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SEVERAL EXPLICIT AND RECURRENT FORMULAS FOR
DETERMINANTS OF TRIDIAGONAL MATRICES VIA GENERALIZED
CONTINUED FRACTIONS

FENG QI, WEN WANG, BAI-NI GUO*, AND DONGKYU LIM*

ABSTRACT. In the paper, by the aid of mathematical induction and some properties of deter-
minants, the authors present several explicit and recurrent formulas of evaluations for deter-
minants of general tridiagonal matrices in terms of finite generalized continued fractions and
apply these newly-established formulas to evaluations for determinants of the Sylvester matrix

and two Sylvester type matrices.
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1. INTRODUCTION

A finite generalized continued fraction is of the form

q1
Do + q2 )
p1+ pat a3

: m—1
Pm—2t P T Im
m=1Tpm,
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where pg,p1,---,Pm and q1,4qo, . - ., ¢m can be any complex numbers or functions. It can also be

written equivalently as

m
o+ K X -
{=1 D¢

m
qel
_P0+Z* =po +
=1 |pe

@ 92
p1+ p2+

dm—-1 Gm
pm—1+ Pm

In this paper, we will use the second compact form above. For more information on the theory

of continued fractions, please refer to the papers [7, [14] and closely related references therein.

In general, a tridiagonal matrix of order n is defined for n € N by

aq 51
Y1 Q2
0 7
0 0
Dn = (ei’j>1§i,j§n | :
0 0
0 0
0 0
0 0
where
€¢’j =

0

0
0
0

Prn-3

Ap—2

Tn—2
0

0 0 0

B2 0 0

as P 0

V3o Qg 0

0 0 Q3

0 0 Tn—3

0 0 0

0 0 0
a, 1<i=j5<mn
Bi, 1<i=j—-1<n-—1;
Vi, 1<j=i—-1<n-1;
0, otherwise.

0 0
0 0
0 0
0 0
0 0
Bn—2 0
An-1 Bn-1
Tn—1 o7

In the papers [I5, [T6] 18], the determinant |D,,| and some special cases were discussed, computed,

and applied to several problems in analytic combinatorics and analytic number theory. In the

papers [2, Bl 6, O 15 16, [I§], there are some computation of the inverse and determinant of

the general tridiagonal matrix D,,. For more information about this topic, please refer to the

papers [4, 8, 12, [13] and closely related references therein.

Let n > 2 and

ay
a2
as

aq

p:<..) -
m TP ) cin
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o O o O

o O O O
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where
Aj, ISZSnﬂ]:l?

by, 2<i=j<m;
¢, 1<i=j53-1<n-1;
0, otherwise.

In this paper, by the help of mathematical induction and some properties of determinants,
we will present several explicit and recurrent formulas for evaluations of two determinants |P,|
and |D,,| and will apply these newly-established formulas to evaluations for determinants of the

Sylvester matrix and two Sylvester type matrices.

2. EXPLICIT AND RECURRENT FORMULAS FOR |P,|

Right now we start off to present explicit and recurrent formulas for |P,|.

Theorem 2.1. Letn > 2 and by, # 0 for 2 < k <n. Then the determinant |P,| can be computed

recurrently by

k=2
where
Mo = @k — —F Ns1m, 1<k<n—1 (2.2)
bry1

and Ay, p = ap.

Proof. When n = 2, it is easy to see that

ap €

|P2| = = a1b2 — a2Cq

a2 2

and
2 ciA c1a2
/\1,2 H by, = /\1,21)2 =l|a — 1222 by = | a1 — —— |bs = a1by —asc; = |P2|-
Pt ba ba
This means that the formula (2.1) is valid for n = 2.
Assume that the formula (2.1)) validates for n = m — 1, equivalently speaking,

m—1

| Pr—1] = M m—1 H by
=2
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When n = m, expanding the determinant |P,,| according to the first rank and utilizing the

assumption for n = m — 1 give

a2 Co 0 ce 0 0 0 0
as bg C3
[e7} 0 b4
m
|Pm‘ “ klllgbk “ Am—3 0 0 bmfg Cm—3 0

Am—2 0 0 0 bm—2 Cm—2

Aoy —1 0 0 0 0 bm—l Cm—1
am 0 0 0 0 0 bm

m m c m m
=a [[or—crdom [J 0r = (al - bl)\Q,m> IT 66 = Mm I bn-
k=2 k=3 2 k=2 k=2
By mathematical induction, we derive the formula (2.1)). The proof of Theorem [2.1]is complete.

O

Theorem 2.2. For n > 2, the determinant |P,| can be computed explicitly by

n n k—1 n
1Pl =ay [ ox =D (1" (H a [ bm> Q. (2.3)
k=2 4

k=2 =1 m=k+1

Proof. From the recurrent relation ([2.2)), it follows that

C1
An =a1— —
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a gy - 2laz—2(a S P
= a1 ' 2~ 7 3= 7 4 — T T 0 —
ba b3 by be |
Cp—3 —2 Cp—2Cn—1
- Qp—2 Gp—1+ n
bn—2 bn—l bn—lbn
a @ a e a e a 1 a
— W1 = 2= 7 3 7 4 — T T L —
b2 b3 ba be |
(Cn—Ba Cn—3cn—2a + Cn—3cn—20n—1a ):|>:|>
- n—2 n—1 n
bn72 bn72bn71 bn72bn71bn

n k
—ar—Y (-1 (H C?)j) ay

k=2 £=2
for n > 2. Substituting this result into (2.1) and simplifying lead to (2.3]). The proof of Theo-
rem [2.2]is complete. O

Remark 2.1. Applying ar, = k, by, = k, and ¢ = k to the explicit formula (2.3 in Theorem

reveals

1 1 00 0 0 0 0

2 2 20 0 0 0 0

3 0 3 3 0 0 0 0

4 0 0 4 0 0 0 0

RN )

n—3 0 0 O n—3 n—3 0 0
n—2 0 0 0 0 n—2 n—2 0
n—1 0 0 0 0 0 n—1 n-—1

n 0 0 O 0 0 0 n

3. EXPLICIT AND RECURRENT FORMULAS FOR |D,|

Now we are in a position to present explicit and recurrent formulas for |D,,|.

Theorem 3.1. Forn € N, the determinant |D,,| can be explicitly and recurrently computed by

- m—2(— m—£ Im—
|Dn| = a9 + (a1 — ﬁl’}/l) H |:Ozm + K (BM:|
{=1 Oy — ¢

m=3
U L | | - [am + K W]
- (ﬁ[ﬂyf) k’*l m—2 (_ﬁnl—l'}’”m—l) (3'1)
k=3 Le=1 [Ths [am + K725 o ]
and
n k=2 (—Br_pvi_
D1 =m0z + [T on + i =) ), (3.2
he3 /=1 Qlf—y
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where Kfzq for p < q is understood to be zero,

A1 Ba e Bs

Mp =—1——M2n, Non =" — M3,n> N3 n = - Na,n,
Q2 a3 — 'Bizz a2 Qg — a,ﬁ_yﬁyng
ag
k-1
o = 1) e - 2 -
n k—1 — —Bo—mYe— —1 (—Br— ) )
az + H€=3 [Oég + Kfiﬂjl ( ﬁﬁx[ﬂz[ [)} apy1 + Klfczll ( ﬂkaitllri el
fora<k<n-—1, and
n—1 Yo
(=1
N = (71)n 1 5 (— .
CRDINEILTED vargss

Proof. The determinant |D,,| of the tridiagonal matrix D,, in (1.1) can be rewritten as

Qg 51 0 0 0 0 0 0
9! Qs B2 0 0 0 0 0
—ne g B2 gy 0 0 0 0
0 0 3 oy 0 0 0 0
|Dn‘ =
0 0 0 0 an-3 PBn-z 0 0
0 0 0 0 Tn—3 Qn—2 Pn-2 0
0 0 0 0 Yn-2 Qn-1 Bn-1
0 0 0 0 0 Tn—1 Qo
aq B1 0 0 0 0 0
901 o) B2 0 0 0 0
—u2 0 ay- B2 Bs 0 0 0 0
azf3
Ct2’;137—2g2’)’2 O g — Olzazs—ggj’yz O 0 0 O
0 0 0 0 Qn_3 Pn_s3 0 0
0 0 0 0 Yn—-3 Onp—2 ﬁn_g 0
0 0 0 0 Tn—2 CQn—1 Bpn-1
0 0 0 0 0 0 Tn—1 Qp
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ap B 0 0 0 0 0 0
as b B2 O 0 0 0 0
as 0 b3 ,83 0 0 0 0
o 0 0 by 0 0 0 0
an—3 0 0 O bp—s Pn—z O 0
an—o 0 0 0 0 bpn—o Bn-2 0
Gp—1 0 0 0 0 0 bn—l ﬁn—l
an 0 0 O 0 0 0 bn,
where
by =g, b3=az— 52%7 by = ay — My y bnz=an_3— 671_4%_47
b2 bg bn74
ﬁnf?)'}/n 3 5n72’7n72 5n71’7n71
b — Gn - ) bnf — Un-—-1 7 ) bn — Gn —
2 “ 2 bn—3 ! “ ! bn—2 “ bn—l
and
Y2 73 Yn—4
a; = oy, az =79, 0a3=—7-02, Qa4 = —7-0Q3, ..., Q(p-3 = — An—4,
bg b3 bn—4
a 2:—7’”730/ 3 a 1:_7n72a ) a :_’anla L
n— bn_g n—on n— bn_2 n—aiy n bn_l n—1>1-

The sequences by and ay, for k£ > 3 can be formulated by finite generalized continued fractions

_ Br—17k—1 B 2 (—Br—eVh—0)
bk = %k _ Br—2Vk—2 = Ok + ZK; Ay
k-1 Br—37k—3 -
Gh—27 Br—4Tk—4
ap_3—

and

Using (2.3) results in

Dn|:<b2+HBk>al—<51HBm>a2—Z ( s ] B )
k=3 m=3 k=3 = m=k+1
- /6 ) - m= 2( Bm m )
o T o+ 7 ) T o )

n k—1 n

_ZH& H [am'i-eK ( Brm—tYm—rt Hz 1’)’2

= = - ):| | | K
Q@ Be—i i
k=3 (=1 m=k+1 m—4¢ =2 [aﬁ + %]

Qp—i
which can be rearranged as (3.1)).
Making use of (2.1) and (2.2) yields (3.2]). The proof of Theorem is complete. O
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4. DISCUSSIONS

In this section, we discuss our main results and related ones by several remarks.

Remark 4.1. In [3] p. 1018], it was stated that J. J. Sylvester found in 1854 that

s 1 0 0 0 0 0
n s 0 0 0 0 0
0 n—1 s 3 0 0 0 0
0 0 n-2 s 0 0 o o
M (s)] = : : =L (s+n—2k)
0 0 0 0 s n—2 0 o ™
0 0 0 0 3 n—1 0
0 0 0 0 0 S n
0 0 0 0 0 1 s

An application of (3.1) to |M,(s)| yields
n
Mo ()| = 8%+ (s —n) T]

m=3

K
(=1 s

{S+m—2—(m—€)(n—m+€+1)}

Hn e [S+Km 2 —(m—£)(n— m-‘r@—i—l)]

S

Hk‘ 1 [$+Kwi12 —(m—£)(n— m+£+1)]

S

=s"+(s—n) ﬁ [S+”};2—(m—€)(n—m+£+1)}
=1 s

—i[ﬂé —0+1)

k=3 L¢=1

m=3

[Ty s+ Ky St

—n! 5
];) (TL* k+ 1)' Hk 1 [5+K2n12 —(m— Z)(n7m+@+1)]

S

- ! ka1 S(s;m,n)
L2324 (s—n S(s;m,n) —n! | S im,n)
( )nHS Z k+1 H:l_zle(s;m,n)

Now we try to explicitly compute
m=2—(m—L)(n—m+L+1)

S(s;myn)=s+ K
=1 s

When m = 3, it is easy to obtain that

52—2(71—1)%&

S(s;3,n) = 5 o

When m = 4, employing the above result for S(s;3,7n), we can acquire

Bis—3(n—2)ar  s(s?—5n+8) 5 o

S(s;4,n) = = L2
(5;4,m) B1 52 —2n+2 9
If assuming S(s; k + 1,n) = 2 o, then, by mathematical induction, we have
15— op—1(k+1)(n—k
S(s;k+2,m):@:6k 18— a1k + Din ).

oy Br—1
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Note that a1 = Br_2. Then
Br — Br—15+ Pr—2(k +1)(n — k) = 0.
Further replacing k by k + 2 results in
Btz = Bev1s + (k+3)(n — k —2)Br = 0.
By the approach utilized in [I5, Theorem 3.1}, the characteristic equation is
t? —st+ (k+3)(n—k—2)=0

which has solutions

t_s:l:\/32—4(k+3)(n—k—2)
= 5 :

Consequently, it follows that

ﬂk:A<s+\/52—4(k+3)(n—k—2)>k1+B<s—\/52—4(k+3)(n—k—2)>k1

2 2
where
= _283 —2(5n —8) — (s —2n +2)(s +v/s2 — 20n + 80)
2v/5%2 —20n + 80
and
B 25% —2(5n — 8) — (52 — 2n +2)(s — V52 — 20n + 80)

24/52 — 20n + 80 '

In a word, we provide an alternative expression for the Sylvester determinant |M,(s)]|.

Remark 4.2. In [3], by virtue of left eigenvector method, the determinants

s 1 0 0 0 0 0
n s+t 2 0 0 0 0
0 n—1 s+2¢ 3 0 0 0
0 0 n—2 s+3t 0 0 0
(M, (5,)] = |
0 0 s+ (n—2)t n—1 0
0 0 2 s+ (n—1)t n
0 0 0 1 s+ nt

—H<s+nt+n22k\/t4+4),
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and

s T 0 0 0
nv s+t 2x 0 0
0 (n—1)y s+2t 3z 0
0 0 (n—2)y s+3t 0

|Mn(s,t;x,y)| = . .
0 0 0 0 s+ (n—2)t
0 0 0 0 2y
0 0 0 0 0
n

t — 2k
:H(s—FT;—&—nQ \/t4+4xy>

k=0

0
0
0
0
(n— 1z
s+ (n—1t
Y

o O O O

0
nx

s+ nt

of tridiagonal matrices similar to the Sylvester matrix were collected and calculated. These

evaluations can be computed alternatively by Theorem

Remark 4.3. The condition by, # 0 for 2 < k < n in Theorem [2.1]is removed off in Theorem 2.2}
Therefore, the explicit formula ([2.3)) is better than the recurrent formulas (2.1)) and (2.2).

Remark 4.4. The explicit formula (2.3)) can be simply reformulated as

n k—1 n
|Pal = Y (1) (H e I bm> ay,

k=1 =1 m=k+1

where the empty product is understood to be 1 as usual.

Remark 4.5. Let

ap m 0 0 0 0
ay P2 o2 0 0 0
a3 0 B3 93 0 0
Qy 0 0 ,84 0 0
Un = (tij)1<ij<n = : : :
Qp_3 0 0 0 ani’z Tn—3
Qp—2 0 0 0 0 5n—2
Qp—1 0 O 0 0 O
Qp, 0o 0 O 0 0
where
Qi ]-SZSTL,J:]-y
Bi, 2<i=j<mn;

Tiy 1§ZS

0, otherwise.

0 Tl
0 To
0 T3
0 Ty
0 Th_3
Tn—2 Tn—2
Br-1 Yn-1
0 Br
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The determinant |U,| can be rewritten as

a1 v 0 O 0 0 0 sl
as  Ba v O 0 0 0 Ty
as 0 B3 3 0 0 0 T3
g 0 0 pB4 0 0 0 T4
[Un| = R : :
ap—3 0 0 0 Bn-3 -3 0 T3
Qn—2 0 0 O 0 Brn—2 Yn-2 Tn-2
ap-1 0 0 O 0 0 Brn-1 Yn-1
an 0 0 0 0 0 0 B
m—n oy 0 0 0 0 0
g — 52 B2 72 0 0 0 0
o3-S0 By 0 0 0 0
-9 0 0 fy 0 0 0 0
Qg — % 0 0 0 Brn-3 Yn—3 0 0
Onoz =220 00 0 Bno Yu2 0
Oy — 2=t 0 0 0 0 Bo1 O
Qp 0 0 0 0 Bn
;M- g 00 0 0 0
g — S5 B2 v O 0 0 0
az— T 0 By 0 0 0
- 9T 00 B 0 0 0
= b ’ S
Qp_3 — M 0 0 0 Bn-3 Tn-3 0
Onp—2 — % 0 0 0 0 Brn—2  Yn—2
Oy — 2=t 0 0 0 0 0 B

An application of Theorem [2.1] and 2.2 and Remark [£.4] straightforwardly yields

n—2 k—1 n—1

n—2

|UTL| = Z(_l)k—i_l(akﬁn - Tkan) H Ye H ﬁm + (—1)”(0{71_167, - Tn—lan) H Ye

k=1 /=1 m=k-+1
and
n
Unl = A1 [ B
k=2
where
Qp Yk
Appn1=ar — T — = Npt1,n-1,

P

Br+1

=1

1<k<n-2
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and An—l,n—l =Qn_1— 5 Yn—1-
n
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Remark 4.6. The determinant |P,| of P, in (1.2]) can be rearranged as

ap ¢ 0 0 0 0 0 0
az by ca 0O 0 0 0 0
as 0 bg C3 0 O 0 0
ag 0 0 by 0 0 0 0
Gn-3 0 0 0 bnfd Cn—3 0 0
Ap—2 0 0 0 0 bn_g Cn—2 0
QAp—1 0 0 0 0 0 bn—l Cp—1
0 0 0 O 0 _@nbn_y b, — AnCn—1
An—1 An—1
ai c1 0 0 0 0
0 by — azifl Co 0 0 0
asb asc
0 R b us 0 0 0
0 0 — 0 0 0
0 0 0 Cn—3 0 0
0 0 0 bp_o — % oo 0
0 0 0 _% bn—1 — % Cn—1
Anbn_ QpCn—
0 O 0 O o Cbn—ll bn - an—ll
by— 2 e 0
_asby ha — 3C2 0
az as
0 _aabs 0
as
= al : .
0 0 Cn—3 0
0 0 bn72 - %;272_3 Cn—2
0 0 —tambioe o p, g Samem g
0 0 0 _Gnbn_y b, — dncn-t
An—1 an—1
= a1|Qn—1|~

Therefore, by virtue of Theorems and we derive that the determinant |Q,,—1| satisfies

Pl Moo
|Qn_1‘:u:#]‘_{bk

4.1
aq aq e ( )
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and
n

‘P n 1 k—1 n
= B [0 L3 (nq 11 bm>ak
k=2 k=2 =1 m=k+1
Further letting

A1 1C
ak:bkﬂ—ﬂ, 1§k§n—1
ag
B = Ckt1, 1<k<n-2
agyob
yk:,w, 1<k<n-2
Ak+1

in equations (4.1]) and . reveals
Al n
|Dn—1| = H bk
ai
k=2

and

Dual= [ 3 ot (HQ 10 b)

k=2 (=1 m=k+1

245

(4.5)

From the second equality in , it is not difficult to see that ¢ = Bx_1 for 2 < k <n—1. If we
can derive another relations from to express ai for 1 < k < n and b for 2 < k < n in terms
of ap for 1 <k<n-—1,0forl <k<n-—2 and v for 1 <k < n — 2, then, by substituting
these relations into and ([4.5)), an alternative and explicit expression for evaluation of |D,|

would be concluded. This is an open problem and we leave it to the interested readers.

Remark 4.7. In [I, Lemma 1.1] and [I1l Lemma 2.1], it was acquired that

Tt T2 T3 T4 **+ Tp—2 Tn-1 Tn
a B 0 0 0 0 0
vy a B 0 0 0 0
0 ~ a p 0 0 0 n
e e L
. k=1
0O 0 0 O 153 0 0
0 « 0
Y a

«
25

)

(4.6)

where Ug(s) is the kth Chebyshev polynomials of the second kind, which can be generated [19,

20, 22] by

1—25t+t2 ZUk . lsl< 1, |t < 1.
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Taking 771 =175, =--- = 7,1 = 0 and 7, = 1 and reformulating, the formula (4.6)) becomes
B0 -~ 0 0
v o«
0 v « o
| =905 7= ) (@7
: 2By
0 0 a f
0 O voo
This is different from
a g 0 -+ 0 0
g « o g 8 (a++/a?—437)"" = (a— /a2 —4By)"" 0? £ 487
Toa o _ on+1 /012—457 ’
: (n+1) (a) ) a? = 4By
0 a 2
0 ,y a nxn
(4.8)
and
8 0
v oa p
0 v « n ;
_ [ s I
) —H(ﬂ—i—Qa acosn+1> (4.9)
. . . . . . ]:1
0 00 -+ «a p
0 0 0 -+ v «

nxn

which are established and collected in [I5, pp. 130] and [I8, Theoem 4].
Comparing (4.7) with (4.8) and (4.9), taking 5 =~ = 1 and a = 2s, and simplifying yield

n

Un(s) = H(l +2/25 cos " )

ke n+1

(s—i—\/sQ—l)nH—(s— 32—1)n+1 )
- ont1, /52 — 1 , 71

(n+1)s", s2=1

which are alternative explicit formulas for the Chebyshev polynomials of the second kind U, (s).

Remark 4.8. On 21 September 2019, we were reminded of the paper [10] in which an alternative
explicit formula for elements of the inverse of a tridiagonal matrix and an efficient and fast com-
puting method to obtain elements of the inverse of a tridiagonal matrix by backward continued

fractions were investigated.

Remark 4.9. Theorem in this paper has been applied in the proof of [I7, Theorem 3.3].

Remark 4.10. This paper is a revised version of the preprint [21].
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