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Abstract
We consider the k-Median problem on planar graphs: given an edge-weighted planar graph G, a
set of clients C ⊆ V (G), a set of facilities F ⊆ V (G), and an integer parameter k, the task is to
find a set of at most k facilities whose opening minimizes the total connection cost of clients, where
each client contributes to the cost with the distance to the closest open facility. We give two new
approximation schemes for this problem:

FPT Approximation Scheme: for any ε > 0, in time 2O(kε−3 log(kε−1)) · nO(1) we can compute a
solution that has connection cost at most (1 + ε) times the optimum, with high probability.
Efficient Bicriteria Approximation Scheme: for any ε > 0, in time 2O(ε−5 log(ε−1)) · nO(1) we can
compute a set of at most (1 + ε)k facilities whose opening yields connection cost at most (1 + ε)
times the optimum connection cost for opening at most k facilities, with high probability.

As a direct corollary of the second result we obtain an EPTAS for Uniform Facility Location on
planar graphs, with same running time.

Our main technical tool is a new construction of a “coreset for facilities” for k-Median in planar
graphs: we show that in polynomial time one can compute a subset of facilities F0 ⊆ F of size
k · (log n/ε)O(ε−3) with a guarantee that there is a (1 + ε)-approximate solution contained in F0.
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1 Introduction

We study approximation schemes for classic clustering objectives, formalized as follows.
Given an edge-weighted graph G together with a set C of vertices called clients, a set F of
vertices called candidate facilities, and an opening cost open ∈ R>0, the Uniform Facility
Location problem asks for a subset of facilities (also called centers) D ⊆ F that minimizes
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33:2 Efficient Approximation Schemes for Planar Clustering

the cost defined as |D| · open +
∑
c∈C minf∈D dist(c, f). In the Non-uniform Facility

Location variant, the opening costs may vary between facilities.
We also consider the related k-Median problem, where the tuple (G,F,C) comes with a

hard budget k for the number of open facilities (as opposed to the opening cost open). That
is, the problem asks for a set D ⊆ F of size at most k that minimizes the connection cost∑
c∈C dist(c,D). Note that Uniform Facility Location can be reduced to k-Median by

guessing the number of open facilities in an optimal solution.
Facility Location and k-Median model in an abstract way various clustering ob-

jectives appearing in applications. Therefore, designing approximation algorithms for them
and their variants is a vibrant topic in the field of approximation algorithms. For Non-
uniform Facility Location, a long line of work [1, 15, 22, 16] culminated with the
1.488-approximation algorithm by Li [18]. On the other hand, Guha and Khuller [13] showed
that the problem cannot be approximated in polynomial time within factor better than 1.463
unless NP ⊆ DTIME[nO(log logn)], which gives almost tight bounds on the best approximation
factor achievable in polynomial time. For k-Median, the best known approximation ratio
achievable in polynomial time is 2.67 due to Byrka et al. [3], while the lower bound of 1.463
due to Guha and Khuller [13] holds here as well.

Given the approximation hardness status presented above, it is natural to consider
restricted metrics. In this work we consider planar metrics: we assume that the underlying
edge-weighted graph G is planar.

It was a long-standing open problem whether Facility Location admits a polynomial-
time approximation scheme (PTAS) in planar metrics. For the uniform case, this question has
been resolved in affirmative by Cohen-Addad et al. [8] in an elegant way: they showed that
local search of radius O(1/ε2) actually yields a (1 + ε)-approximation, giving a PTAS with
running time nO(1/ε2). This approach also gives a PTAS for k-Median with a similar running
time, and works even in metrics induced by graphs from any fixed proper minor-closed class.

Very recently, Cohen-Addad et al. [9] also gave a PTAS for Non-uniform Facility
Location in planar metrics using a different approach. Roughly, the idea is to first apply
Baker layering scheme to reduce the problem to the case when in all clusters (sets of clients
connected to the same facility) in the solution, all clients are within distance between 1 and r
from the center, for some constant r depending only on ε. This case is then resolved by
another application of Baker layering scheme, followed by a dynamic programming on a
hierarchichal decomposition of the graph using shortest paths as balanced separators.

Both the schemes of [8] and of [9] are PTASes: they run in time ng(ε) for some function g.
It is therefore natural to ask for an efficient PTAS (EPTAS): an approximation scheme with
running time f(ε) ·nO(1) for some function f . Such an EPTAS was given by Cohen-Addad [5]
for k-Means in low-dimensional Euclidean spaces; this is a variant of k-Median where every
client contributes to the connection cost with the square of its distance from the closest open
facility. Here, the idea is to apply local search as in [8], but to use the properties of the
metric to explore the local neighborhood faster. Unfortunately, this technique mainly relies
on the Euclidean structure (or on the bounded doubling dimension of the input) and seems
hard to lift to the general planar case. Also the techniques of [9] are far from yielding an
EPTAS: essentially, one needs to use a logarithmic number of portals at every step of the
final dynamic programming in order to tame the accumulation of error through logn levels
of the decomposition. Recently, a near-linear time EPTAS was given by Cohen-Addad et
al. [6] for k-median, k-means and non-uniform facility location where the input points lie in a
metric of bounded doubling dimension. This result is obtained using a randomized dissection
of the metric, a technique that is not available for planar inputs.

The goal of this work is to circumvent these difficulties and give an EPTAS for Uniform
Facility Location in planar metrics.
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Our results. Our main technical contribution is the following theorem. In essence, it states
that when solving k-Median on a planar graph one can restrict the facility set to a subset of
size k · (ε−1 logn)O(ε−3), at the cost of losing a multiplicative factor of (1+ε) on the optimum
connection cost. This can be seen as the planar version of the classic result by Matoušek [20]
who showed that for Euclidean metrics of dimension d, it is possible to reduce the number
of candidate centers to poly(k)ε−O(d) at the cost of losing a multiplicative factor of (1 + ε)
on the optimum connection cost (through the use of coresets as well). For general metrics,
obtaining such a result seems challenging, since this would imply a (1 + ε)-approximation
algorithm with running time f(k, ε)nO(1), which would contradict Gap-ETH [7].

From now on, by with constant probability we mean with probability at least 1/2; this
can be boosted by independent repetition.

I Theorem 1. Given a k-Median instance (G,F,C, k), where G is a planar graph, and an
accuracy parameter ε > 0, one can in randomized polynomial time compute a set F0 ⊆ F

of size k · (ε−1 logn)O(ε−3) satisfying the following condition with constant probability: there
exists a set D0 ⊆ F0 of size at most k such that for every set D ⊆ F of size at most k it
holds that

∑
c∈C minu∈D0 dist(u, c) 6 (1 + ε)

∑
c∈C minu∈D dist(u, c).

A direct corollary of Theorem 1 is a fixed-parameter approximation scheme for the
k-Median problem in planar graphs. This continues the line of work on fixed-parameter
approximation schemes for k-median and k-means in Euclidean spaces [12, 17], where the
goal is to design an algorithm running in time f(k, ε) · nO(1) for a computable function f .

I Corollary 2. Given a k-Median instance (G,F,C, k), where G is a planar graph, and an
accuracy parameter ε > 0, one can in randomized time 2O(kε−3 log(kε−1)) · nO(1) compute
a solution D ⊆ F that has connection cost at most (1 + ε) times the minimum possible
connection cost with constant probability.

Proof. Apply the algorithm of Theorem 1 and let F0 ⊆ F be the obtained subset of facilities.
Then run a brute-force search through all subsets of F0 of size at most k and output one
with the smallest connection cost. Thus, the running time is(

k · (ε−1 logn)O(ε−3)
)k
· nO(1) 6 2O(kε−3 log(kε−1)) · (logn)O(kε−3) · nO(1)

which is at most 2O(kε−3 log(kε−1)) · nO(1) since (logn)d 6 2O(d log d) · nO(1): if n 6 2d2 then
(logn)d 6 d2d 6 2O(d log d), and if n > 2d2 then (logn)d 6 2

√
logn·log logn 6 nO(1). J

Using Theorem 1 we can also give an efficient bicriteria PTAS for k-Median in planar
graphs. This time, the proof is more involved and uses the local search techniques of [5].

I Theorem 3. Given a k-Median instance (G,F,C, k), where G is a planar graph, and an
accuracy parameter ε > 0, one can in randomized time 2O(ε−5 log(ε−1)) · nO(1) compute a set
D ⊆ F of size at most (1 + ε)k such that its connection cost is at most (1 + ε) times the
minimum possible connection cost for solutions of size k with constant probability.

A direct corollary of Theorem 3 is an efficient PTAS for Uniform Facility Location
in planar graphs.

I Theorem 4. Given a Uniform Facility Location instance (G,F,C, open), where G is a
planar graph, and an accuracy parameter ε > 0, one can in randomized time 2O(ε−5 log(ε−1)) ·
nO(1) compute a solution D ⊆ F that has total cost at most (1 + ε) times the optimum cost
with constant probability.

ESA 2019
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Proof. Iterate over all possible choices of k being the number of facilities opened by the
optimum solution, and for every k invoke the algorithm of Theorem 3 for the k-Median
instance (G,F,C, k). From the obtained solutions output one with the smallest cost. J

Note that the approach presented above fails for the non-uniform case, where each facility
has its own, distinct opening cost.

In this extended abstract we focus on proving the main result, Theorem 1. The proof of
Theorem 3, on which Theorem 4 also relies, is fully deferred to the full version of the paper [10].

Our techniques. The first step in the proof of Theorem 1 is to reduce the number of
relevant clients using the coreset construction of Feldman and Langberg [11]. By applying
this technique, we may assume that there are at most k · O(ε−2 logn) clients in the instance,
however they are weighted: every client c is assigned a nonnegative weight ω(c), and it
contributes to the connection cost of any solution with ω(c) times the distance to the closest
open facility in the solution.

We now examine the Voronoi diagram induced in the input graph G by the clients:
vertices of G are classified into cells according to the closest client. This Voronoi diagram
has one cell per every client, thus it can be regarded as a planar graph with |C| faces, where
each face accommodates one cell. To formally define the Voronoi diagram, and in particular
the boundaries between neighboring cells, we use the framework introduced by Marx and
Pilipczuk [19] and its extension used in [21].

Consider now all the spokes in the diagram, where a spoke is the shortest path connecting
the center of a cell (i.e. a client) with a branching node of the diagram incident to the cell
(which is a face of G). Removing all the spokes and all the branching nodes from the plane
divides it into diamonds, where each diamond is delimited by four spokes, called further the
perimeter of the diamond. See Figure 1 for an example. Since the diagram is a planar graph
with |C| faces, there are O(|C|) = k · O(ε−2 logn) diamonds altogether. Moreover, since no
diamond contains a client in its interior, whenever P is a path connecting a client with a
facility belonging to some diamond ∆, P has to cross the perimeter of ∆.

Now comes the key and most technical part of the proof. We very carefully putO(ε−2 logn)
portals on the perimeter of each diamond. The idea of placement is similar to that of the
resolution metric used in the QPTAS for Facility Location. Namely, on a spoke Q starting
at client c we put portals at distance 1, (1 + ε), (1 + ε)2, . . . from c, so that the further we are
on the spoke from c, the sparser the portals are. As a diamond is delimited by four spokes,
we may thus use only O(ε−2 logn) portals per diamond, while the cost of snapping a path
crossing Q to the portal closest to the crossing point can be bounded by ε times the distance
from the crossing point to c.

For a facility f in a diamond ∆, we define the profile of f as follows. For every spoke Q
in the perimeter of ∆, we look at the closest portal π from f on Q. We record approximate
(up to (1 + ε) multiplicative error) distances from f to π and O(ε−3) neighboring portals,
as well as the distance to the client endpoint of the spoke Q. The crux lies in the following
fact: for every two facilities f, f ′ in ∆ with the same profile, replacing f with f ′ increases
the connection cost of any client c connected to f only by a multiplicative factor of (1 + ε).
Hence, for every profile in every diamond it suffices to keep just one facility with that profile.
Since there are k · O(ε−2 logn) diamonds and O(ε−1 logn)O(ε−3) possible profiles in each of
them, we keep at most k · (ε−1 logn)O(ε−3) facilities in total. This proves Theorem 1.

For the proof of Theorem 3, we first apply Theorem 1 to reduce the number of facilities
to k · (ε−1 logn)O(ε−3). Then we again inspect the Voronoi diagram, but now induced by the
facilities. Having contracted every cell to a single vertex, we compute an r-division of the
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obtained planar graph to cover it with regions of size r = (ε−1 logn)O(ε−3) so that only O(ε)k
facilities are on boundaries of the regions. We open all the facilities in all the boundaries
– thus exceeding the quota for open facilities by O(ε)k – run the PTAS of Cohen-Addad
et al. [8] in each region independently, and at the end assemble regional solutions using a
knapsack dynamic programming. Since within each region there are only polylogarithmically
many facilities, each application of the PTAS actually works in time f(ε) · nO(1).

2 Preliminaries on Voronoi diagrams and coresets

In this section we recall some tools about Voronoi diagrams in planar graphs and coresets
that will be used in the proof of Theorem 1. We will consider undirected graphs with positive
edge lengths embedded in a sphere, with the standard shortest-paths metric dist(u, v) for
u, v ∈ V (G). Contrary to the previous section, the metric is defined on the vertex set of
G only, i.e., we do not consider G as a metric space with points in the interiors of edges.
For X,Y ⊆ V (G), we denote dist(X,Y ) = minx∈X,y∈Y dist(x, y) and similarly we define
dist(u,X) for u ∈ V (G) and X ⊆ V (G).

Recall that for a set D ⊆ V (G) of open facilities and a set C ⊆ V (G), we define the
connection cost as

conn(D,C) =
∑
v∈C

dist(v,D).

If the input is additionally equipped with opening costs open : F → R>0, then the opening
cost of D is defined as

∑
w∈D open(w).

2.1 Voronoi diagrams in planar graphs
We now recall the construction of Voronoi diagrams and related notions in planar graphs used
by Marx and Pilipczuk [19]. The setting is as follows. Suppose G is an n-vertex simple graph
embedded in a sphere Σ whose edges are assigned nonnegative real lengths. We consider
the shortest path metric in G: for two vertices u, v, their distance dist(u, v) is equal to the
smallest possible total length of a path from u to v. We will assume that G is triangulated
(i.e. every face of G is a cycle of length 3), for this may always be achieved by triangulating
the graph using edges of infinite weight.

Further, we assume that shortest paths are unique in G and that finite distances between
distinct vertices in G are pairwise different: for all vertices u, v, u′, v′ with u 6= v, u′ 6= v′

and {u, v} 6= {u′, v′}, we have dist(u, v) 6= dist(u′, v′) or dist(u, v) = dist(u′, v′) = +∞. This
can be achieved by adding small perturbations to the edge lengths. Since we never specify
degrees of polynomials in the running time of our algorithms, we may ignore the additional
complexity cost incurred by the need of handling the perturbations in arithmetic operations.

Voronoi diagrams and their properties. Suppose that S is a subset of vertices1 of G. First,
define the Voronoi partition: for a vertex p ∈ S, the Voronoi cell CellS(p) is the set of all
those vertices u ∈ V (G) whose distance from p is smaller than the distance from any other
vertex q ∈ S; note that ties do not occur due to the distinctness of distances in G. Note that
{CellS(p)}p∈S is a partition of the vertex set of G. For each p ∈ S, let T (p) be the union of

1 In [19] a more general setting is considered where objects inducing the diagram are connected subgraphs
of G instead of single vertices. We will not need this generality here.

ESA 2019
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Figure 1 A part of the Voronoi diagram with various features distinguished. Branching nodes of
the diagram are grayed triangular faces, edges of the diagram are dashed. Solid paths of respective
colors are spokes. (The interior of) one diamond is grayed in order to highlight it.

shortest paths from vertices of CellS(p) to p; recall here that shortest paths in G are unique.
Note that, due to the distinctness of distances in G, T (p) is a spanning tree of the subgraph
of G induced by the cell CellS(p).

The diagram VorS induced by G is a multigraph constructed as follows. First, take the
dual G? of G and remove all edges dual to the edges of all the trees T (p), for p ∈ S. Then,
exhaustively remove vertices of degree 1. Finally, for every maximal 2-path (i.e. path with
internal vertices of degree 2), say with endpoints u and v, we replace this path by the edge
uv; note that this creates a loop at u in case u = v. The resulting multigraph VorS is the
Voronoi diagram induced by S. Note that the vertices of VorS are faces of G; for clarity we
shall call them branching nodes. Furthermore, VorS inherits an embedding in Σ from the
dual G?, where an edge uv that replaced a maximal 2-path P is embedded precisely as P ,
i.e., as the concatenation of (the embeddings of) the edges comprising P . From now on we
will assume this embedding of VorS .

We recall several properties of VorS , observed in [19]

I Lemma 5 (Lemmas 4.4 and 4.5 of [19]). The diagram VorS is a connected and 3-regular
multigraph embedded in Σ, which has exactly |S| faces, 2|S| − 4 branching nodes, and 3|S| − 6
edges. The faces of VorS are in one-to-one correspondence with vertices of S: each p ∈ S
corresponds to a face of VorS that contains all vertices of CellS(p) and no other vertex of G.

Spokes and diamonds. We now introduce further structural elements that can be dis-
tinguished in the Voronoi diagram, see Figure 1 for reference. The definitions and basic
observations presented below are taken from Pilipczuk et al. [21], and were inspired by the
Euclidean analogues due to Har-Peled [14].

An incidence is a triple τ = (p, u, f) where p ∈ S, f is a branching node of the diagram
VorS , and u is a vertex of G that lies on f (recall that f is a triangular face of G) and
belongs to CellS(p). The spoke of the incidence τ , denoted Spoke(τ), is the shortest path in
G between p and u. Note that all the vertices of Spoke(τ) belong to CellS(p).

Let e = f1f2 be an edge of the diagram VorS , where f1, f2 are branching nodes (possibly
f1 = f2 if e is a loop in VorS). Further, let p1 and p2 be the vertices from S that correspond
to faces of VorS incident to e (possibly p1 = p2 if e is a bridge in VorS). Suppose for a
moment that f1 6= f2. Then, out of the three edges of f1 (these are edges in G) there is
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exactly one that crosses the edge e of VorS ; say it is the edge u1,1u1,2 where u1,1 ∈ CellS(p1)
and u1,2 ∈ CellS(p2). Symmetrically, there is one edge of f2 that crosses e, say it is u2,1u2,2
where u2,1 ∈ CellS(p1) and u2,2 ∈ CellS(p2). In case f1 = f2, the edge e crosses two different
edges of f1 = f2 and we define u1,1, u1,2, u2,1, u2,2 analogously for these two crossings; note
that then, provided p1 corresponds to the face enclosed by the loop e, we have u1,1 = u1,2.
For all i, j ∈ {1, 2}, consider the incidence τi,j = (pi, ui,j , fj).

Consider removing the following subsets from the sphere Σ: interiors of faces f1, f2
and spokes Spoke(τi,j) for all i, j ∈ {1, 2}. After this removal the sphere breaks into two
regions, out of which exactly one, say R, intersects (the embedding of) e. Let the diamond
of e, denoted Diam(e), be the subgraph of G consisting of all features (vertices and edges)
embedded in R∪

⋃
i,j∈{1,2} Spoke(τi,j). The region R as above is the interior of the diamond

Diam(e). Note that in particular, the spokes Spoke(τi,j) for i, j ∈ {1, 2} and the edges
u1,1u1,2 and u2,1u2,2 belong to Diam(e). The perimeter of the diamond of e is the closed walk
obtained by concatenating spokes Spoke(τi,j) for i, j ∈ {1, 2} and edges u1,1u1,2, u2,1u2,2 in
the natural order around Diam(e). The following observation is immediate:

I Proposition 6. Consider removing all the spokes (considered as curves on Σ) and all
the branching nodes (considered as interiors of faces on Σ) of the diagram VorS from the
sphere Σ. Then Σ breaks into 3|S| − 6 regions that are in one-to-one correspondence with
edges of VorS: a region corresponding to the edge e is the interior of the diamond Diam(e).
Consequently, the intersection of diamonds of two different edges of VorS is contained in the
intersection of their perimeters.

Finally, we note that the perimeter of a diamond separates it from the rest of the graph.
Since vertices of S are never contained in the interior of a diamond, this yields the following.

I Lemma 7. Let p ∈ S and u be a vertex of G belonging to the diamond Diam(e) for some
edge e of VorS. Then every path in G connecting u and p intersects the perimeter of Diam(e).

2.2 Coresets
In most our algorithms, the starting point is the notion of a coreset and a corresponding
result of Feldman and Langberg [11]. To this end, we need to slightly generalize the notion
of a client set in a k-Median instance. A client weight function is a function ω : C → R>0.
Given a set D ⊆ F of open facilities, the (weighted) connection cost is defined as

conn(D,ω) =
∑
v∈C

dist(v,D) · ω(v).

That is, every client v is assigned a weight ω(v) with which it contributes to the objective
function. The support of a weight function ω is defined as supp(ω) = {v ∈ C | ω(v) > 0}.
From now on, whenever we speak about a k-Median instance without specified client weight
function, we assume the standard function assigning each client weight 1.

The essence of coresets is that one can find weight functions with small support that
well approximate the original instance. Given a k-Median instance (G,F,C, k) (without
weights) and an accuracy parameter ε > 0, a coreset is a weight function ω such that for
every set D ⊆ F of size at most k, it holds that

|conn(D,C)− conn(D,ω)| 6 ε · conn(D,C).

We rely on the following result of Feldman and Langberg [11].

ESA 2019
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I Theorem 8 (Theorem 15.4 of [11]). Given a k-Median instance (G,F,C, k) with n = |V (G)|
and accuracy parameter ε > 0, one can in randomized polynomial time find a weight function
ω with support of size O(kε−2 logn) that is a coreset with constant probability.

We note that Ke Chen [4] gave a construction of a strong coreset with support of size
O(k2ε−2 logn) that is much simpler than the later construction of Feldman and Langberg [11].
By using this construction instead, we would obtain a weaker version of Theorem 1, with a
bound on |F0| that is quadratic in k instead of linear. This would be perfectly sufficient to
derive an FPT approximation scheme as in Corollary 2, but for Theorem 3 we will vitally
use the stronger statement. A construction of coresets with similar size guarantees, but
maintainable in the streaming model, has been proposed by Braverman et al. [2].

3 Facility coreset for k-Median in planar graphs

In this section we give a coreset for centers for the k-Median problem, that is, we prove
Theorem 1. We shall focus on the following lemma, which in combination with Theorem 8
yields Theorem 1.

I Lemma 9. Given a k-Median instance (G,F,C, k) with a weight function ω and an
accuracy parameter ε > 0, one can in polynomial time compute a set F0 ⊆ F of size
|supp(ω)| · (ε−1 log |V (G)|)O(ε−3) satisfying the following condition with constant probability:
there exists a set D0 ⊆ F0 of size at most k such that for every set D ⊆ F of size at most k
it holds that conn(D0, ω) 6 (1 + ε) · conn(D,ω).

Before we proceed, let us verify that Theorem 8 and Lemma 9 together imply Theorem 1.
Given an instance (G,F,C, k) of k-Median, we first apply Theorem 8 to obtain a coreset ω
with support of size O(kε−2 logn). Next, we pass this coreset to Lemma 9, thus obtaining
a set F0 ⊆ F of size k · (ε−1 logn)O(ε−3). Let D0 be the subset of F0 of size at most k
that minimizes conn(D0, ω). Then using the approximation guarantees of Theorem 8 and
Lemma 9, for any D ⊆ F we have

conn(D0, C) 6 (1 + ε)conn(D0, ω) 6 (1 + ε)2conn(D,ω) 6 (1 + ε)3conn(D,C).

It remains to rescale ε. Hence, for the rest of this section we focus on proving Lemma 9.

Let I = (G,F,C, k) be an input k-Median instance with a weight function ω, where G
is planar. Let ε > 0 be an accuracy parameter and without loss of generality assume that
ε < 1/4. Let n = |V (G)| and m = |E(G)|. Without loss of generality assume that n = Θ(m).

We assume that G is embedded in a sphere Σ and apply the necessary modifications
explained in the beginning of Section 2.1 to fit into the framework of Voronoi diagrams.
Denote S = supp(ω). We compute the Voronoi partition CellS induced by S and the Voronoi
diagram VorS induced by S. By Proposition 6, VorS has O(|S|) vertices, faces, and edges.

Distance levels. We first compute an O(1)-approximate solution D̃ ⊆ F using the al-
gorithm given by Feldman and Langberg [11, Theorem 15.1]; this algorithm outputs an
O(1)-approximate solution with constant probability. Let us scale all the edge lengths in G
by the same ratio so that

conn(D̃, ω) = |S|/ε. (1)

Next, we assign length +∞ to every edge of length larger than conn(D̃, ω); clearly, they are
not used in the computation of the connection cost of an optimum solution. Without loss of
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generality we assume that all the distances between vertices in G are finite: otherwise we
can split the instance into a number of independent ones, compute a suitable set F0 for each
of them and take the union.

The next step is to assign levels to distances in the graph. For any c ∈ [0,+∞), define
the level of c, denoted level(c), to be the smallest nonnegative integer ` such that c < (1 + ε)`.
Note that level(c) = 0 if and only if c < 1. Let L = 1 + level(m · conn(D̃, ω)), then we have

level(dist(u, v)) ∈ {0, 1, . . . , L− 1} for all u, v ∈ V (G).

Observe that since m = Θ(n), by (1) we have

L 6 O(ε−1 log(m|S|/ε)) 6 O(ε−2 logn). (2)

Portals and profiles. Let τ = (p, u, f) be an incidence in VorS . Let d(τ) = dist(p, u)
and let `(τ) = level(d(τ)); note that Spoke(τ) has length exactly d(τ). For every integer
ι ∈ {1, . . . , `(τ)}, we define the portal p〈τ, ι〉 as a vertex on Spoke(τ) at distance exactly
(1 + ε)ι−1 from p; we subdivide an edge an create a new vertex to accommodate p〈τ, ι〉 if
necessary. Furthermore, we add also a portal p〈τ, 0〉 = p. Since `(τ) = level(d(τ)) < L, there
are at most L portals on the spoke Spoke(τ).

Consider a diamond Diam(e) induced by some edge e of VorS , and a vertex v in Diam(e).
Recall that the perimeter of Diam(e) consists of spokes Spoke(τi,j) for four incidence τi,j ,
where i, j ∈ {1, 2}. The profile of a vertex w belonging to the diamond Diam(e) consists of
the following information, for all τ ∈ {τi,j : i, j ∈ {1, 2}}:
1. The minimum index λ ∈ {0, 1, . . . , `(τ)} satisfying

dist(p〈τ, λ〉, p) > ε · dist(p〈τ, λ〉, w),

where p = p〈τ, 0〉 is the vertex of S involved in τ . If no such index exists, we set λ = `(τ).
2. Letting

I =
(
{0} ∪ {ι : |ι− λ| 6 1/ε3}

)
∩ {0, 1, . . . , `(τ)},

the profile records the value of level(dist(w, p〈τ, ι〉)) for all ι ∈ I.
Whenever speaking about a vertex w and incidence τ , we use λ(τ, w) and I(τ, w) to denote
λ and I as above. We note that in total there are only few possible profiles.

B Claim 10. The number of possible different profiles of vertices in Diam(e) is LO(ε−3).

Proof. Since 0 6 `(τ) < L for every incidence τ , there are at most L4 choices for the four
values λ(τi,j , w) for i, j ∈ {1, 2}. Further, we have |I(τi,j , w)| 6 O(ε−3), so there are at most
LO(ε−3) choices for the values level(dist(w, p〈τi,j , ι〉)) for i, j ∈ {1, 2} and ι ∈ I(τi,j , w). C

For future reference, we state the key property of profiles: having the same profile implies
having approximately same distances to the profiles with indices in I.

B Claim 11. Suppose w and w′ are two vertices of Diam(e) that have the same profile. Then
for each τ ∈ {τi,j : i, j ∈ {1, 2}} and ι ∈ I(τ, w), we have

dist(w′, p〈τ, ι〉) 6 (1 + ε) · dist(w, p〈τ, ι〉) + 1.

Proof. Let ` = level(dist(w, p〈τ, ι〉)) = level(dist(w′, p〈τ, ι〉)), as recorded in the common
profile. If ` = 0, then dist(w′, p〈τ, ι〉) < 1 and we are done. Otherwise, dist(w, p〈τ, ι〉) and
dist(w′, p〈τ, ι〉) are both contained in the interval [(1 + ε)`−1, (1 + ε)`). This interval has
length ε · (1 + ε)`−1 6 ε · dist(w, p〈τ, ι〉), hence the claim follows. C
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Construction of the set F0. We now construct the set F0 as follows: for every diamond
Diam(e) and every possible profile in Diam(e), include in F0 one facility with that profile (if
one exists). Since there are O(|S|) diamonds, by Claim 10 and (10) we have

|F0| 6 O(|S|) · LO(ε−3) = |supp(ω)| · (ε−1 logn)O(ε−3),

as claimed. It remains to prove that F0 has the claimed approximation properties.
For every facility w ∈ F , pick a diamond Diam(e) containing w and let f(w) to be the

facility f(w) ∈ F0 ∩ Diam(e) that has the same profile as w. Fix a solution D? ⊆ F with
|D?| 6 k minimizing conn(D?, ω). Let D0 = {f(w) : w ∈ D?}. Clearly, |D0| 6 |D?| 6 k. To
finish the proof of Lemma 9 it suffices to show that

conn(D0, ω) 6 (1 +O(ε))conn(D?, ω). (3)

To this end, consider any client v ∈ S = supp(ω) and let w ∈ D? be the facility in D?

serving v, that is, dist(v, w) = dist(v,D?). To show (3), it suffices to prove that

dist(v, f(w)) 6 (1 +O(ε))dist(v, w) +O(1). (4)

Indeed, by summing (4) through all v ∈ S and using (1) we obtain

conn(D0, ω) 6 (1 +O(ε))conn(D?, ω) +O(1) · |S|

6 (1 +O(ε))conn(D?, ω) +O(ε) · conn(D̃, ω) 6 (1 +O(ε))conn(D?, ω),

where the last inequality is due to D̃ being an O(1)-approximate solution.
Hence, from now on we focus on proving (4). Let Diam(e) be the diamond containing

w and f(w). Consider the shortest path P from w to v in G. By Lemma 7, the path P

intersects the perimeter of the diamond Diam(e). Let u be the vertex on the perimeter of
Diam(e) that lies on P and, among such, is closest to w on P . Since P is a shortest path,
the length of the subpaths of P between v and u and between u and w equal dist(v, u) and
dist(u,w), respectively, and in particular dist(v, w) = dist(v, u) + dist(u,w).

We now observe that to prove (4), it suffices show the following.

dist(u, f(w)) 6 dist(u,w) +O(ε)dist(v, w) +O(1). (5)

Indeed, assuming (5) we have

dist(v, f(w)) 6 dist(v, u) + dist(u, f(w))
6 dist(v, u) + dist(u,w) +O(ε)dist(v, w) +O(1)
= dist(v, w) +O(ε)dist(v, w) +O(1).

Hence, from now on we focus on proving (5).
Let τi,j for i, j ∈ {1, 2}, be the four incidences involved in the diamond Diam(e). Since

u lies on the perimeter of Diam(e), actually u lies on Spoke(τ), where τ = τi,j for some
i, j ∈ {1, 2}. Let p = p〈τ, 0〉 be the vertex of S involved in the incidence τ . Since u ∈ CellS(p)
while v ∈ S, we have that dist(u, p) 6 dist(u, v). Consequently, we have dist(u,w) 6 dist(v, w)
and dist(u, p) 6 dist(v, w), so to prove (5) it suffices to prove the following:

dist(u, f(w)) 6 dist(u,w) +O(ε)(dist(u,w) + dist(u, p)) +O(1). (6)

Let pu = p〈τ, ι〉 be the portal on the subpath of Spoke(τ) between u and p that is closest
to u. Intuitively, pu is a good approximation of u and distances from pu are almost the same
as distances from u. As this idea will be repeatedly used in this sequel, we encapsulate it in
a single claim.
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B Claim 12. Suppose for some vertices x and y we have

dist(pu, x) 6 A · dist(pu, y) +B,

for some A,B. Then

dist(u, x) 6 A · dist(u, y) +B + (A+ 1)ε · dist(u, p) + (A+ 1).

Proof. By the choice of pu we have

dist(pu, p) 6 dist(u, p) 6 (1 + ε)dist(pu, p) + 1,

so dist(u, pu) 6 ε · dist(u, p) + 1. Therefore, we have

dist(u, x) 6 dist(pu, x) + dist(pu, u) 6 A · dist(pu, y) +B + dist(pu, u)
6 A · (dist(u, y) + dist(pu, u)) +B + dist(pu, u)
= A · dist(u, y) +B + (A+ 1) · dist(pu, u)
6 A · dist(u, y) +B + (A+ 1) · ε · dist(u, p) + (A+ 1),

as claimed. C

Since w and f(w) have the same profile, we may denote λ = λ(τ, w) = λ(τ, f(w)) and
I = I(τ, w) = I(τ, f(w)). Further, let pλ = p〈τ, λ〉 We now consider a number of cases
depending on the relative values of ι and λ, with the goal on proving that (6) holds in each
case. See Figure 2 for an illustration.

v

p

w

τ

f(w)

u

pu

pλ

Figure 2 The diamond Diam(e) with vertices v, u, w, p, and f(w). Red vertices are clients, black
squares are portals. The case distinction in the proof corresponds to relative order of pλ and pι.

Middle case: ι ∈ I. As profiles of w and f(w) are the same and ι ∈ I, by Claim 11 we
have

dist(pu, f(w)) 6 (1 + ε)dist(pu, w) + 1.

It suffices now to apply Claim 12 to infer inequality (6).

Close case: ι < λ− 1/ε3. Since ι < λ− 1/ε3, by the choice of λ we have

dist(pu, p) 6 ε · dist(pu, w).

By applying Claim 12, we infer that

dist(u, p) 6 ε ·dist(u,w) + (1 + ε)ε ·dist(u, p) +O(1) 6 ε ·dist(u,w) + dist(u, p)/2 +O(1),
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which entails

dist(u, p) 6 2ε · dist(u,w) +O(1).

Since 0 ∈ I and the profiles of w and f(w) are equal, by Claim 11 we have

dist(p, f(w)) 6 (1 + ε) · dist(p, w) + 1.

By combining the last two inequalities, we conclude that

dist(u, f(w)) 6 dist(u, p) + dist(p, f(w))
6 dist(u, p) + (1 + ε)dist(p, w) + 1
6 dist(u, p) + (1 + ε)(dist(u, p) + dist(u,w)) + 1
= (2 + ε)dist(u, p) + (1 + ε)dist(u,w) + 1
6 (1 +O(ε))dist(u,w) +O(1).

Thus, inequality (6) holds in this case.

Far case: ι > λ+1/ε3. By the definition of λ and since ι > λ+1/ε3, we have in particular
λ < `(τ) and hence

ε · dist(pλ, w) < dist(pλ, p).

On the other hand, we have

dist(p, pλ) = (1 + ε)λ−ιdist(p, pu) 6 (1 + ε)−1/ε3
dist(p, pu) 6 ε2 · dist(p, pu),

where the last step follows from Bernoulli’s inequality. By combining the above two inequalities
we obtain

dist(pλ, w) 6 ε · dist(p, pu),

implying

dist(p, w) 6 dist(p, pλ)+dist(pλ, w) 6 (ε+ε2) ·dist(p, pu) 6 2ε ·dist(p, pu) 6 2ε ·dist(p, u).

As before, by Claim 11 we have dist(p, f(w)) 6 (1 + ε)dist(p, w) + 1 due to 0 ∈ I, hence

dist(u, f(w)) 6 dist(u, p) + dist(p, f(w))
6 (dist(u,w) + dist(p, w)) + (1 + ε)dist(p, w) + 1
6 dist(u,w) + (2 + ε) · (2ε) · dist(u, p) + 1
6 dist(u,w) +O(ε)dist(u, p) +O(1).

We conclude that inequality (6) holds in this case.

As the case investigation presented above covers all the possibilities, the proof of Lemma 9
is complete, so we have also proved Theorem 1.
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