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Abstract

Independent component analysis (ICA) is a
widespread data exploration technique, where
observed signals are modeled as linear mix-
tures of independent components. From a
machine learning point of view, it amounts to
a matrix factorization problem with a statis-
tical independence criterion. Infomax is one
of the most used ICA algorithms. It is based
on a loss function which is a non-convex log-
likelihood. We develop a new majorization-
minimization framework adapted to this loss
function. We derive an online algorithm for
the streaming setting, and an incremental al-
gorithm for the finite sum setting, with the
following benefits. First, unlike most algo-
rithms found in the literature, the proposed
methods do not rely on any critical hyper-
parameter like a step size, nor do they require
a line-search technique. Second, the algorithm
for the finite sum setting, although stochas-
tic, guarantees a decrease of the loss function
at each iteration. Experiments demonstrate
progress on the state-of-the-art for large scale
datasets, without the necessity for any manual
parameter tuning.

1 Introduction

Independent component analysis (ICA) (Comon, 1994)
is an unsupervised data exploration technique. In its
classical and most popular form, it models a random
vector x ∈ Rp×1 as a linear mixture of independent
sources. This means that there exists a source vector
s ∈ Rp×1 of statistically independent features and a
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mixing matrix A ∈ Rp×p, such that x = As. The aim
of ICA is to recover A from some realizations of x
without any assumption or constraint on A.

Despite being a linear and shallow model, ICA is widely
used in many observational sciences. Indeed, many
physical phenomena are well modeled by ICA. For ex-
ample, in neuroscience, the physics driving the measure-
ment process of electrical signals in the brain is linear
following Maxwell’s equations (Makeig et al., 1997). In
astronomy (Morello et al., 2015), mechanics (Yang and
Nagarajaiah, 2014), neuroscience (O’Muircheartaigh
and Jbabdi, 2017), biology (Biton et al., 2014) and
several other fields, ICA algorithms are used daily to
process ever-increasing amounts of data1. In some
data processing pipelines, ICA can be a computational
bottleneck for large datasets, calling for more scalable
algorithms. It is thus of importance to develop ICA
solvers which are fast, easy to use and with strong
convergence guarantees.

One of the first and most employed ICA algorithms
is Infomax (Bell and Sejnowski, 1995). The Infomax
objective function is equivalent to a likelihood criterion
in which each feature of s follows a super-Gaussian
distribution with density d(·) (roughly speaking, a
super-Gaussian distribution is heavy-tailed; a rigor-
ous definition is given in Section 2.1). The likelihood
of x given A then is (Pham and Garat, 1997):

p(x|A) =
1

|det(A)|

p∏
i=1

d([A−1x]i). (1)

It is more convenient to work with the unmixing matrix
W := A−1 and the negative log-likelihood, yielding a
cost function `(x,W ) := − log(p(x|W−1)):

`(x,W ) = − log|W | −
p∑
i=1

log(d([Wx]i)) . (2)

1Two of the most used ICA algorithms (Bell and Se-
jnowski, 1995; Hyvärinen, 1999a) have been cited over 1500
times in 2017 according to Google Scholar
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The underlying expected risk is then:

L(W ) := Ex[`(x,W )] (3)

= − log|W | −
p∑
i=1

E[log(d([Wx]i))] .

Given a set of n i.i.d. samples of x, X = [x1, · · · ,xn] ∈
Rp×n, the empirical risk reads:

Ln(W ) :=
1

n

n∑
j=1

`(xj ,W ) (4)

= − log|W | − 1

n

p∑
i=1

n∑
j=1

log(d([WX]ij))] .

This article focuses on the inference of W in two cases.
The first case is the finite-sum setting: using only n
samples, W is found by minimizing Ln. The second
case is the online setting, where a stream of samples
arriving one by one is considered. In this case, n goes to
infinity, and then Ln tends towards L. It is important
to note that it is theoretically established (Amari et al.,
1997) and empirically observed that these criteria allow
to unmix super-Gaussian sources even if their densities
are different from d.

Although not formulated like this in the original ar-
ticle, Cardoso (1997) shown that Infomax solves the
empirical risk minimization problem 4. It does so by
using a stochastic gradient method. However, Ln not
being convex, it is hard to find a good step-size policy
which fits any kind of data (Bottou et al., 2016). As
a consequence, Infomax can take an extremely long
time before it reaches convergence, or even fail to con-
verge at all (Montoya-Martínez et al., 2017). Still, the
stochasticity of Infomax makes it efficient when the
number of samples n is large, because the cost of one
iteration does not depend on n.

On the other hand, several full-batch second-order al-
gorithms have been derived for the exact minimization
of Ln. For instance, in (Zibulevsky, 2003), an approxi-
mation of the Hessian of Ln is used to obtain a simple
quasi-Newton method. In (Choi and Choi, 2007), a
trust region method is proposed using the same Hessian
approximation. More recently, Ablin et al. (2018b)
proposed to use the L-BFGS algorithm with the Hes-
sian approximations. Full-batch methods are robust
and sometimes show quadratic convergence speed, but
an iteration can take a very long time when the number
of samples n is large. They also crucially rely on a
costly line-search strategy because of the non-convexity
of the problem.

In this work, we make the following contributions:

• We introduce a set of surrogate functions for `,
allowing for a majorization-minimization (MM) ap-

proach. We show that this view is equivalent to an
EM algorithm for ICA. Consequently, techniques
like incremental EM (Neal and Hinton, 1998) and
online EM (Cappé and Moulines, 2009) can be
efficiently applied to this problem.

• Critically, the surrogate functions can be mini-
mized in closed-form with respect to any single
row of W . Thus, the incremental algorithm guar-
antees the decrease of the surrogate loss at each
iteration, without having to resort to expensive
line-search techniques. To the best of our knowl-
edge, this feature is a novelty in the field of ICA
algorithms.

• Owing to a cheap partial update, the cost of one it-
eration of the proposed algorithm is similar to the
cost of a stochastic gradient descent step. Through
experiments, the proposed methods are shown to
perform better than the state-of-the-art, while en-
joying the robust property of guaranteed decrease.

Notation. In the following, scalar values are noted
in lower case (e.g. y), vectors in bold font (e.g. x), and
matrices in upper case (e.g. W ). For a square matrix
W , |W | is the determinant of W . For a matrix M , Mi:

denotes its i-th row, and M:j denotes its j-th column.
Given a function u from R to R and a matrix Y ∈ Rp×n,
u(Y ) denotes the matrix of element-wise operations:
∀i, j, u(Y )ij = u(Yij). For complexity analysis, we say
that a quantity Q is O(φ(n, p)) if Q

φ(n,p) is bounded.

2 Representations of super-Gaussian
densities

Super-Gaussian densities can be represented in at least
two forms: either variationally through a surrogate
function, or probabilistically through a Gaussian scale
mixture (Palmer et al., 2006). These two represen-
tations lead to the same optimization algorithms but
with a slightly different view point.

2.1 Surrogate functions

The density d is assumed symmetric and
super-Gaussian in the sense that − log(d(

√
x))

is an increasing concave function over (0,+∞).
Following (Palmer et al., 2006), there exists a function
f such that:

G(y) := − log(d(y)) = min
u≥0

uy2

2
+ f(u), (5)

and the minimum is reached for a unique value denoted
as u∗(y). Simple computations show that u∗(y) = G′(y)

y .
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For u ∈ Rp×1+ , we introduce a new objective function
˜̀(x,W,u) that reads:

˜̀(x,W,u) := − log|W |+
p∑
i=1

[
1

2
ui [Wx]2i +f(ui)], (6)

and the associated empirical risk, for U =
[u1, · · · ,un] ∈ Rp×n+ :

L̃n(W,U) :=
1

n

n∑
j=1

˜̀(xj ,W,uj) (7)

= − log|W |+ 1

n

p∑
i=1

n∑
j=1

[
1

2
Uij [WX]2ij + f(Uij)]. (8)

Following Eq. (5), we have:

Lemma 1 (Majorization). Let W ∈ Rp×p. For any
U ∈ Rp×n+ , Ln(W ) ≤ L̃n(W,U), with equality if and
only if U = u∗(WX).

Lemma 2 (Same minimizers). Let W ∈ Rp×p, and
U = u∗(WX). Then, W minimizes Ln if and only if
(W,U) minimizes L̃n.

Proof: Using the function G introduced in Eq. (5),
the loss Ln writes:

Ln(W ) = − log|W |+ 1

n

p∑
i=1

n∑
j=1

G([WX]ij)

For a given matrix U ∈ Rp×n, using Eq. (5) we have for
all i, j: G([WX]ij) ≤ 1

2Uij [WX]2ij + f([WX]ij), with
equality if and only if Uij = u∗([WX]ij). Summing
these equations yields as expected:

− log|W |+ 1

n

p∑
i=1

n∑
j=1

G([WX]ij) ≤

− log|W |+ 1

n

p∑
i=1

n∑
j=1

[
1

2
Uij [WX]2ij + f([WX]ij)]

with equality if and only if for all i, j, Uij =
u∗([WX]ij). �

In line with the majorization-minimization (MM)
framework (Mairal, 2015), these two lemmas natu-
rally suggest to minimize Ln(W ) by alternating the
minimization of the auxiliary function L̃n(W,U) with
respect to W and U . This will also be shown to be
equivalent to the EM algorithm for the Gaussian scale
mixture interpretation in the next Section.

The rest of the paper focuses on the minimization of
L̃n rather than Ln, which yields the same unmixing
matrix by Lemma 2.

2.2 EM algorithm with Gaussian scale
mixtures

Super-Gaussian densities can also be represented as
scale mixtures of Gaussian densities (Palmer et al.,
2006), that is, d(y) =

∫ +∞
0

g(y, η)q(η)dη, where
g(y, η) = 1√

2πη
exp(− y

2

2η ) is a centered Gaussian density
of variance η, and q(η) a distribution on the variance
of the Gaussian distribution. It turns out that the EM
algorithm using the above form for our ICA model is
exactly equivalent to the alternating optimization of L̃n
(see a proof in the supplementary material). The vari-
able U corresponds to the scale parameter in (Palmer
et al., 2006) and the EM algorithm alternates between
setting U to the posterior mean u∗(Y ) (E-step) and a
descent move in W (M-step).

Relationship to the noisy case. Many articles
(e.g. (Palmer et al., 2006; Girolami, 2001; Bermond
and Cardoso, 1999)) have proposed EM-based tech-
niques for the estimation of the latent parameters of
the more general linear model:

x = As + n , (9)

where A is the mixing matrix, and n ∼ N(0,Σ) is a
Gaussian variable accounting for noise. In (Palmer
et al., 2006), the matrix A is assumed to be known, as
well as the noise covariance Σ. On the contrary, the
present article deals with the case where A is unknown,
and where there is no noise. The noisy case (with
unknown A) is studied in e.g. (Bermond and Cardoso,
1999; Girolami, 2001). An EM algorithm is derived for
the estimation of s, A and Σ. In the appendix, it is
shown that this EM algorithm makes no progress in the
limit of noise-free observations since the EM update
rule for A becomes A ← A when Σ = 0. Hence, the
EM algorithms found in the literature for the noisy
case suffer considerable slowdown in high signal-to-
noise regime. In contrast, the approach derived in the
following section is not affected by this problem.

2.3 Examples

Many choices for G can be found in the ICA literature.
In the following, we omit irrelevant normalizing con-
stants. The original Infomax paper (Bell and Sejnowski,
1995) implicitly uses G(y) = log(cosh(y)) since it cor-
responds to G′(y) = tanh(y) and u∗(y) = tanh(y)

y . This
density model is one of the most widely used. How-
ever, since an ICA algorithm has to evaluate those
functions many times, using simpler functions offers
significant speedups. One possibility is to use a Stu-
dent distribution: G(y) = 1

2 log(1 + y2), for which
u∗(y) = 1

1+y2 . In the following, we choose the Huber
function: G(y) = 1

2y
2 if |y| < 1 and G(y) = |y| − 1

2
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if not. This gives u∗(y) = 1 if |y| < 1, u∗(y) = 1
|y|

otherwise.

3 Stochastic minimization of the loss
function

Using a MM strategy, L̃n(W,U) is minimized by alter-
nating descent moves in U and in W . We propose an
incremental technique which minimizes L̃n with a fi-
nite number of samples, and an online technique where
each sample is only used once. The pseudo code for
these algorithms is given in Algorithms 1 and 2. The
difference between incremental and online technique
only reflects through the variable U which is estimated
at the majorization step. Hence, we first discuss the
minimization step.

3.1 Minimization step: Descent in W

Expanding [WX]2ij , the middle term in the new loss
function (6) is quadratic in the rows of W :

L̃n = − log|W |+ 1

2

p∑
i=1

Wi:A
iW>i: +

1

n

p∑
i=1

n∑
j=1

f(Uij),

(10)
where Wi: denotes the i-th row of W , and the Ai’s are
p× p matrices given by:

Aikl :=
1

n

n∑
j=1

UijXkjXlj . (11)

Therefore, when U is fixed, with respect to W , L̃n is
the sum of the log det function and a quadratic term.
The minimization of such a function is difficult, mostly
because the log det part introduces non-convexity. How-
ever, similarly to a coordinate descent move, it can be
exactly partially minimized in closed-form:
Lemma 3 (Exact partial minimization). Let i ∈ [1, p],
and m ∈ R1×p (m is a row vector). Consider the
mapping Θi(m) : R1×p → Rp×p such that the matrix
Θi(m) is equal to Ip, except for its i-th row which is
equal to m.

Let W ∈ Rp×p and U ∈ Rp×n. Define K :=
WAiW> ∈ Rp×p. Then,

arg min
m∈R1×p

L̃n(Θi(m)W,U) =
1√

(K−1)ii
(K−1)i: . (12)

Proof: With respect to m, L̃n(Θi(m)W,U) is of the
form φ(m) = − log(|mi|) + mKm>. Restraining to
the region mi > 0, this function is strongly convex and
smooth, and thus possesses a single minimum found
by cancelling the gradient. Simple algebra shows :

∇φ(m) = − 1

mi
ei + mK ,

where ei is the i-th canonical basis vector. Cancelling
the gradient yields m = 1

mi
(K−1)i:, and inspection

of the i-th coordinate of this relationship gives mi =
(K−1)ii
mi

, providing the expected result. �

In other words, we can exactly minimize the loss with
a multiplicative update of one of its rows. Performing
multiplicative updates on the iterate W enforces the
equivariance of the proposed methods (Cardoso and
Laheld, 1996): denoting by A the “algorithm operator”
which maps input signals X (be it a stream or a finite
set) to the estimated mixing matrix, for any invertible
matrix B, A(BX) = BA(X).

3.2 Majorization step : Descent in U

For a fixed unmixing matrix W , Lemma 1 gives:
arg minU L̃n(W,U) = u∗(WX). Such an operation
works on the full batch of samples X. When only one
sample X:j = xj ∈ Rp×1 is available, the operation
U:j ← u∗(Wxj) minimizes L̃n(W,U) with respect to
the j-th column of U . As seen previously (Section 3.1),
we only need to compute the Ai’s to perform a de-
scent in W , hence one needs a way to accumulate those
matrices.

Incremental algorithm. To do so in an incremental
way (Neal and Hinton, 1998), a memory Umem ∈ Rp×n
stores the values of U . When a sample xj is seen by the
algorithm, we compute Unew

:j = u∗(Wxj), and update
the Ai’s as:

Ai ← Ai +
1

T
(Unew

ij − Umem
ij )xjx

>
j . (13)

The memory is then updated by Umem
:j ← Unew

:j enforc-
ing Ai = 1

n

∑n
j=1 U

mem
ij xjx

>
j at each iteration.

Online algorithm. When each sample is only seen
once, there is no memory, and a natural update rule
following (Cappé and Moulines, 2009) is:

Ai ← (1− ρ(n))Ai + ρ(n)Uijxjx
>
j , (14)

where n is the number of samples seen, and ρ(n) ∈ [0, 1]
is a well chosen factor. Setting ρ(n) = 1

n yields the
unbiased formula Ai(n) = 1

n

∑n
j=1 Uijxjx

>
j . A more

aggressive policy ρ(n) = 1
nα for α ∈ [ 12 , 1) empirically

leads to faster estimation of the latent parameters.
Note that since we are averaging sufficient statistics,
there is no need to multiply ρ(n) by a constant.

3.3 Complexity analysis

Memory: The proposed algorithm stores p matrices
Ai, which requires a memory of size p2(p+1)

2 (since they
are symmetric). In the incremental case, it stores the
real numbers Uij , requiring a memory of size p× n. In
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most practical cases of ICA, the number of sources p
is very small compared to n (n � p), meaning that
the dominating memory cost is p × n. In the online
case, the algorithm only loads one mini-batch of data
at a time, leading to a reduced memory size of p× nb,
where nb is the mini-batch size.

Time: The majorization step requires to update each
coefficient of the matrices Ai’s, meaning that it has
a time complexity of p3 × nb. The minimization step
requires to solve p linear systems to obtain the matrices
K−1i: . Each one takes O(p3). An improvement based on
preconditioned conjugate gradient method (Shewchuk
et al., 1994) is proposed in the appendix to reduce
the computational cost. The total cost of the mini-
mization step is thus O(p4). In practice, p � nb, so
the overall cost of one iteration is dominated by the
majorization step, and is p2(p+1)

2 × nb. A stochastic
gradient descent algorithm with the same mini-batch
size nb, as described later in Section 4, has a lower time
complexity of p2 × nb. We now propose a way to reach
the same time complexity with the MM approach.

3.4 Gap-based greedy update

In order to reduce the complexity by one order of
magnitude in the majorization step, only a subset of
fixed size q < p of the matrices Ai is updated for each
sample. Following Eq. (5), it is given by what we call
gap : a positive quantity measuring the decrease in
L̃n provided by updating Uij . In the following, define
Ũi′j′ := Umem

i′j′ if (i′, j′) 6= (i, j), and Ũij := Unew
ij =

u∗([WX]ij). The gap is given by:

gap(W,Umem
ij ) := L̃n(W,Umem)− L̃n(W, Ũ) (15)

=
1

2
Umem
ij [WX]2ij + f(Umem

ij )−G([WX]ij) . (16)

Since all the above quantities are computed during one
iteration anyway, computing the gap for each signal
i ∈ [1, p] only adds a negligible computational overhead,
which scales linearly with p. Then, in a greedy fashion,
only the coefficients Uij corresponding to the q largest
gaps are updated, yielding the largest decrease in L̃n
possible with q updates. In the experiments (Figure 4),
we observe that it is much faster than a random se-
lection, and that it does not impair convergence too
much compared to the full-selection (q = p). In the
online setting, there is no memory, so we simply choose
q indices among p at random.

Related work: The matrices Ai are sufficient
statistics of the surrogate ICA model for a given value of
U . The idea to perform a coordinate descent move (12)
after each update of the sufficient statistics is inspired
by online dictionary learning (Mairal et al., 2009) ,

Algorithm 1 Incremental MM algorithm for ICA
Input : Samples X ∈ Rp×n
Param:Number of iterations tmax, mini-batch size nb,

number of coordinates to update per sample
q

Init : Initialize W = Ip, Umem = 0 ∈ Rn×p and
Ai = 0 ∈ Rp×p, ∀i ∈ [1, p]

for t = 1, . . . , tmax do
Select a mini-batch b of size nb at random
for each index j ∈ b do // Majorization

Select x = X:j

Compute unew = u∗(Wx)
Compute the gaps (15)
Find the q sources i1, . . . , iq corresponding to
the largest gaps
Update Ai for i = i1, . . . , iq using Eq. (13)
Update the memory: Umem

:j = unew

for i = 1, . . . , p do // Minimization
Update the i-th row of W using Eq. (12)

return W

Algorithm 2 Online MM algorithm for ICA
Input :A stream of samples X in dimension Rp
Param:Number of iterations tmax, mini-batch size nb,

number of coordinates to update per sample
q

Init : Initialize W = Ip and Ai = 0 ∈ Rp×p, ∀i ∈
[1, p]

for t = 1, . . . , tmax do
Fetch nb samples from the stream
for each fetched sample x do // Majorization

Compute u = u∗(Wx)
Compute q indices i1, . . . , iq at random
Update Ai for i = i1, . . . , iq using Eq. (14)

for i = 1 . . . , p do // Minimization
Update the i-th row of W using Eq. (12)

return W

Gaussian graphical models (Honorio et al., 2012) and
non-negative matrix factorization (Lefevre et al., 2011).

4 Experiments

In this section, we compare the proposed approach
to other classical methods to minimize L. The code
for the proposed methods is available online at https:
//github.com/pierreablin/mmica.

4.1 Compared algorithms

Stochastic gradient descent (SGD). Given a mini-
batch b containing nb samples, the relative gradient
∇(Ln)ik = 1

nb

∑
j∈bG

′([WX]ij)[WX]kj is computed.
Then, a descent move W ← (In − ρ∇(Ln))W is per-

https://github.com/pierreablin/mmica
https://github.com/pierreablin/mmica
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formed. The choice of the step size ρ is critical and
difficult. The original article uses a constant step size,
but more sophisticated heuristics can be derived. This
method can be used both for the finite sum and the
online problem. It is important to note that once WX
and G′(WX) are computed, it needs twice as many
elementary operations to compute the gradient as it
takes to update one matrix Ai (Eq. (13) and Eq.(14))
when nb � p. The first computation requires nb × p2
operations, while the second takes nb× p(p+1)

2 (since the
matrices Ai are symmetric). When nb is large enough,
as it is the case in practice in the experiments, these
computations are the bottlenecks of their respective
methods. Hence, we take q = 2 in the experiments for
the MM algorithms, so that the theoretical cost of one
iteration of the proposed method matches that of SGD.

Variance reduced methods. One of the drawbacks
of the stochastic gradient method is its sub-linear rate
of convergence, which happens because the stochastic
gradient is a very noisy estimate of the true gradient.
Variance reduced methods such as SAG (Schmidt et al.,
2017), SAGA (Defazio et al., 2014) or SVRG (Johnson
and Zhang, 2013) reduce the variance of the estimated
gradient, leading to better rates of convergence. How-
ever, these methods do not solve the other problem of
SGD for ICA, which is the difficulty of finding a good
step-size policy. We compare our approach to SAG,
which keeps the past stochastic gradients in memory
and performs a descent step in the averaged direction.
This approach is however only relevant in the finite-sum
setting.

Full batch second order algorithms. We compare
our approach to the “Fast-Relative Newton” method
(FR-Newton) (Zibulevsky, 2003) and the “Precondi-
tioned ICA for Real Data” algorithm (Picard) (Ablin
et al., 2018b). The former performs quasi-Newton steps
using a simple approximation of the Hessian of Ln,
which is as costly to compute as a gradient. The later
refines the approximation by using it as a precondi-
tioner for the L-BFGS algorithm. For both algorithms,
one iteration requires to compute the gradient and
the Hessian on the full dataset, resulting in a cost of
2× p2 × n, and to evaluate the gradient and loss func-
tion for each point tested during the line search, so the
overall cost is (2 + nls) × p2 × n where nls ≥ 1 is the
number of points tested during the line-search. Thus,
one epoch requires more than 3 times more computa-
tions than one of SGD or of the proposed algorithms.
These algorithms cannot be used online.

Full batch MM. For the finite-sum problem, we also
compare our approach to the full-batch MM, where the
whole U is updated at the majorization step.

FastICA. FastICA (Hyvärinen, 1999a) is a full batch

fixed point algorithm for ICA. It does not solve the
same optimization problem as the one presented in
this paper (it does not minimize Ln, see (Hyvärinen,
1999b)). Hence, we do not include metrics involving Ln
to benchmark it. However, it is one of the most widely
used algorithms for ICA in practical applications, and
is popular for its fast estimation speed. Furthermore,
it is shown to have similar convergence properties as
FR-Newton (Ablin et al., 2018a)

4.2 Performance measures

The following quality measures are used to assess the
performance of the different algorithms:

Loss on left-out data: It is the value of the loss on
some data coming from the same dataset but that have
not been used to train the algorithms. This measure,
which boils down to the likelihood of left-out data, is
similar to the testing error in machine learning, and
can be computed in both the streaming and finite-sum
settings.

Amari distance (Moreau and Macchi, 1998):
When the true mixing matrix A is available, for a
matrix W , the product R = WA is computed, and the
Amari distance is given by:

p∑
i=1

 p∑
j=1

R2
ij

maxlR2
il

− 1

 +

p∑
i=1

 p∑
j=1

R2
ji

maxlR2
lj

− 1

 .

This distance measures the proximity ofW and A−1 up
to scale and permutation indetermination. It cancels if
and only if R is a scale and permutation matrix, i.e., if
the separation is perfect. This measure is relevant both
for the online and finite-sum problems. It is the only
metric for which it makes sense to compare FastICA
to the other algorithms since it does not involve the
loss function.

Relative gradient norm: The norm of the full-batch
relative gradient of Ln is another measure of conver-
gence. Since the problem is non-convex, the algorithms
may converge to different local minima, which is why
we favor this metric over the train error. It is however
only relevant in the finite-sum setting. In this setting,
a converging algorithm should drive the norm of the
full-batch relative gradient to zero.

4.3 Parameters and initialization

The stochastic algorithms (SGD, SAG, and the pro-
posed MM techniques) are used with a batch size of
nb = 1000. The proposed MM algorithms are run
with a parameter q = 2, which ensures that each of
their iterations is equivalent to one iteration of the
SGD algorithm. In the online setting, we use a power
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α = 0.5 to speed up the estimation. The step-sizes of
SGD and SAG are chosen by trial and error on each
dataset, by finding a compromise between convergence
speed and accuracy of the final mixing matrix. In the
online case, the learning rate is chosen as λ× n−0.5 for
SGD. FR-Newton and Picard are run with its default
parameters.

Regarding initialization, it is common to initialize an
ICA algorithm with an approximate whitening matrix.
A whitening matrix W is such that the signals Wx are
decorrelated. It is interesting to start from such a point
in ICA because decorrelation is a necessary condition
for independence.

Denoting Cx the correlation matrix of the signals, the
whitening condition writes WCxW

> = Ip. Hence, the
whitening matrices are the W = RC

− 1
2

x where R is a
rotation (R>R = Ip). In practice, we take R = Ip. The
covariance matrix needs to be estimated. In the case
of a fixed dataset X ∈ Rp×n, we can use the empirical
covariance C̃X = 1

nXX
> as an approximation. How-

ever, the cost of such a computation, O(p2 × n), gets
prohibitively large as n grows. Since the whitening is
only an initialization, it needs not be perfectly accurate.
Hence, in practice, we compute the empirical covari-
ance on a sub-sampled version of X of size n = 104.
The same goes for the online algorithm: we fetch the
first 104 samples to compute the initial approximate
whitening matrix.

4.4 Datasets

Synthetic datasets: For this experiment, we generate
a matrix S ∈ Rp×n with p = 10 and n = 106 of inde-
pendent sources following a super-Gaussian Laplace
distribution: d(x) = 1

2 exp(−|x|). Note that this dis-
tribution does not match the Huber function used in
the algorithms, but estimation is still possible since the
sources are super-Gaussian. Then, we generate a ran-
dom mixing matrix A ∈ Rp×p of normally distributed
coefficients. The algorithms discussed above are then
run on X = AS, and the sequence of iterates produced
is recorded. Finally, the different quality measures are
computed on those iterates. We repeat this process
100 times with different random realizations, in order
to increase the robustness of the conclusions. The aver-
aged quality measures are displayed in Fig. 1. In order
to compare different random initializations, the loss
evaluated on left-out data is always shifted so that its
plateau is at 0.

To observe the effect of the greedy gap selection, we
generate another dataset in the same way with p = 30,
n = 105. Results are displayed in Fig. 4.

Real datasets: The algorithms are applied on classi-

Figure 1: Results on synthetic data. Top: finite-sum
problem. 100 datasets of size n = 106 and p = 10 are
generated, each algorithm performs 20 epochs (passes
on the dataset). Bottom: online problem. 100 datasets
of size n = 107 and p = 10 are generated, each algo-
rithm performs one pass on each dataset. Metrics are
displayed with respect to epochs/number of passes.

Figure 2: Online algorithms applied on a 32 GB real
dataset with p = 100 and n = 4 × 107. Time is in
logarithmic scale. Values of the loss on left out data
greater than its initial value are truncated.

cal ICA datasets, covering a wide range of dimensions
p. The first experiment is in the spirit of (Hoyer and
Hyvärinen, 2000).

We extract a big 32GB dataset of n = 4× 107 square
patches of size 10×10 from natural images. Each patch
is vectorized into an array of dimension p = 100. Only
the online algorithms are used to process this dataset
since it does not fit into RAM. The results on this
dataset are displayed in Fig. 2.

We also generate smaller datasets in the same fashion,
of size n = 106, and 10× 10 patches. The dimension is
reduced to p = 10 using PCA.

Finally, an openly available EEG dataset (Delorme
et al., 2012) of dimension p = 71, n = 106 is used
without dimension reduction. Each signal matrix is
multiplied by a p × p random matrix. The different
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Figure 3: Behavior of different algorithms on real data.
Top: 15 image patch datasets of size 10×106 are gener-
ated, and the averaged results are displayed. Bottom:
same with 15 EEG datasets of size 71× 106. Left and
middle: finite sum problem. Right: online problem.
Metrics are displayed with respect to time.

algorithms are applied on these datasets with 10 dif-
ferent random initializations, and for 50 epochs in the
finite sum setting. Results are displayed in Fig. 3.

4.5 Discussion

Experiments run on both synthetic and real data of var-
ious dimensions demonstrate that the proposed meth-
ods consistently perform best when quantifying the loss
on left-out data (test error). This metric is arguably
the most important from a statistical machine learn-
ing standpoint. This is also validated by the Amari
distance in the simulated case: the proposed method
shows similar convergence as FR-Newton and FastICA,
and outperforms other algorithms.

Regarding the gradient norm metric (similar to training
error), in the simulated and image patch experiment,
the proposed algorithm is in the end slower than FR-
Newton. This behavior is expected: the incremental
algorithm has a linear convergence, while second order
methods are quadratic algorithm.

However, FR-Newton catches up with the proposed
algorithm well after the testing error plateaus, so when
the error of the model is dominated by the estimation
error (Bottou and Bousquet, 2008) rather than the
optimization error.

Effect of the greedy update rule: On the 30× 105

dataset (Fig. 4), we run the incremental algorithm with
the greedy coordinate update rule discussed in Sec. 3.4
with q = 1 and q = 3. We compare it to a random
approach (where q random sources are updated at each
iteration) for the same values of q, and to the more
costly full-selection algorithm, where each source is

Figure 4: Effect of the greedy update rule, on a syn-
thetic problem of size p = 30, n = 105. For a similar
complexity, the greedy approach gives much faster con-
vergence than the random approach.

updated for each sample. The greedy approach only
adds a negligible computational overhead linear in p
compared to the random approach, while leading to
much faster estimation. In terms of generalization error,
it is only slightly outperformed by the full selection
approach (q = p).

5 Conclusion

In this article, we have introduced a new majorization-
minimization framework for ICA, and have shown that
it is equivalent to an EM approach for Gaussian scale
mixtures. Our method has the valuable advantage of
guaranteeing a decrease of the surrogate loss function,
which enables stochastic methods with descent guaran-
tees. This is, to the best of our knowledge, a unique
feature for a stochastic ICA algorithm. We have pro-
posed both an incremental and an online algorithm for
the finite-sum and online problems, with the same com-
plexity as SGD thanks to an efficient greedy coordinate
descent update. Experiments show progress on current
state-of-the-art, without the need for tedious manual
setting of any parameter.
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