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The Neurobiology of Sleep–Wake 
Systems: An Overview

Abstract

Following studies of patients with postinfluenza encephalitis, the neuro-
pathologist von Economo reported that inflammatory lesions of the preoptic 
area (POA) were often associated with insomnia and therefore proposed that 
the POA was critical for the production of normal sleep [1]. Then, Ranson in 
monkeys, Nauta in rats, and McGinty in cats showed that POA lesions induce 
a profound and persistent insomnia [2–4]. It was later shown in cats that POA 
electrical stimulation induces EEG slow-wave activity and sleep (SWS) [5]. 
Finally, putative sleep-promoting neurons displaying an elevated discharge 
rate during SWS compared to waking (W), diffusely distributed within a 
large region encompassing the horizontal limb of the diagonal bands of Broca 
and the lateral preoptic area-substantia innominata were recorded in freely 
moving cats [6]. Altogether, these studies indicate that the POA is a unique 
brain structure containing neurons that directly promote sleep.
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Gly Glycine
Hcrt Hypocretin
His Histamine
LC Locus coeruleus
LDT Laterodorsal pontine nucleus
LHA Lateral hypothalamic area
Mc  Nucleus reticularis  

magnocellularis
MCH  Melanin-concentrating  

hormone
MnPn Median preoptic nucleus
NA Norepinephrine
PeF Perifornical hypothalamic area
peri-LC alpha Peri-locus coeruleus alpha
PH Posterior hypothalamus
PnC Pontis caudalis nucleus
PnO Pontis oralis nucleus
POA Preoptic area
PPT Pedunculopontine nucleus
SCN Suprachiasmatic nucleus
SLD Sublaterodorsal nucleus
TMN Tuberomamillary nucleus
vlPAG  Ventrolateral periaqueductal 

gray
VLPO Ventrolateral preoptic nucleus
ZI Zona incerta

Neuronal Networks Responsible  
for Sleep Onset and Maintenance

The Forebrain Sleep Center

Following studies of patients with postinfluenza 
encephalitis, the neuropathologist von Economo 
reported that inflammatory lesions of the preoptic 
area (POA) were often associated with insomnia 
and therefore proposed that the POA was critical 
for the production of normal sleep [1]. Then, 
Ranson in monkeys, Nauta in rats, and McGinty 
in cats showed that POA lesions induce a pro-
found and persistent insomnia [2–4]. It was later 
shown in cats that POA electrical stimulation 
induces EEG slow-wave activity and sleep (SWS) 
[5]. Finally, putative sleep-promoting neurons 
displaying an elevated discharge rate during SWS 
compared to waking (W), diffusely distributed 
within a large region encompassing the horizon-

tal limb of the diagonal bands of Broca and the 
lateral preoptic area-substantia innominata were 
recorded in freely moving cats [6]. Altogether, 
these studies indicate that the POA is a unique 
brain structure containing neurons that directly 
promote sleep.

This simplicity highly contrasts with the com-
plex network responsible for W, involving redun-
dant neurotransmitter systems with populations of 
neurons disseminated from the upper brainstem, 
caudal hypothalamus to basal forebrain, such as 
neurons containing acetylcholine, norepinephrine, 
serotonin, histamine, and recently discovered 
hypocretin (Fig. 1). Collectively, through their 
widespread ascending projections to the cortical 
mantle and with their firing activity specific to 
W, these systems form the ascending reticular 
activating system (ARAS) that controls arousal 
with a low-voltage, high-frequency, cortical acti-
vation [7]. During the transition to sleep, the hyp-
nogenic center would inhibit the multiple arousal 
systems of the ARAS via a sustained and coor di-
nated inhibition (Fig. 2). The sleep pressure asso-
ciated with drowsiness is believed to be regulated 
by the interaction of a homeostatic and a circa-
dian processes, both able to modulate the hyp-
nogenic center’s activity to control the timing and 
duration of sleep [8].

Then, researchers identified specific sleep-
active neurons by using Fos as a marker of neu-
ronal activation in rats that had slept for a long 
period before sacrifice [9]. These neurons are dis-
tributed diffusely in the POA but are more densely 
packed in the median preoptic nucleus (MnPn) 
and the ventrolateral preoptic nucleus (VLPO). 
These studies showed that the number of Fos+ 
neurons in the VLPO and MnPn positively 
correlated with sleep quantity and sleep consoli-
dation during the last hour preceding sacrifice. 
Numerous Fos+ neurons were also observed in 
sleep-deprived rats in the MnPn but not in VLPO 
[9, 10]. It appears, therefore, that VLPO neurons 
would be primarily responsible for the induction 
of sleep while MnPn neurons may also have a 
homeostatic role in sleep control. It was later 
demonstrated that VLPO and the suprachiasmatic 
nucleus (SCN) have synchronized activity [11]. 
Considering that both areas are interconnected 
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Fig. 1 Model of the network responsible for promoting 
wake. Shaded nuclei help promote wake and inhibit SWS 
and PS. Excitatory pathways are indicated by solid lines, 
and inhibitory pathways by dashed lines. Not shown on 

this figure are direct projections from monoaminergic and 
cholinergic nuclei to the cortex that may also contribute to 
the production of wake

Fig. 2 Model of the network responsible for slow-wave 
sleep. During SWS, GABAergic neurons of the VLPO 
inhibit many wake-promoting regions. The VLPO neu-
rons may be activated by adenosine or other homeostatic 

signals and by circadian signals from the SCN. Other 
GABAergic neurons in the vlPAG and dDPMe inhibit 
PS-promoting systems
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and receive inputs from the retinal ganglion cells, 
it is thus possible that circadian- and photic-
linked information may be conveyed to modulate 
VLPO activity [12] (Fig. 2).

Electrophysiology experiments in behaving 
rats have shown that neurons recorded in the 
VLPO and MnPn are active during SWS, gener-
ally anticipating its onset by several seconds. 
Further, their firing rate is positively correlated 
with sleep depth and duration. Some of these 
neurons are also active during PS with a higher 
firing frequency than during the preceding SWS 
[13]. In addition, VLPO and MnPn neurons dis-
play a firing pattern reciprocal to the wake-active 
neurons (see below). Functionally, bilateral neu-
rotoxic destruction of VLPO is followed by a 
profound and long-lasting insomnia in rats [14]. 
Retrograde and anterograde tract-tracing studies 
indicate that VLPO and MnPn neurons are recip-
rocally connected with wake-active neurons such 
as those containing histamine in the tuberomam-
millary nucleus (TMN), hypocretin in the peri-
fornical hypothalamic area (PeF), serotonin in 
the dorsal raphe nuclei (DRN), noradrenaline in 
the locus coeruleus (LC), and acetylcholine in the 
pontine (LDT/PPT) and basal forebrain nuclei. In 
these wake-promoting areas, extracellular levels 
of GABA increase during SWS compared to W. 
It has also been shown that Fos+ neurons in the 
VLPO express galanin mRNA and 80% of VLPO 
neurons projecting to the TMN contain both gala-
nin and GAD, the GABA-synthesizing enzyme. 
Finally, electrical stimulation of the VLPO area 
evokes a GABA-mediated inhibition of TMN 
neurons, suggesting that VLPO and MnPn 
efferents to the wake-promoting systems are 
inhibitory [12].

Neurotransmitters Regulating  
the Activity of Sleep-Promoting 
Neurons in the VLPO

Electrophysiological recordings of VLPO neu-
rons in rat brain slices showed that it contains a 
homogeneous neuronal group with specific intrin-
sic membrane properties, a clear-cut chemomor-
phology and an inhibitory response to the major 

waking neurotransmitters. Their high proportion 
matching that of cells active during sleep and 
their pharmacological profile represent convinc-
ing arguments about their status as presumed 
sleep-promoting (PSP) neurons [15]. It was fur-
ther shown that PSP neurons are GABAergic and 
galaninergic in nature, multipolar triangular 
shaped, and endowed with a potent low threshold 
calcium potential. These neurons are always 
inhibited by noradrenaline (NA), via postsynap-
tic alpha2-adrenoceptors. The wake-promoting 
drug modafinil was shown to increase the 
NA-mediated inhibition of VLPO neurons, per-
haps by blocking NA reuptake by local noradren-
ergic terminals [16]. Interestingly, NA-inhibited 
neurons are also inhibited by acetylcholine, 
through muscarinic postsynaptic and nicotinic 
presynaptic actions on noradrenergic terminals. 
In contrast, histamine and hypocretin did not 
modulate PSP neurons [15, 17]. Finally, serotonin 
showed complex effects inducing either excita-
tion (50%, Type 2) or inhibition (50%, Type 1) of 
the PSP neurons [12, 18].

Among processes that are likely to modulate 
the activity of PSP neurons, homeostatic mecha-
nisms, involving natural sleep-promoting factors 
accumulating during waking, had long been 
thought to play a crucial role in triggering sleep. 
Among these factors, prostaglandin D2 and ade-
nosine have been functionally implicated in sleep, 
although their neuronal targets and mechanisms 
of action remain largely unknown (see Chap. 
“Prostaglandin D

2
: An Endogenous Somnogen” 

by Urade). In this context, we showed that appli-
cation of an adenosine A

2A
 receptor (A

2A
R) ago-

nist evoked direct excitatory effects specifically 
in Type 2 PSP neurons that also activated by 
serotonin [12, 18]. Other results also suggested 
that adenosine may directly activate VLPO neu-
rons at sleep onset via an action on postsynaptic 
A

2A
R. Indeed, infusion of an A

2A
R agonist in the 

subarachnoid space rostral to the VLPO increases 
SWS and induces Fos expression in VLPO neu-
rons [19] (Fig. 2).

In contrast, a number of studies showed that 
adenosine A

1
 receptors (A

1
R) promote sleep 

through inhibition of the wake-promoting neu-
rons, in particular, cholinergic and hypocretin 

[AU2]
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neurons [20, 21]. However, data using transgenic 
mice demonstrated that the lack of A

1
R does not 

prevent the homeostatic regulation of sleep while 
the lack of A

2A
R does and blocks waking effect of 

caffeine, suggesting that the activation of A
2A

R is 
crucial in SWS [22–24].

An Updated Overview of the Neuronal 
Network Responsible for SWS

A line of evidence indicates that both the VLPO 
and the MnPn contain neurons responsible for 
sleep onset and maintenance. These neurons 
would be inhibited by noradrenergic and cholin-
ergic inputs during waking. The majority of them 
would start firing at sleep onset (drowsiness) in 
response to excitatory, homeostatic (adenosine 
and serotonin), and circadian drives (suprachias-
matic inputs). These activated neurons, through 
the reciprocal GABAergic inhibition of all wake-
promoting systems, would be in a position to 
suddenly unbalance the “flip-flop” network, as 
required for switching from W or drowsiness to 
SWS. Conversely, the slow removal of excitatory 
influences would result in a progressive firing 
decrease in VLPO neurons and therefore an acti-
vation of wake-promoting systems leading to 
awakening [18, 25].

Neuronal Network Responsible  
for Paradoxical Sleep

The Pontine Generator of PS  
and the Cholinergic Hypothesis

In 1959, Jouvet and Michel discovered PS in cats, 
a sleep phase characterized by a complete disap-
pearance of muscle tone, paradoxically associ-
ated with cortical activation and rapid eye 
movements (REM) [26]. Rapidly, they demon-
strated that the brainstem is necessary and suffi-
cient to trigger and maintain PS in cats (pontine 
cat preparation). By using electrolytic and chemi-
cal lesions, it was then found that the dorsal part 
of the pontis oralis (PnO) and caudalis (PnC) 
nuclei contain the neurons responsible for PS 

onset [27]. Furthermore, large bilateral injections 
of a cholinergic agonist, carbachol into the PnO 
and PnC promotes PS in cats [28]. Later, PS 
induction with the shortest latencies was obtained 
with carbachol injection restricted to the dorsal 
area of the PnO and PnC, coined the peri-locus 
coeruleus alpha (peri-LC alpha). It was then 
shown by unit recordings in freely moving cats 
that many peri-LC alpha neurons show a tonic fir-
ing selective to PS (called PS-on neurons) [29]. 
Two types of PS-on neurons were identified. The 
first ones were inhibited by carbachol, an indica-
tion that they might be cholinergic. They were 
restricted to the rostro-dorsal peri-LC alpha and 
projected to forebrain including intralaminar 
thalamic nuclei, posterior hypothalamus, and 
basal forebrain. The second ones recorded over 
the whole peri-LC alpha were excited by carba-
chol and projected caudally to the nucleus reticu-
laris magnocellularis (Mc) within the ventromedial 
medullary reticular formation [29, 30]. It has 
been then proposed that (1) the ascending PS-on 
neurons are cholinergic and are responsible for 
the cortical activation during PS and (2) the 
descending PS-on neurons are not cholinergic 
and generate muscle atonia during PS through 
excitatory projections to medullary glycinergic 
pre-motoneurons [12, 31–33].

In contrast to data in cats, carbachol iontopho-
resis into the rat sublaterodorsal tegmental 
nucleus (SLD), a very small area of the dorsolat-
eral pontine tegmentum corresponding to the 
cat’s peri-LC alpha, induces W with increased 
muscle activity [34]. Other studies using carba-
chol administration in rats described either a 
moderate PS enhancement or no effect [35–38]. 
It was first shown that the number of pedunculo-
pontine (PPT) and laterodorsal (LDT) cholinergic 
neurons expressing Fos increases in rats during 
PS recovery following its selective deprivation by 
the flower-pot technique [39]. However, in our 
recent study reproducing these experiments (75 h 
PS deprivation; 3 h sleep recovery), we observed 
that only occasional cholinergic neurons stained 
for Fos in the PPT/LDT nuclei [40]. In 
conclusion, our results in rats are strongly against 
a role of pontine cholinergic neurons in PS gen-
esis although unit recording combined with 
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juxtacellular labeling is required to draw a more 
definitive conclusion.

SLD Neurons Triggering PS  
Are Glutamatergic

As described above, SLD neurons activated dur-
ing PS are not cholinergic. We recently showed 
that they are not GABAergic, as well. Indeed, the 
small number of Fos+/GAD+ neurons in the SLD 
did not increase in rats displaying a PS rebound 
compared to control or PS-deprived rats [41]. It is 
more likely that the Fos+ neurons observed in the 
SLD specifically after PS recovery are glutamater-
gic since they express the vesicular glutamate 
transporter, vGlut2 [42]. Further, it has been 
shown that the SLD sends efferent projections to 
glycinergic neurons from the ventral and alpha 
gigantocellular nuclei (GiV and GiA, correspond-
ing to the cat Mc) known to generate atonia dur-
ing PS by direct projections to cranial and spinal 
motoneurons in the cat [12, 33]. These glyciner-
gic neurons express Fos during a PS-like state 
inducted by the disinhibition of the SLD with 
bicuculline or gabazine (GABA-A receptor antag-
onists) [34]. Further, glutamate release in the GiV 
and GiA increases specifically during PS and 
injection of non-NMDA glutamate agonists in the 
GiV and GiA suppresses muscle tone. In contrast, 
an increased tonus is induced during PS after the 
lesion of these medullary areas in cats. Altogether, 
these results strongly suggest that the SLD neu-
rons triggering PS are glutamatergic [12, 33].

It is likely that the glycinergic neurons of the GiA 
and Giv are also GABAergic since a large majority 
of the Fos+ neurons localized in these nuclei after PS 
recovery express GAD67 mRNA [41].

SLD Neurons Triggering PS Are 
Tonically Excited by Glutamate

In cats, the microdialysis administration of kainic 
acid, a glutamate agonist in the peri-LC alpha 
induces a PS-like state [43]. We reproduced these 
experiments in rats and also observed a firing acti-
vation of SLD neurons reliably associated with the 

induction of a PS-like state. Further, application of 
kynurenate, a glutamate antagonist, reversed the 
PS-like state induced by bicuculline [34]. These 
results suggest that SLD PS-on neurons are under 
a permanent glutamatergic barrage throughout the 
sleep–waking cycle, unmasked at the onset of PS 
by the removal of tonic GABAergic inputs. The 
best candidate structure for containing the gluta-
matergic neurons permanently activating SLD is 
the lateral and ventrolateral periaqueductal gray 
(vlPAG), containing numerous non-GABAergic, 
likely glutamatergic, efferent neurons to the SLD 
[44, 45]. Although Jouvet established that structures 
sufficient for PS are restricted to the brainstem, 
numerous non-GABAergic neurons projecting to 
the SLD located in the primary motor area of the 
frontal cortex, the bed nucleus of the stria termina-
lis or the central nucleus of the amygdala could 
also contribute to the activation of the SLD neurons 
during PS [45].

SLD Glutamatergic Neurons Are 
Inhibited by GABAergic Neurons During 
W and SWS

By early 2000, we observed that a long-lasting 
PS-like hypersomnia can be pharmacologically 
induced with a short latency in head-restrained 
rats by iontophoretic applications of bicuculline 
or gabazine into the SLD. Our results have been 
reproduced in freely moving rats and cats with 
pressure injection of bicuculline [46, 47]. During 
these experiments, we were also able to record 
neurons within the SLD that are specifically 
active during PS and excited following bicucull-
ine or gabazine iontophoresis [48]. Taken 
together, our data indicate that the activation of 
SLD neurons is mainly due to the removal of 
GABAergic tone present during W and SWS. 
Combining retrograde tracing with cholera toxin b 
subunit (CTb) injected in SLD and immunostain-
ing for glutamic acid decarboxylase 67 (GAD67, 
a synthetic enzyme for GABA), we thus identi-
fied neurons at the origin of these GABAergic 
inputs mainly within the pontine (including SLD 
itself) and the dorsal deep mesencephalic reticu-
lar nuclei (dDpMe) also named the lateral 
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pontine tegmentum (LPT) [45, 49]. Supporting 
the contribution of local GABAergic neurons in 
the inhibition of PS-on neurons during SWS and 
W, a significant increase in PS is  produced by the 
administration of antisense oligonucleotides 
against GAD67 mRNA centered to the cat nuc-
leus peri-LC alpha [47]. In rats, the number of 
GABAergic Fos+ neurons in the rostral pontine 
reticular nucleus decreased following PS rebound, 
suggesting they are active during W and SWS 
and inactive during PS [50]. However, we recently 
demonstrated that the ventrolateral part of the 
PAG (vlPAG) and the dDPMe are the only brain-
stem structures containing a large number of 
Fos+ neurons expressing GAD67 mRNA after 
PS deprivation [41]. Further, injections of musci-
mol (a GABA-A receptor agonist) in the vlPAG 
and/or the dDpMe induce strong increases in PS 
in cats and rats [41, 51]. These congruent experi-
mental data led us to propose that GABAergic 
neurons within the vlPAG and the dDpMe gate 
PS by tonically inhibiting PS-on neurons from 
the SLD during W and SWS.

Role of the Monoaminergic Neurons  
in the Control of SLD Glutamatergic 
Neurons

An important discovery in the course of the iden-
tification of PS mechanisms was the finding that 
serotonergic and noradrenergic neurons cease fir-
ing specifically during PS, i.e., show a PS-off fir-
ing activity reciprocal to that of PS-on neurons 
[12, 33]. Recently, it was shown that histaminer-
gic and hypocretin neurons within PH also have a 
PS-off firing pattern [52–54]. These electrophysi-
ological data were the basis for the classical 
“reciprocal interaction” model suggesting that PS 
onset is gated by reciprocal inhibitory interactions 
between PS-on and PS-off neurons [29, 55, 56]. 
Supporting this model, drugs enhancing serotonin 
and noradrenergic transmission (monoamine oxi-
dase inhibitors and serotonin and norepinephrine 
reuptake blockers) specifically suppress PS. 
Further, applications of noradrenaline, adrenaline, 
or benoxathian (an alpha2 agonist) into the peri-
LC alpha inhibit PS, but serotonin has no effect 

[57, 58]. In addition, noradrenaline via alpha2-
adrenoceptors inhibits the noncholinergic PS-on 
neurons but has no effect on the putative cholin-
ergic PS-on neurons from the peri-LC alpha while 
serotonin has no effect on both types of neurons 
[59]. Importantly, our recent data combining 
tyrosine hydroxylase and Fos staining after PS 
deprivation and recovery suggest that LC nora-
drenergic neurons are likely not involved in the 
inhibition of PS particularly during PS depriva-
tion. Nevertheless, a substantial number of nora-
drenergic neurons from A1 and A2 cell groups 
displayed Fos after PS deprivation indicating that 
these medullary noradrenergic cell groups might 
contribute to PS inhibition [60].

GABAergic Neurons Responsible  
for the Inactivation of Monoaminergic 
Neurons During PS

According to the “reciprocal interaction” model, 
the inactivation of monoaminergic neurons at PS 
onset is due to a powerful inhibitory drive origi-
nating from cholinergic PS-on cells from peri-LC 
alpha [29, 56]. However, peri-LC alpha neurons 
do not send efferent projections to monoaminer-
gic nuclei; acetylcholine excites noradrenergic 
LC neurons and is only weakly inhibitory on 
serotonergic DRN neurons [61, 62]. It has there-
fore been suggested that inhibitory amino acids 
such as GABA or glycine may be more powerful 
than acetylcholine [63, 64]. To test this hypothe-
sis, effects of iontophoretic applications of bicu-
culline and strychnine (a glycine antagonist) were 
studied on the activity of LC and DRN cells in 
the head-restrained rat. Bicuculline or strychnine, 
applied during SWS or PS when monoaminergic 
neurons are silent, induces tonic firing in both 
types of neurons [65–67]. During W, the antago-
nists produce a sustained increase in discharge 
rate compared to control. These results indicate 
the existence of tonic GABA and glycinergic 
inputs to the LC and DRN that are active during 
all vigilance states. Importantly, when the strych-
nine effect occurred during transitions from PS to 
W, the discharge rate further increased at W 
onset. In the same situation with bicuculline, the 
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discharge rate remained unchanged at the transi-
tion from PS to W. These distinctive electrophys-
iological responses strongly suggest that an 
increased GABA release is responsible for the 
PS-selective inactivation of monoaminergic neu-
rons. This hypothesis is well supported by 
microdialysis experiments in cats measuring a 
significant increase in GABA release in the DRN 
and LC during PS as compared to W and SWS 
but no detectable changes in glycine concentra-
tion [68, 69]. It seems therefore that monoamin-
ergic cells are under a tonic GABAergic inhibition 
with a gradually increased strength from W to PS 
resulting in their inactivation during sleep. 
GABAergic neurons located in the VLPO and 
MnPN areas may be involved in this inhibition 
during SWS while those located in the extended 
VLPO have been implicated in this inhibition 
during PS [70]. However, we could not confirm 
that Fos-positive neurons located in the VLPO 
and extended VLPO after PS rebound project to 
the LC [71]. Further, it is likely that the PS-related 
inhibition involves primarily GABAergic neu-
rons within the brainstem, directly projecting to 
monoaminergic neurons and “turned on” specifi-
cally at the onset of and during PS. Indeed, 
PS-like episodes spontaneously occur in pontine 
cats and when pharmacologically induced by car-
bachol in decerebrate cats, PS episodes are 
still associated with the silencing of serotonergic 
neurons [72].

By combining retrograde tracing with CTb 
and GAD immunohistochemistry in rats, we 
found that the LC and DRN receive GABAergic 
inputs from neurons located in a large number of 
distant regions from the forebrain to medulla 
[67]. Two brainstem areas are common inputs to 
DRN and LC since they contain a substantial 
number of GABAergic/CTb+ neurons, and are 
thus candidates for mediating the PS-related inhi-
bition of monoaminergic neurons: the vlPAG and 
the dorsal paragigantocellular nucleus (DPGi). 
Furthermore, we demonstrated by using Fos that 
both nuclei contain numerous LC-projecting neu-
rons selectively activated during PS rebound fol-
lowing PS deprivation [71]. Since the DPGi has 
not previously been considered in sleep, we stud-
ied the firing activity of DPGi neurons across the 

sleep–wake cycle in head-restrained rats. In full 
agreement with our Fos data, the DPGi contains 
numerous PS-on neurons; they are silent during 
W and SWS but fire tonically during PS. They 
start discharging approximately 15 s before PS 
onset and become silent around 10 s before EEG 
signs of arousal. This singular electrophysiologi-
cal pattern suggests their contribution to the gen-
eration of PS [73]. Indeed, local application of 
bicuculline blocked the DPGi-evoked inhibition 
of LC neurons and electrical DPGi stimulation 
induces an increase in PS quantities in rats [74, 
75]. Taken together, these data support the 
presence within the DPGi of neurons responsible 
for the inactivation during PS of LC neurons.  
A contribution from the vlPAG in this inhibitory 
mechanism is also likely. In rat brainstem slices, 
iontophoretic NMDA application in the vlPAG-
induced bicuculline-sensitive inhibitory postsyn-
aptic potentials in serotonergic neurons [76]. 
Moreover, an increase in Fos+ GAD immunore-
active neurons has been reported in the vlPAG 
after PS rebound induced by deprivation in rats 
[39, 41].

Role of the Posterior Hypothalamus,  
in Particular MCH Neurons in PS

As reported above, numerous Fos+ cells were 
observed in structures implicated in PS, such as 
SLD, vlPAG, or DPGi in rats allowed to recover 
from a 75-h PS-selective deprivation. Surpri-
singly, we also observed a very large number of 
Fos+ cells in the PH including zona incerta (ZI), 
perifornical area (PeF), and the lateral hypotha-
lamic area (LHA) [77]. Only a few experimental 
results already support the notion that the PH 
contributes to PS regulation. Indeed, bilateral 
injections of muscimol in the cat mammillary 
and tuberal hypothalamus induced a drastic 
inhibition of PS [78]. Further, neurons specifi-
cally active during PS were recorded in the PH 
of cats or head-restrained rats. By using double-
immunostaining, we further showed that half of 
Fos+ cells (76% in the PeF) in PH are positive 
for the neuropeptide melanin-concentrating 
hormone (MCH) while almost none of the 
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neigh boring hypocretin neurons were Fos+. 
Almost 60% of the MCH-immunoreactive neu-
rons counted in PH were Fos+ [77]. In support 
of our Fos data, it has been recently shown in 
head-restrained rats that hypothalamic neurons, 
identified ex vivo as containing MCH, fire quite 
exclusively during PS, with a slow tonic rate or 
phasically in doublets or burst of spikes [79]. In 
addition, rats receiving ICV administration of 
MCH showed a strong dose-dependent increase 
in PS and, to a minor extent, SWS quantities 
[77]. Further, subcutaneous injection of an MCH 
antagonist decreases SWS and PS quantities, 
and mice with genetically inactivated MCH 
signaling exhibit altered vigilance state archi-
tecture and sleep homeostasis [80–82]. Thus, 
growing evidence indicates that MCH neurons 
and/or MCH signaling play a key role in PS 
regulation/homeostasis. Since MCH is primarily 
an inhibitory peptide, we have proposed that 
MCH neurons might promote PS by inhibiting 
W active neurons permissive for PS like the 
vlPAG/dDpMe GABAergic, the monoaminergic 
PS-off neurons and the hypocretin neurons 
intermingled in the PH with them [12, 83]. 
Supporting this hypothesis, observations with 
electron microscopy indicate that MCH and 
Hcrt neurons are interconnected [84, 85] and 
recent data from MCH-R1 KO mice demon-
strated interactions between Hcrt and MCH sys-
tems, implying that MCH may exert an inhibitory 
influence on Hcrt signaling [86]. In addition, 
GABA, present in MCH neurons, likely contrib-
utes to the cessation of activity of Hcrt neurons 
during SWS and PS since bicuculline applica-
tion in the PH-induced W and Fos expression in 
hypocretin neurons [87, 88].

Projections of the Hypocretin Neurons 
Involved in PS Regulation  
and Cataplexy

Hypocretin neurons are specifically active dur-
ing W [53, 54]. ICV or local injection of hypo-
cretin in the LC or the TMN neurons induces W 
and inhibits PS [89–91]. Narcolepsy, a sleep 
disorder characterized by excessive daytime 

sleepiness and cataplexy, is caused by the lack 
of hypocretin (Hcrt) mRNA and peptides in 
humans or a  disruption of the Hcrt-R2 or its 
ligands in dogs and mice [92–94]. Excessive 
daytime sleepiness is likely due to the absence 
of excitatory hypocretin inputs on the other 
waking systems such as the histaminergic and 
noradrenergic ones. The absence of these inputs 
might also be responsible for cataplexy. It is, 
however, more likely that the absence of an 
excitatory hypocretin input to the GABAergic 
PS-off dDPMe and vlPAG neurons tonically 
inhibiting SLD PS-on neurons during W is 
involved. Indeed, we have shown that the 
removal of the GABAergic inhibition of SLD 
neurons is sufficient to induce PS since these 
neurons are permanently excited by a gluta-
matergic input [45]. We therefore propose that 
normally during strong emotions, hypocretin 
neurons excite the PS-off GABAergic neurons 
to counteract a simultaneous increase in gluta-
matergic tone on SLD PS-on neurons that may 
be coming from the central amygala [45]. The 
absence of the excitatory hypocretin input on 
the PS-off GABAergic neurons in narcoleptics 
would allow the activation of the SLD PS-on 
neurons by the glutamate input.

A Network Model for PS Onset  
and Maintenance

Our model integrates all the experimental data 
described above. It also integrates the observa-
tion that PS episodes in the rat start from SWS 
after a relatively long intermediate state during 
which the EEG displays a mix of spindles and 
theta activity, and then terminate abruptly, associ-
ated with a short microarousal [95].

We propose that the induction of PS is due to 
the activation of glutamatergic PS-on neurons in 
the SLD. During W and SWS, the activity of these 
PS-on neurons would be inhibited by an inhibi-
tory GABAergic tone originating from PS-off 
neurons localized in the vlPAG and dDpMe. These 
PS-off neurons would be activated during W by 
the Hcrt neurons and the monoaminergic neurons. 
The onset of PS would be due to the activation by 
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intrinsic mechanisms of PS-on MCH/GABAergic 
neurons and PS-on GABAergic neurons localized 
in the DPGi and vlPAG. These neurons would 
inactivate the vlPAG/dDPMe PS-off neurons and 
the PS-off monoaminergic and Hcrt neurons dur-
ing PS. The disinhibited ascending SLD PS-on 
neurons would in turn induce cortical activation 
via their projections to intralaminar thalamic relay 
neurons in collaboration with W/PS-on cholin-
ergic and glutamatergic neurons from the LDT 
and PPT, mesencephalic and pontine reticular 
nuclei and the basal forebrain. Descending PS-on 
SLD neurons would induce muscle atonia and 
sensory inhibition via their excitatory projections 
to glycinergic/GABAergic premotoneurons local-
ized in the alpha and ventral gigantocellular retic-
ular nuclei and the nucleus raphe magnus. The 
exit from PS would be due to the activation of 
waking systems since PS episodes are almost 
always terminated by an arousal. The waking sys-
tems would inhibit the MCH/GABAergic and 
GABAergic PS-on neurons localized in the DPGi 
and vlPAG. Since the duration of PS is negatively 
coupled with metabolic rate, we propose that the 
activity of the waking systems is triggered to end 

PS to restore competing physiological parameters 
like thermoregulation (Fig. 3).

Regarding PS-related pathologies in humans, 
cataplectic episodes in narcoleptics would be 
due to the absence of an increase of the hypocre-
tin excitation of GABAergic PS-off neurons in 
the dDPMe and the vlPAG during emotion and a 
concomitant excitation of the SLD by gluta-
matergic inputs from the lateral bed nucleus of 
the stria terminalis and the central amygdala. 
Finally, phasic motor movements during RBD 
would be due to a degeneration or destruction of 
at least part of the SLD PS-on neurons and/or the 
phasic activation of motor systems normally 
occurring during PS.
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