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Abstract. In most real-world applications of clustering, data is par-
tially labeled by an expert. Classical clustering approaches have been
extensively studied in the presence of partial labels, however little
work has been done to treat the general case of Bayesian mixture
models. In this paper, we propose a new approach to perform semi-
supervised clustering using parametric and non parametric mixture
models. We show how our approach generalizes mixture models with
different types of emission distributions and priors under the same
theoretical framework for semi-supervised clustering. The partial la-
bels intervene in the clustering in the form of a Hidden Markov Ran-
dom Field (HMREF) that introduces a penalty if the partial labels are
not respected. We demonstrate how to perform inference in both the
finite and infinite case with priors on the mixture components and
the parameters using variational inference. Our experimental evalu-
ations on synthetic data show how the method can leverage the par-
tial labels to choose the correct clustering and the correct number of
clusters. We also show that by introducing a small fraction of partial
labels our method improves the clustering accuracy and outperforms
a strong baseline in the literature on benchmark datasets.

1 Introduction

Semi-supervised learning gained considerable interest from re-
searchers recently due to the availability of large amounts of unla-
beled data and a small fraction of labeled data [7]. A sub task of
semi-supervised learning is semi-supervised clustering i.e clustering
on partially labeled datasets. These partial labels are usually set by an
expert who spent considerable time working on the data and develop-
ing some knowledge about the domain [1]. Although this knowledge
represented by the partial labels is limited, it could be useful during
the clustering analysis. These partial labels can help to identify the
number of clusters or the correct view of the clustering, for example.

In the semi-supervised learning literature, two approaches to as-
sign classes to samples with prior knowledge have been extensively
studied. The first approach supposes that all the different classes are
present in the labeled part of the dataset, thus the number of classes
is known. The model then attempts to propagate the labels to the un-
labeled set, by respecting some notion of similarity. Two noteworthy
methods of such kind are Transductive Support Vector Machines [10]
and label propagation [4] and [17]. The Transductive Support Vector
Machine model leverages the unlabeled data in the learning of the
decision boundary between classes unlike classical support vector
machines where only the labeled data is used. Label propagation, on
the other hand, is a graph based approach where the labeled and un-

labeled data points represent nodes of the graph, and edges represent
similarities between the nodes. The known labels are then propagated
through the graph to label the unlabeled nodes. However, in some real
world applications of data mining and information retrieval, the num-
ber of possible clusters is unknown and not all clusters are partially
labeled. Therefore, we can not use these methods.

The second approach is based on the classical KMeans clustering
algorithm, where constraints are added in order to guide the clus-
tering, and improve the performance [13]. The constraints are con-
structed from the partial labels, must-link constraints assure that two
samples must have the same label, and cannot-link constraints assure
that two samples shouldn’t be labeled the same. [2] proposed a Hid-
den Markov Random Field (HMRF) formulation of this model and
later introduced distance learning to identify relevant features to the
clustering [3]. In this approach it is possible to find a hidden cluster
not present in the partial labels. However, because it is based on the
KMeans algorithm, the number of clusters must be known or some
sort of model selection needs to be applied to estimate it. For a detail
review of these approaches, we refer the reader to [7].

In this paper, we generalize the semi-supervised clustering ap-
proach with Hidden Markov Random Fields to the broader range
of Bayesian mixture models. This is particularly interesting from a
practical perspective, since in some cases we may need to consider
various types of probability distributions for clustering, such as cat-
egorical distributions or Dirichlet priors for text clustering. Further-
more, by considering Bayesian priors on the mixture weights such
as Dirichlet distributions [11] or Dirichlet process priors [6], we can
estimate the number of clusters from the data itself.

Our contributions' in this paper are the following:

e We propose a general framework to perform semi-supervised clus-
tering with Bayesian mixture models, by introducing a Hidden
Markov Random Field prior on the hidden class variables.

e We formulate the pairwise potentials of the HMRF using distances
between distributions, which allows for the same definition to be
applied to different kinds of mixture models.

e We show how to perform inference on the model using variational
inference and the mean field approximation [14].

e We show, in the experiments and results, that our model outper-
forms a strong baseline on benchmark datasets. We also show that
it is capable of identifying the correct view of the clustering and
the correct number of clusters, and how it can also improve per-
formance of classical unsupervised Bayesian mixture models.

1 A public implementation is available at: https://git.io/Je6kb



The remainder of this paper is organized as follows. First, we
present the theoretical framework of semi-supervised clustering in
the general case of exponential family mixture models. We develop
the Hidden Markov Random Field formulation that allows for a gen-
eralization over different types of probability distributions. Then, we
show how to use variational approximation methods to perform in-
ference on the model. Finally, we present some didactic examples
to give an intuition on how the model behaves in simple situations,
and we show how the semi-supervision can improve the clustering
performance of classical Bayesian mixture models.

2 Semi-Supervised Bayesian Mixture Models
2.1 Notations

First we introduce some notations that we will use throughout the
paper. Let us consider a dataset X1.y = {x, }h_; composed of N
i.i.d. samples of the random variable X . Let z1.n be IV latent random
variables where z,, represents the class of sample x,,. We denote by
01.x the random variables representing the parameters of the emis-
sion distributions of the mixture model, and by 7 the random vari-
ables representing the mixture weights, where K € N U {o0}. We
denote by Do, the prior on the k" parameter 6. A Bayesian mixture
model is defined for all k£ and n as:

m ~ Dir(K, «) or GEM(n)
O~ Do, (
(

Zn|m  ~ Cat(:|7)

-) prior on 6
Xn|zZn = k,0 ~ py(|zZn =k,0) emission distribution

where the mixture weights 7 follow a Dirichlet distribution in the
case of a finite mixture model, or a Dirichlet process in the case of an

infinite mixture. In this case, we adopt the stick-breaking construc-
tion definition [12] where m ~ GEM(n) is equivalent to:

Vk Bk ~ Beta(l,n)
k—1
™ = B [J(-8)
1=1

In the semi-supervised case, some instances of the dataset are la-
beled. Let us denote by l1.v the partial labels, where I,, € {1, ..., K'}
if x,, is labeled, I, = —1 otherwise. For the rest of the paper, to sim-
plify notation, we simply write for the probability distribution of a
random variable X: p, (z) = p(z).

2.2 Supervision in the form of a HMRF

In order to incorporate the information provided by the partial labels
into the model, we define a pairwise Hidden Markov Random Field
over {z1.n, X1.n } (Figure 1). The HMREF introduces a statistical de-
pendency between the random variables z,, with the same label [,,:

Z,, neighbor of z,,, < 1, =l

and each x,, is independent of x,,, given z,, and 6. We write n ~ m
if z,, is a neighbor of z,,, The neighborhood of the nt" sample is
defined as :

No={me{1,...,N}\{n}stm~n}

The statistical dependency introduced by the neighborhood is later
used to construct a joint prior over z.n in such a way that samples

Figure 1: Overview of the probabilistic graphical model. The unlabeled sam-
ples are treated as a classical mixture model where z+ depends on 6 and z¢,
and z; depends on 7. The partially labeled samples create dependencies be-
tween the hidden variables z;. 5. For each connected pair (zp, z;) we asso-

ciate a factor e~ AV (#p:21) |

in the same neighborhood should be assigned the same label. The
definition of the neighborhood can be adapted to other formulations
of semi-supervised clustering, such as, the must-link constraint and
cannot-link constraints used in [3].

2.3 Semi-Supervised Mixture Models

The Hidden Markov Random Field introduces dependencies be-
tween the latent variables z1.n. The generative process of the semi-
supervised mixture model in this case becomes:

m ~ Dir(K, «) or GEM(n)
O~ Do, ()
Z12N|7r ~ pZ1;N('|7T)
Xn|2n =k, 0 ~ py(|zn =k,0)

where p(z1.n|7) is the joint distribution over the latent variables de-
fined by the HMRF. According to the Hammersley—Clifford theorem
[8], this joint distribution can be written as :

N
1 = - Zn 2
p(zin|m) = H ﬂilfLN"*@] H e~ MV (Zn,zm)
n=1

n~m

sl

where V represents the pairwise potentials of the HMREF, and A is
a scaling parameter that can be tuned empirically. Given how the
HMREF is factored, we can write the normalization constant I" as
(proof in appendix B):

= Z H e*)\v(zn,zm)

Zpn, VN st Ny #) n~m

The main idea behind the HMREF prior, is that neighboring samples
should have the same label, otherwise the log-likelihood of the data
is penalized by a factor proportional to the pairwise potentials. Other
works in the literature proposed various definitions of the potentials,
these definitions are often domain or data specific [16]. Others at-
tempted to learn these potentials by introducing a parameterized dis-
tance [3]. In the following section, we show how to perform inference
on the model, and we propose a definition for the potentials V con-
structed from the variational approximating distributions. Therefore
this definition can be applied to all types of mixture models.



2.4 Variational Approximation

In order to perform inference on the model, we need to compute or
estimate:

p(z1:n,0, 7|x1.8) X p(Z1:N,X1:N, 0, T)
N

oc [T p(xnlzn, 0)p(z1.x|m)p(6)p(r)

n=1

Performing exact inference on this model is intractable. In order to
approximate the joint distribution p(z1.~5, X1:n, 0, ), we use varia-
tional inference and the mean field approximation:

N T

q(z1.n,0,7) = [ a(zn) [ ] a(0k)alm)
k

n=1 =1
where T is a truncation level for the number of clusters [6]. The

optimal approximate distribution ¢* satisfies:

q¢" = argminDx. [q]|p] €))
q

Solving equation (2) leads to the following mean field update equa-
tions:

logq(zn) = const+E(, | gx1~qlogp(zin,x1:n,0,7)]
logq(0x) = const+E(, 0 4ri~q logp(zin,X1:n,0,7)]
logg(m) = const+Ey, . 03~q [logp(z1:n,x1:N,0, )]

By substituting the expression of p(z1.n,X1:n, 6, 7) in the previous
equations we have:

q(zn) = Cat(zn; dn)

where:

log ¢ni = const + Egq[log p(xn|zn = k, )] (2)

LN, = O)Brgllogme] = X > > duaV(k, 1)

meN, I=1

and for the mixture parameters:

N
log q(6)) = const + Z Ok logp(xn|zn =k, 0)

n=1

+ log p(6)

N T
log q() = const + Z Z 1[Ny = 0] ¢k log i

n=1 k=1

+ log p(m)

Usually the prior and the emission distribution are conjugate so g(6x)
is in the same exponential family as p(6y). Therefore we can derive
fixed point update equations for the variational parameters of g()
and g(6%) in the finite and infinite case. However in order to have a
closed form for the update equation of the local variational parameter
dnk, we need to propose a definition of V(k, ), which can be com-
puted in close form, and have the property of introducing a penalty
in the form of a distance between the clusters. Hence:

V(k, 1) = DL [q(0x)la(60)] 3)
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Figure 2: Samples from 4 Gaussians (left). Partial labels (right).

2.5 Intuition behind the model

The mean field update equations show that the model behaves the
same as a classical unsupervised Bayesian mixture model, except in
the case of the mean field update for ¢, . The first two terms of
equation (3) are the same as a classical unsupervised model, where
q(zn, = k) depends on the emission probability and the mixture
weights. The third term however, introduces the supervision cap-
tured in the Hidden Markov Random Field, where for each sample
m in the neighborhood of n a penalty is introduced proportional to
¢miV(k, ). Therefore if a sample m in the neighborhood takes a dif-
ferent label: | # k (¢mi =~ 1) a penalty V(k, 1) equivalent to the dis-
tance between the approximating distributions ¢(6) and ¢(6;) forces
the samples in the same neighborhood to have the same labels. Which
in turn constrains the mixture parameters in the following fixed point
updates to respect the partial labels.

3 Experiments and Results

We verify through experiments on synthetic data that the model is
capable of identifying the correct number of clusters and the cor-
rect view of the clustering by leveraging information from the partial
labels. We generate 400 samples from a mixture of Gaussian distri-
butions of two dimensions. We label a random subset of the samples
and we set them as the partial labels. In all the following experiments
we adopt the Semi-Supervised Dirichlet Process Gaussian Mixture
Model presented in appendix A. In our implementation we initialize
the values of the local variational parameters ¢,,x using the distance
from the centers of a fitted KMeans on the data:

1
oo s exp (=3l = )

3.1 Identifying the Correct Clustering

In the first experiment, we generate data from 4 Gaussian distribu-
tions, 5 % of the samples of the two clusters at the bottom and the
top are labeled, for the two clusters in the middle we label 10 % of
all the samples with the same label different from the previous two
(Figure 2).

We apply a classical Dirichlet Process Gaussian Mixture Model,
and our Semi-Supervised Dirichlet Process Gaussian Mixture Model
on this dataset. We set the truncation level of the number of clus-
ters to 7' = 4 and then to 7' = 10, with the same value for the
concentration parameter 7 = 1 of the Dirichlet Process. We depict
the clustering process across iterations for both the Dirichlet Process
Gaussian Mixture Model and our Semi-Supervised Dirichlet Process
Gaussian Mixture Model with the truncation level of 7' = 4 in Figure
3 and for T = 10 in Figure 4.



In both cases the semi-supervised DPGMM identifies the correct
number of clusters (K = 3) given the partial labels, unlike the classi-
cal DPGMM where the number of clusters identified depends on the
concentration parameter and the initialization. The intuition gained
from this experiment is that the partial labels help the Dirichlet pro-
cess to squeeze out unnecessary clusters to explain the data, even if
the concentration parameter is high (tendency to produce high num-
ber of clusters).

3.2 Identifying the Correct View

In the second experiment, in the same fashion, we generate 400 sam-
ples from 4 Gaussian distributions as shown in Figure 6. In this case
the clusters are arranged in such a way that if K = 2, two possible
views of the clustering are possible. To identify the correct clustering
some information about the view is needed. We suppose that we have
two sets of partial labels, and as Figure 7 shows these partial labels
encode which view is the correct one in both cases.

We apply the semi-supervised DPGMM in both cases (Figure 5),
we set the truncation level of the number of cluster 7' = 3. We notice
that in both cases starting from a KMeans initialization the semi-
supervised DPGMM adapts to reach the clustering that respects the
view imposed by the partial labels.

3.3 Improving the Clustering Accuracy

In the last experiment, we apply the semi-supervised DPGMM on the
classical UCI datasets (wine, digits, iris, glass, yeast). We consider
that the true number of clusters is unknown. We set the truncation
level to T' = 10 for wine, and iris, and 7' = 20 for digits, glass,
and yeast. The evaluation metric used to evaluate the clustering is
the clustering accuracy [15] defined as :

N —
ACC = may 2=t Ll =m(cn)]
meM N

where c¢,, is the cluster assignment, [,, the true label and M the set
of all possible one-to-one mappings. we vary the percentage of par-
tially labeled samples from 0% (no labels known, fully unsupervised)
to 50%, by a step of 10% . On each dataset we report the best accu-
racy over 10 reruns of the model, and we plot the evolution of the
accuracy for each dataset as a function of the percentage of partial
labels (Figure 8). We notice that the clustering accuracy improves as
we add labels. For the iris dataset, for example, we notice that the
introduction of 20% of the labels improves the accuracy from 72%
to 98%. In table 1 we report the clustering accuracy for the classical
DPGMM, the semi-supervised DPGMM at 20% of partial labels and
at 50% of partial labels.

DPGMM  SS-DPGMM  SS-DPGMM
Datasets (0%) (20%) (50%)
Iris 72 98 .98
Wine .49 .58 81
Glass 52 5 71
Yeast 37 41 .70
Digits .61 .68 .79

Table 1: Accuracy score of the Semi-Supervised Dirichlet Process Gaussian
Mixture Model (SS-DPGMM) for multiple percentages of partial labels.

1.0 pe PS * < 2
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T T T

0 10 20 30 40 50
percentage of labelisation (%)

Figure 8: Accuracy of the semi-supervised DPGMM on the UCI datasets.
The percentage of partial labels varies from O to 50 % of the true labels.

3.4 Comparison with HMRF-KMeans

In this section, we compare our approach to the HMRF-KMeans
semi-supervised clustering algorithm [3] which is a strong baseline
for the semi-supervised clustering task. Similarly to the previous
experiment we evaluate the HMRF-KMeans on the classical UCI
datasets. We fix the number of clusters to the true number of classes
in the dataset and we report the clustering accuracy for different per-
centages of partial labels. Figure 9 shows the evolution of the clus-
tering accuracy for each dataset.

Our approach clearly outperforms the HMRF-KMeans in terms of
clustering accuracy. For example, we can see that for 50% labeli-
sation the clustering accuracy for all datasets is between [0.5, 0.7],
while for our method the accuracy is above 0.7. Furthermore, HMRF-
KMeans uses Iterated Conditional modes [5] during the E-Step. This
algorithm increases the complexity and therefore the time of exe-
cution for each iteration of the EM, unlike our approach, which is
based on the classical Variational EM. Our method can identify new
separate unlabeled clusters, and thus learn the number of clusters au-
tomatically thanks to the Dirichlet Process prior. Unlike the HMRF-
Kmeans where the true number of clusters has to be set in advance.

0.61
0.5 1
O
O
< 0.41
—o— iris
0.3 —o— digits
—#— wine
—— yeast
0.2 1 —#— glass

T T T T T T T T

10 15 20 25 30 35 40 45 50
percentage of labelisation (%)

Figure 9: Accuracy of the HMRF-KMeans algorithm on the UCI datasets.
The percentage of partial labels varies from 10 to 50 % of the true labels.



iteration : 1 iteration : 6 iteration : 11 iteration : 16 iteration : 21 iteration : 26 iteration : 31 iteration : 36 iteration : 41 iteration : 46

iteration : 36 iteration : 41 iteration : 46

Figure 3: Visualization of the clustering process across iterations of the classical DPGMM T' = 4 (top), and the semi-supervised DPGMM T' = 4 (bottom).

iteration : 1 iteration : 6 iteration : 11 iteration : 16 iteration : 21 iteration : 26 iteration : 31 iteration : 36 iteration : 41 iteration : 46

iteration : 1 iteration : 6 iteration : 11 iteration : 16 iteration : 21 iteration : 26 iteration : 31 iteration : 36 iteration : 41 iteration : 46

Figure 4: Visualization of the clustering process across iterations of the classical DPGMM T" = 10 (top), and the semi-supervised DPGMM 7" = 10 (bottom).

iteration: 1 iteration : 11 iteration : 21 iteration : 31 iteration : 41 iteration : 51 iteration : 61 iteration : 71 iteration : 81 iteration : 91

Figure 5: The clustering process across iterations in the case of partial labels corresponding to the horizontal clustering (top), and vertical clustering (bottom).
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Figure 6: Samples from 4 Gaussian distributions, if X' = 2 two views of
clustering using a linear boundary are possible: horizontal (two top clusters
separated from the bottom clusters) and vertical (the two clusters on the left
separated from the clusters on the right).
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Figure 7: Partial labels corresponding to the horizontal clustering (left), par-
tial labels corresponding to the vertical clustering (right).

4 Conclusion

In this paper, we introduced a new method to perform semi-
supervised clustering with Bayesian finite and infinite mixture mod-
els. This approach allows the introduction of prior knowledge in the
form of partial labels set by an expert to guide the clustering pro-
cess towards the correct solution. We have shown that the model can
identify the correct view of the clustering and the correct number of
clusters, we also demonstrated that by introducing a small fraction
of partial labels we can improve the overall accuracy of a classical
mixture model. Our approach is general, and can easily be applied
to other types of mixture models like the categorical mixture model,
latent Dirichlet allocation or topic models. In future work, we will ex-
plore how we can extend this approach to more complex probabilistic
graphical models. We will also investigate stochastic variational in-
ference [9] in order to apply the approach to large scale datasets.

A Semi-Supervised Dirichlet Process Gaussian
Mixture Model

In this section, we develop the mean field update equations in the case
of the Dirichlet Process Gaussian Mixture Model. In what follows we
adopt the formulation presented in [11].

The generative process of the model is the following:

Vk fBr ~ Beta(l,n)
k—1
m o= B [[(1-8)
=1
prlAk ~  N(|mo, (koAx)™")
Ak ~ W(';Lo,l/o)
zZiN|T ~ pay ()
Xnlzn =k A~ N (e, Ay

Where W is the Wishart distribution. By substituting in the mean
field update equations, we have Vk € {1,..,T}:

a(Br) = Beta(Br;vik,V2,k)
q(prlAk) = N(uk;me, (kede) ™)

q(Ax) = W(Ak; Ly, vk)

q(zn) = Cat(zn;¢n)

The variational parameters have the following fixed point equations:

N N T
1+Z¢nk '72,k:7]+z Z ¢nl
n=1

Y1,k =
n=11l=k+1
N N
Kk = HD"’Z(JSnk Vk:VO+Z¢7Lk+1
n=1 n=1
Komo + SN durxn
mEy =
Kk
L,:,l = Lal + Ko(mk — mo)(mk — mo)T
N
) bk (Xn — mi) (xn — mi) "
n=1
1{d T
log ¢nr = 2 | mn + vk (X0 — mi)" Li (X —mg)
TS (vt 1—i
. _
— 1
+ 5 LZ;&( 3 >+0g|Lk|}
+ (k) = vk +v2,8)
k-1
+ [Y(y2,0) — (7,0 +72,0)]
=1
T
- A Z Z(ble(kJ) + const
meN, I=1

where v is the digamma function and as defined in (4) the expression
of Vis:

which we can compute in close form as a function of the variational
parameters of q(uk, Ax) and g(p, A;), using the standard formulas
for the kullback-leibler divergences between two Gaussian distribu-
tions and between two Wishart distributions:



V(D) = d(E 45— 2) 4 3 o~ ) log(|Li]) — log(|L])
+ Tr ((VkLk + v L) (my —my)(my — mz)T>
d
1 vp+1—1
ALl DO (2)}
+ %(w — vk) [;w (Vl +21 — Z)}
1 —1 -1 d
+ §TI‘(V;€LI Lk+VlLk Ll) —§(Vk+yl)
B The Normalizing Constant I'

By definition the normalizing constant I" can be written as :

Z lN_[ W;I[N":(D] H efkv(zn,zm)

z1. Ny n=1 n~m
N
- X | X I e
zpVn zpVn n=1 n~m
StN R #ZD | sStNp=0

Let’s denote by S the set containing all points with empty neighbor-
hoods :

S={nstN, =0}

We have:

> Lt

zpVn n=1 Zn

> L

nes

SN, =0 vnes

[ .

neS zn
=1

Thus:

Z H efkv(zn,zm)

Zn,Vn st Np £ n~m
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