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Introduction

Optimal control of aerospace systems is per-
formed by modelling the considered system
by dynamics depending on multiple uncertain
parameters (for example, aerodynamic coeffi-
cients and maximal thrust). Usually, the op-
timal control problem is solved for the nomi-
nal values of these parameters and the robust-
ness of the solution is demonstrated by dis-
persing the parameters around nominal values
with Monte Carlo simulations. In addition to
parameter uncertainties, the problem-solving
method often introduces numerical approxi-
mation (for example the numerical solver of
the ordinary differential equation represent-
ing the dynamics of the system or the opti-
mization algorithm solving the optimal con-
trol problem).

Interval Arithmetics has shown its ability
to address several control problems, providing
validated solutions while dealing with method
uncertainties (numerical approximations) as
well as with model uncertainties (unknown pa-
rameters). The Pontryagin Maximum Prin-
ciple [3] (PMP) provides necessary optimal-
ity conditions for the resolution of optimal
control problems by transforming an optimal
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control problem into a zero-finding problem :
the dynamics of the system is extended with
a co-state and necessary conditions are given
by the PMP on that co-state, and the initial
value of the co-state vector is the unknown to
be found by the zero-finding algorithm. This
method has proven its efficiency and its pre-
cision compared to direct methods [3], but its
convergence depends strongly on its initial-
ization and a prior knowledge of the solution
structure is needed.

Our goal is to address the return version
of the Goddard problem, which consists in
performing the landing of the first stage of
a rocket while minimizing its fuel consump-
tion, combining interval arithmetics and the
necessary optimality conditions given by the
application of the PMP. Although this goal
has not been reached yet, this paper presents
preliminaries results on simplified problems,
exposes the challenges encountered and sug-
gests further developments. The optimal re-
entry trajectory for the Goddard problem is
presented in Figure 1 with the ballistic phases
in blue, and in red the first boost for the in-
version of the speed vector, the intermediate
boost for the dynamic pressure constraint and
the landing boost. The evolution of the dis-
persions along the complete trajectory (launch
and landing) of a rocket are described in [1].

As a first step, a very simplified version
of the Goddard problem is studied, namely
a double integrator where [k] =

[
k, k
]
is an

interval parameter and u is the control in-
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Figure 1: Optimal trajectory for the re-entry
Goddard problem

put. This double integrator fits in with a
Goddard problem without gravity and aero-
dynamic forces, and with a constant mass.
The interval parameter [k] represents the un-
certainty on the maximal thrust force. Hence,
the optimal control problem is

min

∫ T

0
|u|dt,


ṙ = v, v̇ = [k]u,
r(0) = 0, v(0) = 0,
r(T ) = rT , v(T ) is free,
T is fixed.

Two ways of combining interval arithmetics
with the PMP are investigated : an open loop
approach providing an enclosure on the sys-
tem trajectory which can be used to assess
robustness (regarding the interval parameter
[k]), and a closed loop approach providing a
closer enclosure of the optimal trajectories and
can be used to initialize a non-interval algo-
rithm.

Once the double integrator optimal control
problem is solved, multiple approaches such
as validated continuation methods are consid-
ered to solve the Goddard problem using this
simplified version.

Open-loop approach

In this approach, the goal is to find the small-
est initial co-state interval that contains every

admissible co-state by combining numerical
integration tools such as DynIbex1 [2] and an
algorithm to solve the zero-finding problem.
Many algorithms are considered, for example
Krawczyk method, forward-backward opera-
tors and branch algorithms. The enclosure of
the solution of the zero-finding problem pro-
vides a validated initialization for the co-state
vector. Issues like discontinuous control input,
control saturation, pure state constraints and
mixed constraints are to be studied in order to
solve a practical optimal control problem like
the Goddard problem.

Closed-loop approach

In this approach, dynamic programming is
used to find a finer enclosure of the optimal
trajectories : if the system measures its in-
terval state vector at a certain time, a new
optimal control problem is solved from this
interval, providing a better enclosure of the
solution. Due to its algorithmic cost, this ap-
proach is irrelevant for solving practical cases
online, but it can improve the enclosure of the
solution when it is applied offline and there-
fore provides useful information for the online
guidance algorithm.
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