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HIGHLIGHTS 

 The origin of As, F and other pollutants in groundwater is still misunderstood. 

 Consumption of water with high content of As is a major threat for human health. 

 Time-resolved experiments were used to study elemental release in water. 

 As, V, Ba, Sr are probably coprecipitated with calcite and F adsorbed on calcite. 

 The mobility of pollutants in the Pampean Aquifer is controlled by calcrete. 
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ABSTRACT 1 

The water supply for human consumption in the Chaco-Pampean region in Argentina is 2 

restricted by the low quality of groundwater due to elevated concentrations of arsenic and 3 

other trace elements. Previous studies indicated a complex concurrence of factors and 4 

processes that are believed responsible to control the distribution of arsenic in groundwater. 5 

For a better understanding of the origin of trace elements in the Pampean aquifer, flow-6 

through experiments with loess and calcrete samples representative of the sediments that 7 

constitute the aquifer were carried out in continuous flow reactors. The aqueous solutions 8 

were collected and the concentrations of SiO2(aq), Ca2+, SO4
2-, Na+, Cl- , F- and trace elements 9 

(Ba, Sr, V, and As) were measured by inductively coupled plasma atomic emission spectroscopy 10 

(ICP-AES), high performance liquid chromatography (HPLC) and capillary electrophoresis. The 11 

experiments showed differences in the release rate of elements to the solution according to 12 

the type of sediment. The highest concentrations of V, Ba, and As were measured in 13 

experiments conducted with loess, and these elements were released quickly to the solution in 14 

the first minute of the test. In the case of loess, V and As are suggested to be adsorbed on the 15 

solid particles surface. Conversely, the experiments conducted with calcrete showed a lower 16 

but continuous release of those elements. This last result may indicate that the trace elements 17 

were coprecipitated in the calcite. In addition, it was demonstrated that F did not come from 18 

the dissolution of minerals such as fluorapatite, but both desorption from solid surface and 19 

dissolution from calcite minerals account for the release of F. This study support that both 20 

dissolution and adsorption-desorption processes can control the mobility of trace elements, 21 

with an emphasis on the role of calcrete in the retention and the mobilization of trace 22 

elements in the Pampean aquifer. 23 

Keywords: Arsenic - carbonate concretions - loess - groundwater contamination –kinetic 24 

modeling – Pampean aquifer 25 
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INTRODUCTION 26 

Arsenic dissolved in water is one of the most important concerns regarding drinking 27 

uses in many areas of the world. Naturally-occurring high arsenic (As) groundwater 28 

concentrations are widely distributed in some large regions of different countries, including 29 

the USA (Scanlon et al., 2009; Chappells et al., 2014), Mexico (Wurl et al., 2014), Argentina 30 

(Nicolli et al., 1989; Gomez et al., 2009), China (Guo et al., 2015), Chile (Sancha and O’Ryan, 31 

2008), Vietnam (Erban et al., 2013), India (Chakraborti et al., 2016) and Bangladesh (Fendorf et 32 

al., 2010). The consumption of water with high concentration of As is related to arsenicosis, 33 

being an important threat for human health (Agusa et al., 2014; Joseph et al., 2015). About 140 34 

million people in the world are exposed to As contaminated drinking waters. Other trace 35 

elements such as fluoride and vanadium are also of concern for human health. High fluoride 36 

concentrations in waters are associated with dental fluorosis and sometimes bone fluorosis 37 

(Sota de la et al., 1997), while vanadium can cause aneugenic effects and irritation of the 38 

respiratory tract (M. Costigan, 2001).Because of their important impact on human health, it is 39 

necessary to improve the understanding of the processes responsible for trace elements 40 

release and mobilization.  41 

The mobility of arsenic in sedimentary environments has been studied in previous 42 

investigations, because high As concentration in drinking water is particularly common in arid 43 

or semi-arid regions (Robertson, 1989; Wyatt et al., 1998; Levy et al., 1999; Mahlknecht et al., 44 

2004, Farooqi et al., 2007; Currell et al., 2011, Wang et al., 2018; Yang et al., 2018). The 45 

desorption from Fe-(hydr)oxides was identified as the main process for As release in these 46 

areas under oxidizing environments. In the Pampean aquifer, the origin of As, F, Ba, Sr, and V, 47 

has been widely studied. Many authors attributed the high concentration of these elements 48 

with the presence of volcanic glasses (Nicolli et al., 1989; Smedley et al., 2002; Kruse and 49 

Ainchil, 2003; García et al., 2012; Auge, 2014). Other studies attributed the elevated 50 
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concentration of trace elements to the process of desorption from Al/Fe/Mn oxides (Smedley 51 

and Kinniburgh, 2002; Bhattacharya et al., 2006; Gomez et al., 2009). Nevertheless, volcanic 52 

glass shards are generally present in a homogeneous proportion in the Pampean sediments, 53 

whereas the concentrations of As, F and other trace elements show high variability throughout 54 

the territory (Blanco et al., 2012). For this reason, it is believed that other mechanisms could 55 

control the mobility of those elements in the groundwater.  56 

The ability of calcite (CaCO3) to retain inorganic contaminants has been described by 57 

many authors (Comans and Middelburg, 1987; Reeder, 1996; Tesoriero and Pankow, 1996; 58 

Cheng et al., 1999; Pokrovsky and Schott, 2002; Roman-Ross et al., 2003; Stipp et al., 2003; 59 

Renard et al., 2015). The uptake of contaminants in calcium carbonates can occur via 60 

adsorption on solid surface or coprecipitation reactions. Calcite has been shown to be capable 61 

of retaining such trace elements, retarding their transport, and thus plays an important role in 62 

the migration of contaminants in natural environments (Zachara et al., 1991; Stipp et al., 1992; 63 

Paquette and Reeder, 1995; Elzinga et al., 2002; Rouff et al., 2004). As banks of calcrete are 64 

extensively present in the Pampean sediments, adsorption or coprecipitation with calcite could 65 

explain most, or part, of the variability of As, F, V, Sr and Ba in the Pampean aquifer.  66 

In the Chaco-Pampean plain of Argentina, the shallowest groundwater is contained in a 67 

sedimentary deposit of aeolian origin, which is one the most important sources of water 68 

supply for water to the population, agriculture and industry, and contributes to more than 60% 69 

of the country's gross national product (Schulz and Castro, 2003). The quality of the water 70 

from this reservoir depends on the hydrological balance and the interaction with the materials 71 

that constitute this aquifer. The quality of groundwater for drinking purposes varies greatly 72 

due to the presence of inorganic contaminants such as arsenic, fluoride, and other trace 73 

elements such as vanadium, strontium, and barium (Nicolli et al., 1989; Smedley et al., 2002). 74 

The negative effect of the consumption of water with high content of arsenic in this region is 75 
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well known (Hopenhayn-Rich et al., 1996; Bardach et al., 2015). In the province of Buenos 76 

Aires, arsenic concentration ranges from 23 to 289 μg.l-1 (Al Rawahi et al., 2015) and the 77 

fluoride concentration is approximately 1.0 mg.l-1 (Kruse and Ainchil, 2003; Martínez et al., 78 

2012; Calvi et al., 2016). In the central arid area of the country, the concentrations of arsenic 79 

and fluoride can be as high as 4.8 mg.l-1(Bundschuh et al., 2004), and 28 mg.l-1 respectively 80 

(Smedley et al., 2002). In this area, the barium and vanadium concentrations are 81 

approximately 45 μg.l-1 and 50 μg.l-1, respectively (Smedley et al., 2002). The concentrations of 82 

these elements exceed the WHO guidelines values in many places (As: 10 μg.l-1; F: 1.5μg.l-1), 83 

presenting risks for human health and limiting the use of groundwater resources (Nicolli et al., 84 

1989; Bundschuh et al., 2000; Smedley et al., 2000; Fiorentino et al., 2007; Smedley et al., 85 

2008; Nicolli et al., 2012a; Nicolli et al., 2012b). Whereas barium and strontium are present in 86 

solution as Ba2+ and Sr2+ cations, vanadium is generally found in solution as vanadate anions 87 

(HVO4
2-, H2VO4

-), (Al Rawahi, 2016). Arsenic can be present in four oxidation states (-III, 0, + III, 88 

+ V) but in the studied hydrological system, it is most commonly found as As (III) (H3AsO3 or 89 

H2AsO3
-) and As (V), (H2AsO4

- o HAsO4
2-).The As (V) form is predominant at neutral and alkaline 90 

pH (Smedley et al., 2001). Those inorganic forms of arsenic (As(III) and As(V)) are highly toxic 91 

and mobile in the environment (Smedley and Kinniburgh, 2001; Jang et al., 2016). 92 

Since the groundwater resources of the Pampean aquifer are threatened by the high 93 

toxicity of trace elements, it is important to improve the knowledge of their mobilization in 94 

this hydrologic system. In the present study, the putatively important role played by calcrete 95 

for the mobility of trace elements is investigated. Though the chemical composition of the 96 

water of the Pampean aquifer is commonly considered based on a thermodynamic equilibrium 97 

approach (Garrels and Christ, 1965; Glok Galli et al., 2014), it has been demonstrated in a 98 

previous paper that this assumption is questionable for some specific solid phases (Vital et al., 99 

2018). To go beyond the thermodynamic equilibrium approach, flow-through experiments of 100 

interactions of loess and calcrete with water have been performed and coupled to reactive 101 
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transport simulations to identify the processes involved in the release of trace elements into 102 

the solution. In addition, while our previous study focused on the release of major elements, 103 

the present study aims at unraveling the source of trace elements released during the flow-104 

through experiment with calcrete and loess samples. 105 

DESCRIPTION OF THE STUDY SITE 106 

The association of sediments occupying a surface area of more than one million square 107 

kilometers is known as the Pampean aquifer (Auge et al., 2002; Auge, 2008). The term 108 

"Pampean sediments" is an informal term and includes the Quaternary aeolian deposits of the 109 

Pampean region, consisting mainly of sand, silt, clay (Frenguelli and Teruggi, 1955). The 110 

sediments of the Pampean aquifer are considered as a formation of loess type. Unlike the 111 

"typical" loess, loess in Argentina has high contents of aluminosilicates and volcanic glass 112 

(Tricart, 1973; Pye, 1995; Zárate, 2003). In general, its composition is homogeneous, and most 113 

of its components originate from volcanic eruptions (Teruggi, 1957; Tricart, 1973). Calcareous 114 

formations occur as concretions and / or banks. Where the calcification is intense, banks of 115 

calcium carbonates result in sedimentary structures of the type of calcrete, locally 116 

denominated "tosca" (Sayago et al., 2001). The Pampean loess composition reveals 2 to 4% of 117 

calcium carbonate as calcite (Teruggi, 1993), mostly located in the upper part of the aquifer. 118 

Calcretes are widely abundant and common in the Pampean sediments, being well distributed 119 

superficially and at different depths. Calcrete is typical of the study site, forming con nuous 120 

layers that have  een related to paleo-surfaces ( eruggi et al., 19 3 , occupying the top of the 121 

hills.  he calcretes may have formed over periods of several thousand years and are an 122 

indicator of semi-arid condi ons (  rate and Fasano, 1989). Calcrete layers are particularly 123 

abundant in the East of the Buenos Aires province, typically at a depth of around 1 m below 124 

ground level. This has resulted in the development of a largely flat-lying plain. This has been 125 

well described by Zárate and Folguera (2009) quoting original observations done by Charles 126 
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Darwin (Darwin, 1846). The hydrological conditions in the region are characterized by average 127 

annual precipitations around 900 mm, and a groundwater recharge estimated at 15% of total 128 

precipitation (Quiroz Londoño et al., 2012). The mean pH of the Pampean groundwater in the 129 

studied area is 7.15 (Quiroz-Londoño et al., 2008). 130 

MATERIALS AND METHODS  131 

1. Sample collection and mineralogical characterization 132 

Samples of loess and calcrete were collected at an outcrop in the area of Mar del Plata, 133 

in the province of Buenos Aires, Argentina (38°05'12.7"S 57°38'57.1"W), (Figure 1).The area of 134 

sampling was chosen as being a representative area of the mineralogical composition of the 135 

Pampean aquifer in this sector of the Pampa plain. The outcrop includes both loess-like and 136 

calcrete sediments which were collected from a non-saturated zone with the same 137 

sedimentary composition as the Pampean aquifer. The samples were characterized in previous 138 

studies (Vital et al., 2016 ; Vital et al., 2018) using X-ray diffraction (XRD) coupled to Rietveld 139 

refinement and scanning electron microscopy coupled to energy dispersive X-ray spectroscopy 140 

(SEM/EDS). The analysis of the particle size distribution (PSD) by sieving revealed that loess is 141 

composed of 23 % of medium sand (0.25–0.5 mm), 15 % of fine sand (125–250 µm), 25% of 142 

very fine sand (62.5–125 µm) and 37 % of pelites (silt and clay, 0.997–62.5 µm).Calcrete 143 

samples were also collected in other areas of the province of Buenos Aires (Otamendi, Tandil 144 

and Tres Arroyos) in order to check the representativeness of the results obtained for As. 145 

2. Flow-through experiments 146 

The experiments were designed to monitor and measure the release of major and 147 

trace elements in the outflowing solution, as a function of reaction time with the solid samples 148 

of loess and calcrete (Figure 2). Continuous flow-through reactors simulate the conditions of 149 

an open geochemical system. The experiments were carried out using the set-up designed by 150 
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Cama et al. (2000). The Teflon-based continuous flow reactor of known volume of 21.2 cm3was 151 

placed on a magnetic stir plate at room temperature. The solid samples of either loess or 152 

calcrete powders were introduced in the reactor. Through this reactor, deionized miliQ water 153 

(pH = 5.7) was continuously injected at a determined flow rate of 5 ml.min-1. In this study, the 154 

objective of the experiment was to monitor the total release of the trace elements by the 155 

calcrete and the loess samples. Thus, pure milliQ water was used as a stock solution, to ensure 156 

that the input water is free of the trace elements that are under study. Importantly, the use of 157 

milliQ water is not intended to mimic rainwater or groundwater. This simplification was 158 

necessary to unravel the processes responsible for the release of the considered elements. 159 

Once such process are correctly singled out, the extrapolation to different real conditions (i.e. 160 

different rainwater or groundwater compositions) can be easily achieved by using geochemical 161 

modeling software. The solution inside the reactor was continuously stirred so that the 162 

concentrations and the temperature were theoretically homogeneous. The solution was 163 

maintained at far-from-equilibrium conditions with respect to the dissolving phases because of 164 

the continuous replenishment of the solution. 165 

The experiment was designed to evidence the differences in elemental release 166 

between samples of loess and calcrete. It was divided into two steps: the first testT1 and the 167 

second test T2, in order to observe if the targeted elements are quickly and uniquely released 168 

to the solution over T1 (corresponding either to desorption, or to the disappearance of 169 

accessory minerals) or if they are continuously released over T1 and T2 (corresponding to the 170 

congruent dissolution of trace elements that were coprecipitated in major rock-forming 171 

minerals and/or minerals with slow dissolution kinetics). Drying the samples after collecting 172 

them is required to stop the dissolution reaction of the samples, and limit the possible 173 

precipitation of undesired secondary phases formed prior to the onset of the second 174 

experiment. In that way, it was possible to decipher whether the trace elements are adsorbed 175 

on solid particles or coprecititated as impurities in some minerals.  For this purpose, the 176 
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samples of loess and calcrete were introduced two times in the reactor. First, 2 grams of 177 

powder (loess or calcrete from the various above-mentioned locations) were introduced in the 178 

reactor for 2 hours. Sampling of the outflowing aqueous solution was carried out at the 179 

following duration steps: 1, 3, 5, 10, 15, 20, 30, 45, 60, 90 and 120 minutes. Those collected 180 

aqueous samples correspond to the first testT1. Afterwards, the solid samples were recovered 181 

at the end of the experiments, dried in an oven for 24 hours at 60°C. The dried solid samples 182 

were then put back in the flow-through reactor for two additional hours. The collection of 183 

aqueous samples in the second part of the experiment was carried out using the same 184 

previous time steps. The collected aqueous samples correspond to the second testT2. The 185 

experiments were repeated 3 times for each samples and each location. In all cases, the 186 

aqueous samples were filtered through a 0.45 µmfilter and stored at -4°C prior to their 187 

analyses. 188 

3. Aqueous sample analyses  189 

The aqueous solution samples recovered at the reactor outlet, from the experiments 190 

realized with the loess and calcrete samples from the area of Mar del Plata, were analyzed to 191 

quantify the concentration of calcium, sodium, potassium and magnesium by capillary 192 

electrophoresis at the National Atomic Energy Commission (CNEA) laboratory (Buenos Aires, 193 

Argentina) with a Beckman Coulter brand equipment using a 40 cm-long fused silica capillar 194 

with a diameter of 75 µm(25 KV). The background electrolyte (BGE) was composed of a 195 

deimidazole solution of 10 mmol.l-1, and acetic acid (40 mmol.l-1). BGE was used as a buffer 196 

and is essential to stabilize the electro-osmotic flow and the migration time of the analytes. 197 

Calcium, sodium, potassium and magnesium standard solutions of 0.1, 0.5, 1, 5, 10, and 15 198 

ppm were injected to determine the time after which each element appeared and to obtain 199 

the calibration curve of the peak area vs. the concentration. Sulfate, chloride and fluoride 200 

concentrations of the aqueous samples were measured by high performance liquid 201 
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chromatography (HPLC) with a Thermo Separation Products, CA, USA team, with a Spectra 202 

SERIES P200 binary pump, and a UV-Vis UV100 detector. An HPLC anion exchange column, 203 

PRP-X100, HAMILTON® and a mobile phase of potassium biphthalate (4,5 mmol.l-1) were used 204 

at the CNEA laboratory. Standard solutions of 0.5, 1, 2, 5, 10 and 15 ppm of fluorine, sulfate, 205 

and chloride were prepared to establish pattern curves in order to calibrate the concentration 206 

of each anion as a function of the area of the peak. The barium, vanadium, strontium, arsenic 207 

and silica concentrations of the aqueous samples were measured by inductively coupled 208 

plasma atomic emission spectroscopy (ICP-AES) with a Thermo ICAP 6000 brand equipment at 209 

the laboratory of hydrology and geochemistry of Strasbourg (France). In all analyses, pure 210 

milliQ water was used as a blank standard. 211 

Arsenic concentrations of the aqueous samples obtained from the experimentsT1 and 212 

T2 realized with the calcrete samples from the area of Tandil and Tres Arroyos were 213 

determined by Total reflection X-Ray Fluorescence (TXRF), using a TXRF spectrometer S2 214 

Picofox (Bruker, Germany). 215 

4. KIRMAT Modeling 216 

Fluorapatite was identified in the loess and calcrete samples (Vital et al, 2018) and 217 

fluorine has been detected as an impurity in the calcrete with concentrations ranging between 218 

approximately 220 μg.g-1 (García et al., 2006) and up to 1500 mg.kg-1 (Limbozzi, 2015). 219 

According to those observations, kinetic modeling was performed to assess the contribution of 220 

fluorapatite and fluoride-bearing calcite to the concentration of fluoride in the aqueous 221 

samples. Kinetic simulations coupled to mass transport were realized with the hydrochemical 222 

and thermo-kinetic code KIRMAT (KInetic Reaction and MAss Transfer), (Gérard et al., 1998). A 223 

phase of calcite with 0.1% of fluoride as an impurity with a solubility identical to that of pure 224 

calcite was added to the KIRMAT thermodynamic database. The concentrations of fluoride 225 

obtained in the flow-through experiments test 1 (T1) and test 2 (T2) with the samples of loess 226 
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from Mar del Plata, and the samples of calcrete from the four locations, were compared to 227 

dissolution simulations of loess and calcrete containing fluorapatite or F-bearing calcite (0.1% 228 

of fluoride). The BET surface area of each sample from (Vital et al., 2018) was used as well as 229 

kinetic rate laws gathered in Palandri and Kharaka, (2004). Other input parameters for the 230 

simulations include deionized water in equilibrium with atmospheric CO2 (corresponding to a 231 

starting pH of 5.7), a temperature of 25ºC, and a flow rate of 5 ml.min-1. The thermodynamic 232 

database used in KIRMAT comes from the THERMODDEM database of the Bureau de 233 

Recherche Geologique et Minière (BRGM - http://www.brgm.fr/). 234 

RESULTS  235 

To determine the source of trace elements and their relations to major ions, the 236 

evolution of the output concentrations of major and minor elements obtained from the flow-237 

through experiments conducted with loess and calcrete samples from the area of Mar del 238 

Plata are presented in Table 1 and Figure 3.  239 

1. Experiments conducted on loess samples 240 

In the experiment conducted on loess samples, the major ions SiO2(aq), Ca2+, Na+, SO4
2-, Cl- and 241 

K+ are released in the solution following each of them a similar tendency, which consists of an 242 

initial peak of ion incorporation after the very first minutes of the experiment in the test T1. 243 

Then, the concentrations of SiO2(aq), Ca2+, Na+, SO4
2-, Cl- and K+ decrease to reach a constant 244 

final value after 120 minutes (TF1). A lower concentration of those ions is measured in T2 but 245 

also starting with an initial peak of release. In detail, the highest concentration of silica (0.24 246 

mmol.l-1) was measured in the sample collected during the first minute of contact with loess 247 

(table 1). Subsequently, the silica concentration dramatically decreases to reach 0.04 mmol.l-1 248 

all over T1. In the second test(T2), a significant release of silica was observed in the first minute 249 

(0.21 mmol.l-1) followed by a very significant decrease. Sodium and chloride ions are released 250 
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very quickly to the solution, with the highest concentrations reached during the first minute of 251 

T1(3.3 and 21 mmol.l-1, respectively). A very significant decrease in the concentrations of these 252 

elements is observed to reach stable values in the first hour of T1(0.2 and 0.01 mmol.l-1). Over 253 

the course of T2,the values measured in the samples in the first minute are significantly lower 254 

than the values measured in the first minute of T1 (0.09 and 0.1 mmol.l-1). The same trend is 255 

observed for calcium and sulfate ions, with the highest concentrations reached in the first 256 

minutes of T1 of 4.8 mmol.l-1 and 0.7 mmol.l-1. 257 

The pH of the outflowing solution follows the patterns observed for the released ions. The pH 258 

of the initial input solution is 5.7. Initially, a fast increase from 5.7 to 6.6 is observed, but then 259 

pH decreases slowly to the initial input value after 180 min. The same behavior was observed 260 

for the TDS. 261 

The behavior of trace elements is more complex (Figure3): while the concentration of some 262 

elements such as Sr and V follows a trend that is similar to that of major ions (i.e., initial peak 263 

after one minute in T1 and T2 followed by a decrease and the attainment of a steady-state 264 

concentration), the concentrations of other elements (e.g., Ba, F, As) steadily decrease 265 

throughout T1 and T2. The initial concentration of Sr2+ reached 8.72 µmol.l-1 in T1, with a 266 

decrease down to 0.2 µmol.l-1, followed by another peak in T2 at 0.3 µmol.l-1. The 267 

concentration of vanadium is 0.2 µmol.l-1 at the beginning of T1 and then, after an initial peak 268 

in T2 (0.07 µmol.l-1), the final concentration of V is far  elow 0.1 μmol.l-1. On the other hand, 269 

trace elements such as F-, Ba2+, and As start with a peak concentration in T1 (0.03 mmol.l-1, 0. 270 

51 µmol.l-1 and 0.027 µmol.l-1 respectively) to decrease in all T1 and T2, and As concentration is 271 

even below the detection limit in T2. These results provide a first indirect indication that these 272 

elements were either released from specific minor phases enriched in these elements that 273 

were completely dissolved by the end of T2, or that they have been rapidly desorbed from the 274 

solid samples.  275 
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Further treatment of the data was carried out for the determination of the origin of other 276 

trace elements. While only Sr2+is linearly correlated with Ca2+ release (r2 = 1) (Figure 4), the 277 

concentrations of Sr2+and Ba2+in the aqueous samples are linearly correlated with that of Na+ 278 

(r2
Na/Sr = 0.999 and r2

Na/Ba = 0.96) and K+(r2
K/Sr = 0.93 and r2

K/Ba= 0.97); (Figure 5). A lack of linear 279 

correlations between V and As concentrations and Na+ or K+ concentrations can be observed in 280 

Figure 5, as well as no linear correlation between Ca2+and F- in T1 (r2 = 0.69) (Figure 6). On the 281 

contrary, a linear correlation is observed between the release of F- and Ca2+ in the test T2 (r2 = 282 

0.95) 283 

2. Experiments conducted on calcrete samples 284 

In these experiments, the initial pH (5.7) quickly increased to stabilize at values comprised 285 

between 7.6 and 7.9, because of the CaCO3 dissolution. These are the typical values of 286 

groundwater at the southeast of the province of Buenos Aires. The variation in concentrations 287 

in T1 and T2 of major ions are presented in Table 1. The highest concentration of calcium (0.64 288 

mmol.l-1) was obtained in the first minute of the test T1, and decreased down to 0.2 mmol.l-1 289 

after 20 minutes of reaction. In the second test, a peak of Ca2+ appears in the first minute of 290 

reaction (0.37 mmol.l-1).A peak of sodium (3.3 mmol.l-1) and chloride (21 mmol.l-1) is observed 291 

in the first minute of the experiment and then the concentrations stabilized below 0.5 mmol.l-1 292 

and 0.1 mmol.l-1respectively. In the test T2, a very similar trend is observed for the two 293 

elements. Similar trends were observed for SiO2(aq) and SO4
2-. 294 

The experiments conducted with calcrete exhibited large release of strontium and barium 295 

during the first minutes of reaction in the first test (T1) and second test (T2), followed by a 296 

progressive decrease in the release rate of these ions during the subsequent hours (Figure 3). 297 

Of note, the maximum concentrations of Sr2+and Ba2+at the beginning of T2 are equivalent to 298 

those reached at the beginning of T1. Conversely, vanadium concentration peaks to a higher 299 

value in the first test (0.9 µmol.l-1) compared to the second test (0.1 µmol.l-1). Arsenic is 300 
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detected in T1 (0.027 µmol.l-1) and only at the beginning of T2 (0.013 µmol.l-1). A linear relation 301 

was evidenced between the concentration of calcium and the trace elements Ba2+ (r2 = 0.97), 302 

As (r2 = 0.93), and Sr2+(r2 = 0.99), (Figure 7a), and to a lesser extent, V (r2 = 0,84).No linear 303 

relationship between Ca2+and F- concentrations was evidenced in T1. Conversely, the linear 304 

relationship was retrieved inT2 (r2 = 0,86), (Figure 7b). 305 

3. Confirmation of the control of As mobilization by calcite contained in calcrete 306 

Flow-through experiments were repeated with calcrete from three other places of the 307 

province of Buenos Aires: Otamendi, Tres Arroyos, and Tandil. Arsenic concentrationswere 308 

measured by TXRF, which is a method less sensitive than ICP-AES. Semi-quantitative values 309 

were obtained, indicating that arsenic was detected in almost all the aqueous samples (Table 310 

2). In the first and second tests, the concentration ranged from 0.002 to 0.005 mg.l-1 (0.026 311 

µmol.l-1 to 0.067 µmol.l-1).This experiment showed that As is most certainly incorporated into 312 

calcite, as supported by the linear correlation between Ca2+ and As previously reported in 313 

Figure7a.  314 

4. Unravelling the source of fluoride using reactive transport modeling 315 

The fluoride concentrations measured in T1 and T2 conducted with loess and calcrete were 316 

compared with the outputs of simulations of sediment (calcrete or loess) dissolution 317 

containing F-calcite and fluorapatite (Figure 8). Fluorapatite was previously detected by SEM 318 

observations reported in Vital et al. (2018) but could not be identified by XRD. Because it was 319 

estimated that the detection limit of our XRD was ~2 wt. %, we ran the kinetic simulations 320 

using this value as an upper bound for fluorapatite content in the solid sample. Also, calcite 321 

containing 0.1 wt. % of F was added (calcite represent >90% of the weight of the calcrete 322 

sample, and 1-2% of the loess sample). Following Kitano and Okumura (1973), 0.1 wt. % is the 323 
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maximum concentration of F that can be incorporated into calcite. We used this value as an 324 

upper bound for the F content of calcite. 325 

Figure 8ashows the results of the fluoride concentrations obtained in T1 and T2 flow-through 326 

experiments for the loess sample. As can be seen, the model successfully predicts the 327 

concentration of fluoride measured by the end of experiment T2. It further reveals that calcite 328 

is the main contributor to this agreement, as testified from the simulation performed with 0 329 

wt. % of F-calcite and 2 wt. % of fluorapatite. Nevertheless, the first peak in T1 could not be 330 

fitted, which is an indirect evidence for a two-step process: (i) desorption of F at the beginning 331 

of the experiment T1 (not taken into account in the simulation), and (ii) continuous release 332 

from F-bearing phases. 333 

A similar approach was used for calcrete from Mar del Plata, Otamendi, Tandil and Tres 334 

Arroyos flow-through experiments. The simulations were conducted with 2 wt. % of 335 

fluorapatite and considering F-bearing calcite instead of pure calcite (Figure 8b). The outputs 336 

of the simulations are in good agreement with the concentration plateau observed in T2, but, 337 

again, the initial peak of fluoride release at the beginning of T1 could not be fitted. 338 

DISCUSSION 339 

1. Experiments conducted on loess samples 340 

An initial peak of major ion such as SiO2(aq), Na+, Cl-, Ca2+ is systematically observed in the 341 

flow-through experiments of loess in test 1. This may result from the rapid dissolution of the 342 

finest particles of the primary rock forming minerals (e.g., Schott et al., 1981). In T2 series, 343 

these elements are still released to the solution, with a steady-state concentration close to the 344 

concentration reached at the end of T1. Not surprisingly, these results indicate that these 345 

elements must have been released by mineral phases that were not completely consumed by 346 

the end of the T1, i.e., most likely the dissolution of primary rock-forming minerals. In a 347 
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previous study (Vital et al., 2018), we showed that the release of major ions from loess is 348 

related to the presence of minerals such as quartz, albite and accessory minerals such as 349 

halite, gypsum and calcite. An initial peak of strontium, vanadium, barium, fluoride and arsenic 350 

is also observed in T1. The concentrations of those elements decrease all along T1 and T2. 351 

The presence of vanadium, strontium, barium and arsenic in groundwater has been related to 352 

loess deposits (Far  as et al., 2003; Fiorentino et al., 2007; Nicolli et al., 2012a), mainly due to 353 

the release from volcanic glass shards and Al/Fe oxides (Steinhauser and Bichler, 2008; Nicolli 354 

et al., 2010; Nicolli et al., 2012a; Nicolli et al., 2012b; Bia et al., 2015; Barranquero et al., 2017; 355 

Alvarez and Carol, 2018), which could explain the behavior of the trace elements in the flow-356 

through experiments T1 and T2 conducted on loess. The desorption of As and F from Fe/Mn 357 

oxides has been mentioned in many other studies focused on aquifers in China(Currell et al., 358 

2011), or Korea (Kim et al., 2012), and Argentina (Smedley et al., 2002; Smedley et al, 359 

2005;Bhattacharya et al., 2006;Borgnino et al., 2013). Currel et al., 2011 showed that 360 

increasing the duration of the interaction between water and loess samples generally did not 361 

result in an increase in F or As concentrations in solution and indicated that these ions are 362 

most likely mobilized by de-sorption rather than dissolution of F- or As-bearing minerals. Our 363 

results with the loess sample of the area of Mar del Plata are consistent with this previous 364 

study, suggesting that the rapid release of As could be the consequence of the desorption from 365 

those solid surfaces. 366 

The results also show that only Sr is linearly correlated with Ca release. Vital et al., 2018 367 

showed that the loess samples could contain up to 2% of calcite. Therefore, the strontium was 368 

likely coprecipitated with calcite, and its release to the solution results from calcite dissolution. 369 

In addition, the concentrations of Sr2+ and Ba2+ in the aqueous samples are linearly correlated 370 

with that of Na+ and K+. The correlation of Ba2+and Sr2+with Na+ and K+ could also suggest that 371 

these trace elements were incorporated into the main rock-forming minerals of the loess 372 
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sample (feldspars). Conversely, the absence of linear correlations between V and As 373 

concentrations and Na+ or K+ concentrations supports the assumption that these trace 374 

elements were not released from the congruent dissolution of feldspars. Instead, it is 375 

suggested that they were carried by minor phases that have almost disappeared by the end of 376 

the experiment T2. Furthermore, Nicolli et al., (1989), Bhattacharya et al. (2006), Fiorentino et 377 

al. (2007), Heredia and Cirelli (2009), Puntoriero et al. (2015), showed that V is strongly 378 

correlated with As in groundwaters in the Pampean Region. This result indicates that those 379 

elements may have similar sources, mobilization and transport processes and could be mainly 380 

desorbed from Al/Mn oxides. 381 

Finally, no linear correlation between Ca and F was evidenced in the T1 test, questioning the 382 

possibility that F was released congruently from a putative F-bearing calcite. Instead, the 383 

mechanism of fluoride release may be the rapid desorption from the particle’s surface. 384 

Conversely, a linear correlation can be observed between Ca and F concentrations in the T2 385 

test. Therefore, it is likely that the loess sample contains a second pool of fluoride, which might 386 

have been released through the congruent dissolution of a Ca-rich phase, such as the putative 387 

F-bearing calcite. The ability of calcite to be either a substrate for fluoride 388 

adsoption/desorption, or to incorporate fluoride during the course of its precipitation has 389 

been supported by the works of Kitano and Okumura (1973); Turner et al. (2005); Budyanto et 390 

al. (2015); Padhi and Tokunaga (2015). 391 

2. Experiments conducted on calcrete samples 392 

Calcium and trace elements were released all over the experiments conducted on calcrete, 393 

with an initial peak at the beginning of each test T1 and T2. The observed linear correlation 394 

between the concentration of calcium and the trace elements Ba, As, Sr and V, suggests that 395 

these elements were coprecipitated in calcite and their release results from calcite dissolution. 396 

This suggestion is supported by the work of Dietrich et al. (2016), who showed that carbonates 397 
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were the main As-bearing minerals in the carbonate-rich unsaturated zone from a large plain 398 

environment (Pampean plain, Argentina). Moreover, Renard et al. (2015) showed that 399 

As(V) was mostly incorporated in the calcite structure. When calcite dissolves, these elements 400 

are released stoichiometrically to the solution. In numerous studies, it has been demonstrated 401 

that calcite is able to retain trace elements, delaying their transport (Zachara et al., 1991; Stipp 402 

et al., 1992; Paquette and Reeder, 1995; Elzinga and Reeder, 2002; Rouff et al., 2004). The 403 

results obtained in the present work confirm the conclusions of these previous studies. An 404 

absence of linear relationship between Ca and F concentrations in the T1 test conducted with 405 

calcrete was observed, while this correlation was evidenced in the second T2 test. These latter 406 

results are very similar to those previously discussed for loess: At the beginning of T1, the main 407 

mechanism is F desorption from minerals surface (Kumar et al., 2016). The second mechanism, 408 

which prevails after the F on particles surface is totally desorbed, could be the release of 409 

fluoride that was incorporated in calcite. 410 

3. Confirmation of the control of trace elements mobilization by calcite contained 411 

in calcrete 412 

A significant difference was observed in the behavior of the trace elements released from loess 413 

or calcrete samples. The highest concentrations of vanadium, barium and arsenic have been 414 

measured for the experiments conducted with loess. These elements were released quickly to 415 

the solution in the first minute of T1 before decreasing sharply, while for calcrete, a 416 

continuous release is observed, and these trace elements are still released to the solution over 417 

the course of T2. This behavior was observed in four location of the province of Buenos Aires. 418 

The mechanisms of trace elements release from volcanic glass shards or Fe/Al/Mn oxides 419 

mentioned above could explain the higher concentration of trace elements in the aqueous 420 

samples collected for the experiments conducted with loess.  421 
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Conversely, trace elements may have been coprecipitated in calcite, which would explain their 422 

continuous release to the solution throughout the experiments conducted with calcrete. The 423 

experiments conducted with calcrete samples from different location (Tandil, Otamendi, Tres 424 

Arroyos) show that the release of trace elements from calcrete may apply throughout the 425 

Buenos Aires province. Importantly, the present results demonstrate that calcium carbonate 426 

may play a prevailing role in controlling the trace elements distribution for the study site. To 427 

the best of our knowledge, this aspect had never been proposed before in this area. 428 

Depending on the solution composition, calcium carbonates can therefore act as a sink for As if 429 

precipitation occurs, or asa source during dissolution. Alexandratos et al. (2007)suggested that 430 

arsenates are substituted in carbonate sites of calcite in most of the calcrete that is present in 431 

the Pampean aquifer. Sø et al. (2008) measured that the adsorption of arsenate increases with 432 

decreasing alkalinity, indicating a competition between arsenate and (bi)carbonate for 433 

sorption sites. These authors also observed that the mobility of arsenate in calcite bearing 434 

aquifers is greatly reduced due to sorption on calcite, whereas sorption on calcite in aquifers 435 

with low calcite content affects the mobility of arsenate to a lesser extent. Another study 436 

(Romero et al., 2004) focused on the carbonate-rich aquifer at Zimapán, México showed that 437 

carbonates play an important role in As mobility, and proved the high capacity of As(V) 438 

retention from this material. It was also shown that at alkaline pH (between 7 and 9), the 439 

carbonate-rich sample had a higher retention capacity of As.  440 

Considering the presence of thick layers of calcrete and groundwater pHs around 7.5 to 8.0, it 441 

is possible to conclude that the coprecipitation and desorption from calcretes are factors 442 

controlling the As and other trace elements mobility and distribution in the aquifer. The 443 

experimental results showed that calcrete dissolution can be the most important source for As 444 

over long time periods, when the solution is undersatured with respect to calcite. On the 445 

contrary, when the solution is supersaturated with respect to calcite, it can precipitate with 446 

trace-elements and act as a sink for these elements. It is expected that the calcite saturation 447 
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index of water samples could be considered as a proxy of As contents for some zones, as 448 

shown by Calvi et al. (2016), who reported a correlation between calcite supersaturation areas 449 

and low fluoride concentrations.  450 

4. Unravelling the source of fluoride using reactive transport modeling 451 

The results of the KIRMAT modeling showed that the neither fluorapatite nor F-calcite 452 

dissolution can account for the initial peak of F observed in T1for loess and calcrete 453 

experiments, leaving F desorption as the best explanation for the observed F release when the 454 

sample is put in contact with water for the first time. Of note, several studies indicated that 455 

fluorine comes from surface desorption, as it was found adsorbed on calcite particles (Turner 456 

et al., 2005), iron oxides (Borgnino et al., 2013), or associated with volcanic glasses (Bundschuh 457 

et al., 2004; Bhattacharya et al., 2006; Nicolli et al., 2012a; García et al., 2014). These 458 

observations are in good agreement with the very fast release of fluorine to the solution and 459 

further suggest that when the sample was put in contact with water for the first time, the 460 

initial mechanism of F release is surface desorption. 461 

Interestingly, the concentration of fluoride measured in the T2 for both loess and calcrete 462 

samples match the simulations of KIRMAT. This result confirms that in T2, a second mechanism 463 

of F release occurs and is most probably the release from F-bearing minerals such as 464 

fluorapatite and F coprecipitated in calcite. Therefore, we suggest that the two mechanisms of 465 

F release (desorption and dissolution from calcite and fluorapatite) may superimpose. Again, 466 

this confirms that calcrete plays an important role in the release of trace elements. 467 

CONCLUSION 468 

In this study, flow-through experiments associated to kinetic modeling were used in order to 469 

assess the specific role of calcite in the control of the mobility of trace elements in the 470 

Pampean aquifer. Samples of loess and calcrete from different areas of the province of Buenos 471 
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Aires (Mar del Plata, Tandil, and Tres Arroyos) were collected. In the experiments, the solid 472 

samples were first reacted with water in a flow-through set-up, dried, and then put again in 473 

contact with water. The chemical composition of the aqueous solution varied with the type of 474 

solid sample reacting (loess or calcrete). Regarding experiments conducted with loess, arsenic 475 

and other trace elements (V, Ba, Sr) were rapidly released during the first minute of reaction, 476 

likely due to their desorption from solid particles in loess. These observations agree with the 477 

results of other studies suggesting that the original source of those trace elements could be 478 

the volcanic glass or the Al/Fe/Mn oxides shards present in the loess sample. On the contrary, 479 

regarding experiments conducted with calcrete, those trace elements were released to the 480 

solution for several minutes, but also in the second experiment performed with the dried 481 

samples recovered from the first experiment. It has been shown in this work that arsenic, 482 

barium, vanadium and strontium have a strong correlation with Ca during the first part of the 483 

experiment, suggesting that they are released to the solution as a result of calcite dissolution. 484 

This work shows that calcite plays an important role in the migration of inorganic 485 

contaminants such as arsenic in the environment. The mobilization of contaminants from 486 

calcium carbonates can occur by desorption from the solid surface or by dissolution of the 487 

coprecipitated elements. In the Pampean aquifer, those trace elements can be coprecipitated 488 

in the calcrete banks and can be re-mobilized by calcite dissolution as a result of variation in 489 

physicochemical changes in the groundwater (i.e. pH, saturation index).For both loess and 490 

calcrete samples, fluorine release occurred through two different mechanisms. In a first step, 491 

the fluoride that is most likely adsorbed to the surface of the particles is released to the 492 

solution. Afterwards, fluorine coprecipitated in calcite is released to the solution. The use of 493 

reactive transport modeling allowed validating this model. In the future, it would be 494 

interesting to expend this study on loess and calcrete from different locations and different 495 

depths of the very great territory of Argentina. Because it was demonstrated in this study that 496 

trace elements adsorbtion/desorption and precipitation/dissolution from calcrete are 497 
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important processes impacting the groundwater chemistry, it would be necessary to include 498 

them in the geochemical simulations. This would allow to improve the knowledge of the 499 

mobilization and distribution of As and other trace elements in groundwater. 500 
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Table 1. Highest concentrations of major elements in the first test (T1) and second test (T2) of the 

flow-through and final concentration of the first test (TF1) conducted with the samples of loess and 

calcrete collected in the area of Mar del Plata. 

 
LOESS CALCRETE 

  T1 TF1 T2 T1 TF1 T2 

Ca2+ 4.8 0.06 0.16 0.64 0,2 0,37 

Na+ 3.3 0.2 0.09 3.2 0,5 0,58 

SiO2 0.24 0.04 0.21 0,29 0,20 0,16 

SO4
-2 0.7 0.02 0.01 0,40 n/d 0,05 

K+ 0.14 0.05 0.015 0.1 0.03 0.08 

Cl- 21 0.01 0.1 7,99 0,1 0,1 

      * mmol.l-1 
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Table 2. Arsenic content of solutions in contact with calcrete in flow-through experiments with 

tests T1 and T2 from 3 locations of the Buenos Aires Province. 

 T1 T2 

 
t1 t5 t30 t60 t1 t5 t30 t60 

Otamendi 
det 

<0.005 
det 

<0.005 
no det 
<0.002 

no det 
<0.002 

det 
<0.005 

det 
<0.005 

det 
<0.005 

det 
<0.005 

Tandil 
det 

<0.005 
det 

<0.005 
det 

<0.005 
no det 
<0.002 

det 
<0.005 

det 
<0.005 

no det 
<0.002 

no det 
<0.002 

Tres 
arroyos 

det 
<0.005 

det 
<0.005 

det 
<0.005 

no det 
<0.002 

det 
<0.005 

det 
<0.005 

no det 
<0.002 

no det 
<0.002 

T1: Test 1 - T2: Test 2 
t: time in minutes 
Det: detected - No det: not detected 
* µmol.l-1 
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Figure 1. Location of the sampling points (indicate by red dots on the map) 
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Figure 2. Schematic diagrams of the flow-through experiment and reactor. The deionized water (pH 

5.7) is continuously pumped through the reactor at a flow rate of 5 ml.min-1 where the loess or 

calcrete samples were previously introduced. 
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Figure 3. Release of trace elements in the flow-through experiment test 1 (T1) and test 2 (T2) 

conducted with the loess and calcrete samples from the area of Mar del Plata. 
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Figure 4. Correlation between Ca and trace elements (Ba, Sr, V, As) in the flow-through experiment 
test T1 conducted with loess. 
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Figure 5. Correlation between Na+, K+ and trace elements (Ba2+, Sr2+) in the flow through experiment 

Test T1 conducted with loess. 
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Figure 6. Correlation between Ca2+ and F- release in T1 and T2 flow-through experiments conducted 

with loess. 
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Figure7. Correlations between Ca2+ and Ba2+, Sr2+, As, V in the flow through experiments T1 (a) and 

between Ca2+ and F- (b) in the test T1 and T2 conducted on calcrete samples. 

 

(a) (b) 

Figure7
Click here to download Figure: figure7.docx

http://ees.elsevier.com/stoten/download.aspx?id=2352314&guid=da27420c-34b5-4b88-996e-6e66d63b2133&scheme=1


 

 

Figure 8. Simulations of fluoride release for loess (a) and calcrete (b) experiments including accessory 

minerals. The kirmat simulation for loess and calcrete were first realized with 2% of fluorapatite. 

Then, another kirmat simulation for loess was realized with 2% Calcite containing 0.1% impurity of 

fluoride and 2% of fluorapatite. Another kirmat simulation for calcrete was realized with 95% Calcite 

containing 0.1% impurity of fluoride and 2% of fluorapatite. The Kirmat simulations were compared 

to the flow-through experiments T1 and T2 on the loess sample from Mar del Plata (MdP) and the 

calcrete samples from Mar del Plata (MdP), Otamendi, Tandil and Tres Arroyos (TresA), in the 

province of Buenos Aires. 
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