5 in SI)

[Eq. (8)]:

SD kð Þ & 1ffiffiffiffiffiffiffiffiffiffiffiffi
Nt=Ns

p 2p

ðNt @ NsÞDt
2 s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s2 þ 2r20 þ kNtDt

2p

r
ð8Þ

and therefore the accuracy of the MSD procedure to analyze NP

growth from single NP trajectory tracking. We can statistically

determine meaningful growth as long as the measured k is

larger than 2 standard deviations, that is, if k > 2 StDev kð Þ,
which is equivalent to requiring a signal to noise ratio higher

than 2. Based on this criterion, eq. 8 predicts a required

minimum number of steps for detecting growth on a single

particle basis, as illustrated in Figure 3. For slow growth,

multiple trajectories are required, reducing the standard

deviations by a factor
ffiffiffiffiffiffiffi
ntraj
p

, and allowing it to pass into the

green region.

For all experimentally relevant parameters, however, good

agreement was found between eq. 8 and robust estimators of

the standard deviation of the distribution (inter-quartile range).

Up to this point, the KMSD method can reliably be applied

on MC simulations if the kinetic parameter, k, and the trajectory

range, Ns, are high enough. The natural next step is to put the

method on trial over experimental results. In the next section,

the capabilities of the method are showcased by studying the

homogeneous growth kinetics of silver NPs in the vicinity of a

microelectrode.

2.7. Application of KMSD to Experimental Results: Ag NP
Homogeneous Growth

2.7.1. Probing Electrogenerated NPs by Electrochemical
Nanoimpacts

To illustrate the model proposed, the electrogeneration and

tracking of Ag NPs from a sacrificial Ag UME (experimental

details in section S6 in SI) was monitored in situ and real time

by high resolution 2D dark-field optical microscopy. The anodic

dissolution of a sacrificial Ag UME is obtained by polarizing it at

potentials allowing the conversion of the Ag UME into Ag+

ions. The UME is then used as a local source of Ag+ ions, but

here, as sketched in Figure 4A, in a solution of an electron

donor (Fe2+, E0Fe3+ /Fe2+=0.77 V, E0Ag+ /Ag=0.80 V vs NHE). Owing

to their E0, Reaction (9) between the electrogenerated Ag+ and

Fe2+ yields the production of metallic Ag, and therefore the

birth of Ag NPs in solution.

Agþ þ Fe2þ  !Ag0 þ Fe3þ ð9Þ

Figure 4B presents the linear sweep voltammograms (LSVs)

recorded at the Ag UME without and with 50 mM Fe2+. Without

Fe2+ the oxidation peak centered at 0.5 V vs Ag/AgCl reveals

the Ag!Ag+ oxidation and UME dissolution. In the presence of

Fe2+ a noisy, plateau-like feature attributed to the Fe2+!Fe3+

oxidation appears at more anodic potentials. This shows the

occurrence of multiple stochastic current spikes reminiscent of

the electrochemical collision and dissolution of individual Ag

NPs.[2,4] Indeed, spikes are detected at potentials allowing the

Ag UME dissolution and only in the presence of Fe2+ since no

spike was observed without Fe2+ (Figure S8 in SI) ; then, if

metal NPs are formed in solution their oxidative dissolution can

be detected while they are diffusing back and colliding the

UME.

The first direct evidence of the electrosynthesis of Ag NPs is

given by ex situ SEM imaging (Figure 5A) complemented by

EDX analysis (Figure S9 in SI). Pure Ag nanocubes (NCs, edge

length, l=317:80 nm) are detected on the insulating glass

surrounding the Ag UME, after applying a 10s pulse at 0.7 V.

The homogeneous phase synthesis of Ag NCs generally requires

Figure 3. Minimal length of trajectory (in number of points, Nt) for detecting
NPs growth based on a single trajectory (segment length: Ns=60, Dt=1/
30 s). In the green region a single trajectory is in principle enough to assert
growth, while for shorter trajectories, averaging over multiple trajectories is
required.

Figure 4. A) Principle of Ag NPs electrosynthesis by electrodissolution of an
Ag UME. B) Linear sweep voltammograms of the oxidation of an a=12.5 mm
radius Ag UME in 0.05 M KPF6(aq) before (–) and after (–) addition of 50 mM
FeSO4 · 7H2O; scan rate: 50 mVs@1.
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concentrated Ag+ solutions.[25] This is provided here, at the

applied potential, from the UME current (up to 150 nA); the

UME surface allows an equivalent release of up to 20 mM Ag+

ions (Figure 4B). Moreover, the UME is not only locally

generating concentration gradient of Ag+ ions, but it is

oxidizing Fe2+ to Fe3+. This is also in favor of Ag NC formation

since Fe3+ is a known oxidative etchant of metallic Ag allowing

the synthesis of Ag NCs from Ag+ solution,[26] or from the

solution phase reduction of octahedral AgCl. The electrosyn-

thesis conditions provide a mixture of Fe3+, Fe2+ and Ag+ in

the UME vicinity favoring the growth of preferential facets,

explaining the electrogeneration of NCs. The morphology of

the Ag NPs will be the subject of a forthcoming paper.

Further insights in this electrosynthesis process are pro-

vided from single NPs sizing and counting. In a closer

examination of the oxidative current spikes recorded during an

anodic potential step at a Ag UME (Figure 5B–D and Figure S10

in SI), we assume i) that each spike corresponds to the event of

one Ag NC impacting the UME, leading to ii) the complete NP

oxidative dissolution (even though questionable for such large

NPs[2–4]). Then the charge, Q, associated to each spike provides

an electrochemical rough estimate of the cube edge length, lEC,

of individual NCs from [Eq. (10)]:

lEC ¼
ffiffiffiffiffiffiffiffiffi
QVm

F
3

r
ð10Þ

with Vm=10.27 cm3/mol, the molar volume of Ag.

The electrochemical collisions extracted from a first 2 s

interval of the chronoamperogram (zoom in Figure 5B) yield

lEC=300 nm, while the average charge (and size) of the collision

increases with time (Figure 5C), suggesting the particles are

growing during the process until their size stabilizes around

lEC=590 nm. The impact frequency, f, also increases with the

synthesis time (Figure 5D). f provides a rough estimate of the

concentration of the NCs, [NC], at few micrometers from the

UME, by Equation (11):

f ¼ 4DAg½NCAa ð11Þ

with DAg the average diffusion coefficient of the Ag NC.

Assuming a 300 nm NC has an average DAg of ca. 1 mm2 s@1, the

initial frequency of 10 impacts per second suggests that the

UME has generated a concentration of 2x1011NPs/mL solution,

which increases 5-fold between the beginning and the end of

the experiment. In this single NIE the UME only senses the

limited proportion of the NCs produced in its vicinity and which

can return to it, that is within a diffusion length of ca. (2DAg t)
1/2.

Typically, during the 10s of the chronoamperogram a 300 nm

cube would have diffused <5 mm before it is detected. This

electrochemical analysis therefore partially addresses the NP

growth process taking place in the close vicinity of the UME.

2.7.2. From Optical Monitoring to MSD Dynamic Sizing

Dark field optical microscopy allows the in situ monitoring of

NP formation at longer distances from the UME. For that

purpose, an Ag UME was positioned in a drop cell, mounted on

a thin glass slide on top of an inverted microscope. This

assembly allows focusing on the apex of the UME, then imaged

with a CCD camera (up to 30 frames per second) under dark-

field illumination through a dark-field condenser. Video S1

shows the 2D optical monitoring of the solution surrounding

the Ag UME biased at 0.3 V in a 1 mM Fe2+ solution. These less

oxidizing potential and lower reducer content were chosen to

generate a lower amount of NCs (improved resolution),

compared to the conditions of Figure 5B: the UME current, ca.

40 nA, corresponds to a local release of 5 mM Ag+ ions. The

oxidation of the UME starts from the third second of the video,

and immediately after that, bright spots are distributed in

solution, within a hemisphere of radius between 50 and

100 mm from the center of the Ag wire (Figure 6A). These bright

spots, attributed to Ag NPs, confirm the generation of NPs in

solution upon electrochemical actuation. In controlled bulk

Figure 5. Electrosynthesis of Ag NCs from the oxidation of a sacrificial Ag
UME inspected ex situ by SEM (A) or in situ by NIE (B–D). A) SEM image of
the glass part of the apex of the UME after a 10s pulse (0.7 V vs Ag/AgCl).
Inset: NC length edge distribution. B) Nanoimpacts of electrosynthesized Ag
NCs during a 0.7 V pulse. Inset: NPs size distribution inferred from individual
electrochemical spikes. C,D) Time evolution of spikes charge and frequency.
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experiments, solutions of Ag+ ions at comparable 5 mM

concentration in 50 mM KPF6 in the presence or absence of

Fe2+ ions were imaged by dark field microscopy (Figure S11 in

SI). They produced respectively either many (>100) Ag NPs (no

SEM analysis) or <10 scattering features confirming that the

generation of Ag NPs most likely results from Ag+ reduction. A

further control experiment of the sacrificial electrodissolution of

the Ag UME into Ag+ ions in a KPF6 solution in the absence of

Fe2+ ions (video S2 and red trace transient in Figure S8 in SI)

shows the possible formation of only few NPs with much

slower dynamics likely indicative of the slow photoreduction of

Ag+ or silver salt nanocrystals. Again this slower dynamics

further supports that the optical process depicted in Figure 6A

corresponds to the solution phase reduction of Ag+ ions into

Ag NCs.

To quantitatively evaluate the homogeneous-phase syn-

thesis at the single particle level, ntraj=250 different Ag NPs

were tracked from the successive frames of the movie (video

S1). It gives rise to ntraj=250 individual trajectories of individual

Ag NPs (with at least Nt=100 time steps per trajectory for each

250 NPs). The statistic MSD analysis, proposed in the theoretical

section, through averaging over a large number of NPs, is not

experimentally meaningful here since all NPs cannot be

detected with the same initial size. Our procedure rather relies

on the analysis of the temporal MSDs of these 250 different NPs

trajectories. Examples of experimental temporal MSDs of some

of these NPs are plotted in a log-log scale versus the time lag,

tlag, in Figure 6B (blue curves). These experimental MSD curves

reproduce nicely the simulated trajectories (red curves) and

confirm the predicted average Brownian behavior.

Each individual NP trajectory was then analyzed by the

KMSD procedure, vide supra. Each experimental trajectory was

segmented in shorter trajectories allowing instantaneous

estimates of each individual NP apparent hydrodynamic radius

rAg value r(t) at different times during the course of its trajectory.

An example of instantaneous evolution of r(t), given in

Figure 6C, shows that the NP is growing during its tracking. The

distribution of the average radius, rm, of the different NPs

(Figure 6E), estimated over each trajectory is in good agree-

ment with the size distribution of the NPs estimated ex situ by

SEM (even though rm corresponds to the NP hydrodynamic

radius). Similarly a distribution of the individual NP growth rate

estimated from each individual r(t) fit was obtained (Figure 6D),

giving k=0.008:0.004 mm2 s@1, where the error is estimated

using the interquartile differences. The distribution of k values

is rather large as also predicted and explained in the theoretical

part. Particularly for such low value of k, it is statistically sound

to obtain negative values of k, which are also observed with

similar probability during the Monte Carlo simulation reproduc-

ing this experimental growth process (red distribution in

Figure S5.2 in SI). As discussed in the theoretical part, longer

trajectories should be preferred, even though experimentally

difficult here owing to both the experiment duration and the

limited camera acquisition rate. Based on the proposed

solution-phase growth model, k =4pDsolC
bVm, with a process

controlled by diffusion of the Fe2+ limiting species, Dsol and Cb

being the diffusion coefficient and local bulk concentration of

Fe2+, respectively. The distribution of k yields values of Cb in the

mM range, which agrees reasonably with the 1 mM bulk

concentration and further supports that the NPs are growing

within the diffusion field of the UME.

3. Conclusions

Electrochemistry in single entity studies is not only an analytical

platform but it can also be used to electrogenerate dispersed

NPs. To depict the NP production process, one can rely on the

optical tracking of their individual trajectory in solution. Monte

Carlo procedures allow simulating trajectories of NPs growing

in solution under mass-transfer control. These simulated

stochastic trajectories are analyzed to quantitatively describe

the NP growth mechanism (growth rate constant).

It is shown that standard mean-square displacement

analysis conventionally used to characterize pure Brownian

particle also applies to such NPs (described by a time-depend-

ent diffusion coefficient, allowing an estimate of the average

diffusion coefficient during the trajectory), but the particle

growth cannot be identified from such conventional approach.

The latter process can be identified from statistic averaging

over a large number of NPs or by segmenting each single NP

trajectory into sub-segments providing instantaneous NP size

Figure 6. A) Dark field optical image (from Video S1) taken at the apex of a
Ag UME 10s after the application of E=0.3 V; 1 mM Fe2+ +50 mM KPF6(aq).
B) Comparison between the time-averaged MSD analysis of individual NP
trajectories and simulations using the parameters obtained through the
kinetic-MSD segmentation (blue: experimental, red: simulated). C) Example
of a single NP instantaneous radius evolution with time (blue: experimental,
red: fit) using the best-fit parameters D,E) Distribution of the values of
respectively k and average radius rm estimated from the KMSD analysis of
each trajectory.
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estimates, r(t). The fit of r(t) by appropriate model allows

quantifying the growth kinetics at the single NP level. The

model is successfully applied to the monitoring of the electro-

generation of single Ag nanocubes from the electrodissolution

of a sacrificial Ag UME in a solution of a reducer.
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