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Abstract. In this paper we focus on Anatol Vieru’s periodic sequences
that we approach with the formalism of the theory of cellular automata.
After extending previous results about the action (in the image direc-
tion) of one particular cellular automaton on periodic sequences we show
the existence of a second one which is its complementary (or dual). The
main idea of the paper is that the study of preimages of one of those
two automata is the study of the images of the other one and vice versa.
By using the duality, we have been able to show explicitly the evolu-
tion of the period and the form of the preimages for both automata. In
order to illustrate the theoretical constructions, a musical composition
is presented using the two automata both in the image and preimage
directions.

1 Introduction

The theory of periodic sequences has been introduced by the Romanian composer
Anatol Vieru (1926-1998) in the 1980’s [5] as an original way to approach "modal-
ism" as a third World [4] between tonality and atonality. This approach has been
firstly formalized by mathematician Dan T. Vuza in his systematic mathematical
study of the modal theory of Anatol Vieru [6]. Vieru’s constructions have been
successively investigated and developed at the end of the Twentieth Century,
thanks to increasing collaborations between mathematicians, computer sciences
and computational musicologists [2,3].

Our study tries to follow this path by taking into account the most recent
results on the algebraic formalization of Vieru’s Periodic sequences [1] and con-
fronting the traditional group- and module-theoretical approach with the com-
putational framework provided by cellular automata. This new formalism also
applies to the algebraic formalization of the equal-tempered system assuming
that a given cyclic group of order n may represent, at the same time, the col-
lection of pitches (or pitch classes) and intervals (or interval classes). The finite
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difference calculus applied to periodic sequences taking values in a cyclic group
is not the only natural construction enabling the composer to explore the inti-
mate relation between notes and intervals. There is a similar operator which is
widely used in cellular automata theory and which considers additions between
consecutive elements of a periodic sequence taking value in a given cyclic group.

One of the main ideas of this paper is to explore the existing duality between
those two automata, using some ideas coming both from the classical algebraic
approach and from the new framework based on cellular automata. The main
problem, which has been partially solved, concerns the complete characterization
of reducible and reproducible components of a periodic sequence in the case of
the additive operator as well as study of the inverse temporal process of both the
difference and additive finite calculus. This question has rarely been addressed in
the previous literature despite its natural compositional application. The study
of the preceding layers of a given periodic sequence musically corresponds to the
search of a melodic patterns which are able to generate a given musical theme
after a given number of iterations of the finite additive or difference calculus op-
erator. These layers depend on the choice of the initial element of every preceding
sequence and this can be done in a deterministic or a random way.

In order to illustrate the music-theoretical and computational properties of
this inverse construction, a microtonal fugue has been composed. The subject,
or main theme of the fugue, and its imitations structurally interact thanks to the
action of the main automata (associated respectively with the finite difference
and finite addition calculus) in the past and the future history of the main
theme. This shows the reappearance of some elements of the main theme and
their imitations at different preceding layers and permits to make use of them
in the development of the canonic process.

2 Background

2.1 Cellular automata
Cellular automata are specific transformations acting on a finite or infinite grid
of cells. The fondamental principle is that each cell interacts with its close neigh-
bourhood according to the rule of the cellular automaton. Let A be a finite set
called alphabet and E the grid, a countable set. We call "full-shift" X = AE the
set of all the possible configurations. We will choose E = Z.

LetN ⊂ Z finite be our neighbourhood, it describes the size of the interaction
between cells over the action of the automaton.

A basic transformation is called the "shift", σ : X → X defined locally by:(
σx
)
(i) = x(i+ 1), for x ∈ X .

A determinist cellular automaton is a continuous transformation F : X → X
defined by a neighbourhood N = {k0, ..., kn}, a finite subset of Z and a local
transformation f : AN → A which commutes with the shift σ : σ ◦ F = F ◦ σ
and defined by

∀i ∈ Z :
(
Fx
)
(i) = f (x(i+ k0), . . . , x(i+ kn)) := f

(
x(i+N )

)
. (1)
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We note DCA the set of deterministic cellular automata.

Definition 1 (Spatial dependence cone).

Let Y := (Xn(i)i∈Z)n∈Z ⊂ X a given family of configurations. We define the
spatial dependence cone of Y for a given neighbourhood N := {k0, ..., kn}, noted
SYN , localised by a spatial point (i, n) ∈ Z2 and bounded by a length ` ∈ N as
follows:

SYN (i, n, `) := {(m, j)/m ∈ Jn, n+ `K : (m− n)k0 + i ≤ j ≤ (m− n)kn + i}.

Property 1 (Trivial property). Let F : X → X ∈ DCA with f its local rule and
N its neighbourhood. Let Y := (Xn(i)i∈Z)n∈Z ⊂ X with SYN its dependence cone.
If ∀(j,m) ∈ SYN (i, n, `) : Xm(j) = f(Xm−1(j+ `)`∈N ), then Xn(i) = F `Xn−`(i).

We shall now define an automata class that we will study hereafter.

Definition 2 (σ-polynomial deterministic cellular automata). We note
Z[σ±1] the set of σ-polynomial automata, i.e., of the form F =

∑
i∈Z aiσ

i, where
a finite number of ai ∈ Z are non-zero and σi is the ith self-composition of σ.

The automata belonging to Z[σ±1] are linear : Let F1, F2 ∈ Z[σ±1] from a set
X in itself, then ∀x ∈ X : (F1 + F2)(x) = F1(x) + F2(x) and as Z[σ±1] ⊂ DCA
we have that ∀F1, F2 ∈ Z[σ±1] : F1 ◦ F2 = F2 ◦ F1 as F ◦ σ = σ ◦ F .

Two of these automata will be of particular focus to our work:
∆ = σ − Id
f∆ : A×A → A

(a, b) 7→ b− a
and


τ = σ + Id

fτ : A×A → A
(a, b) 7→ b+ a

Both are of neighbourhoodN = {0, 1}, the first one beeing the discrete derivative
(the one studied by A.Vieru) and the other one the well-known Ledrappier’s one.

However, the first few properties we show apply to all such automata.

Property 2 (Isomorphism with the ring of Laurent polynomials).(
Z[X±1],+,×

)
∼
(
Z[σ±1],+, ◦

)
, thus

(
Z[σ±1],+, ◦

)
is a commutative ring.

Proof. We exhibit the isomorphism :

ϕ : Z[X±1]→ Z[σ±1](∑
i

aiX
i
)

+
(∑

i

biX
i
)
7→
(∑

i

aiσ
i
)

+
(∑

i

biσ
i
)

(∑
i

aiX
i
)
×
(∑

i

biX
i
)
7→
(∑

i

aiσ
i
)
◦
(∑

i

biσ
j
)

We can see that this isomorphism is compatible with the two laws of the ring of
Laurent polynomials.

We now present on which space of state X we want to work on.
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2.2 Periodic sequences

This section introduces the notation we will use throughout the article.
For the purpose of this article, a sequence will be a function X : Z → ZN ,

and (ZZ
N ,+,×) is the ring of ZN -valued sequences.

Definition 3 (Periodic sequence). A sequence X is periodic if there exists a
positive integer τ such that ∀i, X(i) = X(i + τ). The set of periodic sequences
is noted CN .

Definition 4 (Cyclicity and period). Let X ∈ CπN . Any positive integer π
such that ∀i, X(i) = X(i+π) is called a cyclicity of X. The smallest such integer
τ is its period. We will say that X is π-cyclic and τ -periodic respectively4. The
set of π-cyclic sequences is noted CπN .

Definition 5 (Reducibility). Let F ∈ Z[σ±1]. A sequence X ∈ CπN is said to
be reducible over F if and only if there is an integer δ such that F δX = 0Z. The
set of such sequences is RedF (CπN ) =

⋃
i∈N ker(F i).

Definition 6 (Reproducibility). Let F ∈ Z[σ±1]. A sequence X ∈ CπN is said
to be reproducible over F if and only if there is a positive integer δ such that
F δX = X. The set of such sequences is RepF (CπN ) =

⋃
i∈N ker(F i − id).

X 1 1 0
∆X 0 1 1
∆2X 1 0 1
∆3X 1 1 0

(a) A reproducible sequence on Z2

X 1 3 5 1
∆X 2 2 2 2
∆2X 0 0 0 0

(b) A reducible sequence on Z6

Theorem 1. Let F ∈ Z[σ±1] and π ∈ N∗. Any periodic sequence X ∈ CπN
can be decomposed uniquely as X = Xred + Xrep, where Xred ∈ RedF (CπN ) and
Xrep ∈ RepF (CπN ). In other terms, CπN = RepF (CπN )⊕ RedF (CπN ).

Proof. The proof of [2, th3] generalises directly , replacing occurrences of ∆ by
any polynomial automaton F .

3 Summary of previous results and extensions on the
automata τ and ∆

We will henceforth focus on the automata τ and ∆. To maintain brevity for
shared properties, we will assume F to stand for either.
4 This is slightly contrasting with conventional terminology in which saying a sequence
is τ -periodic does not imply minimality.
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3.1 Existing results on images of ∆

Now that we have defined the notions of reproducibility and reducibility, a topic
of interest is their characterisation. Several results exist on ∆, but τ has yet to
be studied extensively.

Theorem 2 ([2, th. 7]). Let X be a Zpk valued sequence, with p prime. X is
reducible if and only if it is pm-periodic.

While in appearance this result only applies to some cases, because ZN (and
by extension CπN ) can be decomposed as a direct sum of its p-maximal subgroups,
any sequence can be decomposed as one or more such case. [1] refined this
result with the addition of bounds on the number of steps needed to reduce
the sequence, which we do not detail here.

We note ηa,b such that ∀X ∈ ZZ
N , ηa,bX(i) = X(ai+ b).

Theorem 3. Let X ∈ CπN . If X is reducible over ∆, then ηa,bX is also reducible
over ∆. Furthermore, if a and π are coprime, then the converse holds.

Proof. The first part is a corollary of the previous theorem. The second part
follows from the fact that if a and π are coprime, then ηa,bX is a permutation
of X, so X = ηna,bηa,bX for some n.

Theorem 4. Let X ∈ Cπpk with p prime. X is reproducible if and only if ∀b ∈
J1, πK, ηpr,bX is reproducible, with r the maximum integer such that pr divides
π.

Proof. This is essentially a reformulation of corollary 15 of [2], with the added
step of re-applying the parent theorem to the condition in order to express it in
terms of reproducibility of its subsequences.

3.2 New results on preimages

We now consider the preimages of a given sequence through ∆ and τ. We can
rewrite the local relation defined by ∆ as X(i + 1) = X(i) + ∆X(i) and that
defined by τ as X(i+ 1) = X(i)−τX(i), thus determining a single value of an
antecedent of a given sequence determines all of its values.

We will note ∆−1
a (respectively τ−1

a ) the function that maps a sequence to
its preimage through ∆ (respectively τ) with value a at index 0. By extension,
we will note ∆−nA with A = (a1, . . . , an) the function that maps X to X ′ such
that ∆nX ′ = X and ∀j ∈ J1, nK, ∆n−jX ′(0) = aj . We also note for X ∈ ZZ

N :

FnX =
{
Fn if n ≥ 0
F−1
X(n) ◦ F

n+1
X if n < 0

(2)

For n increasingly negative the process can be either deterministic or random
depending on how the initial values of the preimages are chosen.
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i

n

X⊥∆

X

τ2
XX

⊥
∆∆−2

X⊥
∆

X

fτ

+

f∆

-

+

+

fτ

Fig. 2: Illustration of the notations. The short arrows show the local rules of
automata, and wide coloured lines are sequences.

Theorem 5 (Duality of ∆ and τ). Let X⊥F ∈ ZZ
N be a sequence such that

X⊥F (i) = F iX(0) for all positive i. We call it a dual of X. Then ∀i, n ∈ Z, we
have ∆n

X⊥
∆

X(i) = τiXX⊥∆(n) and τnX⊥τ
X(i) = ∆i

XX
⊥
τ(n).

Proof. We write the proof for F = ∆ but it also stands for F = τ as well. Let
Y := (∆n

X⊥
∆

X(i)i∈Z)n∈Z and Y ⊥ := (∆n
X⊥
∆

X(i)n∈Z)i∈Z. Let SYN be the depen-

dence cone of Y and let SY ⊥N be the dependence cone of Y ⊥. We first remark
that ∀i, n ∈ Z, ` ∈ N : SYN (i, n, `) = SY ⊥N (n, i, `). ∀(j,m) ∈ SXN (i, n, l) we have :

∆m
X⊥
∆
X(j) = f∆(∆m−1

X⊥
∆

X(j), ∆m−1
X⊥
∆

X(j + 1))

= ∆m−1
X⊥
∆

X(j + 1)−∆m−1
X⊥
∆

X(j)

So ∆m−1
X⊥
∆

X(j + 1) = fτ(∆m−1
X⊥
∆

X(j), ∆m
X⊥
∆
X(j)).

By property 1 we can conclude that ∀i, n ∈ Z, we have ∆n
X⊥
∆

X(i) = τiXX⊥∆(n).

Corollary 1. Let X ∈ CπN reproducible over ∆ (respectively τ) in δ steps. Then
there exists a unique periodic dual sequence X⊥∆ (respectively X⊥τ); this sequence
is of cyclicity δ and is reproducible over τ (respectively ∆) in π steps.

Property 3. Let X ∈ CN . We have, ∀n ∈ N, i ∈ Z :

∆nX(i) =
n∑
j=0

(−1)n−j
(
n

j

)
X(i+ j) (3)

τnX(i) =
n∑
j=0

(
n

j

)
X(i+ j) (4)
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Proof. Since
(
Z[σ±1], ◦

)
is commutative, we can use the binomial theorem :

∆n = (σ − id)n =
n∑
j=0

(−1)n+j
(
n

j

)
σj

τn = (σ + id)n =
n∑
j=0

(
n

j

)
σj

and the formulae follow by the left distributivity of application.

Lemma 1.

∀k ≥ 0,∀i, n such that i ≥ n :
i∑

j=n
(−1)j

(
i

j

)(
j − n
k

)
= (−1)n+k

(
i− k − 1
n− 1

)
.

Proof.

Ai,k :=
i∑

j=n
(−1)j

(
i

j

)(
j − n
k

)
=

i∑
j=n

(−1)j
[(

j

i− 1

)
+
(
j − 1
i− 1

)](
k

j − n

)

=
i∑

j=n
(−1)j

(
j

i− 1

)(
k

j − n

)
+

i−1∑
j=n−1

(−1)j+1
(

j

i− 1

)(
k

j + 1− n

)

=
i−1∑
j=n

(−1)j
(

j

i− 1

) −(k−1
j−n)︷ ︸︸ ︷[(

k

j − n

)
−
(

k

j + 1− n

)]
+

:=bi,k︷ ︸︸ ︷
(−1)n

(
n− 1
i− 1

)(
0
k

)

= −Ai−1,k−1 + bi,k =
k∑
q=0

(−1)qbi−q,k−q = (−1)kbi−k,0

= (−1)k+n
(

n− 1
i− k − 1

)
by definition.

Note that Ai−q,q = 0 when q > k and that ∀i : bi,k = 0 for k 6= 0.

Property 4. Let X ∈ CN and A = (a1, . . . , an) ∈ ZnN . The values of antecedents
are given by the following formulae :

∆−nA X(i) =
n−1∑
j=0

(
i

j

)
X⊥∆(n− j) +

i−n∑
k=0

(
i− k − 1
n− 1

)
X(k) (5)

τ−nA X(i) =
i∑

j=0
(−1)i+j

(
i

j

)
X⊥τ(n− j) +

i−n∑
k=0

(−1)k+i+n
(
i+ k − 1
n− 1

)
X(k) (6)
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Proof. By the duality of τ and ∆, we have :

∆−nA X(i) = τiX⊥∆(0) =
i∑

j=0

(
i

j

)
X⊥∆(j) =

n−1∑
j=0

(
i

j

)
X⊥∆(n− j) +

i∑
j=n

(
i

j

)
∆j−nX(0)

=
n−1∑
j=0

(
i

j

)
X⊥∆(n− j) +

i∑
j=n

(
i

j

) j−n∑
k=0

(−1)j−n+k
(
j − n
k

)
X(k)

=
n−1∑
j=0

(
i

j

)
X⊥∆(n− j) +

i−n∑
k=0

(−1)−n+k

 i∑
j=n

(
i

j

)
(−1)j

(
j − n
k

)X(k)

Similarly, we have :

τ−nA X(i) = ∆iX⊥τ(0) =
i∑

j=0
(−1)i+j

(
i

j

)
X⊥τ(j)

=
n−1∑
j=0

(−1)i+j
(
i

j

)
X⊥τ(n− j) +

i∑
j=n

(−1)i+j
(
i

j

)
τj−nX(0)

=
n−1∑
j=0

(−1)i+j
(
i

j

)
X⊥τ(n− j) +

i∑
j=n

(−1)i+j
(
i

j

) j−n∑
k=0

(
j − n
k

)
X(k)

=
n−1∑
j=0

(−1)i+j
(
i

j

)
X⊥τ(n− j) +

i−n∑
k=0

(−1)i
 i∑
j=n

(
i

j

)
(−1)j

(
j − n
k

)X(k)

By applying lemma 1 to the expression in square brackets in both equations,
we obtain the aforementionned formulae.

Unlike through F , CπN is not stable through F−1
a , as the period may grow, in

a fashion we will now characterise.

Theorem 6. Let X ∈ CN of period τ . Then ∆−1
a X is of period oN (X)τ , where

oN (x) denotes the (additive) order of x in ZN , and X = ∆−1
a X(τ)−∆−1

a X(0).

Proof. Since X is τ -periodic, ∀i, k ∈ Z, X(i) = X(i + kτ), therefore ∆−1
a X(i +

kτ) = ∆−1
a X(i) ⇐⇒ ∆−1

a X(i+ kτ + 1) = ∆−1
a X(i+ 1) and by induction ∆−1

a X
is kτ -cyclic. We also know that τ divides the period of ∆−1

a X so in order to find
it we need to find the minimal integer k > 0 such that ∆−1

a X(kτ) = ∆−1
a X(0).

From the formula above, we can see that ∆−1
a X(i+τ)−∆−1

a X(i) = ∆−1
a X(i+

nτ) − ∆−1
a X(i + (n − 1)τ), therefore ∆−1

a X(kτ) − ∆−1
a X(0) = k(∆−1

a X(kτ) −
∆−1
a X(0)). By definition, the smallest k > 0 such that this product is 0 is the

order of X (as defined above), hence ∆−1
a X is oN (X)τ -periodic.

Theorem 7. Let X ∈ CN of period τ . Then τ−1
a X is of period :
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X 1 3 5 5 1 0 1 3 5 5 1 0 1 . . .
∆
−1
2 X 2 3 0 5 4 5 5 0 3 2 1 2 2 . . .

Fig. 3: Period growth on a Z6-valued sequence.

• oN (X)τ , where X = τ−1
a X(τ)− τ−1

a X(0), if τ is even.
• τ if X = 0 or 2τ otherwise, if τ is odd.

Proof. Through the same argument as above, we need to find the smallest integer
k > 0 such that τ−1

a X(kτ) = τ−1
a X(0). From there two cases arise:

– τ is even : from the formula, we get ∆−1
a X(i + τ) − ∆−1

a X(i) = ∆−1
a X(i +

nτ)−∆−1
a X(i+ (n− 1)τ) and the rest of the proof follows as above;

– τ is odd : we get ∆−1
a X(i+τ)−∆−1

a X(i) = −(∆−1
a X(i+2τ)−∆−1

a X(i+τ)),
therefore ∆−1

a X(i+ 2τ) = ∆−1
a X(i) and k is 2, unless X = 0, in which case

k is 1.

This last result has interesting corollaries that allow us to partially charac-
terise reproducible and reducible sequences over τ.

Corollary 2. If a sequence X ∈ CN is reducible over τ, then it is either constant
or its period is of the form 2

∏
k qk, where qk divides N .

Proof. Any reducible sequence is an antecedent of the zero sequence, which is of
period 1, and the order of an element of ZN always divides N .

Corollary 3. If a sequence X ∈ CπN is reducible over τ and π is odd, then it is
constant and X(0) ∈ N

2kZN with 2k the largest power of 2 dividing N .

Proof. X is constant according to the previous corollary. The value of constant
sequences doubles with each iteration of τ, and N

2kZN are the solutions to the
equation ∃l : 2l × x = 0 mod N .

Corollary 4. Let X ∈ CπN . If N and π are odd, then X is reproducible over τ.

Proof. From the previous corollary, if both N and π are odd, the only reducible
sequence is the zero sequence. Therefore, CπN = Repτ(CπN )⊕{0Z} = Repτ(CπN ).

4 Musical example

The search of the preimages leads to a natural question from a compositional
point of view: can we find elements of our initial periodic sequence by going in
its past with the two automata or do we forget totally our initial configuration?

The chosen example is linked to that question, being a fugue, whose sheets5

and audio6 are available online. In fact in a fugue, a leading element is present,
the so called subject that may be accompanied by one or more countersubjects.
5 http://repmus.ircam.fr/_media/moreno/score_lanthier_duality.pdf
6 http://repmus.ircam.fr/_media/moreno/audio_lanthier_duality.mp3

http://repmus.ircam.fr/_media/moreno/score_lanthier_duality.pdf
http://repmus.ircam.fr/_media/moreno/audio_lanthier_duality.mp3
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After the exposition where the subject and countersubjects move from one
part to another, a special moment arises: the development. This moment is
interesting and one of the main possible challenges is to bring something new
but still inherited from the subject and countersubjects.

The alphabet A = Z16 was chosen with the scale represented in figure 4.

Fig. 4: The octave divided in 16 equal parts which is used for the composition.

A subject α was chosen to lead this experience and the original thing was to
take two countersubjects being the images of this subject by the two automata.

Fig. 5: The thema "Alpha"

Fig. 6: First countersubject

To find elements of α, ∆α and τα in the preimages, the search of permuta-
tions (noted p), transpositions (α+ a), subsequences (η) and "similar" elements
were used, for instance 10, 13, 1 is considered close to 10, 12, 1 which we indicate
by 10, 13, 1 ' 10, 12, 1. another symbol was used to describe the "head" of a
thema, noted ∧.
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Fig. 7: Second countersubject

We can clearly see that the density of elements of α, ∆α and τα in the
development is high in respect to the transformations we spoke about. This
clearly leads to think that there is a weaker notion than reproducibility in the
past to investigate and that the initial value is not forgotten in a sense. The
preimages were chosen for the period to remain constant or to double in order
to not have too long thema, it constrained the number of possibilities.

5 Perspectives

An important open question would be to demonstrate if by choosing some spe-
cific initial values preimages can be obtained containing more elements of the
initial configuration than some other paths. From a probabilistic point of view,
it would be interesting to see if by choosing randomly the initial values of the
preimages, we forget the initial configuration. The main difficulty lies in the
evolutionary character of the period of the Markov process that the preimages
describe. But in the case of a non-exploding period evolution we can conjec-
ture that the initial condition is eventually forgotten, as the uniform measure
on the alphabet used to choose initial values for preimages is preserved by the
two automata combined with the duality result. Do other pairs of cellular au-
tomata share a similar duality? Is it possible to generalize Vieru’s theory via
wider classes of automata?
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Fig. 8: 2 Extracts [29,39] and [46,53] bars from the development with preimages


	Reinterpreting and extending Anatol Vieru's Periodic Sequences through the Cellular Automata formalisms

