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Introduction

Probability distributions possess many importance and have been commonly used in statistics and probability theory. They can be given by a table or an equation which links each outcome of a statistical experiment with its probability of occurrence, see [START_REF] Evans | Statistical distributions, 2nd Edition[END_REF][START_REF] Frank | Handbook of the Poisson Distribution[END_REF][START_REF] Hermann | Generalization of the fractional poisson distribution[END_REF][START_REF] Mahmoudi | Exponentiated Weibull-Poisson distribution: Model, properties and applications[END_REF][START_REF] Porwal | On Mittag-Le-er type Poisson distribution[END_REF] for more information about the topic on probability distribution. One of the most useful and applicable distribution is the Poisson probability distribution (cf. [START_REF] Evans | Statistical distributions, 2nd Edition[END_REF][START_REF] Frank | Handbook of the Poisson Distribution[END_REF][START_REF] Hermann | Generalization of the fractional poisson distribution[END_REF][START_REF] Mahmoudi | Exponentiated Weibull-Poisson distribution: Model, properties and applications[END_REF][START_REF] Porwal | On Mittag-Le-er type Poisson distribution[END_REF]). The Poisson distribution is a discrete probability distribution that expresses the probability of a given number of events occurring in a …xed interval of time or space if these events occur with a known constant rate and independently of the time since the last event. The Poisson distribution can be also utilized for the number of events in other speci…ed intervals such as volume, area or distance, cf. [START_REF] Evans | Statistical distributions, 2nd Edition[END_REF][START_REF] Frank | Handbook of the Poisson Distribution[END_REF][START_REF] Hermann | Generalization of the fractional poisson distribution[END_REF][START_REF] Mahmoudi | Exponentiated Weibull-Poisson distribution: Model, properties and applications[END_REF][START_REF] Porwal | On Mittag-Le-er type Poisson distribution[END_REF] and see also the references cited therein.

Several generalizations of the Poisson distribution such as the Polya process, truncation of the domain, stuttering Poisson distribution, linear combinations of Poisson variables, particle counting, collective risk theory, mixed Poisson distributions, Erlang process and Poisson mixing distributions have been deeply discussed in the book [START_REF] Frank | Handbook of the Poisson Distribution[END_REF] in 1967. In recent years, some scientists have been considered several new extensions of the Poisson distribution (cf. [START_REF] Hermann | Generalization of the fractional poisson distribution[END_REF][START_REF] Mahmoudi | Exponentiated Weibull-Poisson distribution: Model, properties and applications[END_REF][START_REF] Porwal | On Mittag-Le-er type Poisson distribution[END_REF]). For instance, Hermann [START_REF] Hermann | Generalization of the fractional poisson distribution[END_REF] considered a generalization of the Poisson distribution based on the generalized Mittag-Le-er function and calculated the corresponding raw moments algebraically in terms of the familiar Bell polynomials. Mahmoudi [START_REF] Mahmoudi | Exponentiated Weibull-Poisson distribution: Model, properties and applications[END_REF] introduced the exponentiated Weibull-Poisson (EWP) distribution which includes four parameters as increasing, decreasing, bathtubshaped and unimodal failure rate and satis…ed diverse properties for this distribution covering moments, quantiles, its probability density function and its reliability and failure rate functions. Porwal [START_REF] Porwal | On Mittag-Le-er type Poisson distribution[END_REF] de…ned Mittag-Le-er type Poisson distribution and then provided several properties of this distribution. In this paper, we consider a novel extension for the Poisson distribution which includes the degenerate exponential function and we call it the degenerate Poisson distribution. Then, we investigate multifarious properties of the degenerate Poisson distribution covering the …rst and the second raw moments. We also attained the skewness and the kurtosis for this distribution. Furthermore, we derive its moment generating function by which we consider the degenerate Bell polynomials and present a connection for the mentioned polynomials associated with the unsigned Stirling numbers of the …rst kind.

Here we provide some basic information taken from the references [START_REF] Evans | Statistical distributions, 2nd Edition[END_REF][START_REF] Frank | Handbook of the Poisson Distribution[END_REF][START_REF] Hermann | Generalization of the fractional poisson distribution[END_REF][START_REF] Mahmoudi | Exponentiated Weibull-Poisson distribution: Model, properties and applications[END_REF][START_REF] Porwal | On Mittag-Le-er type Poisson distribution[END_REF].

De…nition 1. The n-th moment of a discrete probability distribution about X = 0 is de…ned by n = E (X n ) and the moment generating function (m.g.f.) of a random variable X is denoted by M X (t) and de…ned by

M X (t) = E e tX :
The probability density function of Poisson distribution with parameter is de…ned as follows

p x ( ) = P (X = x) = 1 N x
x! for x = 0; 1; 2; : : : ;

(1.1)
where N is the normalization constant and is determined by the requirement of normalizability of the distribution, which coincides with the zeroth raw moment 0 :

0 = 1 X x=0 p x ( ) = 1 X x=0 1 N x x! = 1 N 1 X x=0 x x! = 1 N e = 1 (1.2) 
which implies N = e . The …rst and the second raw moments for the Poisson distribution are given below:

0 = E (X) = and 1 = E X 2 = + 2 ; (1.3)
therefore, we obtain the mean E (X) and the variance V (X) of the Poisson distribution (Mean) E (X) = and (Variance) V (X) = :

(1.4)

The moment generating function of the Poisson distribution is as follows:

E e xt = 1 X x=0 e xt p x ( ) = e 1 X x=0 (e t ) x x! = e (e t 1) = 1 X n=0 B n ( ) t n n! ; (1.5)
which is the generating function of the classical Bell polynomials B n ( ) (cf . [START_REF] Bell | Exponential polynomials[END_REF][START_REF] Hermann | Generalization of the fractional poisson distribution[END_REF][START_REF] Kim | Some identities of Bell polynomials[END_REF][START_REF] Kim | On degenerate Bell numbers and polynomials[END_REF][START_REF] Kim | On partially degenerate Bell numbers and polynomials[END_REF]). So, for n 0, we write the higher raw moments by means of the Bell polynomials as follows:

n = E (X n ) = B n ( ) .
(1.6)

A more detailed information about the topics mentioned above can be found in [START_REF] Evans | Statistical distributions, 2nd Edition[END_REF][START_REF] Frank | Handbook of the Poisson Distribution[END_REF][START_REF] Hermann | Generalization of the fractional poisson distribution[END_REF][START_REF] Mahmoudi | Exponentiated Weibull-Poisson distribution: Model, properties and applications[END_REF][START_REF] Porwal | On Mittag-Le-er type Poisson distribution[END_REF] and each of the related references cited therein.

Degenerate Poisson Distribution

In this section, we consider an extension for the Poisson distribution via the degenerate exponential function e x (t) and the -falling factorial (x) n; . We call it the degenerate Poisson distribution. We then perform to obtain the …rst few raw moments and the moment generating function for the aforesaid distribution. By means of this moment generating function, we de…ne the degenerate Bell polynomials and …nd the properties for these polynomials.

For being a real number, the -falling factorial (x) n; is de…ned by (see [START_REF] Dattoli | Finite sums and generalized forms of Bernoulli polynomials[END_REF][START_REF] Duran | On Gould-Hopper-based fully degenerate poly-Bernoulli polynomials with a q-parameter[END_REF])

(x) n; = x(x )(x 2 ) (x (n 1
) ); n = 1; 2; : : :

1; n = 0: (2.1)
The degenerate exponential function e x (t) for a real number is given by (cf. [START_REF] Duran | On Gould-Hopper-based fully degenerate poly-Bernoulli polynomials with a q-parameter[END_REF][START_REF] Kim | On degenerate Bell numbers and polynomials[END_REF][START_REF] Kim | On partially degenerate Bell numbers and polynomials[END_REF]) It is readily seen that lim !0 e x (t) = e xt (cf. [START_REF] Duran | On Gould-Hopper-based fully degenerate poly-Bernoulli polynomials with a q-parameter[END_REF][START_REF] Kim | On degenerate Bell numbers and polynomials[END_REF][START_REF] Kim | On partially degenerate Bell numbers and polynomials[END_REF]). From (2.1) and (2.2), the degenerate exponential function possesses the following series expansion

e x (t) = (1 + t)
e x (t) = 1 X n=0 (x) n; t n n! . (2.3)
We now introduce a generalization of the Poisson distribution via the -falling factorial (x) n;r as follows:

p x ( ; ) = P (X = x) = 1 N ( ) x;
x! for x = 0; 1; 2; : : : ;

(2.4) the normalization constant N follows from the requirement of normalizability of the distribution:

0 = 1 X x=0 p x ( ; ) = 1 N 1 X x=0 ( ) x; x! = 1 N e (1) = 1; (2.5)
and so N = e (1) = (1 + ) . Thus, we state our main de…nition as follows.

De…nition 2. The degenerate Poisson distribution with two parameters and is de…ned by the following formula p x ( ; ) = P (X = x) = e (1) ( ) x;

x! for x = 0; 1; 2; : : : :

We now investigate some properties of the degenerate Poisson distribution. We …rstly give the mean and variance of the mentioned distribution as follows.

Theorem 1. The mean E (X) and the variance V (X) of the degenerate Poisson distribution are given by

E (X) = 1 + and V (X) = (1 + ) 2 .
(2.7)

Proof. By De…nition 2, we acquire

1 = E (X) = 1 X x=0 xp x ( ; ) = 1 X x=0 xe (1) ( ) x; 
x! = e (1)

1 X x=1 ( ) x;
(x 1)! = e (1)

1 X x=0 ( ) x+1;
x! = e (1) which is the asserted mean in (2.7) and

1 X x=0 ( )( 2 ) ( (x 1) )( x ) x! = e (1)
2 = E X 2 = 1 X x=0 x 2 p x ( ; ) = e (1)
1 X x=0 x 2 ( ) x; x! = e (1) 1 X x=1 (x 1 + 1) ( ) x;
(x 1)! = e (1)

1 X x=2 ( ) x; (x 2)! + e (1) 1 X x=1 ( ) x;
(x 1)! = e (1)

1 X x=0 ( )( 2 ) ( (x 1) )( x ) x! + e (1) 1 X x=0 ( ) x;
x! = e (1) ( )

1 X x=0 ( 2 ) x; 
x! + e (1)

1 X x=0 ( ) x;
x! = e (1) ( )e 2 (1) + e (1) e

= ( )

(1 + ) 2 + 1 + = 2 + (1 + ) 2 :
Therefore, we get the variance

V (X) = E X 2 (E (X)) 2 = 2 + (1 + ) 2 2 (1 + ) 2 = (1 + ) 2 ;
which is the desired variance in (2.7).

Remark 1. As ! 0, the mean and variance in (2.7) reduce to the mean and variance for familiar Poisson distribution in (1.3).

The third raw moment (skewness) and fourth raw moment (kurtosis) are given by the following theorem.

Theorem 2. The skewness and the kurtosis for the degenerate Poisson distribution are given below

3 = E X 3 = ( ) ( 2 ) 
(1 + )

3 + 3 ( ) (1 + ) 2 + 1 + (2.8) and 4 = E X 4 = ( ) ( 2 )( 3 ) 
(1 + )

4 + 6 ( ) ( 2 ) 
(1 + )

3 + 7 ( ) (1 + ) 2 + 1 + . (2.9)
Proof. Utilizing the similar methods used in the proof of the Theorem 1, the proof of Theorem 2 is based on the following expansions x 3 = x (x 1) (x 2) + 3x (x 1) + x and x 4 = x (x 1) (x 2) (x 3) + 6x (x 1) (x 2) + 7x (x 1) + x:

So, we omit the proof. The moment generating function E e tX of the degenerate Poisson distribution is obtained by the following procedure:
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E e tX = e (1) 1 X x=0 e tx ( ) x; (x 1)! = 1 X n=0 e (1) 1 X x=0 x n ( ) x; (x 1)! ! t n n! . (2.10)
In usual, the moment generating function of the familiar Poisson distribution coincides the generating function of the usual Bell polynomials, see the formula (1.5). By this motivation, we de…ne the degenerate Bell polynomials, di¤erent from Kim's degenerate Bell polynomials in [START_REF] Kim | On degenerate Bell numbers and polynomials[END_REF][START_REF] Kim | On partially degenerate Bell numbers and polynomials[END_REF], as follows:

1 X n=0 B n; ( ) t n n! = e (1) 1 X x=0 e tx ( ) x; x! . (2.11)
In view of (2.10) and (2.11), for n 0, the degenerate Bell polynomials are given by the following series:

B n; ( ) = e (1) 1 X x=0 x n ( ) x; x! . (2.12)
Remark 2. As tends to zero, the formula given in (2.12) reduce to the well known formula for usual Bell polynomials (cf. [START_REF] Kim | Some identities of Bell polynomials[END_REF][START_REF] Kim | On degenerate Bell numbers and polynomials[END_REF][START_REF] Kim | On partially degenerate Bell numbers and polynomials[END_REF]):

B n ( ) = e 1 X x=0 x n x x! .
With the help of Theorems 1 and 2, the …rst few degenerate Bell polynomials are

B 0; ( ) = 1 B 1; ( ) = 1+ B 2; ( ) = ( ) (1+ ) 2 + 1+ B 3; ( ) = ( )( 2 ) (1+ ) 3 + 3 ( ) (1+ ) 2 + 1+ B 4; ( ) = ( )( 2 )( 3 ) (1+ ) 4 + 6 ( )( 2 ) (1+ ) 3 + 7 ( ) (1+ ) 2 + 1+ B 5; ( ) = ( ) ( 2 )( 3 )( 4 ) 
(1+ ) 5 + 10 ( ) ( 2 )( 3 ) 
(1+ ) 4 + 25 ( )( 2 ) (1+ ) 3 + 15 ( ) (1+ ) 2 + 1+ B 6; ( ) = ( ) ( 2 )( 3 )( 4 )( 5 ) 
(1+ ) 6 + 15 ( ) ( 2 )( 3 )( 4 ) 
(1+ ) 5 +65 ( ) ( 2 )( 3 ) 
(1+ ) 4 + 90 ( )( 2 ) (1+ ) 3 + 35 ( ) (1+ ) 2 + 1+ :
The di¤erence operator is de…ned by (see [START_REF] Dattoli | Finite sums and generalized forms of Bernoulli polynomials[END_REF])

f (x) = f (x + ) f (x) ; 6 = 0: (2.13) 
Note that as goes to zero, the di¤erence operator reduce to the usual derivative operator:

lim !0 f (x) = lim !0 f (x + ) f (x) = f 0 (x) = df (x) dx :
The following di¤erence rules hold true (cf. [START_REF] Duran | On Gould-Hopper-based fully degenerate poly-Bernoulli polynomials with a q-parameter[END_REF]): x! = ( )( 2 ) ( (x 1) ) 1:2:::

k (x) n; = n! (n k)! (x) n k; ; 0 k n (2.
(x 1) x = x ( ) ( 2 ) 
( (x 1) ) 1:2:::

(x 1) = x ( ) 2 x 1 = x x 1 Y k=1 k . (2.19)
The unsigned Stirling numbers of the …rst kind is de…ned by the rising factorial given below (cf. [START_REF] Araci | On weighted q-Daehee polynomials with their applications[END_REF])

x n = x (x + 1) (x + n 1) = n X k=0 S 1 (n; k) x k ; (2.20)
which satis…es the following recurrence relation

S 1 (n + 1; k) = nS 1 (n; k) + S 1 (n; k 1) (2.21) 
and the following relations for n being a natural number. We now give the following theorem.

Theorem 4. For n 1, we have

n Y k=1 k = 1 n! n X k=0 S 1 (n + 1; k + 1) k ( ) n k : (2.23)
Proof. We prove this theorem by induction: For n = 1, we get

( ) = 1 1! 1 X k=0 S 1 (2; k + 1) k ( ) 1 k = S 1 (2; 1) ( ) + S 1 (2; 2) ;
which is correct because of the values S 1 (2; 1) = 1 = S 1 (2; 2). We assume that the formula in To prove for n = m + 1, we compute that

m+1 Y k=1 k = m + 1 m Y k=1 k = (m + 1) m + 1 1 m! m X k=0 S 1 (m + 1; k + 1) k ( ) m k = 1 (m + 1)! m X k=0 S 1 (m + 1; k + 1) k+1 ( ) m k + 1 m! m X k=0 S 1 (m + 1; k + 1) k ( ) m+1 k = S 1 (m + 1; m + 1) m+1 (m + 1)! + 1 m! S 1 (m + 1; 1) ( ) m+1 + 1 (m + 1)! m 1 X k=0 S 1 (m + 1; k + 1) k+1 ( ) m k + 1 m! m X k=1 S 1 (m + 1; k + 1) k ( ) m+1 k = m+1 (m + 1)! + ( ) m+1 + 1 (m + 1)! m X k=1 S 1 (m + 1; k) k ( ) m+1 k + 1 m! m X k=1 S 1 (m + 1; k + 1) k ( ) m+1 k = m+1 (m + 1)! + ( ) m+1 + 1 (m + 1)! m X k=1 [S 1 (m + 1; k) + (m + 1) S 1 (m + 1; k + 1)] k ( ) m+1 k = m+1 (m + 1)! + ( ) m+1 + 1 (m + 1)! m X k=1 S 1 (m + 2; k + 1) k ( ) m+1 k = 1 (m + 1)! m+1 X k=1 S 1 (m + 2; k + 1) k ( ) m+1 k ;
where we use the formulas (2.21) and (2.22). Therefore, the proof is completed by induction.

By means of Theorem 4 and formula (2.19), we give

( ) x; = x 1 X k=0 S 1 (x; k + 1) k+1 ( ) x 1 k : (2.24)
Using (2.24), we rewrite (2.6) and (2.12) with explicit representations as p x ( ; ) = e (1)

x!

x 1 X k=0 S 1 (x; k + 1) k+1 ( )

x 1 k = 1 X m=0 x 1 X k=0 ( ) m;
m!x! S 1 (x; k + 1) k+1 ( ) x n x!

x 1 X k=0 S 1 (x; k + 1) k+1 ( )

x 1 k = 1 X m=0 1 X x=0 x 1 X k=0 ( ) m;
m!x! x n S 1 (x; k + 1) k+1 ( ) x 1 k :

Conclusion

In the present paper, the degenerate Poisson distribution covering the degenerate exponential function and the -falling factorial have been de…ned and investigated. Various properties of the degenerate Poisson distribution such as the …rst to the fourth raw moments and di¤erence rule have been provided with their proofs. The corresponding moment generating function has been investigated, by which the degenerate Bell polynomials have been considered and their properties have been developed. The results obtained in this paper reduce to the known results for the Poisson distribution and Bell polynomials as approaches zero.
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  In order to get more properties about the degenerate Poisson distribution, we consider that

	( ) x;

14) and e x (t) = te x (t) : (2.15) From (2.14) and (2.15), we obtain e (1) = e (1) and ( ) x; = x ( ) x 1; . (2.16)

We give a product rule of the di¤erence operator in a special case as follows.
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Lemma 1. For m; x being two natural numbers, we then have ( ) m; ( ) x; = m ( ) m 1; ( ) x; + x ( + ) m; ( ) x 1; .

(2.17)

Proof. In terms of (2.13) and (2.16), we attain

which is the claimed result (2.17).

We now improve the properties of the degenerate Poisson distribution. We give the following theorem. Proof. By means of the De…nition 2, the de…nition of the di¤erence operator (2.13) and Lemma 1, we investigate

(m 1)! + ( ) x 1;

(x 2)!