
HAL Id: hal-02372136
https://hal.science/hal-02372136v1

Submitted on 20 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Linear Time Algorithm for Computing Off-line Speed
Schedules Minimizing Energy Consumption

Bruno Gaujal, Alain Girault, Stéphan Plassart

To cite this version:
Bruno Gaujal, Alain Girault, Stéphan Plassart. A Linear Time Algorithm for Computing Off-line
Speed Schedules Minimizing Energy Consumption. MSR 2019 - 12ème Colloque sur la Modélisation
des Systèmes Réactifs, Nov 2019, Angers, France. pp.1-14. �hal-02372136�

https://hal.science/hal-02372136v1
https://hal.archives-ouvertes.fr


A Linear Time Algorithm for Computing Off-line Speed
Schedules Minimizing Energy Consumption∗

Bruno Gaujal1, Alain Girault2, and Stéphan Plassart3

1 Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG, 38000 Grenoble, France.
bruno.gaujal@inria.fr

2 Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG, 38000 Grenoble, France.
alain.girault@inria.fr

3 Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG, 38000 Grenoble, France.
stephan.plassart@inria.fr

Abstract

We consider the classical problem of minimizing off-line the total energy consumption
required to execute a set of n real-time jobs on a single processor with varying speed. Each
real-time job is defined by its release time, size, and deadline (all integers). The goal is
to find a sequence of processor speeds, chosen among a finite set of available speeds, such
that no job misses its deadline and the energy consumption is minimal. Such a sequence
is called an optimal speed schedule. We propose a linear time algorithm that checks the
schedulability of the given set of n jobs and computes an optimal speed schedule. The
time complexity of our algorithm is in O(n), to be compared with O(n log(n)) for the best
known solutions. Besides the complexity gain, the main interest of our algorithm is that it
is based on a completely different idea: instead of computing the critical intervals, it sweeps
the set of jobs and uses a dynamic programming approach to compute an optimal speed
schedule. Our linear time algorithm is still valid (with some changes) with an arbitrary
power function (not necessarily convex) and arbitrary switching times.

1 Introduction

Among numerous hardware and software techniques used to reduce energy consumption of a
processor, supply voltage reduction, and hence reduction of CPU speed, is particularly effective.
This is because the energy consumption of the processor is a function at least quadratic in the
speed of the processor in most models of CMOS circuits. Nowadays, variable voltage processors
are readily available and a lot of research has been conducted in the field of Dynamic Voltage
and Frequency Scaling (DVFS). Under real-time constraints, the extent to which the system can
reduce the CPU frequency (or speed in the following) depends on the jobs’ features (execution
time, arrival date, deadline) and on the underlying scheduling policy.

The problem of computing off-line DVFS schedules to minimize the energy consumption has
been well studied in the literature, starting from the seminal paper of Yao et al. [1]. All the
previous algorithms proposed in the literature compute the critical interval of the set of jobs1,
using more and more refined techniques to do so. This started in 1995 with [1] and [2] where
it was independently shown that one can compute the optimal speed schedule with complexity
O(n3). Later, [3] showed in 2007 that the complexity can be reduced to O(n2L) (L being the

∗This work has been partially supported by the LabEx PERSYVAL-Lab.
1The critical interval is the time interval with the highest load per time unit.



A Linear Scheduling Algorithm Minimizing Energy Consumption B. Gaujal, A. Girault, S. Plassart

nesting level of the set of jobs). Finally the complexity has been reduced to O(n2) in the most
recent work in 2017 [4].

When the number of available speeds is finite, equal tom, [5] proposed in 2005 a O(mn log n)
algorithm. In their most recent work, the same authors showed in 2017 that the complexity
can be further reduced to O(n log(max{m,n})) [4].

Here, we present a dynamic programming solution that sweeps the set of tasks in reverse
order of their release times (forward sweep will not have a linear complexity here) and computes
the best speed at each time step while checking feasibility. The complexity is linear in the
number of jobs, equal to Kn, where the constant K depends on the maximal speed and on a
bound on the maximal relative deadlines of the jobs.

Finally, we show in Section 5.1 that the power of dynamic programming allows us to gen-
eralize this approach to the case where switching from one speed to another is not free, but
instead takes some time ρ and may also have an energy cost, which is a more realistic model.
We also show in Section 5.2 that our model allows for arbitrary power functions, not necessarily
convex in the speed.

2 System Model

We consider a set of n jobs {Ji}i=1..n to be executed by a single core processor equipped with
dynamic voltage and frequency scaling (DVFS). Each job Ji is defined by the triplet (τi, ci, di),
where τi is the inter-arrival time between Ji and Ji−1 (with τ1 = 1 by convention), ci is the size
(also called its WCET), and di the relative deadline bounded by ∆. From the inter-arrival times
and the relative deadlines we can reconstruct the release times ri and the absolute deadlines Di

of the job Ji: ri =
∑i
k=0 τk ∀i > 1 and Di = ri + di. We also denote by T the last deadline

among all jobs, called the time horizon of our system. It is defined by T = maxni=1{Di}. We
assume that all these quantities are in N.

The single core processor is equipped with m processing speeds also assumed to be in N,
and smax denotes the maximal speed. The set of available speeds is denoted S. The speeds are
not necessarily consecutive integers. In the first part of the paper, we assume the cost of speed
switching to be null. This will be generalized in Section 5 for a non-null speed switching thanks
to the technique introduced in [6].

We use the Earliest Deadline First (EDF) preemptive scheduling policy. This approach as
already been used in [6]. A key advantage of EDF is that it is optimal for feasibility. A set of
jobs is feasible if and only if there exists a job schedule so that no deadline is missed when the
processor always uses its maximal speed smax. In this respect, the optimality of EDF means
that, if a set of jobs is feasible, then it is also feasible under EDF.

The power dissipated at any time t by the processor running at speed s(t) is denoted
Power (s(t)). For the time being, we assume that the Power function is convex (this assumption
will be relaxed in Section 5.2). Under these notations, the total energy consumption E is:

E =

∫ T

1

Power (s(t))dt. (1)

Given a set of n jobs {Ji}i=1..n, the goal is to find an optimal speed schedule {s∗(t), t ∈ [1, T ]}
that will allow the processor to execute all the jobs before their deadlines while minimizing the
total energy consumption E.

2



A Linear Scheduling Algorithm Minimizing Energy Consumption B. Gaujal, A. Girault, S. Plassart

3 State Space

A natural idea is to store, at time t, the set of jobs present at time t, i.e., {Ji =
(ri, ci, di), s.t. ri ≤ t ≤ ri + di}. Yet, in order to compute the speed of the processor, one
does not need to know the set of actual jobs but only the cumulative remaining work present at
time t, corresponding to these jobs. Therefore, a more compact state will be the remaining work
function wt(·) at time t: for any u ∈ R+, wt(u) is the amount of work that must be executed
before time u+ t, taking into account all the jobs Ji present at time t (i.e., with a release time
ri ≤ t and deadline ri + di > t). By definition, the remaining work wt(·) is a staircase function.

To derive a formula for wt(·), let us introduce the work quantity that arrives at any time t:
we define in Def. 1 a new function at(·). For any u ∈ R+, the quantity at(u) is the amount of
work that arrives at time t and must be executed before time t+ u.

Definition 1. The amount of work that arrived at time t and must be executed before time
t+ u is

at(u) =
∑
i | ri=t

ciHdi(u), (2)

where Hdi(·) is the discontinuous step function defined ∀u ∈ R by

Hdi(u) =

{
0 if u < di,
1 if u ≥ di.

To illustrate the definition of at(·), let us consider an example with 3 jobs J1, J2, J3 with
respective release times r1 = r2 = r3 = t, sizes c1 = 1, c2 = 2, c3 = 1 and relative deadlines
d1 = 2, d2 = 3, d3 = 5. The corresponding function at(·) is displayed in the middle of Fig. 1.

Def. (1) allows us to describe the state change formula when moving from time t − 1 to
time t, using speed s(u) in the while interval [t− 1, t].

Lemma 1. At time t ∈ N the remaining work function is given by:

wt(·) = T

[(
wt−1(·)−

∫ t

t−1
s(u)du

)+
]

+ at(·), (3)

with Tf the shift on the time axis of function f , defined as: Tf(t) = f(t+ 1) for all t ∈ R, and
f+ = max(f, 0), the positive part of a function f .

Proof. Eq. (3) defines the evolution of the remaining work over time (see Fig. 1 for an illus-
tration). The remaining work at time t is the remaining work at t − 1 minus the amount of
work executed by the processor from t − 1 to t (which is exactly

∫ t
t−1 s(u)du) plus the work

arriving at t. The “max” with 0 makes sure that the remaining work is always positive and the
T operation performs a shift of the reference time from t− 1 to t.

3.1 Size of the State Space

We denote by W the set of all possible remaining work functions that can be reached by any
feasible set of jobs, when the processor only changes its speed at integer times, and when no
job has missed its deadline before time t. The size of the state space W is denoted by Q.

3



A Linear Scheduling Algorithm Minimizing Energy Consumption B. Gaujal, A. Girault, S. Plassart

•
t−1 t−1+∆

wt−1(·)

•
s(
t−

1)

u1

u2

t1
t2

t3

•
t t+∆

at(·)

•

d1
d2
d3

c1

c2

c3

•
t t+∆

wt(·)

••

u1−1

u2

c1

c2

c3

t1−1

t2−1

t3

Figure 1: Left: State of the system at t−1. The green line depicts the remaining work function
wt−1(·). The constant speed chosen between times t − 1 and t is s(t − 1) = 1; u1 stands for
wt−1(2) and u2 stands for wt−1(5) − wt−1(2). Middle: Arrival of three new jobs (ri, ci, di)
at t: J1 = (t, 1, 2), J2 = (t, 2, 3), and J3 = (t, 1, 5). The red line depicts the arrival work
function at(·). Right: The blue line depicts the resulting state at t, wt(·), obtained by shifting
the time from t−1 to t, by executing 1 unit of work (because s(t−1) = 1), and by incorporating
the jobs arrived at t. Above the blue line are shown in green the “parts” of wt(·) that come
from wt−1(·) and in red those from at(·).

Since all jobs have a relative deadline bounded by ∆, then for all t ∈ N, and all u ≥ ∆,
wt(u) = wt(∆). Furthermore, wt is a staircase function with steps at integer times,. Therefore,
wt is completely specified by its first values, wt(0), wt(1), wt(2), . . . , wt(∆).

If no job has missed its deadline before time t, then wt(0) = 0 (no work with deadline at
most t is left at time t). Finally, the processor can execute at most smaxu amount of work
during a time interval of size u. As a consequence, for feasible remaining work functions (i.e.,
the remaining work functions corresponding to feasible jobs), one only needs to consider the
remaining work functions that satisfy ∀0 < u ≤ ∆, wt(u) ≤ smaxu.

• t
0 ∆ ∆+1

•smax(∆+1)•

wt(·)

•

A remaining work function wt(·)
The corresponding Catalan path

Figure 2: Bijection between remaining work functions wt(·) (orange dashed staircase) and the
Catalan paths (blue staircase).

4



A Linear Scheduling Algorithm Minimizing Energy Consumption B. Gaujal, A. Girault, S. Plassart

Now, the set of feasible remaining work functions wt(·) can be bijectively associated to the
set of increasing paths over the 2D integer lattice2 that start from point (0, 0), end into point
(∆ + 1, smax(∆ + 1)), and that stay below the diagonal. This is done by adding one step to the
wt(·) staircase, from (∆, wt(∆)) to (∆ + 1, smax(∆ + 1)). These paths are called Catalan paths
in the following. This bijection is illustrated in Fig. 2, where the additional step connects the
orange bullet and the blue bullet.

As a consequence, the size Q of the state space W can be computed using a generalization
of the Catalan numbers [7]: The number of Catalan paths from (0, 0) to (∆ + 1), smax(∆ + 1))
(hence the number of all possible remaining work functions for any set of feasible jobs) is:

Q =
1

1 + smax(∆ + 1)

(
(smax + 1)(∆ + 1)

∆ + 1

)
. (4)

4 Dynamic Programming Solution

The goal of this section is to describe a dynamic program that computes an optimal speed
schedule s∗(t), t ∈ [1, T ], such that s∗(t) minimizes the energy consumption among all schedules
where the speed may only change at integer times (the speed is therefore a piece-wise constant
function). We distinguish the case where the speeds form a consecutive set (that is, S =
{0, 1, . . . ,m− 1}) and the case where they do not.

4.1 Consecutive Speeds

Algorithm 1 computes the optimal speed schedule. Before presenting its pseudocode, let us
provide an informal description of the behavior of the system. Under a given piece-wise con-
stant speed schedule s(1), s(2), . . . , s(T − 1), the state of the system evolves as follows:

At time 0, no jobs are present in the system so the initial state function w0 is the null
function, which we represent by the null vector of size ∆: w0 = (0, . . . , 0) (see line 4).
The first job J1 is released at time 1, maybe simultaneously with other jobs, so the new state
function becomes w1 = w0 + a1 according to Eq. (3). The case where several jobs are released
at time 1 is taken care by the sum operator in Eq. (2) used to compute a1.

At time 1, the speed of the processor is set to s(1). The processor uses this speed up to
time 2, incurring an energy consumption equal to Power (s(1)).

At time 2, the state function becomes w2 = T(w1 − s(1))+ + a2 according to Eqs. (3)
and (2), and so on and so forth up to time T − 1, resulting in the sequence of state functions
w1, w2, . . . , wT−1.

Now, let us denote by E∗t (w) the minimal energy consumption from time t to time T , if
the state at time t is w, and if the optimal speed schedule is s∗(t), s∗(t + 1), . . . , s∗(T − 1).
Of course, this partial optimal schedule is not known. But let us assume (using a backward
induction) that the optimal speed schedule is actually known for all possible states w ∈ W at

2Increasing paths over a 2D integer lattice are staircases.

5



A Linear Scheduling Algorithm Minimizing Energy Consumption B. Gaujal, A. Girault, S. Plassart

time t. It then becomes possible to compute the optimal speed schedule for all possible states
between time t− 1 and T using the maximum principle:

E∗t−1(w) = min
s∈S

(
Power (s) + E∗t (T(w − s)+ + at)

)
(5)

s∗(t− 1)(w) = arg min
s∈S

(
Power (s) + E∗t (T(w − s)+ + at)

)
, (6)

where s∗(t)(w) denotes the optimal speed at time t if the current state is w.

When time 0 is reached, we have computed the optimal speed schedule between 0 and T
for all possible initial states. To obtain an optimal speed schedule for the sequence of states
w1, . . . , wT−1, we just have to return the speeds s∗(1)(w1), . . . , s∗(T − 1)(wT−1) (see line 28).
Note that, because of the arg min operator in Eq. (6), the optimal schedule is not necessarily
unique.

This is what Algorithm 1 below does. E∗ is computed using the backward induction de-
scribed previously, which is a special case of the finite horizon policy evaluation algorithm
provided in [8] (p. 80).

Algorithm 1 Dynamic programming algorithm computing the optimal speed schedule.

1: input: {Ji = (τi, ci, di), i = 1..n} % Set of jobs to schedule
2: ri =

∑i
k=0 τk

3: T ← maxi(ri + di) % Time horizon
4: w0 ← (0, . . . , 0)
5: for all w ∈ W do
6: E∗T (w)← 0 % Initialization of the energy at the horizon
7: end for
8: t← T % Start at the horizon
9: while t ≥ 1 do

10: for all w ∈ W do
11: E∗t−1(w)← +∞
12: for all s ∈ P(w) do
13: w′ ← T [(w − s)+] + at % Computation of the next state
14: if w′ /∈ W then
15: E∗t (w′)← +∞ % The next state is unfeasible
16: end if
17: if E∗t−1(w) > Power (s) + E∗t (w′) then
18: E∗t−1(w)← Power (s) + E∗t (w′) % Update the energy in state w at t− 1
19: s∗(t− 1)(w)← s % Update the optimal speed in state w at t− 1
20: end if
21: end for
22: end for
23: t← t− 1 % Backward computation
24: end while
25: if E∗1 (w1) = +∞ then
26: return “not feasible”
27: else
28: return {s∗(t)(wt)}t=1...T

29: end if

6



A Linear Scheduling Algorithm Minimizing Energy Consumption B. Gaujal, A. Girault, S. Plassart

The cases where the set of jobs is unfeasible are taken into account by setting the energy
function E∗t (w′) to infinity if the state w′ is unfeasible, that is, if w′ /∈ W (see line 15) since W
is the set of feasible states by definition.

If s(t)(w) is the speed that the processor has to use at time t in state w, then the deadline
constraint on the jobs imposes that s(t)(w) must be large enough to execute the remaining
work at the next time step, and cannot exceed the total work present at time t. This means:

∀t,∀w, w(∆) ≥ s(t)(w) ≥ w(1). (7)

This set of admissible speeds in state w will be denoted by P(w) and formally defined as:

P(w) =
{
s ∈ S s.t. w(∆) ≥ s ≥ w(1)

}
. (8)

Our first result is Theorem 1, which states that Algorithm 1 computes the optimal speed
schedule.

Theorem 1. Assume that the speeds form a consecutive set, i.e., S = {0, 1, . . . ,m − 1}. If
the set of jobs is not feasible, then Algorithm 1 outputs “not feasible”. Otherwise it outputs an
optimal speed schedule that minimizes the total energy consumption.

Proof. Case A: The set of jobs is not feasible. Then, at some time t, the state wt will get
out of the set of feasible states, for all possible choices of speeds. Hence its value E∗t (wt) will
be set to infinity (see line 15) and this will propagate back to time 1. In conclusion, E∗1 (w1)
will be infinite and Algorithm 1 will return “not feasible” (see line 26).

Case B: The set of jobs is feasible. The proof proceeds in two stages. In the first
stage we show that there exists an optimal solution where speed changes only occur at integer
times. In the second stage, we show that Algorithm 1 finds an optimal speed selection among
all solutions that only allow speed changes at integer times.

Case B – first stage. To prove that there exists an optimal solution where speed changes
only occur at integer times, let us first present the algorithm that computes the optimal speed
schedule described in [1]. The core principle of this algorithm is to compute the critical in-
terval Ic, defined to be the time interval with the highest average amount of work (in general
there can be several such intervals, in which case we pick anyone).

To formally define of the critical interval, we rely on the release time ri of job Ji and on its
absolute deadline Di.We say that a job Ji belongs to an interval I = [u, v], denoted Ji ∈ [u, v],
iff ri ≥ u and Di ≤ v. Using this notation, the critical interval Ic is:

Ic = [uc, vc] = arg max
I=[u,v]

∑
Ji∈I ci

v − u
. (9)

Let ` be the length of Ic: ` = vc − uc; and let ω be the total amount of work in Ic:
ω =

∑
Ji∈Ic ci. Since the power is a convex function of the speed, the optimal speed sc over Ic

is constant and equal to sc = ω
` .

When the set S of available speeds is finite, the optimal solution is inferred from the uncon-
strained case as follows: Pick the two neighboring available speeds s1 and s2 in S such that sc
belongs to [s1, s2). As a consequence, sc is equal to a linear combination of s1 and s2:

sc = αs1 + (1− α)s2, with α =
s2 − sc

s2 − s1
. (10)

7



A Linear Scheduling Algorithm Minimizing Energy Consumption B. Gaujal, A. Girault, S. Plassart

An optimal speed schedule is therefore obtained by selecting speed s1, possibly over several
sub-intervals, for a cumulative time equal to α`, and speed s2 the rest of the time, for a total
time equal to (1− α)`.

Then, the critical interval Ic is collapsed, meaning that the working interval [1, T ] becomes
the union [1, uc]∪ [vc, T ], and all the jobs included in Ic are removed from the set of jobs. The
new critical interval is constructed over the contracted interval and over the remaining jobs,
and so on and so forth.

This ends the description of the optimal solution and we are now ready for the proof that
there exists an optimal solution whose speed changes occur at integer times.

Since the release times and deadlines are integers, the critical interval Ic has integer bounds:
Ic = [uc, uc + `] with uc, ` ∈ N. Since the sizes of the jobs are also integer, the total amount of
work over Ic is also integer: ω ∈ N.

• t
1 2 3 4 5 6 7 8

Executed work

0

1

2

3

4

5

6

7

8

9

10

sc = 10/7

• 1

• 1

•
2

• 1

•
2

• 1

•
2

•

Figure 3: Construction of the optimal solution over a critical interval made of 4 jobs {Ji}i=1..4

whose features (ri, ci, di)i=1..4 are (1, 1, 2), (1, 1, 3), (2, 5, 4), and (3, 3, 5). The corresponding
cumulative deadlines form the black staircase while the cumulative arrivals form the brown
staircase. The critical interval is Ic = [1, 8], the total amount of work over Ic is ω = 10, the
optimal speed is sc = 10/7, and its neighboring speeds are s1 = 1 and s2 = s1 + 1 = 2. The
optimal speed schedule only uses speeds 1 and 2 and only changes speeds at integer times. The
sequence of optimal speeds given by Eq. (12) is (1, 1, 2, 1, 2, 1, 2).

When the set of available speeds is consecutive, S = {0, 1, . . . ,m− 1}, the two neighboring

8



A Linear Scheduling Algorithm Minimizing Energy Consumption B. Gaujal, A. Girault, S. Plassart

available speeds of sc = ω
` satisfy s1 ≤ sc < s2 = s1 + 1. In this case,

sc =
ω

`
= αs1 + (1− α)(s1 + 1) = s1 + 1− α. (11)

This implies that α` = `(s1 + 1) − ω. Since `, ω, s1 ∈ N, then α` ∈ N. This means
that the speeds s1 and s2 will both be used during an integer amount of time. One optimal
speed schedule can be constructed by using speed s1 over α` intervals of length one, and speed
s1 + 1 over (1 − α)` intervals of size one, constructed in the following manner: The speed
s∗(k) ∈ {s1, s1 + 1} used in interval [uc + k − 1, uc + k], for k = 1..`, is:

s∗(k) = bkscc − b(k − 1)scc. (12)

This choice of speeds makes sure that speed s1 is used during α` unit intervals and speed
s2 during (1− α)` unit intervals over the critical interval. In addition, under speeds s∗(k), the
jobs in the critical interval are all executed within their deadlines because of the following two
reasons:

1. On the one hand, for any k strictly less than vc, the sizes of the jobs in the critical interval
with deadlines smaller than k + uc must sum up to a value Vk not larger than ksc by
non-criticality of the sub-interval [uc, uc + k]. Since the sizes of the jobs are integers, one
further gets Vk ≤ bkscc.

2. On the other hand, Eq. (12) implies that s∗(1) + s∗(2) + · · ·+ s∗(k) = bkscc.

As a consequence, Vk ≤ s∗(1) + s∗(2) + · · · + s∗(k), meaning that the sum of the sizes of the
jobs belonging to the interval [uc, uc + k] is less than the total amount of the work executed by
the processor during the interval [uc, uc + k].

Under this optimal solution, all the speed changes occur at integer points. The construction
of this optimal solution is illustrated in Fig. 3: The integer cumulative deadlines (black staircase)
are below the straight line whose slope is sc (blue line) if and only they are also below the broken
line with slopes s∗(k) (red broken line).

Case B – second stage. In the second stage of the proof, we show that Algorithm 1 finds
an optimal speed selection among all solutions that only allow speed changes at integer times.
Together with the first stage, this will end the proof. Proving the optimality of Algorithm 1 is
classical in dynamic programming. This is done by a backward induction on the time t. Let us
show that E∗t (w), as computed by the algorithm, is the optimal energy consumption from time
t to time T under any possible state w at time t.

Initial step: t = T . We set E∗T (w) = 0 for all w. Indeed no jobs are present after time T ,
so that the state reached at time t must be wT = (0, 0, . . . , 0) because no work is left at time T
and the value E∗T (wT ) = 0 is therefore correct. No speed has to be chosen at time T .

Induction: Assume that the property is true at time t+1. At time t, Algorithm 1 computes
∀w ∈ W, E∗t (w). In particular, if the set of jobs is feasible, then the actual state at time t, wt,
must be in W. Therefore, according to lines 17 and 18, we have:

E∗t (wt) = min
s∈P(w)

(
Power (s) + E∗t+1(T(wt − s)+ + at)

)
.

9



A Linear Scheduling Algorithm Minimizing Energy Consumption B. Gaujal, A. Girault, S. Plassart

All possible speeds at time t are tested with their optimal continuation (by induction hy-
pothesis). Therefore, the best choice of speed at t, which minimizes the total energy from t
to T , is selected by Algorithm 1.

Finally, when all the speed changes occur at integer times, the total energy consumption
computed by Eq. (1) is equal to the value E∗1 (w1) computed by Algorithm 1.

Theorem 2. The time complexity of Algorithm 1 is Kn, where n is the number of jobs and
the constant K depends on the maximal speed smax and the maximal relative deadline ∆.

Proof. The proof proceeds by inspecting Algorithm 1 line by line. The number of operations in
line 13 is equal to the number of jobs whose release time is at time t, denoted nt = #{i|ri = t}.
The sum of all nt is equal to the total number of jobs,

∑T
t=1 nt = n.

Furthermore, the number of operations in line 14 is ∆ (to check if w′(i) ≤ ismax for i = 1..∆).
Therefore the total number O of arithmetic operations is:

O =

T∑
t=1

∑
w∈W

∑
s∈P(w)

(nt + ∆ +K ′), (13)

where K ′ is a constant.

The size of P(w) is bounded by smax. Hence O is bounded by a linear function of n and T :

O ≤ nQsmax + TQsmax(∆ +K ′). (14)

We have seen previously that Q is bounded by a function of smax and ∆ (see Eq. (4)). Now,
T = maxni=1(ri + di) = maxni=1(di +

∑i
j=1 τj). If there exists j such that τj > ∆, then there

exists an interval of time when the processor must be idle, between the end of the execution of
the first j − 1 jobs and the release time of the jth job. In this case the problem can be split
into two: all jobs from 1 to j − 1 and all jobs from j to n.

This means that one can assume with no loss of generality that all inter-arrival times are
smaller than ∆, hence T ≤ n∆. In conclusion, the total number of arithmetic operations is
bounded:

O ≤ nK with K = Qsmax(∆2 + ∆K ′ + 1). (15)

4.2 Non Consecutive Speeds

When the available speeds do not form a consecutive set, Algorithm 1 may not find an optimal
schedule because it is possible that all the optimal speed schedules change speed at non integer
times. Such solutions will not be found by Algorithm 1. In this section we show that it is
possible to go back to the consecutive case by interpolating the power function. We assign
to each non available speed a power consumption by using a linear interpolation. Let s ∈ N
such that s < smax and s /∈ S. Let s1, s2 ∈ S be the two neighboring available speeds such
that s1 < s < s2. s is equal to a convex combination of s1 and s2: s = βs1 + (1 − β)s2 with
β = s2−s

s2−s1 . We set Power (s) = βPower (s1) + (1− β)Power (s2).

10



A Linear Scheduling Algorithm Minimizing Energy Consumption B. Gaujal, A. Girault, S. Plassart

Once this is done for each non available speed, we use Algorithm 1 to solve the problem
with all consecutive speeds between 0 and smax, the unavailable speeds being seen as available
with the power cost defined above.

Once the optimal speeds have been computed, the following transformation is done in each
time step. In the time interval [t, t+ 1), if the optimal speed s∗(t) was not originally available,
then it is replaced by its two neighboring available speeds s1 and s2 over time intervals [t, t+β)
and [t+ β, t+ 1) respectively. This is illustrated in Fig. 4. Since the deadlines are integers, no
job will miss its deadline during the interval (t, t+ 1).

t t+1t+β

s1

s2s∗(t)

β 1−β

Figure 4: Amount of work executed with speed s∗(t) (in red), and amount of work executed
by the two neighboring available speeds s1 and s2 (in blue).

Theorem 3. When the finite set S of available speeds is arbitrary, Algorithm 1 together with the
interpolation transformation displayed in Fig. 4 computes an optimal speed schedule to execute
n jobs in time O(n).

Proof. Since the power cost Power (s∗(t)) is a linear interpolation of the power cost of the
neighboring available speeds s1 and s2, the energy consumption over the interval [t, t + 1) is
the same using speed s∗t and using the neighboring speeds s1 and s2 over the two sub intervals
[t, t + β] and [t + β, t + 1]. This means that the total energy consumption is the same before
and after the transformation.

Theorem 1 states that, with consecutive speeds, the output of Algorithm 1 minimizes the
total energy consumption. We have just shown that the transformation of each speed into
a convex combination between two neighboring speeds provides a solution that only uses the
available speeds and has the same total energy consumption as with consecutive speeds.

On the other hand, the optimal solution only using the subset composed by the available
speeds must use at least as much energy as when all the intermediate speeds are available. This
implies that Algorithm 1, used with the interpolated power function where unavailable speeds
are replaced by their neighboring available speeds, gives an optimal solution that minimizes the
total energy consumption.

Finally, this transformation takes a constant amount of time for each time interval [t, t+ 1),
therefore, the complexity remains linear in the number of jobs.

5 Extensions

In this section, we show that Algorithm 1 can be adapted when switching from one speed to
another has a time and/or energy cost, and when the power function is not convex.

11



A Linear Scheduling Algorithm Minimizing Energy Consumption B. Gaujal, A. Girault, S. Plassart

5.1 Switching Time

So far, we have assumed that the time needed by the processor to change speeds is null. However,
in all synchronous CMOS circuits, changing speeds does consume time and energy. The energy
cost comes from the voltage regulator when switching voltage, while the time cost comes from
the relocking of the Phase-Locked Loop when switching the frequency [9]. Burd and Brodersen
have provided in [10] the equations to compute these two costs. In contrast with many DVFS
studies (e.g., [10, 11, 12, 13]), our formulation can accommodate arbitrary energy cost to switch
from speed s to s′. In the sequel, we denote this energy cost by he(s, s′).

As for the time cost, we denote by ρ the time needed by the processor to change speeds.
For the sake of simplicity we assume that the delay ρ is the same for each pair of speeds, but
our formalization can accommodate different values of ρ, as computed in [10].

time
t−1 t∈N t+1

Executed
work

•
• •

•

•

•

•s1

•

s2ρ α1,2

ε

τ1 τ2

Actual behavior
Simulated behavior

time

Executed
work

t-1 t∈N t+1

•

•
• •

•

•

•

s1

•

s2

ρα1,2

ε

τ2τ1

Actual behavior
Simulated behavior

Figure 5: Transformation of the time delay into an energy additional cost by shifting the
switching point. The left figure corresponds to the s1 < s2 case and the right figure to the
s1 > s2 case. The red line represents the actual behavior of the processor with a ρ time delay.
The blue dashed line represents an equivalent behavior in terms of executed work, with no time
delay.

When there is a time delay, the executed work by the processor has two slope changes, at
times τ1 and τ2, with τ2 − τ1 = ρ (the red solid line in Fig. 5). From now on, we will only
consider the case where speeds are consecutive. To take into account switching times inside
integer intervals, as in § 4.2, we only have to modify the Power function with a penalty cost.
We will come back to this case in the end of the section to give a precise expression for this
penalty cost.

Since ρ 6∈ N, we cannot have both τ1 ∈ N and τ2 ∈ N. As a consequence, one of the remaining
work functions wτ1(.) or wτ2(.) will not be integer valued. This is not allowed by our approach.
We propose a solution inspired from [6] and illustrated in Fig. 5. It consists in shifting the time
τ1 when the speed change is initiated so that the global behavior can be simulated by a single
speed change that occurs at an integer time (t in Fig. 5). The actual behavior of the processor
is represented by the red solid line, while the simulated behavior, which is equivalent in terms

12



A Linear Scheduling Algorithm Minimizing Energy Consumption B. Gaujal, A. Girault, S. Plassart

of the amount of work performed, is represented by the blue dashed line. The total amount of
work done by the processor is identical in both cases at all integer times.

When s1 < s2, the speed change must be anticipated and occurs at τ1 < t (left figure).
When s1 > s2, the speed change has to be delayed and occurs at τ1 > t (right figure). The
exact computation of t1 is similar in both cases and is straightforward (see [6]).

One issue remains however, due to the fact that the consumed energy will not be identical
between the real behavior and the simulated behavior. Indeed, it will be higher for the actual
behavior for convexity reasons. This additional energy cost of the real processor behavior must
therefore be added to the energy cost of the equivalent simulated behavior. The value of ε, α1,2

are defined as in Fig. 5. In the case s2 > s1, s1ε = s2α1,2 = s2(ε−ρ) so that ε = ρ+α1,2 = ρs2
s2−s1 .

During the time delay ρ, the energy is consumed by the processor as if the speed were s1. The
additional energy cost incurred in the actual behavior (red curve) compared with the simulated
behavior (blue curve), denoted hρ(s1, s2), is therefore hρ(s1, s2) = α1,2(Power (s2)−Power (s1)).

Using the value of α1,2, this yields hρ(s1, s2) = ρs1

(
Power (s2)−Power (s1)

s2−s1

)
.

When s1 > s2, the additional cost becomes hρ(s1, s2) = ρs2

(
Power (s1)−Power (s2)

s1−s2

)
.

This additional energy due to speed changes can be taken into account in our model in
the cost function by modifying the state space W: the new state at time t becomes the pair
(wt, st−1): the remaining work at time t (i.e., wt) and the previous speed that was used between
t − 1 to t (i.e., st−1). Taking into account both the energy cost and the time cost, the new
value computed at time t in Algorithm 1 becomes:

E∗t−1(w, s) = min
s′∈P(w)

(
Power (s′) + hρ(s, s

′) + he(s, s
′) + E∗t (T(w − s′)+ + at, s

′)

)
, (16)

with hρ(s, s
′) = 0 when s = s′, and otherwise given above. The rest of the algorithm is

unchanged and the complexity remains linear in the number of jobs. However, the constant
factor K must be multiplied by m, since the new state space now contains all the pairs (x, s).

Finally, if the speeds are not consecutive, we show in Section 4.2 that speed changes can
also happen inside an integer interval [t, t + 1] to mimic a non-available speed s by its two
neighboring available speeds s1, s2 and using interpolation. Taking switching costs into account
here is easier (no time shift is needed). One only needs to modify the definition of Power (s) by
adding the switching costs:

Power (s) = αPower (s1) + (1− α)Power (s2) + hρ(s1, s2) + he(s1, s2). (17)

5.2 Non-Convex Power Function

In most real processors, measurements of the power function show that it is not a convex function
of the speed. In most cases, a more realistic approximation is Power (s) = Pstat(s) + Pdyn(s),
where Pdyn(s) is convex but the leakage power Pstat(s) depends on s and is not convex. If the
power function is not convex, then it is well known that replacing Power (·) by its convex hull
P̂ower (·) (see for example [6]) and solving the speed selection problem with P̂ower (·) instead
of Power (·) also provides the optimal solution. This trick works as long as switching between
speeds is free. As soon as switching has a cost (in energy or in time), one must be able to deal
with non-convex power directly. Here, the assumption that the power is convex is not needed
in our dynamic programming approach. In other words, Algorithm 1 and Theorem 3 are valid
even when the Power function is arbitrary.

13



A Linear Scheduling Algorithm Minimizing Energy Consumption B. Gaujal, A. Girault, S. Plassart

6 Conclusion

In this paper we have shown that the complexity of computing the best speed schedule to
execute n jobs before their deadline while minimizing the total energy consumption can be
done in time Kn. This result holds with an arbitrary power function and may also take
into account speed switching costs. Although this result is satisfying because it achieves the
theoretical lower bound, in practice, it suffers from a constant term K that is exponential in the
maximal deadline of the jobs. This may hinder its applicability when the deadlines of the jobs
are large. However this algorithm can be tuned to accommodate large deadlines by performing
a state discretization that may result in a suboptimal result: the finer the discretization, the
better the performance.

References

[1] F. F. Yao, A. J. Demers, and S. Shenker, “A scheduling model for reduced CPU energy,” in 36th
Annual Symposium on Foundations of Computer Science, (Milwaukee (WI), USA), pp. 374–382,
IEEE Computer Society, Oct. 1995.

[2] J. Stankovic, M. Spuri, K. Ramamritham, and G. Buttazzo, Deadline Scheduling for Real-Time
Systems: EDF and Related Algorithms. Kluwer Academic Publisher, 1998.

[3]
[4] M. Li, F. F. Yao, and H. Yuan, “An O(n2) algorithm for computing optimal continuous volt-

age schedules,” in Annual Conference on Theory and Applications of Models of Computation,
TAMC’17, vol. 10185 of LNCS, (Bern, Switzerland), pp. 389–400, Apr. 2017.

[5] M. Li and F. F. Yao, “An efficient algorithm for computing optimal discrete voltage schedules,”
SIAM J. Comput., vol. 35, pp. 658–671, 2005.

[6] B. Gaujal, A. Girault, and S. Plassart, “Dynamic speed scaling minimizing expected energy con-
sumption for real-time tasks,” Tech. Rep. HAL-01615835, Inria, 2017.

[7] P. Hilton and J. Pedersen, “Catalan numbers, their generalization, and their uses,” The Mathe-
matical Intelligencer, vol. 13, pp. 64–75, Mar 1991.

[8] M. L. Puterman, Markov Decision Process : Discrete Stochastic Dynamic Programming. Wiley,
series in probability and statistics ed., February 2005.

[9] Q. Wu, P. Juang, M. Martonosi, and D. Clark, “Voltage and frequency control with adaptive reac-
tion time in multiple-clock-domain processors,” in International Conference on High-Performance
Computer Architecture, HPCA’05, (San Francisco (CA), USA), pp. 178–189, IEEE, Feb. 2005.

[10] T. Burd and R. Brodersen, “Design issues for dynamic voltage scaling,” in International Symposium
on Low Power Electronics and Design, ISLPED’00, (Rapallo, Italy), July 2000.

[11] M. Bandari, R. Simon, and H. Aydin, “Energy management of embedded wireless systems through
voltage and modulation scaling under probabilistic workloads,” in International Green Computing
Conference, IGCC’14, (Dallas (TX), USA), pp. 1–10, IEEE Computer Society, Nov. 2014.

[12] K. Li, “Energy and time constrained task scheduling on multiprocessor computers with discrete
speed levels,” J. of Parallel and Distributed Computing, vol. 95, pp. 15–28, Sept. 2016.

[13] J. Wang, P. Roop, and A. Girault, “Energy and timing aware synchronous programming,” in
International Conference on Embedded Software, EMSOFT’16, (Pittsburgh (PA), USA), ACM,
Oct. 2016.

14


	Introduction
	System Model
	State Space
	Size of the State Space

	Dynamic Programming Solution
	Consecutive Speeds
	Non Consecutive Speeds

	Extensions
	Switching Time
	Non-Convex Power Function

	Conclusion

