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ABSTRACT
Three integrase strand transfer inhibitors are in intensive clinical use, raltegravir
(RAL), elvitegravir (EVG) and dolutegravir (DTG). The onset of integrase
resistance mutations limits their therapeutic efficiency. As put forth earlier, the
drug affinity for the intasome could be improved by targeting preferentially the
retroviral nucleobases, which are little, if at all, mutation-prone. We report
experimental results of anisotropy fluorescence titrations of viral DNA by these
three drugs. These show the DTG > EVG > RAL ranking of their inhibitory
activities of the intasome to correspond to that of their free energies of binding,
ΔGs, to retroviral DNA, and that such a ranking is only governed by the binding
enthalpies, ΔH, the entropy undergoing marginal variations. We sought whether
this ranking might be reproduced through quantum chemistry (QC) Density
Functional Theory calculations of intermolecular interaction energies between
simplified models consisting of sole halobenzene ring and the highly conserved
retroviral nucleobases G4 and C16. These calculations showed that binding of EVG
has a small preference over DTG, while RAL ranked third. This indicates that
additional interactions of the diketoacid parts of the drugs with DNA could be
necessary to further enable preferential binding of DTG. The corresponding ΔEtot
values computed with a polarizable molecular mechanics/dynamics procedure,
Sum of Interactions Between Fragments Ab initio computed (SIBFA), showed good
correlations with this ΔE(QC) ranking. These validations are an important step
toward the use of polarizable molecular dynamics simulations on DTG or EVG
derivatives in their complexes with the complete intasome, an application now
motivated and enabled by the advent of currently developed and improved
massively parallel software.
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INTRODUCTION
HIV-1 Integrase is a key element in viral replication. In addition to its essential role in viral
DNA (vDNA) integration into host genomic DNA, it is involved, directly or indirectly,
in reverse transcription (Li et al., 2011), nuclear import (Engelman et al., 1995; Ikeda
et al., 2004) and HIV-1 particle maturation (Balakrishnan et al., 2013; Fontana et al.,
2015). As in addition integrase has no counterpart in human cells, it could represent a
privileged target for the design of potent antiretroviral drugs.

The integration step is carried by a multimer of integrase proteins assembled on vDNA
ends, referred to as the intasome. In a first step, denoted as 3′-processing, a 3′GT
dinucleotide is removed from each end of the long terminal repeats (LTRs) of vDNA. This
occurs in the cytoplasm within a multi-component pre-integration complex which gathers
the vDNA and several viral and cellular proteins. DNA strand transfer occurs in a second
step, after such a complex is chaperoned into the nucleus and results in integration of
vDNA as a provirus into the host genome. This requires cutting of two phosphodiester
bonds five base pairs apart on opposite strands of the host DNA and is done by free 3′-OH
groups that were liberated following LTR processing (Bushman & Craigie, 1991; Pommier,
Johnson &Marchand, 2005; Lesbats, Engelman & Cherepanov, 2016). This mechanism was
illustrated in two review papers, in Fig. 2 by Pommier, Johnson & Marchand (2005) and
Fig. 1 by Lesbats, Engelman & Cherepanov (2016).

Integrase strand transfer inhibitors (INSTIs) proved to be much more effective than
processing inhibitors and enabled the development of a successful class of antiretroviral
drugs (Zhao et al., 2017). Three inhibitors inspired by the original diketo acids have been
successively approved and are commonly used in HIV-1 treatment, namely raltegravir
(RAL; MK-0518), elvitegravir (EVG; GS-9137) (Zhao et al., 2017; Grinsztejn et al.,
2007; Koelsch & Cooper, 2009) and dolutegravir (DTG; S/GSK1349572) (Grinsztejn et al.,
2007; Koelsch & Cooper, 2009; Métifiot, Marchand & Pommier, 2013; Ballantyne & Perry,
2013). The latter is a second generation INSTI aimed at maintaining an effective efficacy to
integrase variants resistant to RAL and EVG (Anstett et al., 2017;Wainberg & Han, 2015).
A general review of integrase inhibitors was published by Pommier, Johnson & Marchand
(2005) encompassing a list of diketoacid inhibitors prior to RAL, EVG and DTG (Fig. 4,
Pommier, Johnson & Marchand, 2005).

As was the case for protease and reverse transcriptase inhibitors (Rhee et al.,
2010; Tantillo et al., 1994), integrase inhibitors can generate several resistance mutations.
These were recently reported following RAL, EVG and DTG treatment (Métifiot et al.,
2010; Marinello et al., 2008; Hazuda et al., 2000; Wittkop et al., 2009). They affect,
not only residues in direct interactions with INSTIs but also “outer-shell” residues
indirectly bound (Anstett et al., 2017; Blanco et al., 2011; Chen et al., 2013). Among these
are double mutations such as Q148R/H coupled to G140S/A that produce important
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synergetic effects on the efficacy of RAL, EVG and even DTG (Goethals et al., 2010;
Naeger et al., 2016).

RAL, EVG and DTG (Fig. 1) selectively bind at the interface of integrase and the vDNA
ends within the intasome and have in common two distinct structural motives: (a) a large
centralized pharmacophore with both keto oxygen and a coplanar neighboring oxygen
coordinating the two catalytic Mg(II) cations, structural water molecules, and, either
directly or through water, integrase residues; and (b) a halobenzyl group targeting the
highly conserved 5′CpA 3′/5′TpG 3′ step on the vDNA ends (Zhao et al., 2017). However,
the surface and oxygen arrangement of the central pharmacophore differ among the
three INSTIs, as well as the nature and position of the halogenation of their terminal
aromatic ring: a single F is attached in para to RAL’s halobenzene ring, whereas EVG has
an F in ortho and a Cl in meta, and DTG has two F atoms in ortho and para.

Thus within the intasome, the binding of all three drugs targets both vDNA and the viral
protein. In addition to the well-known established interactions with the catalytic and
non-catalytic site of integrase, following the 3′ processing reaction, the X-ray structures of
integrase-DNA-inhibitor complexes (Fig. 1B) show that the halogenated benzene ring

Figure 1 FDA approved Integrase strand transfer inhibitors INSTIs: raltegravir, elvitegravir and
dolutegravir. (A) 2D structures of the inhibitors. The red dashed circle indicates the halobenzyl moiety.
(B) High-resolution X-ray 3D structure of each inhibitor in complex with the Integrase (IN) and the viral
DNA (vDNA). (C) Close-up on the interactions involving the halobenzene, cytosine 16 and guanine 4.

Full-size DOI: 10.7717/peerj-pchem.6/fig-1
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stacks over the C base (C16) upstream, while the C-X bond points toward the center of the
G base (G4) downstream of the second strand (Hare et al., 2010a, 2010b, 2011).

On another note, it was reported that, compared with RAL and EVG, DTG displays
a more potent in vitro anti-HIV activity and a distinct resistance profile (Anstett et al.,
2017; Wainberg & Han, 2015; Vandekerckhove, 2010; Osterholzer & Goldman, 2014).
Furthermore, we have ourselves reported that an increase in the drug-vDNA complex
stability correlates with an increase in drug activity and a decrease in viral resistance
(Anstett et al., 2017; Hare et al., 2010b, 2011), highlighting the important contribution of
the vDNA end recognition for the binding affinity of INSTIs to the intasome (Hobaika
et al., 2010; El Khoury et al., 2017; Ammar et al., 2012, 2016). In this connection, we
have shown a narrow correlation between the strongest DTG-DNA affinity and DTG’s
highest barrier to resistance (El Khoury et al., 2017).

Maximizing shape complementarity at the integrase-vDNA-inhibitor surface could
serve as a guiding principle for the development of new INSTIs (Zhao et al., 2017; Hare
et al., 2010a;Hobaika et al., 2009, 2010). An important feature of second generation INSTIs
consists into their increased contacts not only with protein active and non-active site,
but also with processed vDNA, right before the strand transfer step. This is supported by the
fact that the sequence of the nucleic bases at the ends of the LTR represents stringent
requirements concerning retroviral integration and that there is no evidence of mutations in
the LTRs that could lead to resistance to INSTIs (Hobaika et al., 2009; LaFemina, Callahan&
Cordingley, 1991; Sherman, Dickson & Fyfe, 1992; Zargarian et al., 2003).

Could attempts to design novel INSTIs with enhanced affinities focus on the vDNA, which
would render the new inhibitors much less sensitive to mutations occurring on integrase?

As a continuation of our previous studies, we experimentally measure the ΔG values for
the binding of RAL, EVG and DTG to vDNA. This is done by fluorescence anisotropy
experiments at three different temperatures. We also analyze, by both ab initio quantum
chemistry (QC) and polarizable molecular mechanics/dynamics, the intermolecular
interaction energies of their halobenzyl rings with G4 and C16. The individual energy
contributions of ΔE(QC) are also compared to their Sum of Interactions Between
Fragments Ab initio computed (SIBFA) counterparts. Such analyses and validations of
inhibitor interactions within the core of vDNA binding site constitute a necessary step
toward long-duration polarizable molecular dynamics of drug-intasome complexes.

An outstanding feature of the CX ring in halobenzenes, discovered on the basis of QC
(Clark et al., 2007; Politzer, Murray & Clark, 2010) is the existence of a zone of electron
depletion along the extension of the bond with a magnitude increasing along the series
F > Cl > Br > I. This “sigma-hole” goes along with a zone of electronic build-up on a cone
around the halogen. It has been earlier shown that atom-centered point charges used in
“classical” force-fields cannot account for the impact of the sigma-hole on the Coulomb
electrostatic contribution EC: this could be only partly remedied upon resorting to an
additional fictitious atom prolonging the CX bond with a partial charge and a distance to
the X bearer that have to be fit on the basis of QC calculations (Ibrahim, 2011; Jorgensen &
Schyman, 2012; Kolar & Hobza, 2012). On the other hand, anisotropic potentials such
as SIBFA, with distributed atomic multipoles up to quadrupoles, were shown to closely
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account for the impact of the sigma-hole along the F, Cl and Br series on the magnitude
of EC both along and around the CX- bond without extra calibration effort (El Hage et al.,
2013). Along these lines, recent work showed that another possibility, resorting to a
distributed charge model to reproduce the local quadrupole around the CX could also
enable to account for the impact of the sigma-hole on EC (Devereux et al., 2014; El Hage
et al., 2016). An additional incentive to validate SIBFA in the present work is the
perspective of its applications to the entirety of the inhibitor-intasome complex, in which
the presence of two Mg(II) cations close to one another and of structured water
molecules render it preferable to resort to polarizable potentials than to “classical,”
non-polarizable ones.

At this stage we do not intend to compute true ΔGs to compare the binding affinities of
the three inhibitors to vDNA and a fortiori to the intasome. These would only be
meaningful at the outcome of long-duration Molecular Dynamics, and such an outcome
could be very sensitive to the accuracy of the intermolecular potential. As a first step
toward this evaluation, we focus here on the sole halobenzene-G4/C16 interactions
expressed in terms of actual enthalpies of binding and evaluate: (a) how well the ranking of
ΔE(QC) intermolecular interaction energies in the ternary complexes compares to the
experimental binding enthalpy ranking; (b) how well the magnitudes of ΔEtot(SIBFA)
compare to those of ΔE(QC) in the three complexes and if they have the same ranking.

MATERIALS AND METHODS
DNA sample and inhibitors
The oligonucleotide LTR32 (Fig. 2) was purchased from Eurogentec (Belgium). It was
designed to adopt a folded double-stranded hairpin structure even under the low
concentrations (10−9 to 10−5 M) used in fluorescence anisotropy experiments. RAL, EVG
and DTG were purchased from AdooQ and Medchemexpress, respectively and their
structures are represented in Fig. 1A.

Figure 2 LTR32 is a linear oligonucleotide sequence designed to adopt a double strand hairpin
structure in solution upon folding around a loop created by a purposely added thymine triplet
(TTT in green) with the sensitive fluorescein reporter (F, in orange) grafted to its central T. The
latter allows fluorescence studies in solution at low concentrations. The stem that reproduces
the 3′ processed LTR end comprises a 17-nucleotide strand and a 15-nucleotide strand corresponding to
the unreactive strand and the reactive strand, respectively. Their pairing leaves an unpaired dinucleotide
5′ AC 3′ at the 5′ end on the unreactive strand. In each strand the nucleotide numbering goes from the
5′ to the 3′ extremity. The highly conserved doublet of base pairs, here numbered C14-G4 and A15-T3, is
colored in red. The base pair C14-G4 is the equivalent of C16-G4 mentioned in the text based on the PDB
entries used in the computations. Full-size DOI: 10.7717/peerj-pchem.6/fig-2

El Khoury et al. (2019), PeerJ Physical Chemistry, DOI 10.7717/peerj-pchem.6 5/21

http://dx.doi.org/10.7717/peerj-pchem.6/fig-2
http://dx.doi.org/10.7717/peerj-pchem.6
https://peerj.com/physical-chemistry/


LTR32 is a linear oligonucleotide sequence designed to adopt a double strand hairpin
structure in solution upon folding around a loop created by a purposely added thymine
triplet (TTT in green) with the sensitive fluorescein reporter (F, in orange) grafted to
its central T. The latter allows fluorescence studies in solution at low concentrations.
The stem that reproduces the 3′ processed LTR end comprises a 17-nucleotide strand and
a 15-nucleotide strand corresponding to the unreactive strand and the reactive strand,
respectively. Their pairing leaves an unpaired dinucleotide 5′ AC 3′ at the 5′ end on
the unreactive strand. In each strand the nucleotide numbering goes from the 5′ to the
3′ extremity. The highly conserved doublet of base pairs, here numbered C14-G4 and
A15-T3, is colored in red.

Fluorescence measurements
Thermodynamic parameters of ligand-processed DNA complexes were identified using
fluorescence anisotropy (Heyduk & Lee, 1990; Hill & Royer, 1997) on a Jobin-Yvon
Fluoromax II instrument. RAL was purchased from AdooQ and EVG and DTG were
purchased from Medchemexpress. The LTR32 oligonucleotide, reproducing the processed
vDNA, was purchased from Eurogentec (Belgium). It contains a thymine loop bearing the
fluorescein reporter for fluorescence studies. During titrations, labeled DNA (LTR32)
was dissolved in phosphate buffer (10 mM, pH 6, I = 0.1) and placed in thermally jacketed
quartz cells (one cm) at 5, 15 and 25 �C; increasing concentrations of the inhibitors
(RAL, EVG or DTG) were then added. The excitation was recorded at 488 nm and the
emission at 516 nm. The equilibrium dissociation constants (Kd) were determined with
GraphPAD Prism 5 applying the non-linear regression (curve fit)-Least square procedure.
This analysis led to the calculation of binding free energies using the following
equation: ΔG = −RT ln(1/kd). In order to transform the obtained ΔG into ΔH and ΔS,
we graphed a linear function: ΔG = ΔH – TΔS for each DNA-ligand complex (LTR32-RAL,
LTR32-EVG, and LTR32-DTG); ΔG (kcal/mole) is the binding free energy at 5, 15
and 25 �C and T is the respective temperature in Kelvin. The fluorescence anisotropy
profiles of RAL, EVG and DTG are displayed in Figs. S1–S3 respectively.

PDB entries
In the used computational approaches, all complexes were extracted from the X-ray
structures of the PFV intasome (IN-viral DNA-Mg2+) in complex with EVG (Hare et al.,
2010a) (PDB code: 3L2U), DTG (Hare et al., 2011) (PDB code: 3S3M) and RAL
(Hare et al., 2010b) (PDB code: 3OYA).

Ab-initio QC computations
The systems were first energy-minimized at the correlated level using the dispersion—
corrected B97-D3 functional by Goerigk & Grimme (2011) and the cc-pVTZ basis set
(Dunning, 1989; Feller, 1996) with the Gaussian 09 (G09) software (Frisch et al., 2009).
The C1’ atoms of G4 and C16 were replaced by an H atom and the H-N9 and H-N1 bonds
were set at 1.0 Å, retaining the N in the position it occupies in DNA in the corresponding
X-ray structure. During minimization, these two bonds were held in place. This constraint
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was set to account for the anchoring of G4 and C16 in the DNA backbone. At the outcome
of energy-minimization, we could verify that the G4-C16 base-pair intermolecular
interaction energies had equal values in the three complexes. This was not the case without
base-pair relaxation, the intermolecular G4-C16 interaction energy being three kcal/mole
less favorable in the EVG ternary complex than in the RAL and DTG ones. Thus, such
a relaxation, even though partial, removes any bias that would disfavor the EVG complex
with respect to the two other ones. Similarly, the C atom connecting the halobenzene ring
to the diketoacid was replaced by an H atom, the CH bond being set at 1.09 Å, the
halobenzene C occupying the same position as in the crystal structure. We found it
necessary to also retain the HC bond in place, so that minimization of the halobenzene ring
was limited to actual rotations around this bond along with minor intramolecular ring
geometry relaxation. It was found that otherwise for the DTG complex a translation of the
halobenzene ring could occur with full stacking underneath G4, but this would be
prevented in the presence of the anchoring diketoacid entity which would then undergo
unfavorable steric interactions with DNA. Figures 3A–3C give representations of the three
ternary complexes, with a superimposition of the starting and final structures.

At the outcome of energy-minimization, single-point calculations were performed with
the B97D3 functional including the correction for basis set superposition error (BSSE)
(Boys & Bernardi, 1970; Simon, Duran & Dannenberg, 1996). They were also done with
the B3LYP-D3 (Goerigk & Grimme, 2011), ωB97X-D (Mardirossian & Head-Gordon,
2014) and B97-D functionals (Grimme, 2006). Energy-decomposition analyses (EDA) were
performed using the ALMOEDA procedure (Khaliullin et al., 2007; Horn, Mao &
Head-Gordon, 2016) with the QChem software (Shao et al., 2015).

SIBFA computations
The intermolecular interaction energy (ΔEtot) is computed as the sum of five contributions:
electrostatic multipolar (EMTP), short-range repulsion (Erep), polarization (Epol), charge
transfer (ECT) and dispersion (Edisp) (Gresh et al., 2007). EMTP is computed with
distributed multipoles derived from the QC molecular orbitals of the individual ligands
(Stone, 1981; Stone & Alderton, 1985; Vigné-Maeder & Claverie, 1988), augmented with
penetration (Piquemal, Gresh & Giessner-Prettre, 2003). The anisotropic polarizabilities
are distributed on the centroids of the localized orbitals using the Garmer and Stevens
procedure (Garmer & Stevens, 1989) coded in the GAMESS software (Schmidt et al., 1993).
Erep and ECT are computed using representations of the molecular orbitals on the chemical
bonds and the lone-pairs. Edisp has an expansion into 1/R6, 1/R8, and 1/R10 along with
an exchange—dispersion component (Creuzet, Langlet & Gresh, 1991).

RESULTS
We have previously reported that the strong INSTIs bind tightly to the ends of the
3′-processed vDNA, at the LTR ends (El Khoury et al., 2017); thus, justifying their function
as a blocker of the strand transfer step (Hare et al., 2010a). Table 1 reports the Kd values
for the binding of RAL, EVG and DTG to the LTR32 oligonucleotide, as determined
by fluorescence anisotropy titrations in a phosphate buffer at 5, 15 and 25 �C.
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The fluorescence anisotropy titration curves of LTR32 for increasing concentrations of
drugs are reported in Figs. S1–S3. Those of LTR32 by DTG and EVG at 5 �C already
reported in El Khoury et al. (2017), are added to this study for completeness. The DTG >
EVG > RAL Kd ranking of inhibitor-vDNA binding affinities is the same as the one
reported for their binding to the complete intasome (Hightower et al., 2011).

We have further unraveled the enthalpy and entropy components of the free energies of
LTR32-INSTI complexation. The ΔG, ΔH and ΔS values are reported in Tables 2A–2C.
These results show the affinity ranking of the three inhibitors for end vDNA to be
dominated by the enthalpy component. This finding is fully consistent with the
microcalorimetry study reported by Chaires (2006) which covered 26 DNA ligands and led
to the conclusion that formation of DNA-intercalator complexes is enthalpy-driven,
while that of DNA-groove binder complexes is entropy-driven. RAL-LTR32, EVG-LTR32
and DTG-LTR32 interactions are characterized by a mean ΔH/ΔG ratio in the
1.3–1.4 range. This is within the 0.83–1.97 ΔH/ΔG ratio range, considered as a signature
of an enthalpy-dominated interaction.

Figure 3 Representation of the complex of G4/C16 with the halobenzene rings of RAL (A), EVG
(B) and DTG (C) at the outcome of restrained energy-minimization, with relevant intermolecular
distances. The starting X-ray structures are shown in white.

Full-size DOI: 10.7717/peerj-pchem.6/fig-3

Table 1 Dissociation constants (Kds) of LTR32-INSTIs interactions.

Temperature RAL EVG DTG

278 5.90E-09 9.50E-11 1.63E-12
288 7.69E-09 1.44E-10 2.74E-12
298 1.26E-08 2.65E-10 6.07E-12

Note:
Temperatures in Kelvin, Kd values in molar.
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The above experimental results are an incentive for SIBFA polarizable molecular
dynamics simulations of complexes of various halogenated drugs with retroviral DNAs,
which should benefit from the massively parallel Tinker-HP software, co-developed in one
of our Laboratories (Lagardère et al., 2018). We deemed it necessary, however, to perform
a prior validation in addressing the question: to which extent would the binding of the
drug halobenzyl rings to G4 and C16 be accountable for the DTG > EVG > RAL ranking,
and how well could the outcome from high-level QC computations be accounted for by
the SIBFA polarizable molecular mechanics procedure?

The considered complexes have small sizes and, for the present purposes,
energy-minimizations bore on the sole halobenzyl ring. An evaluation of the SIBFA
accuracy is nevertheless mandatory, as there would be little hope that inconsistencies
between the SIBFA and QC results at this early stage could be obliterated or restored by
subsequent large-scale molecular dynamics simulations on the entire drug-IN-vDNA
complex. It also is in line with our previous analyses on the binding of a series of
mono- and poly-halogenated rings to G4/C16 and the sensitivity of ΔE and its individual
contributions to diverse chemical substitutions (El Hage et al., 2014, 2015).

Table 3A lists the ΔE(QC) and ΔEtot(SIBFA) values, and Table 3B reports the
ALMOEDA contributions to ΔE(B97-D) and ΔE(ωB97X-D) and to ΔEtot(SIBFA).
The chloro-fluorobenzene ring of EVG is found to be favored over the difluoro ring of
DTG in their ternary complexes, by a small margin. It amounts to 1 and 1.6 kcal/mole out
of 40 with the B97-D3 BSSE-uncorrected and corrected functional, respectively, and is
reduced to 0.4 and 1.0 kcal/mol with the B3LYP-D3 BSSE-uncorrected and corrected
functionals. The ALMOEDA differences are smaller, namely 0.1 (B97D) and 0.7 kcal/mole
(ωB97X-D). Such differences could simply reflect an inherent preference for the G4/C16
base pair of the chloro-fluorobenzene ring rather than the difluorobenzene ring. The DTG
ring is on the other hand, consistently favored over the RAL one. The differences are

Table 2 Dissociation constants and thermodynamic values of DNA-INSTI binding.

Temperature ΔG ΔH TΔS

(A) Thermodynamic contributions of LT32-raltegravir interactions.
278 −10.07 −14.16 4.09

288 −10.29 −14.53 4.24

298 −10.37 −14.75 4.39

(B) Thermodynamic contributions of LT32-elvitegravir interactions.
278 −12.27 −16.36 4.09

288 −12.48 −16.71 4.23

298 −12.56 −16.94 4.38

(C) Thermodynamic contributions of LT32-dolutegravir interactions.
278 −14.43 −18.50 4.07

288 −14.66 −18.88 4.22

298 −14.72 −19.08 4.37

Note:
Temperatures in Kelvin, energies in kcal/mole.

El Khoury et al. (2019), PeerJ Physical Chemistry, DOI 10.7717/peerj-pchem.6 9/21

http://dx.doi.org/10.7717/peerj-pchem.6
https://peerj.com/physical-chemistry/


Table 3 Values (kcal/mol) of the intermolecular interaction energies in the G4/C16/halobenzene
complexes.

(A)

Procedure B97D3 B3LYPD3 ωB97D B97D SIBFA

RAL complex

ΔEtot −41.4a −42.7a −38.5c −36.2c −38.6

−37.2b −38.7b

EVG complex

ΔEtot −43.3a −44.1a −39.9c −37.2c −42.0

−39.6b −40.5b

DTG complex

ΔEtot −42.3a −43.7a −39.2c −37.1c −39.3

−38.0b −39.5b

(B)

B97D ωB97X-D HF SIBFA

RAL complex

EMTP −47.5

Erep 50.9

E1 −6.1 −11.3 3.3 3.5

Epol −13.0 −13.1 −13.7 −11.5

Ect −17.1 −14.1 −9.3 −6.8

ΔE −19.7 −14.8

Edisp −23.8

ΔEtot −36.1 −38.5 −38.5

EVG complex

EMTP −46.3

Erep 46.4

E1 −8.7 −14.1 3.9 0.1

Epol −12.3 −12.5 −13.0 −11.2

Ect −16.2 −13.3 −8.6 −6.5

ΔE −17.8 −17.5

Edisp −24.5

ΔEtot −37.1 −39.9 −42.1

DTG complex

EMTP −47.7

Erep 52.1

E1 −6.3 −11.3 4.0 4.4

Epol −13.2 −13.3 −13.8 −11.8

Ect −17.5 −14.6 −9.7 −7.2

ΔE −19.7 −14.6

Edisp −24.8

ΔEtot −37.1 −39.2 −39.3

Note:
a BSSE-uncorrected.
b BSSE-corrected.
c Values from ALMOEDA ED.
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more stable, amounting to 0.8–1 and kcal/mole with all four functionals. They may simply
reflect the gain in energy brought about by the second fluorine substituent.

We have computed the zero-point vibration energies (ZPE) in the three minimized
complexes. For each ligand, the differences of ZPE between the ternary complex and the
three separate monomers were the same, 2.2 kcal/mole. ZPE is thus not expected to
impact the ΔE(QC) ranking.

For consistency, in each complex, the present SIBFA calculations were done with the
same internal geometries of the three monomers as the B97-D3 minimized ones.
ΔEtot(SIBFA) reproduces the QC ranking. It has values consistently intermediate between
the BSSE-uncorrected and corrected ΔE(B97-D3) ones, and this is also the case with
respect to ΔE(B3LYP-D3) values concerning the difluoro DTG and monofluoro rings of
RAL. ΔEtot(SIBFA) appears to overestimate the EVG vs DTG ring preference, namely
2.5 kcal/mole, while such a difference does not exceed 1.6 kcal/mole at the DFT level.

Table 3B lists the values of the ALMOEDA energy contributions to ΔE(B97D) and ΔE
(ωB97X-D) along with the SIBFA ones. ΔE(ωB97X-D) has 2.1–2.8 kcal/mole larger
magnitudes than ΔE(B97D). While both functionals have in each complex very similar
values of Epol, they differ significantly regarding E1 and Ect. E1 is app. Five kcal/mole larger
with the ωB97X-D than the B97-D functional, while Ect is smaller by three kcal/mole.
ΔEtot(SIBFA) is very close to ΔE(ωB97X-D) for the two fluorinated derivatives but larger
by 2.2 kcal/mole for the fluoro-chlorobenzene ring of EVG. The comparison should not
be carried out further at this stage, since (a) the present SIBFA calculations resort to
HF-derived multipoles and polarizabilities, Edisp being a post-HF correction; (b) all
DFT-ALMOEDA contributions embody a van der Waals kernel encompassing
correlation/dispersion effects, and there is not explicit dispersion contribution.

Consideration of the HF results for both mono- and difluoro rings of RAL and DTG
shows unusually large differences between the magnitudes of ΔE(HF) and ΔE(SIBFA)
(without the Edisp contribution), as they differ by five kcal/mole out of 19. While the
ALMOEDA and SIBFA E1 values are close for both rings, both Epol and Ect(SIBFA) are
underestimated by 2–2.5 kcal/mole each. Thus the much closer agreements between
ΔEtot(SIBFA) and ΔE(ωB97X-D) found with these two rings (<0.3 kcal/mole out of 39)
stem from a compensation of errors, Edisp(SIBFA) having a five kcal/mole larger
magnitude than the stabilization energy brought upon passing from the HF to the
ωB97X-D level. On the other hand, ΔE(SIBFA) has an only 0.3 kcal/mole out of 18 smaller
magnitude than ΔE(HF) for the fluoro-chlorobenzene ring of EVG, but this stems from a
four kcal/mole less repulsive value of E1(SIBFA) than E1(HF), compensating for the
four kcal/mole undererestimation of Epol + Ect. Such analyses show the continuous need to
check for a term-to-term identification of the SIBFA and QC contributions. Improvements
along these lines are being carried out presently, but with correlated multipoles and
polarizabilities and on the basis of correlated EDA approaches. Each ligand of interest is
probed in a diversity of positions by cationic and dipolar probes (El Khoury et al., 2017;
Kwapien et al., 2017) and using an automated procedure which, for each individual
contribution, optimizes the relevant parameters by least-squares fit minimizing the error
with respect to its QC counterpart (M. Devillers, et al., 2019, unpublished data).
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We have further considered whether the EVG ring preference over the DTG ring could
be possibly biased by their initial “anchorings” by their diketoacid connector preventing
the displacement of the HC halobenzene connecting bond. For that purpose, we have
permuted the DTG and EVG ring positions in the ternary complexes. That is, the HC
connecting bond of the DTG ring was superimposed over that of the EVG ring in the EVG
complex and its plane then superimposed over the EVG one. We proceeded in a similar
fashion to superimpose the EVG ring over the DTG one in the ternary DTG complex.
We have also superimposed the RAL ring over the DTG and EVG ones in their ternary
complexes. These three “chimeric” complexes were then energy-minimized with the
B97-D3 functional, the HN9, HN1, and HC connecting bonds remaining unrelaxed.
The results are reported in Table 4. On the one hand, in each binding site, RAL has a
consistently lesser binding affinity than EVG and DTG. On the other hand, in the EVG
binding site, the DTG-EVG difference is reduced to 0.2 kcal/mole. Conversely, it increased
to 2.5 kcal/mole in the DTG binding site.

This indicates that regardless of the additional interactions involving the diketoacid
anchor and DNA, a modulation of the ring affinities can depend on the location of the
anchor in the DNA grooves. Thus ΔE(QC) for EVG binding appears more favored in
the DTG site (−40.5 kcal/mole) than in its own site (−39.6 kcal/mole). Everything else
being equal, this could imply that connecting the diketoacid ring of DTG to the
fluoro-chlorobenzene ring of EVG rather than difluorobenzene could improve the drug
binding affinity, albeit by a modest amount (one kcal/mole out of 40). A similar inversion
occurs in the case of DTG, with ΔE(QC) values of −39.4 in the EVG site and −38.0 in
its own site, so that the difluorobenzene ring could better contribute to the biding affinity if
grafted to the diketoacid of EVG rather than that of DTG.

DISCUSSION
ΔEtot(SIBFA) had values and trends consistent with the ΔE(QC) ones. However, in the case
of the fluoro-chorinated ring of EVG, ΔEtot(SIBFA) presently overestimates ΔE(QC) by
amounts in the two out 40 kcal/mole range. SIBFA is being presently refined using
correlated rather than HF-derived multipoles, and its calibration done on the basis of
correlated energy decomposition analyses. These should further narrow down the errors
with respect to ΔE(QC) with the appropriate functional, in terms of both the total energy
and its individual contributions.

CONCLUSIONS AND PERSPECTIVES
This study focused on three INSTIs successively used in anti-HIV-1 therapy, RAL, EVG,
and DTG. We carried out measurements of their free energies of binding, ΔG, to the

Table 4 Intermolecular interaction energies (kcal/mol) of the three halobenzene rings in their own
as well as in the other two inhibitor G4/C16 binding sites.

RAL site EVG site DTG site

ΔE(B97D3)-RAL −37.2 −38.3 −37.7

ΔE(B97D3)-EVG −39.6 −40.5

ΔE(B97D3)-DTG −39.4 −38.0
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vDNA end in solution, and unraveled their enthalpy and entropy components in solution.
We found that the ΔG ranking DTG > EVG > RAL parallels that inferred for the intasome
(Hightower et al., 2011). The ΔG ranking is also paralleled by the ΔH one, a signature
for intercalation-driven binding (Chaires, 2006).

We have considered three model ternary complexes, involving G4, C16 and the
halobenzene ring of DTG, EVG, and RAL. These were extracted from the corresponding
X-ray crystal structures and energy-minimized them by DFT/B97-D3 computations,
freezing the HN9, HN1, and HC bonds connecting G4, C16, and the ring to their DNA and
diketoacid anchors. The mono-fluorobenzene ring of RAL had the least favorable ΔE(QC)
values, whatever the DFT functional. However, the chloro-fluorobenzene ring of EVG
had more favorable ΔE(QC) values than the difluorobenzene of DTG, the energy
difference being in the range 0.1–1.6 kcal/mole out of 40. Such a preference could plainly
indicate that fluoro-chlorobenzene interacts more favorably with the G4/C16 base pairs
than difluorobenzene, on account of its larger sigma-hole as well as more favorable van der
Waals dispersion effects. But this leaves open the contribution of the dikeoacid connector
in the relative affinities. On the one hand, it contributes interactions of its own with
the backbone. But it also anchors the halobenzene ring with respect to the G4/C16
base-pair. Along these lines, it was found that grafting the fluoro-chlorobenzene ring of
EVG on the diketoacid arm of DTG resulted, in the DTG binding site, into a one kcal/mole
ΔE(QC) gain. A similar gain was observed in the case of the difluorobenzene ring of
DTG, if transposed into the EVG binding site.

As put forth in El Hage et al. (2015), it is possible to leverage the “Janus-like” properties
of the CX bond (X=F, Cl, Br), electron-deficient along the bond and electron-rich in a cone
around it, to target respectively and simultaneously electron-rich and electron-deficient
sites of the nucleotide bases. Polarizable molecular mechanics is responsive to the
electronic changes brought about by substitutions as these impact the magnitude of both
QC-derived distributed multipoles and polarizabilities used to compute the EMTP

� and Epol
contributions. These should enable to fine-tune and further evolve the affinity of
halobenzenes for targeted HIV-1 DNA bases.

Along these lines, several novel compounds were recently designed and endowed with
significantly more favorable ΔE(QC) and ΔE(SIBFA) values than the difluoro benzene ring
of DTG and the fluoro-chlorine ring of EVG. They will be reported in a forthcoming paper
(P. El Darazi, et al., 2019, unpublished data).

In addition to handling the halobenzene interactions (El Hage et al., 2013, 2014), a
further asset of SIBFA and related polarizable potentials (Bell et al., 2016) is the reliable
handling of poly-ligated complexes of divalent cations (El Khoury et al., 2017; Kwapien
et al., 2017) and interactions involving “discrete” structural waters (De Courcy et al., 2010;
Gresh et al., 2011). Such structural motives are also encountered in the intasome-INSTI
complexes.

Grounded on these validations, we plan to undertake long-duration polarizable molecular
dynamics simulations on a diversity of INSTI complexes with intasome, resorting to the
massively parallel computer code Tinker-HP. These will enable to quantify the extent to
which the halobenzene-G4/C16 interactions are modulated by the conformational
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flexibilities of each partner within the complex, by the electrostatic potentials and fields
exerted by the neighboring INT residues and vDNA bases, and possibly as well by the
two neighboring divalent Mg(II) cations and by the structural waters.
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