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Introduction

An interval aims to bound all the values of
an uncertain variable, for example provided
by a measurement device [5]. This approach
is highly effective for every safety, verification
or validation procedures because the intervals
are conservative. The major inconvenience is
that intervals are sometimes too pessimistic.
Otherwise, it is conceivable that a measure
can be associated to guaranteed bounds, an
interval, and also a confidence level coming
from past observations.

A novel contractor is proposed to filter an
interval following a confidence level given on
the associated quantity. This confidence level
is an input of the contractor, the “new” infor-
mation, while the probability distribution of
the considered variable is a characteristic of
the associated random variable.

Combining intervals and a probability has
been already proposed in numerous papers us-
ing techniques such as p-boxes [8], fuzzy sets
[4], box-particles [1] and potential cloud [7].

We are particularly interested in Ordinary
Differential Equations (ODEs) and validated
methods to compute their reachable sets via
validated simulation [6, 3]. In the case of Ini-
tial Value Problems (IVPs) with ODEs, the
initial state is primordial. An uncertain initial
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state is generally bounded in a box. As exper-
imentation, we propose to consider in addition
to this initial box some confidence levels, and
we apply the presented approach. It allows
us to describe the reachable set by a cloud.
This richer result can then be used in different
control problems, parameter synthesis, verifi-
cation, etc.

Preliminaries

When focusing on symmetric distributions
such as the normal distribution, one can de-
fine:

Confidence interval is a set S for which
the probability of the given random vari-
able to be in this set is equal to the given
probability P .

Probability density function is most
commonly associated with absolutely
continuous univariate distributions. A
random variable X has density fX ,
where fX is a non-negative Lebesgue-
integrable function, if:

P = Pr[a ≤ X ≤ b] =
∫ b

a
fX(x) dx.

Confidence level (e.g. CL = 95%) allows
to define the corresponding confidence in-
terval (e.g. C95%). This interval can be
obtained by observation (statistical ap-
proach) or with the help of a known dis-
tribution (probability approach). A new



measure x̂ coming from the (same) exper-
iment will be in the associated confidence
interval such that:

x̂ ∈ C95% 95% of the time.

Confidence-based Contractor

We propose the following confidence-based
contractor:

Cbc([x]|fX , cc) : IR 7→ IR
[x] → [x] ∩ [y]

with [y] the confidence interval defined such
that

Pr[x ∈ [y]] =

∫
[y]
fX(x) dx = cc,

cc being the confidence coefficient
(0 ≤ cc ≤ 1). For example, one can
use the parameter assignment cc = 0.68 for a
confidence level of 68%.

Figure 1 illustrates the effect of the
confidence-based contractor applied to the fol-
lowing example. Let X be a random variable
with a normal distribution, such that

fX(x|µ, σ) = 1√
2πσ2

e−
(x−µ)2

2σ2

with µ = 1.0 and σ = 1.0. The quantity X
is observed and one measure is obtained: [x] =
[0.7, 2.1]. A confidence level of 68.27% is given
on X, that is to say that we are confident on
the accuracy of the observations, so X stays
close to its mean. Our method computes the
contraction such that:

Cbc([0.7, 2.1] | fX , 0.6827) = [0.7, 2.1] ∩ [0, 2]

= [0.7, 2.0]

So upper bound is reduced with respect to the
confidence level. The pessimism induced by
interval approach is then limited.
Two special cases can be described:

• ∀[x], Cbc([x]|fX , 0) = ∅ (annihilating ele-
ment)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-4 -3 -2 -1 0 1 2 3 4

fX(x|1, 1)

68.27%

[x]

0.7 2.1

Cbc([x], 0.68.27)

Figure 1: Illustration of confidence-based con-
traction.

• ∀[x], Cbc([x]|fX , 1) = [x] (identity ele-
ment)

For two different confidence coefficients cc1
and cc2 such that cc1 < cc2, the following or-
der holds:

∀[x], Cbc([x]|fX , cc1) ⊂ Cbc([x]|fX , cc2)

The contractor Cbc can be composed with
other contractors or with itself.

The confidence-based contractor presented
in this paper needs the computation of the
confidence interval associated to a given con-
fidence level. Three cases can be detailed:

Case 1: a well known probability distribu-
tion and a particular confidence level with
known confidence interval. For example,
a normal distribution with a 95% con-
fidence level gives a confidence interval
[µ− 2σ, µ+ 2σ].

Case 2: a probability distribution with a
known inverse function, such as the in-
verse of error function for Gaussian den-
sity function (i.e. erf−1).

Case 3: the general case without any par-
ticular value. For this case, a predictor-
corrector algorithm exploiting the sym-
metry of the distribution is designed.



Reachability and Potential
Clouds

Computing the reachable set of an initial value
problem defined as follows:{

ẏ(t) = g(t,y(t))

y(0) ∈ [y0] ⊆ Rn.
(1)

can be performed with validated simulation
tools. It provides a tube enclosing y(t; [y0])
for t ∈ [0, T ]. The confidence contractor
presented here can be used to filter the ini-
tial states w.r.t. different confidence levels.
The contraction can be propagated along the
tube[2] to build a potential cloud on the final
state. This approach is useful in the case of
differential constraint while a constraint can
be verified for some confidence levels but not
for the global intial set (y(0) ∈ [0, 2]). An ex-
ample is given in Fig. 2. With a confidence
level of 50% on initial states, the constraint
[y(5; [y0])] ⊂ [1.5, 1.6] is verified.
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Figure 2: Validated trajectories for 60% (in
grey waves) and for 50% (in light grey) confi-
dence contraction.

Conclusion

A novel interval contractor based on the confi-
dence assigned to a random variable was pro-
posed. It makes possible to consider at the
same time an interval in which the quantity
is guaranteed to be, and a confidence level to
reduce the pessimism induced by interval ap-
proach. As application, we proposed to com-

pute the reachable set of an ordinary differ-
ential equation under the form of a potential
cloud, with respect to confidence levels on ini-
tial value.
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