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How animals explore and acquire knowledge from the environment is a key

question in movement ecology. For pollinators that feed on multiple small

replenishing nectar resources, the challenge is to learn efficient foraging routes

while dynamically acquiring spatial information about new resource locations.

Here, we use the behavioural mapping t-Stochastic Neighbouring Embedding

algorithm and Shannon entropy to statistically analyse previously published

sampling patterns of bumblebees feeding on artificial flowers in the field. We

show that bumblebees modulate foraging excursions into distinctive behaviour-

al strategies, characterizing the trade-off dynamics between (i) visiting and

exploiting flowers close to the nest, (ii) searching for new routes and resources,

and (iii) exploiting learned flower visitation sequences. Experienced bees com-

bine these behavioural strategies even after they find an optimal route

minimizing travel distances between flowers. This behavioural variability may

help balancing energy costs–benefits and facilitate rapid adaptation to changing

environments and the integration of more profitable resources in their routes.
1. Introduction
Any search process, whether in space or mind, individual or collective, involves

trade-offs between exploiting known opportunities and exploring for better

options elsewhere [1–3]. The optimal balance between exploitation and explora-

tion depends on the specificity of prior information and the quality of current

observations [4]. How animals handle the exploitation–exploration trade-off for

spatial decisions has broad implications for our understanding of sampling strat-

egies and foraging behaviour. This question has received considerable theoretical

interest [1–3] but has rarely been addressed experimentally due to the challenge

of acquiring and analysing long-term individual movement data in the field.

Some of the most intriguing animal foraging patterns can be observed in

pollinators (orchid bees [5], bumblebees [6], honeybees [7], hummingbirds [8])

and some frugivorous vertebrates (monkeys [9], bats [10]) that exploit replenish-

ing food resources scattered from a central nest or resting site. These animals often

visit familiar feeding locations in predictable sequences known as ‘traplines’ [6].

A striking example is the case of bumblebees that collect nectar along traplines

minimizing overall travel distances between multiple feeding locations (e.g.

flower patches, plants, trees) and the nest [11], a challenging optimization task

analogous to the travelling salesman problem in graph theory [12].
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Various heuristics have been proposed to explain this rout-

ing behaviour, from very simple rules of thumb (e.g. moving

between nearest-neighbour flowers [13]) to more sophisticated

learning algorithms (e.g. iterative improvement [14]). Only

recently have studies acknowledged the non-stationary dimen-

sion of search processes [1], trapline foraging being a particular

case where it has been shown that trial-and-error and stochas-

tic search rules are an essential part of route learning and

stabilization [11,15,16]. Bumblebees may always maintain

an exploratory behavioural component even after fixing move-

ment transitions between particular flowers [16] or a complete

route [11]. Presumably this continuous exploratory strategy

allows for rapid adoption of new efficient routes following

environmental perturbation [17]. Bees are known to display

distinct spatial behaviours attributed to different navigational

functions [18], such as learning flights [19,20] and orientation

flights [19] to acquire view based memories of important

locations (e.g. feeding sites and nest) on their first foraging

attempts, route-following to link familiar locations [20] and

search loops when some of these locations are experimentally

moved or when bees are displaced in new areas [21,22].

While these movement patterns have been described in exper-

imental scenarios specifically designed to study each strategy

individually, how different behaviours are dynamically

unfolded and used by bees during the process of route

formation is unknown.

To understand how a bee combines these behavioural

strategies to sample flowers, and exploit vast, fragmented

and fast-changing foraging areas, we need to precisely measure

and characterize behavioural patterns. Part of the problem

arises from the need to specify a key behavioural descriptor

(e.g. transition probabilities between flowers, flight times,

revisit frequencies) and finding the adequate spatio-temporal

scale of observation that accounts for meaningful behavioural

sequences. For instance, in the two studies that provide high-

resolution data on trapline formation by bumblebees, Lihoreau

et al. [23] quantified exploration based on the visual identifi-

cation of flight loops starting and ending at the same feeding

location, whereas Woodgate et al. [16] considered flights in

which bees, starting at the vicinity of a flower, flew more

than 50 m from all previously discovered flowers. While both

metrics may ultimately reveal some tendency for exploration,

the definition radically differs, affecting our views about how

animals produce and organize motor patterns.

Unsupervised machine learning clustering methods (see

overview in the electronic supplementary material, section S1)

offer the possibility to statistically map behavioural high-

dimensional spaces based on minimum assumptions [24].

While this approach has been increasingly used to identify

common behavioural principles across taxa, and describe the

modularity and hierarchical organization of behaviour in lab-

oratory set-ups using model organisms such as Caenorhabditis
elegans [1,25,26], Drosophila melanogaster [27,28] or zebrafish

[29], it also holds considerable promises for analysing complex

movement data from field studies, accounting for a much

more principled behavioural classification and avoiding

arbitrary binary descriptions.

Here, we used an unsupervised l mapping method based on

the t-Stochastic Neighbouring Embedding (t-SNE) algorithm

[24,27,30,31] to characterize the spatial behaviour of bumblebees

(Bombus terrestris) foraging in semi-field conditions. The t-SNE

is a dimensionality reduction machine learning method suited

to identify repetitive multivariate patterns (or stereotypical
sequences) in the dataset (see electronic supplementary

material, section S1). The data (previously published by Lihor-

eau et al. [23]) included all flower visitation sequences by focal

bumblebees using motion detection cameras placed on five

artificial flowers arranged in a regular pentagon with 50 m

sides during a full day. Each flower contained a sucrose solution

reward equivalent to one-fifth of the crop of the bumblebee

(stomach) capacity and was refilled after each foraging bout

(foraging trip starting and ending at the nest entrance), in

order to encourage route development between all flowers.

Herein, we analysed all foraging bouts with global statistical

descriptors to build a behavioural landscape partitioned into

significant domains to identify elementary and repetitive

types of foraging bouts. We then classified foraging bouts into

specific behavioural strategies, and characterized behavioural

variability in terms of Shannon entropy and flight time prob-

ability distributions. Using this approach, our aims were

(i) to identify exploration–exploitation behavioural strategies

throughout the process of route formation and (ii) to investigate

behavioural variability and its potential association with

effective stochastic search and trial-and-error learning.
2. Results
2.1. Three main behavioural strategies characterize the

variability of foraging bouts
Our characterization of the bumblebee flower visitation

sequences defined a behavioural landscape delimited by three

statistically significant domains (figure 1). Each domain rep-

resented a dominant (and differentiated) movement mode,

suggesting distinct behavioural strategies that we name: Near-

nest visits (NNV), Route Development, and Traplining

(figure 1 and table 1). The Route Development strategy

showed the largest and flattest area of the behavioural space

(figure 1), representing a highly variable behaviour. The

Traplining strategy involved a much smaller area, with a

narrow and high peak (figure 1) indicative of highly repeatable

and predictable behaviour. The NNV strategy resulted in an

intermediate peak size and area coverage (figure 1), indicating

both some level of variability and repeatability. There is

of course some relationship between the shape of the t-SNE

behavioural landscape and the observation window used to

characterize route development and learning processes by

bumblebees. However, here it is important to recall that a pre-

dominance (peak) in the t-SNE landscape depends on the

relative similarities of the parametrized flower visitation pat-

terns rather than on the frequency of the different patterns

observed along the learning process.

Skeleton diagrams illustrate the principal differences

between the three behavioural strategies (figure 1). In the fora-

ging bouts classified as NNV, bumblebees visited flowers closer

to the nest (figure 2a) in comparison to the other two strategies

(figure 2b,c). These foraging bouts also showed lower levels

of determinism (i.e. a measure of route repeatability [32],

figure 2d), and larger mean turning angles (i.e. the mean of

the absolute values of angles between three successively visited

flowers) in comparison to the other two strategies (figure 2e). In

NNV bouts, bees made seldom transition towards the flower

furthest from the nest (table 1), and on average half of the tran-

sitions were performed towards nearest-neighbour flowers

(table 2). In the Route Development foraging bouts, bumblebees
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Figure 1. Behavioural landscape. Quantitative analysis of bumblebee foraging bouts in a large-scale set-up containing the nest-box (N) and 5 artificial flowers (1 – 5).
Computation of the behavioural landscape of foraging bouts from seven bees based on a t-Stochastic Neighbouring Embedding (t-SNE) analysis. The heat map of
t-SNE landscape reveals three behavioural strategies: NNV, Route Development and Traplining. The dominant behavioural mode characterizing each strategy is
defined by a peak (black dot). The smaller the size of the clustered region and the larger the strength of the dominant peak, the less variable the foraging
behaviour. The largest clustered area and the lowest peak correspond to the Route Development strategy, whereas the smallest clustered region and strongest
dominant peak are associated with the Traplining strategy. Skeleton diagrams show representative foraging bouts (data from all bees pooled together) for
each strategy. Only transitions between near flowers are represented for simplicity. White, dark grey and black double arrows represent transitions that occurred
0%, greater than or equal to 4% and greater than or equal to 7% of foraging bouts of each type, respectively. Grey numbers denote each flower. We used 11
variables for t-SNE analysis (table 1 and figure 2a): length of the flower visitation sequence, probability of immediate revisits to a flower, numbers of different
flowers found and probability of visiting the flower furthest from the colony nest ( flower 3), probability of symmetrical 2-flower transition types 3, 4 and 5 (elec-
tronic supplementary material, figure S20), probability of 4-flower transition type 1 and 2, probability of 5-flower transition and the determinism index. (Online
version in colour.)
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made more flower visits (table 1; electronic supplementary

material, figure S17), travelled longer mean distances from the

nest (figure 2b) and showed an intermediate mean turning

angle (figure 2e) in comparison to the other two strategies.

Bumblebees also made a larger number of nearest-neighbour

transitions than the NNV strategy (table 2). Finally, in the

Traplining bouts, bumblebees performed almost exclusively

near-neighbour transitions (table 2). Individuals showed a

high probability of performing three- or four-flower symmetri-

cal transitions towards nearest neighbours (note that these were

not performed in the other two behavioural strategies, table 1).

Consequently, bumblebees had significantly higher determin-

ism and lower mean turning angles (figure 2d,e). Considering

that determinism was estimated for three consecutive foraging

bouts, the high value observed for Traplining bouts indicated

repetition of the same pattern in consecutive foraging bouts,

which is also reflected by the low variability observed in all

the variables estimated (figure 2 and electronic supplementary

material, figure S17, tables S1 and S4).

Bumblebees performing the Traplining strategy maintained

an average distance from the nest during flower visits of

approximately 89 m in 78% of their foraging bouts (figure 2c),

which is equal to the average distance obtained during an opti-

mal sequence minimizing overall travel distances (N–1–2–3–

4–5–N or N–5–4–3–2–1–N, figure 1). The average distance
from the nest (figure 2a–c) can be considered an indicator of

the travelling costs. In the NNV strategy, 91% of the foraging

bouts were characterized by a mean distance from nest of less

than the optimal 89 m (figure 2a, dotted black line), reflecting

a low-cost type of strategy. Accordingly, the Route Develop-

ment strategy is the one showing a higher cost compared

with the other two, with 68% of the bouts at a mean distance

from nest beyond the optimal 89 m (figure 2b).

Bumblebees spent more time on flowers in the Traplining

strategy than in the Route Development or NNV behavioural

strategies (table 2). They also showed a larger number of

different flowers visited and the lowest ratio between time

flying and time visiting a flower (table 2), a signature of

flower exploitation. In Route Development bouts, bumble-

bees spent less time on the two flowers nearest to the nest

(flowers 1 and 5, figure 1) in comparison to the other two

strategies (table 2). In NNV bouts, bees showed a higher pro-

portion of time on near-nest flowers relative to total bout time

compared to the two other strategies (table 2). Interestingly,

bumblebees in NNV bouts showed a higher ratio between

bout duration and the number of different flowers visited

(cost of flying/reward) in comparison to the other strategies,

while intermediate values were observed in the Route

Development strategy (table 2). These results suggest that

bumblebees executing the NNV strategy explore their



Table 1. Behavioural variables used in t-Stochastic Neighbouring Embedding (t-SNE) analysis for determining Near-nest visits (NNV), Route Development and
Traplining behavioural strategies. Note: Ten out of the 11 variables for t-SNE analysis are shown. The determinism index is depicted in electronic supplementary
material, figure S2A.

NNV Route Development Traplining p-value

length of the flower visitation sequence 6a (5; 7) 8b (6; 13) 7b (7; 7) ,0.0001

immediate revisits (%) 0a (0; 20) 14b (0; 24) 0c (0; 0) ,0.0001

number of flowers found 4a (3; 5) 5b (5; 5) 5b (5; 5) ,0.0001

probability of visiting farthest flower from the nest (%) 0a (0; 0) 20b (14; 27) 14c (14; 14) ,0.0001

symmetrical 2-flower transition of type 3 (%) 0a (0; 0) 14b (8; 20) 17b (17; 17) ,0.0001

symmetrical 2-flower transition of type 4 (%) 0a (0; 0) 11b (0; 14) 17c (17; 17) ,0.0001

symmetrical 2-flower transition of type 5 (%) 0a (0; 17) 0b (0; 8) 17c (17; 17) ,0.0001

4-flower transition type 1 (%) 0 (0; 0) 0 (0; 06) 25 (22; 25) —

4-flower transition type 2 (%) 0 (0; 0) 0 (0; 0) 25 (25; 25) —

5-flower transition (%) 0 (0; 0) 0 (0; 0) 25 (22, 25) —

Median (Q1; Q3)
a – cStrategies that do not share the same letter differ by p , 0.05 (Kruskal – Wallis).
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environment but preferentially exploit flowers near the nest.

However, we cannot exclude the possibility that bumblebees

also use exploration routes undetectable with flower visita-

tion sequence data, such as, for instance, long convoluted

flight paths between visiting flowers.

At the population level (i.e. when each of the foraging bouts

of each of the seven bumblebees are pooled together), a clear

time sequence is observed in the predominance of each of the

three strategies (figure 2h, see also arrows in figure 1), despite

time not being made explicit in the t-SNE analysis. NNV

bouts occurred predominately (approx. 70%, black line

figure 2h) at the beginning of the learning process and decreased

in frequency with experience. Traplining bouts started to

appear after bout 10 (red line figure 2h). Interestingly, Route

Development bouts co-occurred with the other two strategies,

remaining relatively constant in percentage (between approx.

20 and 50%, green line figure 2h) across time. At intermediate

times (bouts 15–22, figure 2h), the percentages of both NNV

and Traplining bouts were lower than the percentage of Route

Development bouts. Thus, the percentage of Route Develop-

ment bouts became relatively large compared with the other

two types of behavioural strategies at intermediate times.
2.2. Route development bouts lead to larger
behavioural richness and entropic disorder

For each behavioural strategy, we computed the Shannon

information entropy (Materials and methods, equation (4.1))

as an indicator of the level of uncertainty and the amount of

degrees of freedom associated with flight time durations

between flower visits (Hfl) and pairwise transitions between

flowers (Htrans). In general, Hft was significantly higher

during Route Development bouts compared to NNV and Tra-

plining bouts (figure 2c), which is consistent with the larger

variability observed in flight times (electronic supplementary

material, figure S13B) and the longer flower visitation

sequences (electronic supplementary material, figure S13D).

Htrans also increased in Route Development bouts in compari-

son with NNV bouts, but not compared to Traplining

bouts (figure 2d). These results are concordant with the
observation of longer flower visitation sequences (electronic

supplementary material, figure S14a) and higher number of

different flowers visited per bout (electronic supplementary

material, figure S14b) for Route Development bouts compared

to NNV and Traplining bouts. At the beginning of the

experiment (when NNV bouts were prevalent), foraging

bouts showed low entropy values (figure 2i,j ). These values

increased at an intermediate stage of the experiment (when

Route Development bouts were prevalent). At the end of the

experiment (when Traplining bouts were prevalent) Hft was

lower and Htrans was somewhat stabilized. Noteworthy,

although calculations of Hfl and Htrans are based on different

variables, flight times and pairwise flower transitions, respect-

ively, a significant positive correlation exists between the two

(y ¼ 1.175 þ 0.697x; r2 ¼ 0.574). All in all, the entropic perspec-

tive suggests that NNV and Traplining strategies are more

exploitative compared to the Route Development strategies

that shows a stronger exploratory component. The entropic

analysis is also concomitant with the fact that, in the t-SNE be-

havioural landscape (figure 1) the Route Development strategy

is characterized by a flatter and much larger area than the NNV

or Traplining strategy, suggesting the unfolding of a much

richer behavioural repertoire and larger behavioural degrees

of freedom at intermediate stages of the learning process.

2.3. Exploitation – exploration dynamics is more
complex at the individual than at the
population level

Although, on average, foraging patterns showed an ordered

sequence of behavioural strategies, each bumblebee did not

perform a completely ordered set of behavioural transitions.

On the contrary, a complex sequence of behaviours was

observed through time (figure 3a; electronic supplementary

material, figures S15 and S18). For example, towards the end

of the experiment (after foraging bout 22) individual five per-

formed the sequence: Traplining (T)–Route Development

(R)–NNV (N)–T–R–T–T (figure 3a). Transitions through the

t-SNE space are erratic (electronic supplementary material,

figure S18), suggesting a non-deterministic learning process
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and competing drives for exploration and exploitation, i.e.

bumblebees balance the decision to continue exploiting close-

by flowers from the nest, performing an optimal trapline, or

seeking for other potential food sources.
In addition to alternating between distinct behavioural strat-

egies, within a given strategy, individual bumblebees showed

periodic fluctuations in entropy levels, both Htrans and Hfl

(figure 3a; electronic supplementary material, figure S15A).
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Table 2. Key variables associated with behavioural strategies in bumblebees as determined by t-Stochastic Neighbouring Embedding (t-SNE) analysis (i.e. Near-
nest visits (NNV), Route Development and Traplining).

NNV Route Development Traplining p-value

nearest-neighbour transitions (%) 54a (40; 67) 60a (44; 75) 100b (91; 100) ,0.0001

time visiting flower (s) 82a (52; 130) 110b (77: 149) 145c (108; 183) ,0.0001

per cent of bout time visiting flower (%) 20a (11; 33) 24a (12; 33) 40b (32; 49) ,0.0001

time visiting near-nest flowers (s) 45a (25; 79) 29b (22; 55) 44a (37; 72) 0.01

per cent of visits to near-nest flowers (%) 60a (50; 80) 33b (25; 50) 40b (40; 40) ,0.0001

time flying/time visiting 5.5b (2.2; 11.7) 3.8b (2.2; 9.1) 2.0a (1.2; 4.4) ,0.0001

bout duration/number of different flowers 155a (102; 243) 114b (84; 197) 66c (57; 100) ,0.0001

Median (Q1; Q3)
a – cVariables that do not share the same letter differ by p , 0.05 (Kruskal – Wallis test).
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Most evidently, in the NNV and Route Development strategies,

large entropies were frequently followed by low entropies,

suggesting that bumblebees alternated excursions where they

visited large and diverse sets of flowers with much simplified

foraging bouts involving small and less diverse sets of flowers

(electronic supplementary material, figure S14A,B,D,E).

Although noisy, this oscillatory dynamics (electronic sup-

plementary material, figure S19) was also evidenced in return

plots (figure 4b and electronic supplementary material, figure

S15B), where the value of entropy estimated at a given foraging

bout (bþ 1) was plotted as a function of the previous foraging

bout (b) of the same behavioural strategy. In the case of NNV

bouts, oscillations in Htrans occurred mainly in the range of 0.8

and 2.6 (left quadrant in figure 3b), while in Route Development

bouts a larger variability was observed and values ranged

mainly between 1.7 and 4.2 (middle quadrant in figure 3b,

centred around the optimal value 2.59). By contrast, in Traplin-

ing bouts we observed almost constant values of Htrans close to

the optimum value 2.59 (figure 3b). Similar results were

observed in return plots for Hfl. Nonetheless, for the later

entropy Traplining bouts showed a much wider range of

values in the return plot compared to Htrans (electronic sup-

plementary material, figure S15B). Therefore, within each

behavioural strategy bumblebees showed low–high variability

cycles in terms of both flower transitions and flight durations

between visits. Only in the Traplining strategy, flower

transitions did not show this pattern as they were mostly fixed.

Following [33], we extended our entropy analysis to study

routine movement behaviour across time by estimating the

pth-order conditional entropy, Hp. Similar to the idea of deter-

minism [32], ‘routine movement behaviour’ involves some

degree of regularity in the movement sequence pattern, which

can be defined as the opposite of uncertainty. Our results (elec-

tronic supplementary material, figure S21) are consistent with

the other estimators used in this work (i.e. Shannon entropy,

determinism), the first-order conditional entropy values fluctu-

ate at the short-time scale, but decrease throughout route

learning. The short-scale fluctuations suggest that bumblebees

alternate the exploitation of repeatable flower visit sequences

with the exploration of new sequences, despite on average

routine movement behaviour increasing steadily with time. In

any case, the routine movement behaviour analysis should be

taken cautiously due to limitations in data structure and length

(see caption at electronic supplementary material, figure S21).

Finally, we also analysed the two-dimensional flight tra-

jectories of bumblebees in some of the foraging bouts

where individuals were also tracked with a harmonic radar

(electronic supplementary material, §3). The results suggest

that different flower-sampling behaviours are used through

time, as bumblebees gained experience on the experimental

system (electronic supplementary material, §3).

3. Discussion
We used an unsupervised mapping approach to characterize

and analyse behavioural strategies of bumblebees while devel-

oping foraging routes between multiple resources in a large

semi-field set-up and show that bumblebees develop routes

by alternating exploration (Route Development) and exploita-

tion (NNV and Traplining) cycles. Trial–error excursions

(Route Development) were alternated with the exploitation of

resources near the nest (NNV) and, in more advanced stages,

with the utilization of stable multi-location routes (Traplining).
Radar data analysis (electronic supplementary material, §3)

also reveals fine-grained behavioural changes by bumblebees

when spreading out from flowers as experience progresses.

This result reinforces the idea that different flower-visiting

strategies are unfolded as bumblebees retain information

about flower location and potential optimal routes. Our

approach shows that foraging bout variability is naturally

grouped, according to bumblebee behavioural signatures, in

three possible strategies. Our method signifies behavioural

stereotypes and avoids unnecessary data pooling or arbitrarily

grouping often used in comparative behavioural analyses. In

the NNV strategy, bumblebees mainly performed strong turn-

ing angles, as a way to restrict their initial foraging bouts in

space, and by revisiting nearby subsets of flowers, which

were known to be rewarding. This pattern may simply

emerge because bumblebees take time to find flowers and

acquire knowledge of their spatial locations. Although in the

NNV strategy resource exploitation near the nest is prevalent,

some excursions to flowers far from the nest were also

observed, consistent with Woodgate et al. [16]. The Route

Development strategy showed larger behavioural degrees of

freedom (i.e. t-SNE area), and a larger behavioural entropy in

flower transitions and flight times between visits in compari-

son to the other two strategies. Therefore, while exploring,

bumblebees are able to locate all the flowers and stabilize rel-

evant routes at the cost of using more variable and

suboptimal (long) paths. Albeit being potentially highly ener-

getically costly [34,35], a stronger variability in behavioural

strategies may facilitate trial-and-error learning and improve

discovery rates, speeding up convergence to an optimal

route. After approximately 10 foraging bouts, the Traplining

strategy emerged, involving repetitive and ordered visitation

sequences to all the flowers in the array. This strategy was

characterized by a strong and localized peak in the behavioural

landscape (figure 1).

Nearest-neighbour transition rules (i.e. systematic move-

ment to the nearest unvisited target) have often been

suggested as a relevant behavioural mechanism for route devel-

opment and fixation by bees [16,36] (but see [11]). Indeed, in the

NNV and Route Development strategies, nearest-neighbour

transitions represent about half of the transitions between two

flowers (see Symmetrical transitions in electronic supplemen-

tary material, table S4). This result is consistent with the

observations of Woodgate et al. [16] in a different array of flowers

where nearest-neighbour transitions always led to suboptimal

routes, which was not the case in our regular pentagonal array

of flowers. Therefore, experiments involving more complex

spatial configurations of flowers in which nearest-neighbour

transitioning does not necessarily lead to short routes (e.g.

[11,16]) are needed to clarify the importance of the nearest-

neighbour behaviour for route formation and optimization.

At the population level, a clear temporal sequence from

NNV to Route Development and Traplining strategies emerged,

with Route Development essentially co-occurring through time,

especially at intermediate training stages (figure 2h). At the indi-

vidual level, however, the strategy transition dynamics was less

straightforward. For example, the NNV strategy, although pre-

dominating at the beginning, appeared recurrently throughout

the route learning process as well, suggesting complex individ-

ual decision-making (figure 3 and electronic supplementary

material, figure S15; see also the routine movement analysis in

electronic supplementary material, figure S21). The Traplining

strategy started to appear after foraging bout number 10;
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nest. (Online version in colour.)
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however, bumblebees tended to return to Route Development

strategies during subsequent foraging bouts. This result is in

line with previous observations suggesting that once routes

are stabilized, bumblebees often make further foraging bouts

with alternative visitation sequences [11,16]. Imperfect learning

and memory could favour these back-and-forth behavioural

shifts in experienced foragers. These cycles between exploitation

and exploration strategies could also reflect an inherent behav-

ioural strategy, that is, the production of controlled motor

variability alternating the discovery of new flowers and flower

sequences with the exploitation of routes already fixed [16,23].

There are considerable, unexplored connections between the

current study and that of Bartumeus et al. [1] related to the fact

that search is essentially an organized, non-stationary stochastic

process, where exploration and exploitation processes of any

kind must alternate. Provided that the environment is stable

enough for the animal to gain information about it, the learning

process itself becomes a strong driver of behavioural change that

should be reflected in the motor output, through adjustments

between internal states, memory and discovery rates.

To reinforce the idea that stochastic search does not rep-

resent fully unstructured noise, we showed that the statistical

signatures found for the Route Development strategy are not

obtained by adding a simply structured noise to the optimal

route (electronic supplementary material, §4). As an example,

the addition of Gaussian noise to optimized traplines changed

some of our behavioural descriptors according to expectation,

as it: (i) increased the variability between foraging bouts (e.g.

entropy Htrans and number of flower visits; electronic sup-

plementary material, figure S16C and S16D, respectively),

(ii) decreased determinism, and (iii) increased the turning

angles (electronic supplementary material, figure S16A and

S16B). However, Gaussian-driven stochasticity could not

explain (i) the anomalous diffusion observed in the local

spreading out of the flowers, (ii) the large amount of flight dur-

ations beyond the characteristic time scales associated with the

experimental set-up, nor (iii) the wild heterogeneity (multiple

scales) and scaling properties observed on flight time

distributions (electronic supplementary material, figure S13).

To visualize the costs and benefits of the overall foraging

strategy of bumblebees, we parametrized each foraging bout

in terms of the average distance to the nest (cost related to the

energy expenditure and error accumulation when flying) and

the entropy associated with flower transitions (well correlated

with the Route Development activity and the benefit of finding

new flowers or routes) relative to optimized traplining behav-

iour (figure 4). We found that NNV, Route Development and

Traplining behavioural strategies can be mapped following a

gradient from low cost–low benefit (NNV) to large cost–

large benefit scenarios (Route Development; figure 4a,b). Tran-

sitions from naive to more experienced foraging phases result in

very erratic paths in the depicted cost–benefit landscape, finally

leading to Traplining (figure 4c,d). This reflects the presence of

individual trade-offs and alternation of behaviourally distinct

sampling strategies, likely in part related to trial-and-error

route learning and optimization.

If we consider route learning as a dynamical behavioural

system (figure 4e), the Traplining strategy would be the main

attractor. In our simplified experimental context, where all flow-

ers were equally rewarding and replenished after each foraging

bout, the optimal trapline is a stable attractor. In most natural

conditions, however, bumblebees may experience much more

complex cost–benefit (fitness) landscapes, with highly unstable
environments due to variability in resource replenishment rates

[37,38], competition [39–41], changing weather conditions

[42,43] and the presence of predators [44]. In such conditions,

constant exploration might be crucial to track new options

and efficiently adjust foraging routes. Hence, traplines may

become unstable attractors, subject to constant perturbations

both environmentally or behaviourally induced, caused either

by imperfect learning or by the need of new discoveries. Our

results suggest that departures from specific traplines (local

minima) could rely on enhanced spreading dynamics out of

particular flowers or traplines, resembling fast simulated

annealing, as suggested in Lihoreau et al. [15].

Quantifying pollinator behaviour has historically been diffi-

cult [45] and long raised the need to develop metrics for

describing and comparing their sophisticated spatial patterns

(see discussions in [6,32,46]). The use of unsupervised mapping

methods on bumblebee data allowed us to quantify emerging

flower-sampling strategies and individual behavioural tran-

sitions (exploitation–exploration) during route learning, both

from a bottom-up approach and at an unprecedented level

of detail. Although not entirely free of assumptions, this

methodology is statistically robust and better principled (well-

grounded on information theory) than previous approaches.

Beyond research on pollinators, we believe that such approach

will be instrumental for future quantitative research in

movement and behavioural ecology, guided by powerful

assessments and comparisons of behavioural variability, both

structure and dynamics, in field conditions.

4. Material and methods
4.1. Subjects and study site
The experimental set-up is described in detail by Lihoreau et al. [23].

A bumblebee colony was installed in a flat, open area of mown pas-

ture (51.8051498 N 0.3650808 W) free of natural flowers. The

entrance tube of the colony box was equipped with a series of

gates in order to control the traffic of foragers. Bumblebees were

only allowed to leave the colony during the pre-training and train-

ing periods. During pre-training, all foragers could freely explore

the outside environment and collect sucrose solution (40% w/w)

from five artificial flowers arranged in a linear array (150 cm

length) 50 m northwest of the nest entrance. Flowers were refilled

ad libitum with 10 ml of sucrose solution to estimate the crop

capacity of each bumblebee. Pre-training typically lasted one day.

Regular foragers that made at least five foraging bouts in 1 h were

selected for testing. During testing, only one forager was allowed

to leave the colony. This focal bumblebee was observed foraging

on flowers arranged in a regular pentagon (figure 1). The bumble-

bee was therefore familiar with the outside environment but

unfamiliar with the array of flowers. Each flower was at a distance

of 50 m from two neighbour flowers, 80 m from the opposite flow-

ers and 108 m from the most distant flower. These distances were

chosen to promote exploration. Given that B. terrestris workers are

able to detect reflecting (non-self-luminant) targets from a back-

ground subtending a visual angle of ca 38 [47] we assume that

bees could detect our flowers from a maximal distance of 13 m

from any location in the experimental field. Each flower contained

a sucrose reward equivalent to one-fifth of the crop capacity of

the focal bumblebee and was refilled after each foraging bout.

Testing typically lasted one day. Each bumblebee was tested on

different days.

4.2. Flower-sampling sequences
Seven individuals were trained in the pentagonal array until they

found all flowers and visited them in the same sequence in at least
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three consecutive foraging bouts (6.7+1.0 (s.e.) hours of obser-

vation and 27.6+1.8 foraging bouts per bumblebee). During the

tests, all departure and arrival times at the nest were recorded by

the experimenter and were considered as all the times in which

the bee left and then returned to the colony during testing.

Flower visits were recorded using motion-activated webcams

(Logitech c250, Fremont, CA) mounted above each flower. Video

clips provided arrival and departure times from each flower,

from which we reconstructed the flower visitation sequences in

each foraging bout (raw data available in Lihoreau et al. [23]; elec-

tronic supplementary material, table S4). The following variables

were calculated:

— Length of the flower visitation sequence: number of flower

visits during a foraging bout.

— Flight duration (s): latency time between two successive visits

to a different or the same flower.

— Probability of visiting a given flower during a given foraging

bout.

— Probability of revisiting the same flower during a foraging

bout, including consecutive revisits to the same flower.

— Number of different flowers: number of different flowers

visited during a foraging bout (from 1 to 5).

— Cumulative number of distinct flowers that the bee encoun-

tered since the beginning of the experiment (flowers found).

— Distance from nest (m): mean distance between each flower vis-

ited during a foraging bout (including revisits) and the nest.

This was estimated taking into consideration that flower 1

was placed at 53.1 m, flower 2 at 105.7 m, flower 3 at

126.2 cm, flower 4 at 104.4 and flower 5 at 53.4 cm from nest.

Thus, for an optimal trapline bout (minimizing overall travel

distances) the mean distance from the nest during the bout is

approximately 89 m ((53.1 þ 105.7 þ 126.2 þ 104.4 þ 53.4)/5).

— Trapline: the most common five-flower visitation sequence,

excluding revisits, used by each bee [17].

— Probability of all 36 possible transitions between the five flow-

ers, and between the flowers and the nest. Given the

symmetrical distribution of the flowers, transitions were classi-

fied according to equivalent path information (see graphical

representation in the electronic supplementary material,

figure S20). For example, a transition from the nest to flower 1

would be equivalent to the transition from the nest to flower

5, given that both flowers are positioned at the same distance

from the nest and at the same relative angle, but in opposite

direction. We also estimated 3-, 4- and 5-flower transition prob-

abilities. For example, 3-flower symmetrical transition type 1

contains the transition from the nest to flower 1 followed by

flower 2 (N–1–2), and the transition from the nest to flower 5

followed by flower 4 (N–5–4). Four-flower symmetrical tran-

sition type 1 contains transitions N–1–2–3 and N–5–4–3,

and type 2 the transitions 1–2–3–4 and 5–4–3–2. The 5-

flower symmetrical transition considers transitions N–1–2–

3–4 and N–5–4–3–2.

— Turning angles: angles estimated from x- and y-position coor-

dinates of three successively visited flowers as the difference

between the arrival direction and the departure direction at

the middle flower [36]. Hence, 08 indicates a move straight

ahead, and 1808 a complete reversal in direction. Noteworthy,

the five flowers were arranged so that choices of nearest

neighbours were always consistent with choices of straightest

movements (i.e. lowest turning angle). Mean turning angle

was estimated as the mean of the absolute values of turning

angles of a foraging bout.

— Shannon entropy (H ): represents the uncertainty of a variable

[48]. For a probability p(x), where x is a variable capturing the

behavioural strategy of each bee, it is defined by

(X) ¼�
X

p(x) log2 p(x): ð4:1Þ
In our case we estimated Htrans, where p was the probability

of performing one of the 36 possible transitions between flowers

and/or nest, and Hft, where p was the relative flight duration (i.e.

flight duration/duration of a foraging bout).

— Determinism: metric for measuring sequence predictability

by quantifying the number and length of recurrences and

series of recurrences. In the case of trapline foraging, a recur-

rence occurs whenever a forager revisits a resource [32]. Thus,

a recurrent series occurs when sequence elements are

repeated in the same order (in either forward or reverse direc-

tions). Determinism is based on the proportion of recurrences

(i.e. revisited behavioural sequences) that belong to a recur-

rent series of a minimum designated length. It thus

represents the proportion of revisited flowers that were vis-

ited in the same continuous order in multiple parts of the

visitation sequence. For a detailed description of the

method applied to trapline foraging, refer to Ayers et al.
[32]. In order to assess recurrence of sequences in consecutive

bouts (indicative of memory acquisition), we estimated deter-

minism every three consecutive bouts, and a minimum

designated length of three flowers was used.

4.3. Unsupervised behavioural mapping
We built our input dataset with 11 behavioural variables,

namely: (1) the length of the flower visitation sequence, (2) the

per cent of immediate revisits to a flower, (3, 4, 5) the per cent

of symmetrical 2-flower transitions (types 3, 4 and 5; electronic

supplementary material, figure S20A), (6,7) the per cent of both

types of 4-flower transition, (8) the per cent of 5-flower transition,

(9) the determinism index (a metric for detection of recurrent pat-

terns in a behavioural sequence [36]), (10) the number of flowers

found and (11) the probability of visiting flower 3 (the farthest

flower from the colony nest, figure 1).

We made an unsupervised mapping of the input dataset by

means of the three step mapping protocol described in Garriga &

Bartumeus [30], publicly available using the bigMap R-package

[49] and explained in the electronic supplementary material,

§1. This mapping protocol is mainly governed by a parameter

called ‘perplexity’ comparable with the number of nearest neigh-

bours that is employed in many manifold learners. To ensure the

robustness of the results, we tested different values of perplexity

(i.e. 30, 60, 90 with respect to a dataset size of N ¼ 193). For each

test, we performed three different runs. For each run, we checked

all possible sets of input features from 2 (i.e. the first two princi-

pal components) to 11 (i.e. the whole set of principal

components). After a thorough analysis of all the runs we ident-

ified a robust classification of the foraging bouts into three

clusters with a clear semantics, namely NNV, Route Develop-

ment and Traplining. A detailed explanation of the procedure,

including variable and parameter selection is provided in elec-

tronic supplementary material, S1. To highlight the biological

significance and robustness of the behavioural strategies found

in our study, we compared our results with another dimension-

ality reduction method (i.e. non-negative matrix factorization)

discussed in the electronic supplementary material, S2.

4.4. Statistical analyses
We used the Kruskal and Wallis one-way analysis of variance by

ranks to assess differences in foraging bout variables between be-

havioural strategies. We performed pairwise comparisons using

Tukey and Kramer (Nemenyi) test with Tukey-Dist approxi-

mation for independent samples test, using the functions

kruskal.test and posthoc.kruskal.nemenyi.test in the PMCMR

R-package [50]. For graphical representations, we showed box-

plots with median and 25% and 75% quantiles.
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