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Introduction

Consider the following nonlinear Cauchy problem :

∂ t u = iL u + F (u, ∇ x u, u, ∇ x u), t ∈ R, x ∈ R n , u(x, 0) = u 0 (x) ∈ H s (R n ), (1) 
where the function F (u, v, u, v) is sufficiently regular in C × C n × C × C n , the operator L has the form

L = j≤j 0 ∂ 2 x j - j>j 0 ∂ 2 x j ,
with a fixed j 0 ∈ {1, 2, ..., n}, and H s (R n ), s ∈ R, is the usual Sobolev space on R n . Thus, L generalizes the Laplace operator but is not elliptic unless j 0 = n. Hence, such equations are generalizations of the nonlinear Schrödinger (NLS) equations.

At the origin of this work is the significant paper of C. E. Kenig, G. Ponce and L. Vega, [KePoVe], who first studied (1) with such a non elliptic L and established the local existence and the smoothing effect of the solutions assuming that F is a polynomial and s ≥ s 0 , the index s 0 being sufficiently large. These authors distinguished two cases: the case where the valuation of F is at least 3 and that where it is 2. In the first case, they solved (1) in the usual Sobolev spaces whereas in the second case they needed to work in weighted Sobolev spaces.

In this paper, we continue the work undertaken in [START_REF] Bienaimé | Existence locale et effet régularisant précisés pour des équations non linéaires de Schrödinger généralisées[END_REF], [Bie] and [BiBo], and study the local existence and the smoothing effect of the solutions of the Cauchy problem (1) with low regularity data and essentially the following goal : to reach the optimal index s of regularity for which (1) is well posed. In fact, the partial differential equation being of second order and semi-linear the optimal condition on s should be s > n 2 + 1. Recall that in [Bie] and [BiBo], we considered only the case where the valuation of F is at least 3 and obtained the well-posedness and the smoothing effect in the usual Sobolev spaces respectively for s > n 2 +3 and s > n 2 + 2. In this paper, we consider the case where the valuation of F is 2, that is, the case where the quadratic interaction term is present, and obtain the following:

Theorem 1.1 Assume that F vanishes to the second order at 0, that is, F and its first order partial derivatives vanishes at 0. Then, for every s > n 2 + 2, σ > 1, s > n 2 + 1 such that s + σ ≤ s, and every initial data u 0 ∈ H s (R n ) ∩ H s ,σ (R n ), there exists a real number T > 0 such that the Cauchy problem (1) has a unique solution u which is defined on the interval [0, T ] and satisfies

u ∈ C [0, T ]; H s (R n ) ∩ H s ,σ (R n ) and |||J s+ 1 2 u||| T def = T 0 R n x -σ 0 J s+ 1 2 u(x, t) 2 dxdt 1 2 < ∞ ,
where J = D = (1 -∆) 1/2 , x = (1 + k=n k=1 x k 2 ) 1/2 and σ 0 is fixed, 1/2 < σ 0 ≤ σ/2. Moreover, given a bounded subset B of H s (R n )∩H s ,σ (R n ), there exists a real number T > 0 such that, for every u 0 ∈ B, the associated solution u of (1) exists on the interval [0, T ] and the map which associates u to u 0 is Lipschitz continuous from B into the space

{w ∈ C [0, T ]; H s (R n ) ∩ H s ,σ (R n ) ; |||J s+ 1 2 w||| T < ∞}.
Here, the spaces H s,σ (R n ) are weighted Sobolev spaces defined by

u ∈ H s,σ (R n ) iff x σ u ∈ H s (R n ).
(2)

Recall that under the above assumption on F and when u 0 ∈ H s (R n ) merely, the coefficient b 1 = ∂ v F of ∇ x in the linearized equation does not satisfy in general the Takeuchi-Mizohata condition sup

x∈R n , ω∈S n-1 , R>0 Im R 0 b 1 (x + rω) • ω dr < ∞ ,
which is known to be necessary for the well-posedness of linear Schrödinger equations (see [START_REF] Mizohata | Sur quelques équations de type Schrödinger[END_REF], [START_REF] Takeuchi | On the Cauchy problem for some non-kowalewskian equations with distinct characteristic roots[END_REF], [START_REF] Mizohata | On the Cauchy problem[END_REF]), and this is the reason for working in weighted spaces. In [KePoVe], the above result is proved with polynomial F under the assumption s > 40n + 62 + 1 2 and σ = 4n + 6, and in [START_REF] Bienaimé | Existence locale et effet régularisant précisés pour des équations non linéaires de Schrödinger généralisées[END_REF], under the assumption s > n 2 + 5 and σ > n 2 . The assumption σ 0 > 1 2 in the above theorem seems to be sharp; we refer for example to the survey article [Rob] on the subject of Kato's smoothing effect.

The Cauchy problem (1) has been extensively studied in the nineties mainly when L = ∆, that is, in the case of the Schrödinger equation. See the introduction and the references in [KePoVe]. The case L = ∆ is less well known. Nevertheless, it is motivated by several equations coming from the applications such as Ishimori's type equations or Davey-Stewartson's type systems. For more details, we refer the reader to the instructive introduction of [KePoVe]. Let us now quote some papers which are more or less related to this subject. In [START_REF] Kenig | The Cauchy problem for quasi-linear Schrödinger equations[END_REF], 2004, the authors extended their results of 1998 to the quasilinear case assuming essentially that the corresponding dispersive operator L is elliptic and non trapping. The non elliptic case is treated in [KePoRoVe1], 2005, and [KePoRoVe2], 2006. In [BeTa], 2008, the authors solved the Cauchy problem (1) for s > n 2 + 1 in modified Sobolev spaces and assuming F (u, ∇ x u, u, ∇ x u) bilinear. More recently, in [START_REF] Marzuola | Quasilinear Schrödinger equations I: Small data and quadratic interactions[END_REF], 2012, and [START_REF] Marzuola | Quasilinear Schrödinger equations, II: Small data and cubic nonlinearities[END_REF], 2014, the authors considered the quasilinear Schrödinger equation

i∂ t u + j,k g j,k (u, ∇ x u)∂ j ∂ k u = F (u, ∇ x u)
and obtained the local well-posedness of the associated Cauchy problem for s > n 2 + 3 in the quadratic case (with modified Sobolev spaces) and for s > n 2 + 5 2 in the non quadratic case. However, they assume the smallness of the data and they do not seem to obtain the smoothing effect of the solutions.

The proof of Theorem 1.1 follows a classical plan whose steps are: linearization of the non linear equation, then, establishing energy estimates for solutions of the linear equation, and finally, solving the non linear equation by means of an appropriate fixed point theorem. Instead of the classical linearization, we apply a para-linearization, that is a linearization in the sense of Bony, [Bon]. This leads us to the use of the para-differential calculus whose main interest lies in the fact that it eliminates the usual losses of regularity due to commutators. As a result of the para-linearization, one obtains of course a para-linear equation and most of the proof of Theorem 1.1 is concerned with the well-posedness in the Sobolev spaces of the Cauchy problem associated with such an equation and the proof of a priori and smoothing effect estimates for that equation. This is done using ideas from [KePoVe], [Bie] and [BiBo]. As did Kenig, Ponce and Vega, we establish the smoothing effect estimate by using Doi's argument, [Doi], via Gårding's inequality, and we prove the energy estimates by following an idea of Takeuchi [START_REF] Takeuchi | Le problème de Cauchy pour certaines équations aux derivées partielles du type de Schrödinger; symétrisations indépendantes du temps[END_REF], that is, by constructing a non classical invertible pseudo-differential operator C and establishing estimates for Cu instead of u, if u is a solution of the para-linear equation. At last, we solve the non linear Cauchy problem (1) by applying these estimates to an integro-differential equation which is equivalent to (1) and obtain the solution as the fixed point of an appropriate contraction mapping in an appropriate complete metric space.

However, we have to say that, even if we follow the same plan as [BiBo], the proof of Theorem 1.1 is far from being a straightforward consequence of the work in [BiBo]. Indeed, the presence of a weight makes the analysis much more delicate mainly at the commutators. A first remark in this direction is that, due to a bad commutator, we have not been able to solve the linear (or para-linear) equation in our weighted Sobolev spaces, which would have been natural and useful in the study of the non linear equation, but only in the usual Sobolev ones. Moreover, we had to use at least three non-trivial arguments to get to our end. The first two ones are in fact based on two results that we have had to prove, which are more or less general and could be useful elsewhere:

-Bony's para-linearization formula adapted to weighted Sobolev spaces and the lipschitz continuity of its remainder (Theorem 2.5): this result has a non trivial proof and is crucial for the study of the nonlinear equation.

-The paradifferential calculus adapted to our weighted Sobolev spaces (Proposition 2.1): this result is also non trivial and is obtained by proving a fine result on L 2 boundedness of pseudodifferential operators (Lemma 2.5).

The third argument is rather a tricky and also a crucial one and is used to estimate a term in the nonlinear equation which caused to us a number of problems. This is the last term in (39) and even if we have found a way to treat it, the result is not satisfying: we have not been able to solve our Cauchy problem with data that have a large weight. More precisely, this argument does not allow to solve the Cauchy problem with an exponent σ (that of the weight) which is independent of the Sobolev regularity s. Thus, this question remains open.

Notations and preliminary results

Some notations used in the paper :

-J s = (1 -∆) s/2 = D s is the operator whose symbol is ξ s = (1 + ξ 2 ) s/2 . -D x k = -i∂ x k , D x = -i∂ x . -|α| = j=n j=1 α j if α ∈ N n . -∆v = (∆v 1 , ..., ∆v n ) and ∇v = (∇v 1 , ..., ∇v n ) if v = (v 1 , ..., v n ). -S (R n ) denotes the Schwartz space of rapidly decreasing functions in R n . -D(R n ) denotes the space of smooth functions with compact support in R n . -D (R n ) denotes the space of distributions in R n . -S (R n ) denotes the space of tempered distributions in R n . -û or F (u) denotes the Fourier transform of u. -H s (R n ) = {u ∈ S (R n ); ξ s û ∈ L 2 (R n )} is the usual Sobolev space of regularity s. -||u|| s = ( R n ξ 2s |û(ξ)| 2 dξ) 1/2 denotes the norm of u in H s (R n ). -||u|| E denotes the norm of u in the space E. -Hörmander's classes of symbols : If m ∈ R and γ, δ ∈ [0, 1], S m γ,δ = a ∈ C ∞ (R n × R n ); ∀α, β ∈ N n , |∂ α x ∂ β ξ a(x, ξ)| ≤ A α,β ξ m-γ|β|+δ|α| .
-If > 0 is an integer, C (R n ) denotes the set of functions in R n which are bounded, of class C and their derivatives up to are bounded. If > 0 is not an integer, C (R n ) denotes the Hölder class, that is, the set of

u in C [ ] (R n ) such that ∃C ∈ R, ∀(x, y) ∈ R n × R n , |∂ α u(x) -∂ α u(y)| ≤ C|x -y| -[ ] .
-Op S denotes the set of pseudodifferential operators whose symbols belong to S.

The following statement summarizes the pseudodifferential calculus associated to Hörmander's classes of symbols S m γ,δ :

Theorem 2.1 If a ∈ S m γ,δ , b ∈ S m γ,δ , m, m ∈ R, and 0 ≤ δ < γ ≤ 1 or 0 ≤ δ ≤ γ < 1, then : (i) a(x, D)b(x, D) = c(x, D) with c ∈ S m+m γ,δ . Moreover, c(x, ξ) = e -iy.η a(x, ξ + η) b(x + y, ξ) dy dη (2π) n = |ν|<N 1 ν! ∂ ν ξ a(x, ξ)D ν x b(x, ξ) + |ν|=N 1 ν! 1 0 (1 -θ) N -1 r ν,θ (x, ξ) dθ, where r ν,θ (x, ξ) = e -iy.η ∂ ν ξ a(x, ξ + θη)D ν x b(x + y, ξ) dy dη (2π) n ,
and the S m+m -N (γ-δ) γ,δ semi-norms of r ν,θ are bounded by products of semi-norms of a and b uniformly in θ ∈ [0, 1]. Last, this formula also extends to the particular case where a is the "forbidden" class S m 1,1 and b is in S m γ,δ as above. See [Tay], for instance, for the proof. We shall also often need the following version of Calderón-Vaillancourt theorem :

(ii) a(x, D) * = a * (x, D) with a * ∈ S m γ,δ . Moreover, a * (x, ξ) = e -iy.η a(x + y, ξ + η) dy dη (2π) n = |ν|<N 1 ν! ∂ ν ξ D ν x a(x, ξ) + |ν|=N 1 ν! 1 0 (1 -θ) N -1 r * ν,θ (x, ξ) dθ, where r * ν,θ (x, ξ) = e -iy.η ∂ ν ξ D ν x a(x + y, ξ + θη) dy dη ( 
Theorem 2.2 Let a : R n × R n → C be a bounded function. Assume that, for all α, β ∈ N n such that |α| + |β| ≤ n + 1, there exists a constant C α,β > 0 such that |∂ α x ∂ β ξ a(x, ξ)| ≤ C α,β in R 2n .
Then, the pseudodifferential operator a(x, D) is bounded in L 2 (R n ) and its operator norm is estimated by

sup |α|+|β|≤n+1 ||∂ α x ∂ β ξ a|| L ∞ .
See [CoMe] for the proof.

The following technical lemma which is a consequence of Theorem 2.1 will be very useful in many of our proofs :

Lemma 2.1 Let m, σ ∈ R. If a ∈ S m 0,0 (resp. a ∈ S m 1,0 ), then, x σ a(x, D) x -σ = b(x, D),
where b ∈ S m 0,0 (resp. b ∈ S m 1,0 ) and the semi-norms of b are bounded by semi-norms of a.

Proof : See Lemma 2.1 of [BiBo] where the S m 0,0 case is considered. The S m 1,0 case is similar.

Let us now recall some basic results on paradifferential operators.

Definition 2.1 We define the class Σ m where m ∈ R and ≥ 0 to be the class of symbols a(x, ξ) defined on

R n × R n which are C ∞ in ξ and C in x, in the sense that ∀α ∈ N n , |∂ α ξ a(x, ξ)| ξ -m+|α| ∈ C (R n × R n ) , C being replaced by L ∞ when = 0. If a ∈ Σ m ,
m is the order of a and is its regularity. Following J.-M. Bony, we associate to a symbol a in Σ m the paradifferential operator T a,χ defined by the expression

T a,χ u(ξ) = (2π) -n R n χ (ξ -η, η) F 1 (a)(ξ -η, η)û(η) dη,
where χ is what one calls a para-truncature, that is a C ∞ function in R n × R n satisfying the following properties :

(i) ∃ ε > 0 such that ε < 1 and χ(ξ, η) = 0 if |ξ| ≥ ε|η|, ξ, η ∈ R n . (ii) ∃ ε > 0, ε > 0, such that ε < ε and χ(ξ, η) = 1 if |ξ| ≤ ε |η| and |η| ≥ ε . (iii) ∀α ∈ N 2n , ∃ A α > 0, ∀ζ ∈ R 2n , ζ |α| |∂ α χ(ζ)| ≤ A α .
The first important result on paradifferential operators is that, even if one can show that T a,χ = ã(x, D) with some ã ∈ S m 1,1 , they are bounded in the Sobolev spaces in the usual manner. In fact, we have : Theorem 2.3 Assume that χ satisfies only the first and third property among the above ones. Then, for every real s, T a,χ is bounded from H s (R n ) into H s-m (R n ) and its operator norm is estimated by a semi-norm of a in Σ m . In particular, if a = a(x) ∈ L ∞ (R n ), then, for every real s, T a,χ is bounded in H s (R n ) with an operator norm bounded by a constant times ||a|| L ∞ .

Proof : See [Bon], [START_REF] Meyer | Remarques sur un théorème de J.-M. Bony[END_REF] or [Tay].

Concerning the dependence with respect to the para-truncature χ, one can say the following :

Theorem 2.4 If > 0 and χ 1 , χ 2 are para-truncatures, then, the operator T a,χ 1 -T a,χ 2 is bounded from H s (R n ) into H s-m+ (R n ) and its operator norm is estimated by a semi-norm of a in Σ m .

Proof : See [Bon], [START_REF] Meyer | Remarques sur un théorème de J.-M. Bony[END_REF] or [Tay].

This result shows that the dependance of T a,χ on χ is less important than that on a. It also explains why the remainders in the paradifferential theory are only -regularizing. From now on, we shall write T a instead of T a,χ unless it is needed.

Note also that a possible choice of the para-truncature that we shall often use in the sequel is given by

χ(ξ, η) = χ 1 (ξ/|η|) (1 -ψ 1 (η)),
where

ψ 1 , χ 1 ∈ C ∞ (R n ), ψ 1 = 1 in a neighbourhood of 0, ψ 1 = 0 out of B(0, ε ), and χ 1 = 1 on B(0, ε ), supp(χ) ⊂ B(0, ε), with ε and ε satisfying 0 < ε < ε < 1. In this case, T a,χ = ã(x, D) with the following expression of ã : ã(x, ξ) = (1 -ψ 1 (ξ))|ξ| n R n F -1 (χ 1 )(|ξ|(x -y)) a(y, ξ)dy. (3) 
The following lemma gives some properties of ã which will be needed in the sequel and often used implicitly.

Lemma 2.2 Let m ∈ R, ≥ 0 and a ∈ Σ m . Then, ã is also in Σ m . Moreover, ã is smooth and

|∂ β ξ ∂ α x ã(x, ξ)| ≤ A α,β ξ m-|β| if |α| ≤ , (4) 
|∂ β ξ ∂ α x ã(x, ξ)| ≤ A α,β ξ m-|β|+|α|-if |α| > , (5) 
where A α,β are non negative constants; more precisely, the A α,β can be estimated by seminorms of a in Σ m . In particular, ã ∈ S m 1,1 .

Proof : We refer to [START_REF] Meyer | Remarques sur un théorème de J.-M. Bony[END_REF] or [Tay].

In the following important theorem, we gather the tools we shall need in this work to deal with nonlinearities in the weighted Sobolev spaces H s,σ defined in (2).

Theorem 2.5 (i) (Non linear composition) If F is a C ∞ (or sufficiently regular) func- tion in C m , F (0) = 0 and u = (u 1 , ..., u m ) is in H s,σ (R n , C m ), s > n 2 , σ ≥ 0, then, F (u) ∈ H s,σ (R n , C m ) and we have the estimate ||F (u)|| s,σ ≤ ||u|| s,σ |F (0)| + C ||u|| L ∞ ||u|| s ,
where ξ → C(ξ) is a non negative and non decreasing function. Moreover,

u → F (u) is locally Lipschitz continuous from H s,σ (R n , C m ) into H s,σ (R n ), that is, ||F (u) -F (v)|| s,σ ≤ θ(||u|| s , ||v|| s )||u -v|| s,σ ,
where θ(ξ, η) is a locally bounded function. (ii) (Bony's linearization formula) For every u

= (u 1 , ..., u m ) in H s (R n , R m ) ∩ H s ,σ (R n , R m ), s ≥ s > n
2 , σ ≥ 0, and every function F of m variables which is C ∞ (or sufficiently regular) and vanishes at 0, we have the formula

F (u) = m j=1 T ∂ j F u j + R(u) with R(u) ∈ H 2s-n 2 (R n ) ∩ H s+s -n 2 ,σ (R n ).
(R(u) is called Bony's remainder). Moreover, we have the estimate

||R(u))|| s+s -n/2 ,σ ≤ C ||u|| L ∞ ||u|| s + C 1 |F (0)| ||u|| s ,σ (6) 
where C 1 is a positive constant.

(iii) (Regularity of the remainder) With the same notations as before: for all u, v in

H s (R n , R m ) ∩ H s ,σ (R n , R m ), s ≥ s > n 2 , σ ≥ 0, we have ||R(u) -R(v)|| s+s -n/2 ,σ ≤ θ ||u|| s , ||v|| s , ||u|| s ,σ , ||v|| s ,σ ||u -v|| s + ||u -v|| s ,σ , where θ(ξ, η, ξ , η ) is a locally bounded function, that is, u → R(u) is locally Lipschitz continuous from H s (R n , R m ) ∩ H s ,σ (R n , R m ) into H s+s -n/2 ,σ (R n ).
Proof : First, note that in the case σ = 0, that is, in the case of Sobolev spaces, (i) and (ii) are well known (see [Bon], [Mey] or [Tay], for example), and (iii) is proven in [Bie].

(i) One can write Now, using (i) in the case σ = 0 and the fact that H s is an algebra when s > n/2, we obtain

x σ F (u) = x σ u G(u) = x σ u G(u) -G(0) + F (0) x σ u where G(u) = 1 0 F (tu)dt.
|| x σ F (u)|| s ≤ C 1 || x σ u|| s ||G(u) -G(0)|| s + |F (0)||| x σ u|| s ≤ || x σ u|| s C ||u|| L ∞ ||u|| s + |F (0)| .
Next, we can write

F (u) -F (v) = (u -v)F (0) + (u -v)H(u, v) with H(u, v) = 1 0 F (v + t(u -v))dt -F (0). Hence, ||F (u) -F (v)|| s,σ ≤ ||u -v|| s,σ |F (0)| + C ||u|| L ∞ , ||v|| L ∞ ||u|| s + ||v|| s
, which proves the first part of the theorem. (ii) We adapt the proof of R. Coifman and Y. Meyer for Sobolev spaces, see [Mey], and use dyadic partitions of unity. Recall that, if

1 = ϕ(ξ) + j≥0 ϕ 0 (2 -j ξ), ξ ∈ R n , (7) 
is a dyadic partition of unity, (this assumes ϕ ∈ D(R n ) and ϕ 0 ∈ D(R n \ 0)), then, any tempered distribution u can be expanded in the form

u = ϕ(D)u + j≥0 ϕ 0 (2 -j D)u, (8) 
called the dyadic decomposition of u, and it is well known that the usual Sobolev spaces are characterized by means of this dyadic decomposition in the following way:

u ∈ H s (R n ) ⇐⇒ ||ϕ(D)u|| 2 0 + j≥0 2 2js ||ϕ 0 (2 -j D)u|| 2 0 < ∞. (9) 
Here, we need a similar characterization for our weighted Sobolev spaces. We state it as Lemma 2.3 If s is any real number and σ ≥ 0, then,

u ∈ H s,σ (R n ) ⇐⇒ || x σ ϕ(D)u|| 2 0 + j≥0 2 2js || x σ ϕ 0 (2 -j D)u|| 2 0 < ∞ ,
with equivalence of the norms.

The proof of this lemma is postponed to the appendix. We consider first the case m = 1, that is, the scalar case. Let u ∈ H s ∩ H s ,σ and let us introduce the notations

u j = ϕ 0 (2 -j D)u, j ≥ 0, u -1 = ϕ(D)u, and S k (u) = j≤k u j .
We use for R(u) the expression

R(u) = F (S k 0 -1 (u)) + k≥k 0 u k r k ( 10 
)
where

r k = r k (u) = 1 0 F (S k-1 (u) + tu k )dt -S k-k 0 (F (u)
) and k 0 is a fixed and large enough integer. See [Mey]. The first term in (10) is easy and is estimated by means of the first part:

|| x σ F (S k 0 -1 (u))|| s ≤ || x σ S k 0 -1 (u)|| s C 0 ||S k 0 -1 (u)|| L ∞ ||S k 0 -1 (u)|| s + |F (0)| ≤ C 1 || x σ u|| s C 2 ||u|| L ∞ ||u|| s + |F (0)| , (11) 
for any s > n/2, because S k 0 -1 is a smoothing operator. As for the second term in (10) which is a series, we need the following result:

Lemma 2.4 If s > 0 and w = k≥0 w k is a series of C ∞ functions, then, for w to be in H s (R n ), it is sufficient that there exist some integer N > s and some sequence -s) ; in this case, we have the following inequality with some constant C independent of w:

(δ k ) in 2 such that, for |α| ≤ N , ||∂ α w k || 0 ≤ δ k 2 k(|α|
||w|| 2 s ≤ C k≥0 δ 2 k .
See [Mey], Théorème 1, for the proof. We want to apply this lemma to the second term in (10) with

w k = x σ u k r k . Since ∂ α is bounded from H s,σ (R n ) into H s-|α|,σ (R n
), it follows from Lemma 2.3 and Leibniz formula that we have, for all α ∈ N n ,

||∂ α x σ u k || 0 ≤ δ k,α 2 k(|α|-s ) , (12) 
with (δ k,α ) ∈ 2 and ||(δ k,α )|| 2 ≤ C α ||u|| s ,σ . Therefore, it is sufficient to show that

||∂ α r k || L ∞ ≤ C(||u|| L ∞ ) ||u|| s 2 k(|α|-s+n/2) . ( 13 
)
However, since the estimate (13) no longer depends on the weight x σ , its proof is almost the same as that in [Mey], so we refer to that paper. The result is then that, for all α ∈ N n ,

||∂ α x σ u k r k || 0 ≤ C(||u|| L ∞ ) ||u|| s k,α 2 k(|α|-s -s+n/2) ,
as it follows from Leibniz Formula, and we have ||( k,α )|| 2 ≤ C α ||u|| s ,σ . The application of Lemma 2.4 gives

k≥k 0 u k r k s+s -n/2 ,σ = k≥k 0 x σ u k r k s+s -n/2 ≤ C(||u|| L ∞ ) ||u|| s ||u|| s ,σ , (14) 
which together with (11) achieves the proof of the second part in the case m = 1. The case m > 1 is treated by the same type of arguments by using the expression

R(u) = F (S k 0 -1 (u)) + m j=1 k≥k 0 u j,k r k (u j ),
where u j,k = ϕ 0 (2 -k D)u j and S k (u) = (S k (u 1 ), ..., S k (u m )).

(iii) We follow the same lines as those in [Bie] and we can assume that m = 1. We take again the expression (10) for Bony's remainder and write

R(u) -R(v) = F (S k 0 -1 (u)) -F (S k 0 -1 (v)) + ∞ k=k 0 (u k -v k ) r k (u) + ∞ k=k 0 v k (r k (u) -r k (v)). ( 15 
)
The term

F (S k 0 -1 (u)) -F (S k 0 -1 (v)
) is easy and is estimated by means of the first part:

||F (S k 0 -1 (u)) -F (S k 0 -1 (v))|| s ,σ ≤ θ ||S k 0 -1 (u)|| s , ||S k 0 -1 (v)|| s ||S k 0 -1 (u) -S k 0 -1 (v)|| s ,σ , ≤ θ 1 ||u|| s , ||v|| s ||u -v|| s ,σ ,
for any s > n/2. For the two series in (15), we want to apply Lemma 2.4. For the first one, the argument is the same as the above one used to study k u k r k and we obtain an estimate similar to (14):

k≥k 0 (u k -v k ) r k s+s -n/2 ,σ ≤ C(||u|| L ∞ ) ||u|| s ||u -v|| s ,σ . (16) 
For the second series in (15), it suffices as before to establish the estimate

||∂ α (r k (u) -r k (v))|| L ∞ ≤ θ α (||u|| s , ||v|| s )||u -v|| s 2 k(|α|-s+n/2)
for all multi-indices α, where θ α (ξ, η) is a locally bounded function. Like (13), this estimate no longer depends on the weight x σ . Its proof is similar to that in [Bie] (Lemme 2.12, essentially) and is even simpler since it does not contain an 2 sequence. Therefore, we refer to that paper. Since the estimate ( 12) is also satisfied by v k , it follows from Leibniz formula that

∂ α x σ v k (r k (u) -r k (v)) 0 ≤ θ α (||u|| s , ||v|| s ) k,α ||u -v|| s 2 k(|α|-s-s +n/2) ,
where ( k,α ) ∈ 2 and ||( k,α )|| 2 ≤ C α ||v|| s ,σ . Hence, it follows from Lemma 2.4 that

x σ k≥k 0 v k (r k (u) -r k (v)) is in H s+s -n/2 (R n ) and that k≥k 0 v k (r k (u) -r k (v)) s+s -n/2 ,σ ≤ θ 2 (||u|| s , ||v|| s ) ||u -v|| s ||v|| s ,σ ,
where θ 2 (ξ, η) is a locally bounded function, which achieves the proof of the third part of the theorem, and therefore that of the theorem.

Remark : In the case of our equation, that is (1), even if u has complex values, we shall be able to apply Bony's formula to the non linear expression F (u, ∇u, ū, ∇ū) where u ∈ H n 2 +1+ (R n ). Indeed, we can write F (u, ∇u, ū, ∇ū) = G(Re(u), ∇Re(u), Im(u), ∇Im(u))

where G(x 1 , x 2 , y 1 , y 2 ) = F (x 1 + iy 1 , x 2 + iy 2 , x 1 -iy 1 , x 2 -iy 2 ) which is a function from R 2n+2 into C. We apply then Bony's formula to G and obtain that

F (u, ∇u, ū, ∇ū) = T ∂x 1 G Re(u) + T ∂x 2 G ∇Re(u) + T ∂y 1 G Im(u) + T ∂y 2 G ∇Im(u) + R(u).
At last, by using the fact that Re

(u) = u+u 2 , Im(u) = u-u 2i , ∂ z = 1 2 (∂ x -i∂ y ) and ∂ z = 1 2 (∂ x + i∂ y )
, and then the linearity of T b with respect to b, we obtain the formula used in this paper :

F (u, u, ∇u, ∇u) = T ∂uF u + T ∂ u F u + T ∂ ∇u F ∇u + T ∂ ∇u F ∇u + R(u) with R(u) ∈ H n 2 +2 (R n ) if u ∈ H n 2 +1+ (R n ).
The following technical result is a complement to the paradifferential calculus. It will be necessary in our proofs in the context of weighted Sobolev spaces.

Proposition 2.1 (i) Let a ∈ Σ m 0 , m, s, σ 1 , σ 2 ∈ R, σ 1 , σ 2 ≥ 0, assume that x σ 1 +σ 2 a ∈ Σ m 0
and consider the paradifferential operator T a = T a,χ (where the para-truncature χ need not satisfy the second property of Definition 2.1). Then, the operator

x σ 1 T a x σ 2 is bounded from H s (R n ) into H s-m (R n ) and there exist N ∈ N and a non negative constant C such that || x σ 1 T a x σ 2 || L(H s ,H s-m ) ≤ C sup |α|≤N || ξ |α|-m ∂ α ξ x σ 1 +σ 2 a|| L ∞ . (ii) If a ∈ Σ m , m ∈ R, ≥ 1 and σ ≥ 0, then, for all real s, the operator x σ T a x -σ -T a is bounded from H s (R n ) into H s-m+1 (R n )
and its operator norm is bounded by a constant times sup |α|≤N || ξ |α|-m ∂ α ξ a|| C , with some integer N .

Proof : (i) One can show that the symbol of x σ 1 T a x σ 2 is merely in S m 1,1 , a condition known to be not sufficient for boundedness of pseudodifferential operators in all Sobolev spaces. Moreover, in general, this operator does not satisfy the usual spectral property of paradifferential operators. Nevertheless, we shall decompose it and reduce it to a pseudodifferential operator to which we can apply the following fine result on boundedness of pseudodifferential operators whose proof is postponed to the appendix.

Lemma 2.5 Let b be a function on R n × R n and consider B = b(x, D). Assume that: H1: There exist constants

C α > 0, α ∈ N n , such that |∂ α ξ b(x, ξ)| ≤ C α ξ m-|α| , x, ξ ∈ R n , |α| ≤ N, N > n/2. H2: For every compact set K ⊂ R n , there exists a compact set K ⊂ R n such that, for any v ∈ S (R n ), supp( v) ⊂ K =⇒ supp( Bv) ⊂ K ,
and more precisely, for any j ∈ N, if K is of the form K = 2 j Γ with Γ = {1/2 ≤ |ξ| ≤ 3/2}, one can take K = 2 j Γ where Γ is a compact subset of R n \ 0 independent of j.

Then, for any real s, the operator B is bounded from

H s (R n ) into H s-m (R n
) and there exists a non negative constant C such that

||B|| L(H s ,H s-m ) ≤ C sup |α|≤N || ξ |α|-m ∂ α ξ b|| L ∞ .
In order to apply this lemma, note first that it is easy to check that the symbol ã (such that T a = ã(x, D)) also satisfy the property x σ 1 +σ 2 ã ∈ Σ m 0 . Next, let us recall the following more or less known fact:

any symbol g ∈ S µ (R n ), that is, any smooth function g : R n → C such that |∂ α g(x)| ≤ C α x µ-|α| , α ∈ N n , can be written in the form g = h + φ
where φ ∈ S (R n ) and h ∈ S µ (R n ) with spectrum arbitrarily close to 0, that is, supp( h) ⊂ B(0, δ) where δ > 0 can be taken arbitrarily small. We apply this to g 1 (x) = x σ 1 and g 2 (x) = x σ 2 which reduces the proof to the case of the operator

h 1 T a h 2 with h 1 ∈ S σ 1 (R n ), h 2 ∈ S σ 2 (R n
) and supp( h 1 ), supp( h 2 ) are close to 0. The idea is then to apply Lemma 2.5 to the operator B = h 1 T a h 2 . Thus, we have to check the assumptions H1 and H2 for B.

One can write B = b(x, D) where b is given by the oscillating integral

b(x, ξ) = (2π) -n h 1 (x) e -iyη ã(x, ξ + η) h 2 (x + y) dydη.
Using integrations by parts with large enough integers N and M , we obtain the expression

b(x, ξ) = (2π) -n h 1 (x) e -iyη η -M D η N ã(x, ξ + η) D y M h 2 (x + y) y -N dydη,
and then the estimate

|b(x, ξ)| ≤ C η -M | D η N ã(x, ξ + η)| x σ 1 x + y σ 2 y -N dydη, ≤ C sup |α|≤N || ξ |α|-m ∂ α ξ x σ 1 +σ 2 ã|| L ∞ η |m|-M y σ 2 -N dydη ≤ C sup |α|≤N || ξ |α|-m ∂ α ξ x σ 1 +σ 2 a|| L ∞ ,
with some constants C, C , C . The derivatives ∂ α ξ b(x, ξ) are of course estimated in the same way, and this shows that b satisfies condition H1 of Lemma 2.5.

As for the second condition, first note that, as a paradifferential operator, T a satisfies H2. Now, if δ > 0 is such that the closed ball B(0, δ) contains supp( h 1 ) and supp( h 2 ) and if supp( v) ⊂ K, we have supp(

h k v) ⊂ B(0, δ) + supp( v) ⊂ B(0, δ) + K = K 1 , k = 1 or 2, and K 1 is also a compact set. Of course, we have used the fact that h k v = (2π) -n h k v. Hence, by composition, h 1 T a h 2 satisfies the first part of H2. Now, if supp( v) ⊂ 2 j Γ, then, supp( h 2 v) ⊂ B(0, δ) + 2 j Γ ⊂ 2 j Γ 1 ,
where Γ 1 = {(1/2)-δ ≤ |ξ| ≤ (3/2)+δ}. Applying the paradifferential operator T a and using the support property of the para-truncature χ, one can show easily that supp(

T a h 2 v) ⊂ 2 j Γ 2 with Γ 2 = {(1 -ε)((1/2) -δ) ≤ |ξ| ≤ (1 + ε)((3/2) + δ)}. Hence, supp( Bv) ⊂ 2 j Γ with Γ = {(1 -ε)((1/2) -δ) -δ ≤ |ξ| ≤ (1 + ε)((3/2) + δ) + δ}.
Here, ε < 1, so, by taking δ small enough, Γ is a compact subset of R n \ 0 independent of j, that is, B satisfies H2. This achieves the proof of the first part of the proposition by application of Lemma 2.5.

(ii) First, note that

x σ T a x -σ -T a = x σ [T a , x -σ ] and it follows from Theorem 2.1 that the symbol of [T a , x -σ ] is given by c(x, ξ) = 1 i(2π) n n k=1 1 0 e -iyη ∂ ξ k ã(x, ξ + tη) ∂ x k x + y -σ dydηdt . ( 17 
)
Next, let us denote the function x -σ by b(x). Using some para-truncature, one can write b

(x) = b(x, ξ) + b 1 (x, ξ), where, as usual, b is such that T b = b(x, D). Since x σ b ∈ S 0 1,0 , it is easy to see that x σ b ∈ S 0
1,0 also, and it is not difficult to check that b 1 ∈ S -∞ and, more precisely, that x σ b 1 ∈ S -∞ . This allows us to write c = c 1 + c 2 where

c 1 (x, ξ) = 1 i(2π) n n k=1 1 0 e -iyη ∂ ξ k ã(x, ξ + tη) ∂ x k b 1 (x + y, ξ) dydηdt ,
and it is easy then to check that x σ c 1 ∈ S -∞ (with semi-norms estimated by those of a) which implies that the corresponding operator

x σ [T a , b 1 (x, D)] is infinitly smoothing. Let us now consider c 2 = c-c 1 which is the symbol of [T a , T b ].
Here, as in the first part, one can use the fact that x σ = h(x)+φ(x) with φ ∈ S (R n ) and h ∈ S σ (R n ) with spectrum arbitrarily close to 0. Next, it follows from the paradifferential calculus that [T a , T b ] ∈ L(H s , H s-m+1 ) (since ≥ 1) with an operator norm estimated by a semi-norm of a in Σ m . Hence, the same is true for the operator φ[T a , T b ]. It remains to note that the operator h[T a , T b ] satisfies assumption H2 of Lemma 2.5 (because each of h, T a and T b satisfies it) and that its symbol

h(x)c 2 (x, ξ) = 1 i(2π) n n k=1 h(x) 1 0 e -iyη ∂ ξ k ã(x, ξ + tη) ∂ x k b(x + y, ξ) dydηdt ,
clearly satisfies assumption H1 of Lemma 2.5 with the order m-1. Therefore, by application of that lemma, h[T a , T b ] is in L(H s , H s-m+1 ) with an operator norm estimated by a seminorm of a in Σ m , and this achieves the proof of the proposition.

Let us also recall Gårding's inequality which will be used crucially to prove the smoothing effect estimate.

Theorem 2.6 (Sharp Gårding's inequality for systems) Let a(x, ξ) be a k×k matrix whose elements are in S m 1,0 and which satisfies

(a(x, ξ) + a * (x, ξ))ζ, ζ ≥ 0 for all ζ ∈
C k and all (x, ξ) such that |ξ| ≥ A 0 , where a * denotes the adjoint matrix of a and ., . is the usual hermitian scalar product of C k . Then, there exist a non negative constant A and an integer N such that, for all u ∈ S (R n , C k ), we have

Re a(x, D)u, u ≥ -A sup |α|+|β|≤N || ξ |β|-m ∂ α x ∂ β ξ a|| L ∞ ||u|| 2 m-1 2
where A depends only on n, k and A 0 .

Proof : See [Tay] or [Tat] for example.

The paralinear equation

In this section, we solve the Cauchy problem for the paralinear equation, that is, the linear equation obtained from (1) by applying Bony's linearization formula (Theorem 2.5).

Theorem 3.1 Given s ∈ R and σ > 1, consider the following linear Cauchy problem :

∂ t u = iL u + T b 1 .∇ x u + T b 2 .∇ x ū + C 1 u + C 2 ū + f (x, t) u(x, 0) = u 0 ∈ H s (R n ) (18)
We assume that C 1 and C 2 are bounded operators in

H s (R n ) and in H s+2 (R n ), and that b k (x, ξ), x σ b k (x, ξ), k = 1, 2, are in Σ 0 , > 0. We denote by A k constants such that sup |β|≤N 0 || ξ |β| ∂ β ξ x σ b k (x, ξ)|| C ≤ A k , ||C k || L(H s ) ≤ A k , ||C k || L(H s+2 ) ≤ A k , (19) 
where k = 1, 2, N 0 being a large and fixed integer. We further assume that b 2 (x, ξ) is even in ξ. Then, the problem (18) has a unique solution u which is in C(R, H s (R n )) and satisfies, for all T > 0, sup

-T ≤t≤T ||u(t)|| 2 s ≤ A ||u 0 || 2 s + I T (J s f, J s u) , (20) 
|||J s+ 1 2 u||| 2 T ≤ A ||u 0 || 2 s + I T (J s f, J s u) , (21) 
where the constant A depends only on n, s, σ, , T , A 1 , and A 2 , and the expression I T (v, w) is a finite sum of terms of the form

T -T | Gv, w |dt
where G ∈ OpS 0 0,0 and the semi-norms of its symbol (up to N 0 ) are bounded by a constant that depends only on s, n, σ, , A 1 and A 2 .

Here,

|||u||| 2 T = T -T R n | x -σ 0 u(x, t)| 2 dtdx and 1/2 < σ 0 ≤ σ/2.
Proof : Let us start by noting that the uniqueness is an obvious matter. Indeed, if u 1 and u 2 are solutions of ( 18), then, u 1 -u 2 is a solution of ( 18) with u 0 = 0 and f = 0, and the conclusion follows from (20).

As for the existence, as is customary with linear differential equations, it will follow from the a priori estimates ( 20) and ( 21) by using more or less standard arguments of functional analysis, and the proof of Theorem 3.1 will consist essentially in establishing them.

Another useful remark is that it will be sufficient to prove the theorem in

C(R + , H s (R n )) instead of C(R, H s (R n ))
and the estimates ( 20) and ( 21) on [0, T ] instead of [-T, T ]. In fact, if the theorem is proved on R + , one can apply it to v(t) = u(-t) which satisfies a Cauchy problem of the same type as (18). The result is then that v(-t) will extend u to R -and satisfy (18) on R -, in addition to the fact that the estimates (20) and ( 21 In what follows, it will be quite convenient to use the following notation

ν N (ϕ) = sup 1≤j≤N sup |α|+|β|≤N || ξ |β| ∂ α x ∂ β ξ x σ ϕ|| j L ∞ ,
and note that such a quantity is not a norm in general but it is well defined if

x σ ϕ ∈ S 0 1,0 . Note also that, if M ≥ 1, ν N (ϕ) M ≤ ν N M (ϕ)
, a remark that will be often used implicitly.

We shall also use the following convenient terminology: we shall say that ϕ ∈ S m 1,0 (resp. ϕ ∈ S m 0,0 ) up to N if ϕ satisfies the S m 1,0 -estimates (resp. S m 0,0 -estimates) up to the order N . In fact, the inequalities (20) and ( 21) will be deduced from the following ones : Proposition 3.1 Assume that = +∞ which implies that b k and x σ b k are in S 0 1,0 at least up to N 0 . Then, there exist a positive real number A and an integer N such that, for all R ≥ 1, there exists a pseudodifferential operator C ∈ OpS 0 0,0 such that, for all T > 0, any solution

u ∈ C([0, T ]; H s (R n )) of the Cauchy problem (18) satisfies sup 0≤t≤T ||Cu(t)|| 2 s ≤ ||Cu 0 || 2 s + 2 T 0 | CJ s f, CJ s u | dt +A max k ν N (b k ) RT sup 0≤t≤T ||u(t)|| 2 s + 1 R |||J s+ 1 2 u||| 2 T .
Moreover, regarding the operator C, we have the following precise bounds, for v ∈ H s (R n ) :

||Cv|| s ≤ A ν N (b 1 ) ||v|| s , ||v|| s ≤ A ν N (b 1 )||Cv|| s + A R ν N (b 1 ) 2 ||v|| s .
Proposition 3.2 Under the same assumptions as above and with the same elements A, R, C and N , there exist also pseudodifferential operators

ψ j (x, D) ∈ OpS 0 1,0 , j = 1, 2, 3, 4, such that, for all T > 0, any solution u ∈ C([0, T ]; H s (R n )) of the Cauchy problem (18) satisfies |||J s+ 1 2 u||| 2 T ≤ A 1 + T + T max k ν N (b k ) sup [0,T ] ||u|| 2 s + A 4 j=1 T 0 | ψ j (x, D)J s f, J s u | dt and |||J s+ 1 2 Cu||| 2 T ≤ A 1+T +T max k ν N (b k ) sup [0,T ] ||Cu|| 2 s + A 4 j=1 T 0 | ψ j (x, D)CJ s f, CJ s u |dt +A max k ν N (b k ) RT sup 0≤t≤T ||u(t)|| 2 s + 1 R |||J s+ 1 2 u||| 2 T .
Admitting these propositions (see Section 5 and Section 6 for their proofs), let us go on and finish the proof of Theorem 3.1. In order to apply the above inequalities we have to regularize the b

k , k = 1, 2, by setting b k,m (x, ξ) = m n R n χ(m(x -y)) b k (y, ξ) dy,
where χ is a non negative C ∞ function with support in the unit ball and whose integral is equal to 1. One can easily check that the b k,m indeed satisfy the assumptions of Proposition 3.1. Since we can write

∂ t u = iL u + T b 1,m .∇ x u + T b 2,m .∇ x ū + C 1 u + C 2 ū + f m , with f m = f + T b 1 -b 1,m .∇u + T b 2 -b 2,m .∇ū, we can apply Proposition 3.1 to obtain sup [0,T ] ||C m u|| 2 s ≤ ||C m u 0 || 2 s + 2 T 0 | C m J s f m , C m J s u | dt +A max k ν N (b k,m ) RT sup [0,T ] ||u|| 2 s + 1 R |||J s+ 1 2 u||| 2 T ,
where the operator C is denoted here by C m to indicate its dependence on m. Now, clearly, we have ν

N (b k,m ) ≤ A m N 2 sup 1≤j≤N sup |β|≤N || ξ |β| ∂ β ξ x σ b k || j L ∞ ≤ A m N 2 . Hence, sup [0,T ] ||C m u|| 2 s ≤ ||C m u 0 || 2 s + 2 T 0 | C m J s f, C m J s u | dt + 2 T 0 | C m J s T b 1 -b 1,m ∇u, C m J s u | dt +2 T 0 | C m J s T b 2 -b 2,m ∇ū, C m J s u | dt + A m N 2 RT sup [0,T ] ||u|| 2 s + 1 R |||J s+ 1 2 u||| 2 T ,
and the problem now is to estimate the third and fourth terms in the right hand side of this inequality. This is done in the following lemma.

Lemma 3.1 Let ũ stand for u or ū, and τ = inf{ , 1}. Then, there exists a constant A such that, for all

k ∈ {1, 2}, m ≥ 1, R ≥ 1 and m ≥ m, T 0 C m J s T b k -b k,m ∇ũ, C m J s u dt ≤ A m 2N 2 m τ + A m 3N 2 R |||J s+ 1 2 u||| 2 T +A m 3N 2 T sup [0,T ] ||u|| 2 s + A m τ |||J s+ 1 2 C m u||| 2 T .
See Section 7 for the proof of this lemma. Applying this lemma yields sup

[0,T ] ||C m u|| 2 s ≤ ||C m u 0 || 2 s + 2 T 0 | C m J s f, C m J s u | dt + A m τ |||J s+ 1 2 C m u||| 2 T + A m 2N 2 m τ + A m 3N 2 R |||J s+ 1 2 u||| 2 T + A m 3N 2 R T sup [0,T ]
||u|| 2 s an inequality that we can improve, thanks to Proposition 3.2, as follows:

sup [0,T ] ||C m u|| 2 s ≤ ||C m u 0 || 2 s + 2 T 0 | C m J s f, C m J s u | dt + A m τ 4 j=1 T 0 | ψ j (x, D)C m J s f, C m J s u | dt + A(1 + T m N ) m τ sup [0,T ] ||C m u|| 2 s + A m 2N 2 m τ + A m 3N 2 R |||J s+ 1 2 u||| 2 T + A m 3N 2 R T sup [0,T ] ||u|| 2 s ≤ ||C m u 0 || 2 s + 2 T 0 | C m J s f, C m J s u | dt + A m τ 4 j=1 T 0 | ψ j (x, D)C m J s f, C m J s u | dt + A(1 + T m N ) m τ sup [0,T ] ||C m u|| 2 s + A m 2N 2 m τ + A m 3N 2 R 4 j=1 T 0 | ψ j (x, D)J s f, J s u | dt + A m 2N 2 m τ + A m 3N 2 R 1 + T m N sup [0,T ] ||u|| 2 s + A m 3N 2 R T sup [0,T ] ||u|| 2 s .
Next, by taking m such that, for example, m τ ≥ 4A and T such that T m N ≤ 1, we get sup

[0,T ] ||C m u|| 2 s ≤ 2||C m u 0 || 2 s + 4 T 0 | C m J s f, C m J s u | dt + 4 j=1 T 0 | ψ j (x, D)C m J s f, C m J s u | dt + 2A m 2N 2 m τ + 2A m 3N 2 R 4 j=1 T 0 | ψ j (x, D)J s f, J s u | dt + A m 2N 2 m τ + A m 3N 2 R + A m 3N 2 R T sup [0,T ] ||u|| 2 s ,
and by using the second part of Proposition 3.1, we obtain sup

[0,T ] ||u|| 2 s ≤ A m 2N 2 m 2N 2 ||u 0 || 2 s + T 0 | C m J s f, C m J s u |dt + 4 j=1 T 0 | ψ j (x, D)C m J s f, C m J s u |dt + Am 4N 2 m τ + Am 5N 2 R 4 j=1 T 0 | ψ j (x, D)J s f, J s u |dt + C(m, m , R, T ) sup [0,T ] ||u|| 2 s ,
where

C(m, m , R, T ) = A m 4N 2 m τ + A m 5N 2 R + A m 5N 2 R T + A m 4N 2 R 2 .
Finally, m being fixed (and depending only on A), we take m such that A m 4N 2 m τ ≤ 1 8 , then we take R such that

A m 5N 2 R ≤ 1 8 and A m 4N 2 R 2
≤ 1 8 , and last we take T such that A m 5N 2 R T ≤ 1 8 . With these choices, we have of course C(m, m , R, T ) ≤ 1 2 which allows to bound sup [0,T ] ||u|| 2 s and to get (20) (and also (21), thanks to Proposition 3.2) with

I T (v, w) = T 0 | C Cv, w | dt + 4 j=1 T 0 | C ψ j (x, D)Cv, w |dt + T 0 | ψ j (x, D)v, w |dt .
We have thus proved (20) and ( 21) for T = T 0 and T 0 is sufficiently small. The rest of the proof consists in extending these estimates to all the original intervall [0, T ] and then to establish the existence of solutions. This follows exactly the same lines as that in [BiBo], so we refer to it and this achieves the proof of Theorem (3.1).

The nonlinear equation, proof of Theorem 1.1

Consider the nonlinear Cauchy problem :

∂ t u = iL u + F (u, ∇ x u, u, ∇ x u), t ∈ R, x ∈ R n , u(x, 0) = u 0 (x) ∈ H s (R n ) ∩ H s ,σ (R n ), ( 22 
)
where the function F (u, v, u, v) is sufficiently regular in C × C n × C × C n and vanishes to the second order at 0, the operator L has the form

L = j≤j 0 ∂ 2 x j - j>j 0 ∂ 2 x j ,
with a fixed j 0 ∈ {1, 2, ..., n}, H s ,σ (R n ) is the weighted Sobolev space defined in (2), s = n 2 + 2 + , > 0, σ > 1, s > n 2 + 1 and s + σ ≤ s. Using Bony's linearization formula, ( 22) is equivalent to

∂ t u = iL u + T b 1 ∇ x u + T b 2 ∇ x u + T a 1 u + T a 2 u + R(u, ∇ x u, u, ∇ x u) u(x, 0) = u 0 (x) ∈ H s (R n ) ∩ H s ,σ (R n ) ( 23 
)
where R(u, ∇ x u, u, ∇ x u) is Bony's remainder and

b 1 = ∂ v F (u, ∇ x u, u, ∇ x u), b 2 = ∂ v F (u, ∇ x u, u, ∇ x u), a 1 = ∂ u F (u, ∇ x u, u, ∇ x u), a 2 = ∂ u F (u, ∇ x u, u, ∇ x u). Recall that R(u, ∇ x u, u, ∇ x u) ∈ H 2(s-1)-n 2 (R n ) if u ∈ H s (R n ) and s -1 > n 2 .
Note also that it follows from Theorem 2.5 that the b j and a j , j = 1 or 2, are in

H s-1 (R n ) if u ∈ H s (R n ),
and that

||b j || s-1 ≤ C(||u|| L ∞ , ||∇u|| L ∞ ) ||u|| s , ||a j || s-1 ≤ C(||u|| L ∞ , ||∇u|| L ∞ ) ||u|| s , j = 1, 2. Moreover, by introducing the notations b 0 1 = ∂ v F (u 0 , ∇ x u 0 , u 0 , ∇ x u 0 ), b 0 2 = ∂ v F (u 0 , ∇ x u 0 , u 0 , ∇ x u 0 ), a 0 1 = ∂ u F (u 0 , ∇ x u 0 , u 0 , ∇ x u 0 ), a 0 2 = ∂ u F (u 0 , ∇ x u 0 , u 0 , ∇ x u 0 ), the above Cauchy problem is in fact equivalent to ∂ t u = iL u + T b 0 1 ∇ x u + T b 0 2 ∇ x u + T a 0 1 u + T a 0 2 u + R(u, ∇ x u, u, ∇ x u) u(x, 0) = u 0 (x) ∈ H s (R n ) ∩ H s ,σ (R n ) ( 24 
)
where

R(u, ∇ x u, u, ∇ x u) = T b 1 -b 0 1 ∇ x u + T b 2 -b 0 2 ∇ x u + T a 1 -a 0 1 u + T a 2 -a 0 2 u + R(u, ∇ x u, u, ∇ x u). (25)
Clearly, the last Cauchy problem is of the same type as (18) which is studied in Theorem 3.1 and in fact we are going to apply that theorem to

∂ t u = iL u + T b 0 1 ∇ x u + T b 0 2 ∇ x ū + T a 0 1 u + T a 0 2 ū + f u(x, 0) = u 0 (x) ∈ H s (R n ). ( 26 
)
This is possible because b 0 1 , b 0 2 , T a 0 1 and T a 0 2 satisfy the assumptions of Theorem 3.1. Indeed, it follows from the Taylor formula and the assumption on F that one can write for example

b 0 1 = ∂ v F (z 0 ) = u 0 G 1 (z 0 ) + ∇ x u 0 G 2 (z 0 ) + u 0 G 3 (z 0 ) + ∇ x u 0 G 4 (z 0 ), ( 27 
)
where

z 0 = (u 0 , ∇ x u 0 , u 0 , ∇ x u 0 ) and G 1 , G 2 , G 3 and G 4 are sufficiently regular. Since s -1 > n 2 , we know that the G i (z 0 ) -G i (0) are in H s-1 (R n ) and it follows from (27) that x σ b 0 1 is in H s-1 (R n ) ⊂ C (R n ).
Of course, the same is true for b 0 2 . Moreover, since a 0 1 and a 0 2 are bounded (they are in H s-1 (R n )), the paramultiplication operators T a 0 1 and T a 0 2 are bounded in H s (R n ) for all real s . Now, by application of Theorem 3.1 to (26), let us consider the unique solution of ( 26) with f = 0 and denote it by U (t)u 0 .

Next, for T > 0, let us define the norms λ k (w), 1 ≤ k ≤ 4, and λ(w) by

λ 1 (w) = sup [0,T ] w s , λ 2 (w) = |||J s+ 1 2 w||| T , λ 3 (w) = sup [0,T ] || x σ w|| s , λ 4 (w) = sup [0,T ] || x σ ∂ t w|| s -2 , λ(w) = max 1≤i≤4 λ i (w),
and let Z stand for the space

Z = {w ∈ C ([0, T ]; H s (R n )) : w(x, 0) = u 0 (x) and λ(w) ≤ K}
where the positive constant K will be determined later. Recall that 1/2 < σ 0 ≤ σ/2 and

|||u||| 2 T = T -T R n | x -σ 0 u(x, t)| 2 dtdx. We also define, for w ∈ C ([0, T ]; H s (R n )), the operator Υ by Υw(t) = U (t)u 0 + t 0 U (t -t ) R(w(t ), ∇ x w(t ), w(t ), ∇ x w(t ))dt .
Let us first remark that Υw satisfies

∂ t Υw = iL Υw + T b 0 1 ∇ x Υw + T b 0 2 ∇ x Υw + T a 0 1 Υw + T a 0 2 Υw + R(w, ∇ x w, w, ∇ x w) Υw(0) = u 0 (28) 
and that a fixed point of Υ will be a solution of (24), hence, a solution of ( 22). So, in what follows, we are going to study λ(Υw) in order to prove that Υ has a fixed point in the complete metric space (Z, λ). Let us also note that since the life time T will be small, we can assume from now on that T ≤ 1.

We start by applying Theorem 3.1 to (28). It follows from ( 20) and ( 21) that

max λ 1 (Υw) 2 , λ 2 (Υw) 2 ≤ A ||u 0 || 2 s + I T (J s R, J s Υw) , (29) 
where, for simplicity, R = R(w, ∇ x w, w, ∇ x w) and I T (u, v) is a finite sum of terms of the form

T 0 | Gu, v |dt
where G ∈ OpS 0 0,0 . We recall that the constant A depends only on n, s, s , σ and u 0 and we remark right now a fact that will be useful later: if we let u 0 vary in a bounded subset of H s (R n ), it follows from the linear theory that we can take the constant A in the above inequality that depends only on that bounded set. The same remark holds for ||G|| L(L 2 ) or the semi-norms of the operators G.

Thus, we have to estimate the following sum

T 0 | GJ s T b 1 -b 0 1 ∇ x w, J s Υw |dt + T 0 | GJ s T b 2 -b 0 2 ∇ x w, J s Υw |dt + T 0 | GJ s T a 1 -a 0 1 w, J s Υw |dt + T 0 | GJ s T a 2 -a 0 2 w, J s Υw |dt + T 0 | GJ s R(w, ∇ x w, w, ∇ x w), J s Υw |dt. (30) 
First, let us consider the third term. It follows from the preceding remark, Cauchy-Schwarz inequality, Calderon-Vaillancourt theorem and Theorem 2.3 that

T 0 | GJ s T a 1 -a 0 1 w, J s Υw |dt ≤ A ||a 1 -a 0 1 || L ∞ T 0 ||w|| s ||Υw|| s dt,
and from Theorem 2.5 that

||a 1 -a 0 1 || L ∞ ≤ C(||w|| s )||w|| s + C(||u 0 || s )||u 0 || s ≤ C(K)K + C(||u 0 || s )||u 0 || s ≤ 2C(K)K .
Hence,

T 0 | GJ s T a 1 -a 0 1 w, J s Υw |dt ≤ A T C(K) λ 1 (w) λ 1 (Υw) ≤ A T C(K) λ(w) λ(Υw), (31) 
with a modified constant C(K).

The fourth term of (30) is treated in the same way. Now, let us estimate the first term of (30). In order to use the smoothing effect, let us introduce the weight x -σ 0 by writing

GJ s T b 1 -b 0 1 ∇ x w, J s Υw = G x σ 0 T b 1 -b 0 1 x σ 0 H x -σ 0 J s+ 1 2 w, x -σ 0 J s+ 1 2 Υw where G = x σ 0 J -1 2 GJ s x -σ 0 and H = x -σ 0 J -s-1 2 ∇ x σ 0 .
Next, it follows from the pseudodifferential composition formula and from Lemma 2.1 that H is in OpS

1 2 -s 1,0 and G is in OpS s-1 2 0,0 .
These considerations in addition to Proposition 2.1 allow us to estimate the first term of (30) as follows:

T 0 | GJ s T b 1 -b 0 1 ∇ x w, J s Υw |dt ≤ T 0 || G x σ 0 T b 1 -b 0 1 x σ 0 H|| L(L 2 ) x -σ 0 J s+ 1 2 w 0 x -σ 0 J s+ 1 2 Υw 0 dt ≤ A T 0 || x σ 0 T b 1 -b 0 1 x σ 0 || L(H s-1 2 ) x -σ 0 J s+ 1 2 w 0 x -σ 0 J s+ 1 2 Υw 0 dt ≤ A T 0 || x 2σ 0 (b 1 -b 0 1 )|| L ∞ x -σ 0 J s+ 1 2 w 0 x -σ 0 J s+ 1 2 Υw 0 dt ≤ A sup [0,T ] || x σ (b 1 -b 0 1 )|| L ∞ |||J s+ 1 2 w||| T |||J s+ 1 2 Υw||| T .
Now, it follows from the Taylor formula that we can write

b 1 -b 0 1 = ∂ v F (z) -∂ v F (z 0 ) = (w -u 0 ) G 1 (z 0 , z) + ∇ x (w -u 0 ) G 2 (z 0 , z) + (w -u 0 ) G 3 (z 0 , z) + ∇ x (w -u 0 ) G 4 (z 0 , z),
where, for simplicity, z 0 = (u 0 , ∇ x u 0 , u 0 , ∇ x u 0 ) and z = (w, ∇ x w, w, ∇ x w), and the G k 's are functions of the form

1 0 F k (z 0 + τ (z -z 0 ))dτ ,
F k being a second order partial derivative of F . hence,

|| x σ (b 1 -b 0 1 )|| L ∞ ≤ C(||(z 0 , z)|| L ∞ ) || x σ (z -z 0 )|| L ∞ ,
where α → C(α) is a non negative and non decreasing function on R + , and, by using the Sobolev injection,

|| x σ (b 1 -b 0 1 )|| L ∞ ≤ C(K) sup [0,T ] || x σ (z -z 0 )|| s -1-≤ C(K) sup [0,T ] || x σ (w -u 0 )|| s - (32) 
where s -1-> n 2 by taking small enough. Next, take a C ∞ function θ such that θ(ξ) = 0 if |ξ| ≥ 2 and θ(ξ) = 1 if |ξ| ≤ 1; L being a large parameter, we can then write

|| x σ (b 1 -b 0 1 )|| L ∞ ≤ C(K) sup [0,T ] ||(1 -θ(D/L)) x σ (w -u 0 )|| s -+ sup [0,T ] ||θ(D/L) x σ (w -u 0 )|| s - ≤ C(K) L sup [0,T ] ||(1 -θ(D/L)) x σ (w -u 0 )|| s + C(K)L 2-T sup [0,T ] ||θ(D/L) x σ ∂ t w|| s -2 , hence, || x σ (b 1 -b 0 1 )|| L ∞ ≤ C(K) sup [0,T ] || x σ (w-u 0 )|| s -≤ C(K) L -λ 3 (w-u 0 )+L 2-T λ 4 (w) , (33) 
where the constant C(K) is modified by an absolute multiplicative constant. Therefore, we can estimate the first term of (30) as follows:

T 0 GJ s T b 1 -b 0 1 ∇ x w, J s Υw dt ≤ A C(K) L -λ 3 (w -u 0 ) + L 2-T λ 4 (w) λ 2 (w) λ 2 (Υw) ≤ A C(K) L -+ L 2-T λ(w) 2 λ(Υw) ≤ A K C(K) L -+ L 2-T λ(w) λ(Υw). ( 34 
)
The second term of (30) is treated in the same way.

Let us now consider the last term of (30). As before, let z stand for (w, ∇ x w, w, ∇ x w). As z ∈ H s-1 (R n ) and s -1 = n 2 + 1 + , it follows from Bony's formula, that is, Theorem 2.5, that R

(z) ∈ H 2(s-1)-n 2 (R n ) = H s+ (R n ) and that ||R(z)|| s+ ≤ C(K) ||z|| s-1 ≤ C(K) ||w|| s .
Hence,

T 0 | GJ s R(z), J s Υw |dt ≤ A T 0 ||R(z)|| s ||Υw|| s dt ≤ A C(K) T 0 ||w|| s ||Υw|| s dt ≤ A C(K) T λ 1 (w) λ 1 (Υw) ≤ A C(K) T λ(w) λ(Υw). (35) 
Thus, we have bounded all the terms of (30), which leads to the estimate

max λ 1 (Υw) 2 , λ 2 (Υw) 2 ≤ A ||u 0 || 2 s + A C(K)(T + L -+ L 2-T )λ(w) λ(Υw),
or, by taking square roots and changing once more the constants,

max {λ 1 (Υw), λ 2 (Υw)} ≤ A ||u 0 || s + A C(K) √ T + L -+ L 2-T (λ(w) + λ(Υw)). (36) 
Let us now estimate λ 3 (Υw). It follows from the fact that Υw is a solution of the Cauchy problem (28) that W = x σ Υw satisfies the following Cauchy problem:

∂ t W = iL W + T b 0 1 ∇ x W + T b 0 2 ∇ x W + C 1 W + C 2 W + R # W (0) = x σ u 0 ( 37 
)
where

C 1 = T a 0 1 + x σ T b 0 1 ∇ x -σ -T b 0 1 ∇ + x σ T a 0 1 x -σ -T a 0 1 + i x σ L ( x -σ ), C 2 = T a 0 2 + x σ T b 0 2 ∇ x -σ -T b 0 2 ∇ + x σ T a 0 2 x -σ -T a 0 2 , R # = -2iσ x # x 2 ∇W + x σ R,
and x # stands for the vector (x 1 , ..., x j 0 , -x j 0 +1 , ..., -x n ). It follows from Theorem 2.3 and Proposition 2.1 that the operators C 1 and C 2 are bounded in all Sobolev spaces. Hence, we can apply Theorem 3.1 with s replaced by s to obtain

sup 0≤t≤T ||W (t)|| 2 s ≤ A || x σ u 0 || 2 s + I T (J s R # , J s W ) , (38) 
Thus, since R is given by ( 25), we are led to estimate the following sum:

T 0 | GJ s x σ T b 1 -b 0 1 ∇ x w, J s W |dt + T 0 | GJ s x σ T b 2 -b 0 2 ∇ x w, J s W |dt + T 0 | GJ s x σ T a 1 -a 0 1 w, J s W |dt + T 0 | GJ s x σ T a 2 -a 0 2 w, J s W |dt + T 0 | GJ s x σ R(w, ∇ x w, w, ∇ x w), J s W |dt + 2σ T 0 | GJ s x # x 2 ∇W, J s W |dt. (39) 
In fact, the first four terms in the above sum are easy to handle. Let us treat for instance the first one. It follows from Proposition 2.1 that x σ T b 1 -b 0 1 is bounded in all Sobolev spaces, with an operator norm bounded by a constant times || x σ (b 1 -b 0 1 )|| L ∞ . Hence, the (paradifferential) operator J s x σ T b 1 -b 0 1 ∇ is of order s + 1 ≤ s which allows the estimate (via Cauchy-Schwarz inequality) of the first term of (39) as follows:

T 0 | GJ s x σ T b 1 -b 0 1 ∇ x w, J s W |dt ≤ A T 0 || x σ (b 1 -b 0 1 )|| L ∞ ||J s +1 w|| 0 ||J s W || 0 dt ≤ A T C(K) sup [0,T ] || x σ (w -u 0 )|| s sup [0,T ] ||w|| s sup [0,T ] ||J s x σ Υw|| 0 ≤ A T C(K)λ 3 (w)λ 1 (w)λ 3 (Υw),
where we have used (32). Of course, the second, third and fourth terms of (39) are estimated in the same way and have the same bound.

Let us now consider the fifth term of (39). Since z = (w, ∇ x w, w,

∇ x w) is in H s-1 (R n ) ∩ H s -1,σ (R n ), it follows from Theorem 2.5 that x σ R(z) is in H s + (R n ), that || x σ R(z)|| s + ≤ C(K)||z|| s-1 || x σ z|| s -1 , (40) 
and hence that we have the estimate

T 0 | GJ s x σ R(z), J s W |dt ≤ A T 0 ||J s x σ R(z)|| 0 ||J s W || 0 dt ≤ A C(K) T 0 ||w|| s || x σ w|| s ||W || s dt ≤ A T C(K)λ 1 (w)λ 3 (w)λ 3 (Υw).
The last term of (39) needs a more elaborate argument. Let us write

GJ s x # x 2 ∇ = GJ s x # x 2 θ(D/ x )∇ + GJ s x # x 2 [1 -θ(D/ x )]∇, ( 41 
)
where θ is as before a C ∞ function such that θ(ξ) = 0 if |ξ| ≥ 2 and θ(ξ) = 1 if |ξ| ≤ 1. Concerning the first term, let us note that, since |ξ| ≤ 2 x on its support, the symbol

x #

x 2 θ(ξ/ x )iξ is in S 0 0,0 as one can check easily. Therefore, the operator GJ s x # x 2 θ(D/ x )∇ is in OpS s 0,0 and it follows from the Calderon-Vaillancourt theorem that one can estimate the corresponding integral as follows:

T 0 GJ s x # x 2 θ(D/ x )∇W, J s W dt ≤ A T 0 ||J s W || 2 0 dt ≤ A T λ 3 (Υw) 2 . ( 42 
)
As for the other term, one writes

GJ s x # x 2 [1 -θ(D/ x )]∇W = GJ s x # x 2 [1 -θ(D/ x )]∇ x σ Υw = GJ s x # x 2 [1 -θ(D/ x )] x σ ∇Υw + GJ s x # x 2 [1 -θ(D/ x )] σ x x 2 x σ Υw. Since the operator GJ s x # x 2 [1 -θ(D/ x )] σ x
x 2 is in OpS s 0,0 , the corresponding integral can be treated as the preceding one and we obtain for it the same bound, that is, the same bound as that in (42). As for the operator GJ s x #

x 2 [1 -θ(D/ x )] x σ ∇, let us note that, due to the fact that |ξ| ≥ x on the support of 1 -θ(ξ/ x ), it follows from the pseudodifferential composition formula that the symbol of x #

x 2 [1 -θ(D/ x )] x σ ∇ is bounded by a constant times ξ σ , and the same is true for its partial derivatives. Hence, the operator GJ s x #

x 2 [1θ(D/ x )] x σ ∇ is in OpS s +σ 0,0 and consequently we have the estimate

T 0 GJ s x # x 2 [1 -θ(D/ x )] x σ ∇Υw, J s W dt ≤ A T 0 ||Υw|| s +σ ||J s W || 0 dt ≤ A T λ 1 (Υw) λ 3 (Υw),
since s + σ ≤ s by assumption. Summing up, we have proved:

λ 3 (Υw) 2 ≤ A || x σ u 0 || 2 s + A T C(K) λ(Υw)(λ(w) 2 + λ(Υw)), (43) 
or, by changing the constants,

λ 3 (Υw) ≤ A || x σ u 0 || s + A C(K) √ T (λ(w) 2 + λ(Υw)). (44) 
Finally, let us estimate λ 4 (Υw) = sup [0,T ] x σ ∂ t Υw s -2 . Since W = x σ Υw is the solution of (37), it follows from Theorem 2.3 and Proposition 2.1 that

||∂ t W || s -2 ≤ ||W || s +A(||b 0 1 || L ∞ +||b 0 2 || L ∞ )||W || s -1 +A(||C 1 || L(H s -2 ) +||C 2 || L(H s -2 ) )||W || s -2 +A 2 j=1 || x σ (b j -b 0 j )|| L ∞ ||w|| s -1 + || x σ (a j -a 0 j )|| L ∞ ||w|| s -2 +|| x σ R(z)|| s -2 ≤ A ||W || s +A 2 j=1 (|| x σ (b j -b 0 j )|| L ∞ +|| x σ (a j -a 0 j )|| L ∞ )||w|| s +|| x σ R(z)|| s -2 . ( 45 
)
Now, applying (33) (and similar estimates for the other terms) yields

2 j=1 (|| x σ (b j -b 0 j )|| L ∞ +|| x σ (a j -a 0 j )|| L ∞ )||w|| s ≤ C(K) L -λ 3 (w) + L 2-T λ 4 (w) λ 1 (w).
On the other hand, it follows from Theorem 2.5 that

|| x σ R(z)|| s -2 ≤ || x σ R(z)|| s -1 = || x σ R(z)|| n 2 +2 ≤ || x σ (R(z)-R(z 0 ))|| n 2 +2 + || x σ R(z 0 )|| n 2 +2 ≤ C 1 || x σ z|| n 2 + , || x σ z 0 || n 2 + || x σ (z -z 0 )|| n 2 + + C 2 || x σ z 0 || n 2 + || x σ z 0 || 2 n 2 + ≤ C 1 || x σ w|| n 2 +1+ , || x σ u 0 || n 2 +1+ || x σ (w -u 0 )|| n 2 +1+ +C 2 || x σ u 0 || n 2 +1+ || x σ u 0 || 2 n 2 +1+ ≤ C(K) || x σ (w -u 0 )|| s -+ A || x σ u 0 || s -, (46) 
with a sufficiently small . Now, by the same argument as that used to obtain (33), we have

|| x σ (w -u 0 )|| s -≤ C(K) L -λ 3 (w) + L 2-T λ 4 (w) . ( 47 
)
Hence, returning to (45), we have proved

||∂ t W || s -2 ≤ A ||W || s +A C(K) L -λ 3 (w) + L 2-T λ 4 (w) λ 1 (w) +C(K) L -λ 3 (w) + L 2-T λ 4 (w) + A || x σ u 0 || s ,
hence, by using (44) (and changing the constants),

λ 4 (Υw) ≤ A || x σ u 0 || s + A C(K) √ T (λ(w) 2 +λ(Υw)) +A C(K) L -+ L 2-T (λ(w) 2 + λ(w))). ( 48 
)
Finally, gathering ( 36), ( 44) and ( 48) yields

λ(Υw) ≤ A (||u 0 || s + || x σ u 0 || s ) + A C(K) √ T + L -+ L 2-T (λ(w) + λ(Υw)) +A C(K) √ T (λ(w) 2 +λ(Υw)) + A C(K) L -+L 2-T (λ(w) 2 + λ(w)),
or, by using the fact that λ(w) ≤ K and changing the constants,

λ(Υw) ≤ A (||u 0 || s + || x σ u 0 || s ) + A C(K) φ(L, T ) (λ(w)+λ(Υw)), (49) 
where

φ(L, T ) = √ T + L -+ L 2-T + √ T + L -+L 2-T, ( 50 
)
and this is the main non linear estimate. Now, when u 0 = 0, take for example K = 3A (||u 0 || s + || x σ u 0 || s ). One can take L large enough and then T small enough to have A C(K) φ(L, T ) ≤ 1/3; clearly, with such a choice, we have λ(Υw) ≤ (K/3) + (K/3) + (1/3)λ(Υw), that is, λ(Υw) ≤ K when λ(w) ≤ K; in other words, Υ(Z) ⊂ Z. When u 0 = 0, it suffices to take K > 0 and then to choose L and T such that A C(K) φ(L, T ) ≤ 1/2 to obtain the same result.

Let us now show that Υ : Z → Z is a contraction mapping. In fact, the arguments are similar to the above ones and we shall be brief. If w 1 , w 2 ∈ Z, then, Y = Υw 1 -Υw 2 satisfies the following Cauchy problem

∂ t Y = iL Y + T b 0 1 ∇ x Y + T b 0 2 ∇ x Y + T a 0 1 Y + T a 0 2 Y + R(z 1 ) -R(z 2 ) Y (0) = 0 (51)
where, as before, z j = (w j , ∇ x w j , w j , ∇ x w j ), j = 1, 2. Applying Theorem 3.1 to (51) gives

max λ 1 (Y ) 2 , λ 2 (Y ) 2 ≤ A I T J s ( R(z 1 ) -R(z 2 )), J s Y , (52) 
and, consequently, we have to estimate the integral

T 0 | GJ s ( R(z 1 ) -R(z 2 )), J s Y |dt.
It follows from the expression (25

) of R that R(z 1 ) -R(z 2 ) = T b 1 (z 1 )-b 0 1 ∇(w 1 -w 2 ) + T b 1 (z 1 )-b 1 (z 2 ) ∇w 2 +T b 2 (z 1 )-b 0 2 ∇(w 1 -w 2 ) + T b 2 (z 1 )-b 2 (z 2 ) ∇w 2 +T a 1 (z 1 )-a 0 1 (w 1 -w 2 ) + T a 1 (z 1 )-a 1 (z 2 ) w 2 +T a 2 (z 1 )-a 0 2 (w 1 -w 2 ) + T a 2 (z 1 )-a 2 (z 2 ) w 2 +R(z 1 ) -R(z 2 ) , (53) 
and we have to estimate the integral corresponding to each term of the above sum. Let us first consider the terms of the third line in (53). By the same argument as that used to obtain (31), we have

T 0 GJ s T a 1 (z 1 )-a 0 1 (w 1 -w 2 ) + T a 1 (z 1 )-a 1 (z 2 ) w 2 , J s Y dt ≤ A T C(K) λ(w 1 -w 2 ) λ(Y ),
where we also applied Theorem 2.5 for the second term. Of course, we have the same estimate for the integral corresponding to the terms of the fourth line in (53).

As for the terms of the first line in ( 53), applying an argument similar to that yielding (34), one obtains

T 0 GJ s T b 1 (z 1 )-b 0 1 ∇(w 1 -w 2 ) + T b 1 (z 1 )-b 1 (z 2 ) ∇w 2 , J s Y dt ≤ A C(K) L -λ 3 (w 1 -u 0 ) + L 2-T λ 4 (w 1 ) λ 2 (w 1 -w 2 )λ 2 (Y ) +A C(K) L -λ 3 (w 1 -w 2 ) + L 2-T λ 4 (w 1 -w 2 ) λ 2 (w 2 )λ 2 (Y ) ≤ A C(K) L -+ L 2-T (λ(w 1 ) + λ(w 2 ))λ(w 1 -w 2 )λ(Y ) ≤ 2A C(K) K L -+ L 2-T λ(w 1 -w 2 ) λ(Y ),
that is, by changing the constants,

T 0 GJ s T b 1 (z 1 )-b 0 1 ∇(w 1 -w 2 ) + T b 1 (z 1 )-b 1 (z 2 ) ∇w 2 , J s Y dt ≤ A C(K) L -+ L 2-T λ(w 1 -w 2 ) λ(Y ), ( 54 
)
and the same estimate holds for the terms of the second line in (53). Last, for the terms of the fifth line in (53), applying Theorem 2.5 and estimating as in (35), we obtain

T 0 | GJ s (R(z 1 ) -R(z 2 )), J s Y |dt ≤ A C(K) T 0 ||z 1 -z 2 || s-1 ||Y || s dt ≤ A C(K) T 0 ||w 1 -w 2 || s ||Y || s dt ≤ A C(K) T λ 1 (w 1 -w 2 ) λ 1 (Y ) ≤ A C(K) T λ(w 1 -w 2 ) λ(Y ).
Summing up and going back to (52), we can conclude that

max λ 1 (Y ) 2 , λ 2 (Y ) 2 ≤ A C(K) L -+ L 2-T + T λ(w 1 -w 2 ) λ(Y ). ( 55 
)
Let us now estimate λ 3 (Y ) = sup [0,T ] || x σ Y || s . As before, let us consider the function W = x σ Y = x σ (Υw 1 -Υw 2 ) and let us remark that W is the solution of the following Cauchy problem:

∂ t W = iL W + T b 0 1 ∇ x W + T b 0 2 ∇ x W + C 1 W + C 2 W + R # W (0) = 0 ( 56 
)
where

C 1 = T a 0 1 + x σ T b 0 1 ∇ x -σ -T b 0 1 ∇ + x σ T a 0 1 x -σ -T a 0 1 + i x σ L ( x -σ ), C 2 = T a 0 2 + x σ T b 0 2 ∇ x -σ -T b 0 2 ∇ + x σ T a 0 2 x -σ -T a 0 2 , and R # = -2iσ x # x 2 ∇W + x σ ( R(z 1 ) -R(z 2 )),
a Cauchy problem which is clearly similar to (37) and therefore its study will be also similar. Applying Theorem 3.1 with s replaced by s yields

sup 0≤t≤T ||W (t)|| 2 s ≤ A I T (J s R # , J s W ), (57) 
and, consequently, we are led to estimate the following sum:

T 0 | GJ s x σ T b 1 (z 1 )-b 0 1 ∇(w 1 -w 2 ) + T b 1 (z 1 )-b 1 (z 2 ) ∇w 2 , J s W |dt + T 0 | GJ s x σ T b 2 (z 1 )-b 0 2 ∇(w 1 -w 2 ) + T b 2 (z 1 )-b 2 (z 2 ) ∇w 2 , J s W |dt + T 0 | GJ s x σ T a 1 (z 1 )-a 0 1 (w 1 -w 2 ) + T a 1 (z 1 )-a 1 (z 2 ) w 2 , J s W |dt + T 0 | GJ s x σ T a 2 (z 1 )-a 0 2 (w 1 -w 2 ) + T a 2 (z 1 )-a 2 (z 2 ) w 2 , J s W |dt + T 0 | GJ s x σ (R(z 1 ) -R(z 2 )) , J s W |dt + 2σ T 0 | GJ s x # x 2 ∇W, J s W |dt. (58) 
The first term of ( 58) is treated by the same argument as that used to estimate the first one of (39):

T 0 | GJ s x σ T b 1 (z 1 )-b 0 1 ∇(w 1 -w 2 ) + T b 1 (z 1 )-b 1 (z 2 ) ∇w 2 , J s W |dt ≤ A T C(K) sup [0,T ] || x σ (w 1 -u 0 )|| s sup [0,T ] ||w 1 -w 2 || s + sup [0,T ] || x σ (w 1 -w 2 )|| s sup [0,T ] ||w 2 || s ||J s W || 0 ≤ A T C(K) λ 3 (w 1 )λ 1 (w 1 -w 2 ) + λ 3 (w 1 -w 2 )λ 1 (w 2 ) ||J s W || 0 ≤ A T C(K) λ(w 1 ) + λ(w 2 ) λ(w 1 -w 2 )λ 3 (Y ) ≤ A T C(K)λ(w 1 -w 2 )λ(Y ),
where, since λ(w 1 ) + λ(w 2 ) ≤ 2K, the constants have been changed in the last inequality.

Of course, the second, third and fourth terms of ( 58) are estimated in the same way and have the same bound.

Consider the fifth term of (58). Since z 1 and z 2 are in

H s-1 (R n ) ∩ H s -1,σ (R n ), it follows from Theorem 2.5 that x σ R(z 1 ) and x σ R(z 2 ) are in H s + (R n ), that || x σ (R(z 1 ) -R(z 2 ))|| s + ≤ C(K) ||z 1 -z 2 || s-1 + || x σ (z 1 -z 2 )|| s -1 , (59) 
and hence that we have the estimate

T 0 | GJ s x σ (R(z 1 ) -R(z 2 )), J s W |dt ≤ A T 0 || x σ (R(z 1 ) -R(z 2 ))|| s ||W || s dt ≤ A C(K) T 0 ||w 1 -w 2 || s + || x σ (w 1 -w 2 )|| s ||W || s dt ≤ A T C(K) λ 1 (w 1 -w 2 ) + λ 3 (w 1 -w 2 ) λ 3 (Y ) ≤ A T C(K)λ(w 1 -w 2 )λ(Y ),
where, again, the constants have been changed in the last inequality.

As for the last term in ( 58), it can be treated by the same arguments as that used to estimate the last one in (39). Indeed, we can first write

GJ s x # x 2 ∇W = GJ s x # x 2 θ(D/ x )∇ x σ Y + GJ s x # x 2 [1 -θ(D/ x )] x σ ∇Y + GJ s x # x 2 [1 -θ(D/ x )] σ x x 2 x σ Y, (60) 
and we already showed that the operators GJ s x # x 2 θ(D/ x )∇ and GJ

s x # x 2 [1 -θ(D/ x )] σ x x 2
are both in OpS s 0,0 which allows one to bound the corresponding integrals by

A T 0 ||J s W || 2 0 dt ≤ A T λ 3 (Y ) 2 . ( 61 
)
Next, we also already showed that the operator GJ

s x # x 2 [1 -θ(D/ x )] x σ ∇ is in OpS s +σ 0,0
and consequently we have the estimate

T 0 GJ s x # x 2 [1 -θ(D/ x )] x σ ∇Y, J s W dt ≤ A T 0 ||Y || s +σ ||W || s dt ≤ A T λ 1 (Y ) λ 3 (Y ),
since s + σ ≤ s. Therefore, for the last term in (58), we have the following estimate:

T 0 GJ s x # x 2 ∇W, J s W dt ≤ A T λ(Y ) 2 .
Summing up, we have obtained

λ 3 (Y ) 2 ≤ A T λ(Y ) C(K)λ(w 1 -w 2 ) + λ(Y ) . ( 62 
) It remains to estimate λ 4 (Y ) = sup [0,T ] || x σ ∂ t Y || s -2 = sup [0,T ] ||∂ t W || s -2 .
Since W is the solution of the Cauchy problem (56) which is similar to (37), by using similar arguments, we have the estimate

||∂ t W || s -2 ≤ A ||W || s +|| x σ ( R(z 1 )-R(z 2 ))|| s -2 ≤ A ||W || s +|| x σ (R(z 1 )-R(z 2 ))|| s -2 + A 2 j=1 || x σ (b j (z 1 )-b 0 j )|| L ∞ ||w 1 -w 2 || s -1 + || x σ (a j (z 1 )-a 0 j )|| L ∞ ||w 1 -w 2 || s -2 + A 2 j=1 || x σ (b j (z 1 )-b j (z 2 ))|| L ∞ ||w 2 || s -1 + || x σ (a j (z 1 )-a j (z 2 ))|| L ∞ ||w 2 || s -2 . ( 63 
)
Then, by applying an argument similar to that in (46) and estimates similar to (33), we obtain

||∂ t W || s -2 ≤ A ||W || s + || x σ (w 1 -w 2 )|| s - +C(K) L -λ 3 (w 1 -u 0 ) + L 2-T λ 4 (w 1 ) ||w 1 -w 2 || s +C(K) L -λ 3 (w 1 -w 2 ) + L 2-T λ 4 (w 1 -w 2 ) ||w 2 || s , (64) 
with a sufficiently small ; hence,

λ 4 (Y ) ≤ A λ 3 (Y ) + C(K) L -λ 3 (w 1 -w 2 ) + L 2-T λ 4 (w 1 -w 2 ) +C(K) L -λ 3 (w 1 -u 0 ) + L 2-T λ 4 (w 1 ) λ 1 (w 1 -w 2 ) +C(K) L -λ 3 (w 1 -w 2 ) + L 2-T λ 4 (w 1 -w 2 ) λ 1 (w 2 ). (65) 
Last, using (62) and changing the constants gives us

λ 4 (Y ) ≤ A C(K) √ T λ(Y ) + A C(K) L -+ L 2-T + √ T λ(w 1 -w 2 ). (66) 
Finally, from (55), ( 62) and ( 66), it follows that

λ(Y ) ≤ A C(K) φ(L, T ) λ(Y ) + λ(w 1 -w 2 ) , (67) 
where we have once more changed the constants and φ(L, T ) is given by (50). Therefore, by taking L large enough and then T small enough one can make

A C(K) φ(L, T ) ≤ 1/3 which implies that λ(Y ) = λ(Υw 1 -Υw 2 ) ≤ 1 2 λ(w 1 -w 2 ), w 1 , w 2 ∈ Z, that is, Υ : Z → Z is a contraction mapping.
Thus, it has a unique fixed point u in Z which is the solution of (22).

To end this section, let us now study the continuity of the solution operator u 0 → u. First, let us remark that this operator maps bounded subsets of

H s (R n ) ∩ H s ,σ (R n ) into bounded subsets of C([0, T ], H s (R n ) ∩ H s ,σ (R n )). In fact, if B is a bounded subset of H s (R n ) ∩ H s ,σ (R n )
, as remarked at the beginning of this section, the constant A and the bounds of the semi-norms of the operators G can be taken to depend only on B, that is, if u 0 ∈ B, the estimates proven above and satisfied by Υ can be rewritten as

λ(Υw) ≤ A(B) (||u 0 || s + || x σ u 0 || s ) + A(B) C(K) φ(L, T ) (λ(w)+λ(Υw)), (68) 
λ(Υw 1 -Υw 2 ) ≤ A(B) C(K) φ(L, T ) λ(Υw 1 -Υw 2 ) + λ(w 1 -w 2 ) , (69) 
where

φ(L, T ) = √ T + L -+ L 2-T + √ T + L -+L 2-T, (70) 
and A(B) depends only on n, s, s , σ and B, which implies that the constants K and T can be chosen depending only on B. Hence, for all u 0 ∈ B, the associated solutions u are all defined on the same interval [0, T ] and are all in the ball of radius K. As for the continuity, let B be a bounded subset of H s (R n ) ∩ H s ,σ (R n ), u 0 , u * 0 ∈ B and u, u * be the respective associated solutions. If w = u -u * , then w satisfies the following Cauchy problem:

∂ t w = iL w + Qu -Q * u * + R -R * = iL w + Qw + (Q -Q * )u * + R -R * w(x, 0) = u 0 (x) -u * 0 (x) (71) 
where

Qw = T b 0 1 ∇w + T b 0 2 ∇w + T a 0 1 w + T a 0 2 w, Q * w = T b 0, * 1 ∇w + T b 0, * 2 ∇w + T a 0, * 1 w + T a 0, * 2 w, R = R(u, ∇u, u, ∇u) and R * = R(u * , ∇u * , u * , ∇u * ).
Of course, the b 0 j , a 0 j correspond to u 0 whereas the b 0, * j , a 0, * j correspond to u * 0 . Applying Theorem 3.1 gives us the inequality

max λ 1 (w) 2 , λ 2 (w) 2 ≤ A(B)||u 0 -u * 0 || 2 s +A(B) I T J s (Q -Q * )u * + R -R * , J s w . (72) 
As it can be seen easily by going back to (25), we can write

(Q -Q * )u * + R -R * = T b 1 (u)-b 0 1 ∇w + T b 1 (u)-b 1 (u * ) ∇u * +T b 2 (u)-b 0 2 ∇w + T b 2 (u)-b 2 (u * ) ∇u * +T a 1 (u)-a 0 1 w + T a 1 (u)-a 1 (u * ) u * +T a 2 (u)-a 0 2 w + T a 2 (u)-a 2 (u * ) u * +R(u, ∇u, u, ∇u) -R(u * , ∇u * , u * , ∇u * ) . (73) 
Using the same arguments as before to estimate the integrals corresponding to each of the above terms yields

max λ 1 (w) 2 , λ 2 (w) 2 ≤ A(B)||u 0 -u * 0 || 2 s + A(B) C(K)(T + L -+ L 2-T )λ(w) 2 , (74) 
which becomes after a change of the constants:

max {λ 1 (w), λ 2 (w)} ≤ A(B)||u 0 -u * 0 || s + A(B) C(K) √ T + L -+ L 2-T λ(w). (75) 
Next, using (71), it is easy to see that W = x σ w satisfies the following Cauchy problem:

∂ t W = iL W + T b 0 1 ∇ x W + T b 0 2 ∇ x W + C 1 W + C 2 W + R # W (0) = x σ (u 0 -u * 0 ) (76) 
where

C 1 = T a 0 1 + x σ T b 0 1 ∇ x -σ -T b 0 1 ∇ + x σ T a 0 1 x -σ -T a 0 1 + i x σ L ( x -σ ), C 2 = T a 0 2 + x σ T b 0 2 ∇ x -σ -T b 0 2 ∇ + x σ T a 0 2 x -σ -T a 0 2 , and R # = -2iσ x # x 2 ∇W + x σ (Q -Q * )u * + x σ ( R -R * ),
a Cauchy problem which is clearly similar to (56) and therefore by using similar arguments, one obtains

λ 3 (w) = sup [0,T ] || x σ w|| s ≤ A(B) || x σ (u 0 -u * 0 )|| s + C(K) √ T λ(w) . (77) 
Last, we have to estimate λ 4 (w) = sup [0,T ] || x σ ∂ t w|| s -2 . Since W = x σ w is the solution of the Cauchy problem (76) which is similar to (56), by using similar arguments we obtain the estimate

||∂ t W || s -2 ≤ A ||W || s + || x σ (u -u * )|| s - +C(K) L -λ 3 (u -u 0 ) + L 2-T λ 4 (u) ||u -u * || s +C(K) L -λ 3 (u -u * ) + L 2-T λ 4 (u -u * ) ||u * || s , (78) 
with a sufficiently small ; hence,

λ 4 (w) ≤ A(B) λ 3 (w) + C(K) L -λ 3 (u -u * ) + L 2-T λ 4 (u -u * ) +C(K) L -λ 3 (u -u 0 ) + L 2-T λ 4 (u) λ 1 (u -u * ) +C(K) L -λ 3 (u -u * ) + L 2-T λ 4 (u -u * ) λ 1 (u * ). (79) 
Using (77) and changing the constants gives us

λ 4 (w) ≤ A(B)|| x σ (u 0 -u * 0 )|| s + A(B)C(K) L -+ L 2-T + √ T λ(w). (80) 
Finally, from (75), ( 77) and ( 80), it follows that

λ(w) ≤ A(B) ||u 0 -u * 0 || s + || x σ (u 0 -u * 0 )|| s + A(B) C(K) φ(L, T ) λ(w), (81) 
where we have once more changed the constants and φ(L, T ) is given by (50). Therefore, by taking L large enough and then T small enough one can make

A(B) C(K) φ(L, T ) ≤ 1/2 which implies that λ(w) = λ(u -u * ) ≤ 2A(B) ||u 0 -u * 0 || s + || x σ (u 0 -u * 0 )|| s , u 0 , u * 0 ∈ B, that is, u 0 → u is Lipschitz continuous on B.
This achieves the proof of Theorem 1.1.

First, note that it is sufficient to treat the case s = 0. Indeed, if v = J s u and v 0 = J s u 0 , it is easy to see that u is a solution of (18) if and only if v satisfies

∂ t v = iL v + T b 1 .∇ x v + T b 2 .∇ x v + C 1 v + C 2 v + f (x, t) v(x, 0) = v 0 ∈ L 2 (R n ) (82)
where f = J s f and

C k = J s C k J -s + [J s , T b k .∇ x ]J -s , k = 1 ou 2,
and, thanks to the paradifferential calculus, the

C k are bounded operators in L 2 (R n ).
The idea of proof is that of [KePoVe], inspired by [START_REF] Takeuchi | Le problème de Cauchy pour certaines équations aux derivées partielles du type de Schrödinger; symétrisations indépendantes du temps[END_REF], and consists in constructing a pseudodifferential operator C which is bounded and invertible in L 2 (R n ) and to estimate sup [0,T ] ||Cu|| 0 instead of sup [0,T ] ||u|| 0 . Since d dt Cu, Cu = C∂ t u , Cu + Cu , C∂ t u and u is a solution of (18), we obtain that

d dt ||Cu|| 2 0 = iCL u, Cu + CT b 1 ∇u, Cu + CT b 2 ∇ū, Cu + CC 1 u, Cu + CC 2 ū, Cu + Cf, Cu + Cu, iCL u + Cu, CT b 1 ∇u + Cu, CT b 2 ∇ū + Cu, CC 1 u + Cu, CC 2 ū + Cu, Cf , (83) 
and since iL Cu, Cu + Cu, iL Cu = 0, we have finally

d dt ||Cu|| 2 0 = 2Re (i[C, L ] + CT b 1 ∇)u, Cu + 2Re CT b 2 ∇ū, Cu +2Re Cu, Cf + 2Re ( CC 1 u, Cu + CC 2 ū, Cu ) .
The idea of [KePoVe] is precisely to choose C so that the operator i[C, L ] + CT b 1 ∇ will be small in some sense. Here, we will make a refinement by writing b 1 = b 1 + ib 1 with real b 1 , b 1 , and by considering the operator i[C, L ] + iCT b 1 ∇ instead. This has been already used in [Bie] and [BiBo], and essentially allows one to construct a real operator C, that is, with the property Cu = Cū, which will be convenient in some arguments. Now, clearly,

|2Re ( CC 1 u, Cu + CC 2 ū, Cu )| ≤ 2(A 1 + A 2 )||C|| 2 L (L 2 ) ||u|| 2 0 ,
and integrating on [0, T ], T ≤ T , yields

||Cu(T )|| 2 2 ≤ ||Cu 0 || 2 0 + 2 Re T 0 (i[C, L ] + iCT b 1 ∇)u, Cu dt + 2 Re T 0 CT b 1 ∇u, Cu dt +2 Re T 0 CT b 2 ∇ū, Cu dt + 2 Re T 0 Cu, Cf dt + 2(A 1 + A 2 )||C|| 2 L (L 2 ) T 0 ||u(t)|| 2 0 dt , (84) 
and our task will be to estimate appropriately each of the terms in the right hand side of this inequality. The most difficult one is

T 0 (i[C, L ] + iCT b 1 ∇)u, Cu dt
and C will be constructed so that this term will be small with respect to some parameters to be defined later. To this end, let us denote by c the symbol of C and define

p(x, ξ) = -2ξ .∇ x c(x, ξ) -c(x, ξ) b 1 (x, ξ).ξ , (85) 
where ξ = (ξ 1 , ..., ξ j 0 , -ξ j 0 +1 , ..., -ξ n ) and b 1 is such that T b 1 = b 1 (x, D); see (3). The problem lies essentially in the fact that p(x, ξ) is not the true principal symbol of the pseudodifferential (or paradifferential) operator i[C, L ] + iCT b 1 ∇ since C will be merely in the class OpS 0 0,0 . Nevertheless, the constructed C will allow us to obtain good estimates. We shall take c(x, ξ) of the form c(x, ξ) = exp (γ(x, ξ)) where γ(x, ξ) is defined a little further. We can then write

p(x, ξ) = c(x, ξ) -2ξ .∇ x γ(x, ξ) -b 1 (x, ξ).ξ ,
and this suggests to consider the following function

η(x, ξ) = 1 2 ∞ 0 b 1 (x + sξ , ξ).ξ ds = 1 2 ∞ 0 b 1 (x + sξ |ξ| , ξ). ξ |ξ| ds.
It follows from the assumption on b 1 that such an integral is well defined and that one can take derivatives under the integral sign. One can then show that η is smooth and satisfies, for all multi-indices α, β (up to order N 0 ),

∂ α x ∂ β ξ η(x, ξ) ≤ A α,β sup β ≤β || ξ |β | ∂ α x ∂ β ξ x σ b 1 || L ∞ x |β| ξ -|β| , (86) 
and, moreover, -2ξ .∇ x η(x, ξ) -b 1 (x, ξ).ξ = 0 .

(87)

See [KePoVe], [Bie] or [BiBo] for details. To get an even function, we replace η by ζ(x, ξ) = (η(x, ξ) + η(x, -ξ))/2 , which satisfies the same properties as η, and then set

γ(x, ξ) = θ |ξ| R ψ R x ξ ζ(x, ξ) ,
where θ and ψ are smooth (real) functions on R such that θ

(t) = 1 if t ≥ 2, θ(t) = 0 if t ≤ 1, ψ(t) = 1 if |t| ≤ 1
, ψ = 0 outside some compact set and R is a large parameter that will be fixed later. One can easily check that γ ∈ S 0 0,0 up to N 0 and that its semi-norms are uniformly bounded with respect to R. The following lemma gives the main properties of the operator C and its symbol c(x, ξ) = exp (γ(x, ξ)) . Lemma 5.1 (i) The symbol c(x, ξ) is real and even in ξ.

(ii) The symbol c(x, ξ) is in the class S 0 0,0 up to N 0 . More precisely, for all α, β ∈ N n such that |α| + |β| ≤ N 0 ,

|∂ α x ∂ β ξ c(x, ξ)| ≤ A α,β R |β| sup 1≤j≤|α|+|β| sup α ≤α;β ≤β || ξ |β | ∂ α x ∂ β ξ x σ b 1 || j L ∞ ≤ A α,β R |β| ν |α|+|β| (b 1 ) .
(iii) There exist N ∈ N and A > 0 such that, for all R ≥ 1 and all v ∈ L 2 (R n ),

||Cv|| 0 ≤ A ν N (b 1 ) ||v|| 0 , and ||v|| 0 ≤ A ν N (b 1 )||Cv|| 0 + A R ν N (b 1 ) 2 ||v|| 0 .
(iv) The symbol p(x, ξ) = -2ξ .∇ x c(x, ξ) -c(x, ξ) b 1 (x, ξ).ξ is in S 0 0,0 up to N 0 and its semi-norms are estimated by A R ν N 0 +1 (b 1 ) .

The proof is similar to that in [Bie] (Lemme 3.5 and Lemme 3.6) and even simpler, so we refer to it. These properties are sufficient in order to prove the following estimates : Lemma 5.2 Let b(x, ξ) be a symbol such that x σ b is in S 0 1,0 up to some large integer and let ũ stand for u or ū. Then, there exist N ∈ N and A > 0 such that, for all T > 0, T ∈ [0, T ], R ≥ 1 and every H = h(x, D) in OpS 0 0,0 , the following estimates hold true:

(i) T 0 (CT b ∇ -(c b)(x, D)∇)ũ, Hu dt ≤ A R ||h|| C N ν N (b 1 ) ν N (b) |||J 1 2 u||| 2 T . (ii) T 0 (i[C, L ] + iCT b 1 ∇)u, Hu dt ≤ A ||h|| C N ν N (b 1 ) 2 RT sup [0,T ] ||u|| 2 0 + 1 R |||J 1 2 u||| 2 T . (iii) T 0 | [C, J s T b J -s ∇]ũ, Hu | dt ≤ A ||h|| C N ν N (b 1 ) ν N (b) T sup [0,T ] ||u|| 2 0 + |||J 1 2 u||| 2 T R .
Remark 1 The case s = 0 in (iii) is needed in Section 7.

Proof : It follows from the pseudodifferential calculus that the expression of the symbol of the operator

E = CT b ∇ -(c b)(x, D)∇ is given by e(x, ξ) = 1 (2π) n n j=1 1 0 e -iyη ∂ ξ j c(x, ξ + tη) ∂ x j b(x + y, ξ).ξ dy dη dt, (88) 
and that e ∈ S 1 0,0 up to N 0 -n -1. Moreover, since x σ b ∈ S 0 0,0 up to N 0 , one can show by the same argument that x σ e ∈ S 1 0,0 up to N 0 -n -2 and that its semi-norms are estimated by a product of those of ∇ ξ c and x σ ∇ x b, hence, by a product of semi-norms of ∇ ξ c and x σ b. Next, we can write

E ũ, Hu = H * E ũ, u = H 1 E 1 ṽ, v where H 1 = x σ 0 J -1/2 H * J 1/2 x -σ 0 , E 1 = x σ 0 J -1/2 EJ -1/2 x σ 0 and v = x -σ 0 J 1/2 u.
Recall that σ 0 = σ/2. Now, it follows from the pseudodifferential calculus (Theorem 2.1) and Lemma 2.1 that H 1 has a symbol in S 0 0,0 up to N 0 -3n -1 and that we can estimate its semi-norms by those of H. Moreover, if E 1 = e 1 (x, D) and essentially by the same argument, it is easy to see that e 1 ∈ S 0 0,0 up to N 0 -3n -2 and that its semi-norms are estimated by those of x σ e, hence, by a product of semi-norms of ∇ ξ c and x σ b. This allows us to apply Calderon-Vaillancourt's theorem to obtain

T 0 | E ũ, Hu |dt ≤ T 0 ||H 1 || L (L 2 ) ||E 1 || L (L 2 ) ||v|| 2 0 dt ≤ A ||h|| C N 1 ||∇ ξ c|| C N 1 |α|+|β|≤N 1 ||∂ α x ∂ β ξ x σ b|| L ∞ |||J 1 2 u||| 2 T ≤ A R ||h|| C N 1 ν N 1 +1 (b 1 ) ν N 1 (b) |||J 1 2 u||| 2 T , (89) 
which proves (i).

To prove (ii), note first that the symbol of i[C, L ] is given by (L x c)(x, ξ) -2ξ .∇ x c(x, ξ) and that of iCT b 1 ∇ can be written as

ic(x, ξ) b 1 (x, ξ).iξ + 1 (2π) n n j=1 1 0 e -iyη ∂ ξ j c(x, ξ + tη) ∂ x j b 1 (x + y, ξ).iξ dy dη dt.
Thus, the symbol of the operator i[C, L ]+iCT b 1 ∇ is given by (L x c)(x, ξ)+p(x, ξ)+ie(x, ξ), where p(x, ξ) is given by ( 85) and e(x, ξ) is given by ( 88) with b = b 1 . Hence, applying Lemma 5.1 and Calderon-Vaillancourt's theorem yields the estimate

T 0 | ((L x c)(x, D) + p(x, D))u, Hu | dt ≤ A R T ||h|| C N 1 ν N 1 (b 1 ) 2 sup [0,T ] ||u|| 2 0 ,
and applying part (i) gives

T 0 | (ie(x, D)u, Hu |dt ≤ A R ||h|| C N 2 ν N 2 (b 1 ) 2 |||J 1 2 u||| 2 T , which proves (ii).
To prove (iii), we first consider the case s = 0 and note that the symbol of [C, T b ∇] = CT b ∇ -T b ∇C can be written simply as e(x, ξ) -e 1 (x, ξ) where e(x, ξ) is the symbol of the operator E studied in (i) and

e 1 (x, ξ) = 1 (2π) n n j=1 1 0 e -iyη ∂ ξ j ( b(x, ξ + tη).(ξ + tη)) ∂ x j c(x + y, ξ) dy dη dt .
Since ∂ ξ j ( b(x, ξ).ξ) is of order 0, the symbol e 1 (x, ξ) is in fact in S 0 0,0 and the semi-norms of e 1 are estimated by a product of semi-norms of b and c. Hence, by Calderon-Vaillancourt's theorem,

T 0 | e 1 (x, D)ũ, Hu | dt ≤ A T ||h|| C N 1 ||b|| C N 2 ν N 3 (b 1 ) sup [0,T ] ||u|| 2 0 ,
which, together with (89), yields (iii) in the case s = 0. If s = 0, it follows from the pseudodifferential and paradifferential calculi that

J s T b J -s = T b # where b # is given by b # (x, ξ) = 1 (2π) n e -iyη ξ + η s b(x + y, ξ) ξ -s dy dη .
It is easy to see that x σ b # is also in S 0 1,0 up to some (large enough) integer with semi-norms estimated by those of b. This shows that the case s = 0 follows from the case s = 0 and achieves the proof of Lemma 5.2. Lemma 5.3 Let b be as in the preceding lemma. Then, there exist N ∈ N and A > 0 such that, for all T > 0, T ∈ [0, T ] and R ≥ 1, the following estimates hold true :

(i) If b(x, ξ) is even in ξ, then, T 0 | CT b ∇ū, Cu | dt ≤ A ν N (b 1 ) ||b|| C N T sup 0≤t≤T ||u|| 2 0 + 1 R |||J 1 2 u||| T . (ii) If b is real, then, Re T 0 CT b ∇u, Cu dt ≤ A ν N (b 1 ) ||b|| C N T sup 0≤t≤T ||u|| 2 0 + 1 R |||J 1 2 u||| T .
Proof : The proof is the same as that of Lemma 5.3 of [BiBo], so we refer to it.

It is clear now that applying Lemma 5.1, Lemma 5.2 and Lemma 5.3 to the inequality (84) yields Proposition 3.1.

6 The para-linear equation, Proof of Proposition 3.2

By the same argument as that used in the beginning of the proof of Proposition 3.1, it is sufficient to establish the first estimate in the case s = 0.

The idea of proof is that of [KePoVe] based on Doi's trick. We follow here almost the same lines as [BiBo].

Since ∂ t u = iL u + T b 1 .∇u + T b 2 .∇ū + C 1 u + C 2 ū + f , we also have ∂ t ū = -iL ū + Tb 1 .∇ū + Tb 2 .∇u + C 1 ū + C 2 u + f , with operators C k that are defined by C k u = C k ū,
and then we remark that the vector unknown w = u ū satisfies the system

∂ t w = iHw + Bw + Cw + F, (90) 
where

H =    L 0 0 -L    , B =    T b 1 ∇ T b 2 ∇ T b 2 ∇ T b 1 ∇    , C =    C 1 C 2 C 1 C 2    , F =    f f    ,
and the idea then is to estimate the expression Ψw, w by means of Gårding's inequality for systems via Doi's argument. Here,

Ψ =    ψ(x, D) 0 0 -ψ(x, D)    ,
and ψ is an appropriate symbol in S 0 1,0 to be chosen a little later. By using (90), one gets easily

∂ t Ψw, w = Ψ∂ t w, w + Ψw, ∂ t w = (i[Ψ, H] + B * Ψ + ΨB + C * Ψ + ΨC)w, w + ΨF, w + Ψw, F , (91) 
and the principal symbol of the first order operator i[Ψ, H] + B * Ψ + ΨB + C * Ψ + ΨC, as one can check also easily, is given by

M (x, ξ) =    2ξ .∇ x ψ(x, ξ) -2ξ.Im( b1 )(x, ξ) ψ(x, ξ) 2iξ. b2 (x, ξ) ψ(x, ξ) -2iξ. b2 (x, ξ) ψ(x, ξ) 2ξ .∇ x ψ(x, ξ) -2ξ.Im( b1 )(x, ξ) ψ(x, ξ)    .
Now, for ψ, we shall make the following choice which follows the idea of Doi (see [Doi]). Define ψ(x, ξ) = exp(-p(x, ξ)), where

p(x, ξ) = A 0 ξ -1 n j=1 ξ j h(x j ) and h(t) = t 0 s -2σ 0 ds.
Here, A 0 is a large constant that will be determined later. First, note that p and ψ are symbols in S 0 1,0 . Next, with these notations, the symbol M (x, ξ) can be rewritten as

M (x, ξ) = 2ψ(x, ξ)    -ξ .∇ x p(x, ξ) -ξ.Im( b1 )(x, ξ) iξ. b2 (x, ξ) -iξ. b2 (x, ξ) -ξ .∇ x p(x, ξ) -ξ.Im( b1 )(x, ξ)    . Consider now the matrix Z(x, ξ) = -M (x, ξ) -V (x, ξ) where V (x, ξ) = 2ψ(x,ξ)|ξ| 2 ξ x σ 1 0 0 1 . Z(x, ξ) is a matrix of symbols in S 1
1,0 and, in order to apply Gårding's inequality, we are going to show that, for large ξ, it is a non negative matrix, that is, Z(x, ξ)v, v ≥ 0, ∀v ∈ C 2 . In fact, Z(x, ξ) is of the form 2ψ(x, ξ) α β β α where α = ξ .∇ x p(x, ξ) -|ξ| 2 ξ x σ + ξ.Im( b1 )(x, ξ) and β = -iξ. b2 (x, ξ), and it is sufficient to show that the two eigenvalues α ± |β| of α β β α are non negative, or, equivalently, that α ≥ |β|, that is,

ξ .∇ x p(x, ξ) - |ξ| 2 ξ x σ + ξ.Im( b1 )(x, ξ) ≥ | -iξ. b2 (x, ξ)|. (92) 
Now, it follows from the definition of the symbol p that

ξ .∇ x p µ (x, ξ) = A 0 n j=1 ξ 2 j ξ x j σ ≥ A 0 |ξ| 2 ξ x σ , (93) 
and from the assumptions of the proposition that |b k (x, ξ)| ≤ A k x -σ , k = 1, 2, which implies easily that the bk (x, ξ) also satisfy this type of inequalities with possibly modified constants A k (by an absolute multiplicative constant). Hence,

ξ .∇ x p(x, ξ) - |ξ| 2 ξ x σ + ξ.Im( b1 )(x, ξ) -|ξ. b2 (x, ξ)| ≥ (A 0 -1)|ξ| 2 ξ x σ - 2 k=1 |ξ. bk (x, ξ)| ≥ (A 0 -1)|ξ| 2 ξ x σ -(A 1 + A 2 ) |ξ| x σ ≥ (A 0 -1 -2A 1 -2A 2 )|ξ| 2 ξ x σ , (94) 
if |ξ| ≥ 1, which implies (92) by taking A 0 ≥ 1 + 2A 1 + 2A 2 . Thus, the matrix symbol Z(x, ξ) is non negative, and since it is also hermitian, Z(x, ξ) + Z(x, ξ) * is also non negative and we can apply Gårding's inequality for systems :

Re Z(x, D)w, w ≥ -A 1 + sup k sup |α|+|β|≤N || ξ |β| ∂ α x ∂ β ξ b k || L ∞ ||w|| 2 0 ( 95 
)
where the constant A depends only on A 1 , A 2 and the dimension n and the integer N depends only on the dimension n. Now, going back to (91), we can rewrite it as

∂ t Ψw, w = (-Z(x, D) -V (x, D) + E)w, w + ΨF, w + Ψw, F ,
where E is a bounded operator in L 2 (R n ), and integrating it on [0, T ] yields Taking the real part, using (95) and estimating, we obtain for |ξ| ≥ 1, a second application of Gårding inequality gives us

Re T 0 V (x, D)w, w dt ≤ A sup [0,T ] ||w|| 2 0 + AT 1 + sup k ν N (b k ) sup
Re T 0 J 1/2 x -σ J 1/2 w, w dt ≤ A sup [0,T ] ||w|| 2 0 1 + T + T sup k ν N (b k ) + T 0 ΨF, w dt + T 0 Ψw, F dt ,
with a modified constant A. Since we can write ΨF, w = ψ(x, D)f, u -ψ(x, D)f, u and a similar expression for Ψw, F , by going back to u, we get eventually

T 0 || x -σ 0 J 1/2 u|| 2 0 dt ≤ A sup [0,T ] ||u|| 2 0 1 + T + T sup k ν N (b k ) + T 0 | ψ(x, D)f, u |dt+ T 0 | ψ(x, D)f, u |dt+ T 0 | ψ(x, D) * f, u |dt+ T 0 | ψ(x, D) * f, u |dt ,
where σ 0 = σ/2, and this establishes the first part of Proposition 3.2.

As for the second estimate of Proposition 3.2, we first remark that, since C is real, Cu satisfies

∂ t Cu = iL Cu + T b 1 .∇Cu + T b 2 .∇Cu + C 1 Cu + C 2 Cu + f , where b 1 = b 1 + ib 1 with real b 1 , b 1 , and f = i [C, L ] + CT ib 1 ∇ u + [C, T b 1 .∇]u + [C, T b 2 .∇]ū + [C, C 1 ]u + [C, C 2 ]ū + Cf.
Hence, we can apply the first part of Proposition 3.2 to Cu obtaining

|||J s+1/2 Cu||| 2 T ≤ A 1 + T + T sup k ν N (b k ) sup [0,T ] ||Cu|| 2 s + 4 j=1 T 0 | Ψ j J s f , J s Cu |dt, (96) 
where Ψ j = ψ j (x, D). Thus, we are led to estimate essentially the following terms

T 0 | J s (i [C, L ] + CT ib 1 ∇)u, Ψ * j J s Cu |dt + T 0 | J s [C, T b 1 .∇])u, Ψ * j J s Cu |dt + T 0 | J s [C, T b 2 .∇]ū, Ψ * j J s Cu |dt. Indeed, since the operators Ψ j J s [C, C 1 ]J -s , Ψ j J s [C, C 2 
]J -s and J s CJ -s are bounded in L 2 , the corresponding terms are easily estimated by

A T ν N (b 1 ) sup 0≤t≤T ||u(t)|| 2 s .
We need now for the other terms the following simple lemma: Lemma 6.1 If a ∈ S m 0,0 up to some large integer, then, for any real s, J s a(x, D)J -s = a(x, D) + e(x, D)

where e ∈ S m-1 0,0 up to a large integer, and the semi-norms of e are bounded by those of a.

Proof : It suffices to apply the pseudodifferential calculus and to remark that

e(x, ξ) = 1 (2π) n n j=1 1 0 e -iyη ∂ ξ j ( ξ + tη s ) ∂ x j a(x + y, ξ) ξ -s dy dη dt .
We apply the lemma successively with a(x, D)

= i [C, L ] + CT ib 1 ∇, a(x, D) = [C, T b 1 .∇] and a(x, D) = [C, T b 2 .∇].
Since here m = 1, we obtain that at each time the operator e(x, D) is bounded in L 2 and that its operator norm is estimated by the semi-norms of a. Next, it follows from the pseudodifferential calculus that Ψ * j ∈ OpS 0 1,0 and, consequently, also that the Ψ * j J s CJ -s are in OpS 0 0,0 and their semi-norms are estimated by those of C. Hence, the integrals corresponding to the operators e(x, D) are easily estimated by

A R T sup k ν N (b k ) sup 0≤t≤T ||u(t)|| 2 s .
Thus, it remains to estimate the sum 

||u|| 2 s + 1 R |||J s+ 1 2 u||| 2 T ,
which, together with (96), implies the second estimate of Proposition 3.2.

Appendix

7.1 Proof of Lemma 3.1

We need the following general estimate:

Lemma 7.1 Let b be a symbol satisfying

sup |β|≤N 0 || ξ |β| ∂ β ξ x σ b|| L ∞ < ∞,
where N 0 is a sufficiently large integer, and let ũ stand for u or ū. Then, there exist N ∈ N and A > 0 such that, for all T > 0 and every H 1 = h 1 (x, D), H 2 = h 2 (x, D) in OpS 0 0,0 (up to some large integer), we have

T 0 | H 1 J s T b J -s ∇ũ, H 2 u | dt ≤ A ||h 1 || C N ||h 2 || C N sup |β|≤N || ξ |β| ∂ β ξ x σ b|| L ∞ |||J 1 2 u||| 2 T .
Proof : Recall that 1 < 2σ 0 ≤ σ. One can write

H 1 J s T b J -s ∇ũ, H 2 u = H * 2 H 1 J s T b J -s ∇ũ, u = H x σ 0 T b x σ 0 J ṽ, v
where H = x σ 0 J -1/2 H * 2 H 1 J s x -σ 0 , J = x -σ 0 J -s ∇J -1/2 x σ 0 and v = x -σ 0 J 1/2 u. Now, it follows from the pseudodifferential calculus (Theorem 2.1) and from Lemma 2.1 that H and J are in OpS s-1/2 0,0 and OpS 1/2-s 0,0 respectively, and that the semi-norms of H are estimated by a product of those of H 1 and H 2 . Next, it follows from Proposition 2.1 that the operator norm of x σ 0 T b x σ 0 acting in H s-1/2 (R n ) is estimated by sup |β|≤N || ξ |β| ∂ β ξ x σ b|| L ∞ .

Therefore, using Cauchy-Schwarz inequality and Calderon-Vaillancourt's theorem, we can write 

||v|| 2 0 + 1 R |||J 1 2 v||| 2 T ≤ A m 2N 2 (m N + m N ) T sup [0,T ] ||u|| 2 s + 1 R |||J s+ 1 2 u||| 2 T ≤ A m 2N 2 +N T sup [0,T ] ||u|| 2 s + 1 R |||J s+ 1 2 u||| 2 T .
Finally, recalling that C m ū = C m u and applying Lemma 7.1 to the first term in ( 97) with

H 1 = H 2 = Id, we get T 0 | J s T b k,m -b k,m J -s ∇C m ṽ, C m v | dt ≤ A sup |β|≤N || ξ |β| ∂ β ξ x σ (b k,m -b k,m )|| L ∞ |||J 1 2 C m v||| 2 T ≤ A sup |β|≤N || ξ |β| ∂ β ξ x σ (b k,m -b k )|| L ∞ + sup |β|≤N || ξ |β| ∂ β ξ x σ (b k -b k,m )|| L ∞ |||J 1 2 C m v||| 2 T ≤ A 1 m τ + 1 m τ sup |β|≤N || ξ |β| ∂ β ξ x σ b k || C τ |||J 1 2 C m v||| 2 T ≤ A 1 m τ + 1 m τ |||J 1 2 C m v||| 2 T ≤ A m τ |||J 1 2 C m v||| 2 T .
It remains to compare |||J 1 2 C m v||| 2 T with |||J s+ 1 2 C m u||| 2 T . Of course, one can write J 1 2 C m v = J s+ 1 2 J -s C m J s u and it follows from Lemma 6.1 that J -s C m J s -C m = E m is in OpS -1 0,0 and the semi-norms of E m are bounded by those of C m . Hence, since J s+ 1 2 E m J -s is in OpS -1/2 0,0 ,

|||J s+ 1 2 E m u||| 2 T = T 0 | x -σ 0 J s+ 1 2 E m u| 2 dx dt ≤ T 0 |J s+ 1 2 E m u| 2 dx dt ≤ A ν N (b 1,m ) 2 T 0 |J s u| 2 dx dt ≤ A T m 2N 2 sup [0,T ] ||u|| 2 s and |||J 1 2 C m v||| 2 T ≤ 2|||J s+ 1 2 C m u||| 2 T + 2A T m 2N 2 sup [0,T ] ||u|| 2 s ,
which implies that

T 0 | J s T b k,m -b k,m J -s ∇C m ṽ, C m v | dt ≤ A m τ |||J s+ 1 2 C m u||| 2 T + A T m 2N 2 sup [0,T ] ||u|| 2 s ,
where, of course, the constant A has been modified by an absolute multiplicative constant.

Summing up, we have proven that

T 0 | C m J s T b k -b k,m ∇ũ, C m J s u |dt ≤ A m 2N 2 m τ |||J s+ 1 2 u||| 2 T + A m 2N 2 +N T sup [0,T ] ||u|| 2 s + 1 R |||J s+ 1 2 u||| 2 T + A m τ |||J s+ 1 2 C m u||| 2 T ; (98)
that is, we have proven Lemma 3.1.

Proof of Lemma 2.5

First, by considering the operator B D -m which also satisfies the assumptions of the lemma, we remark that one can assume m = 0. We shall use a dyadic partition of unity 1 = ϕ(ξ) + Next, it is easy to see that sup

j |α|≤N ||∂ α ξ b(x, 2 j ξ) φ0 (ξ)|| L ∞ ≤ C 1 sup |α|≤N || ξ |α| ∂ α ξ b(x, ξ)|| L ∞ .
Therefore, going back to the series in (99), we can estimate it as follows: 

  of r * ν,θ are bounded by semi-norms of a uniformly in θ ∈ [0, 1].

  ) are also extended to[-T, 0].So, let us assume that u ∈ C([0, T ]; H s (R n )) is a solution of the Cauchy problem (18).

T 0 V

 0 (x, D)w, w dt = Ψw(0), w(0) -Ψw(T ), w(T ) -

  and since ψ(x, ξ) ≥ exp(-A) and V (x, ξ) ≥ e -

T 0 | 0 | 0 |||

 000 (i [C, L ] + CT ib 1 ∇)J s u, Ψ * j J s Cu |dt + T [C, T b 1 .∇])J s u, Ψ * j J s Cu |dt + T [C, T b 2 .∇]J s ū, Ψ * j J s Cu |dtto which we can apply Lemma 5.2 with H = Ψ * j J s CJ -s and u replaced byJ s u. Ψ j J s f , J s Cu |dt ≤ Ψ j J s Cf, J s Cu |dt +A sup k ν N (b k ) RT sup [0,T ]

T 0 |≤ 0 | 0 | 0 |

 0000 H 1 J s T b J -s ∇ũ, H 2 u |dt ≤ ||H|| L (H s-1/2 ,L 2 ) || x σ 0 T b x σ 0 || L (H s-1/2 ) ||J|| L (L 2 ,H s-1/2 ) A ||h 1 || C N ||h 2 || C N sup |β|≤N || ξ |β| ∂ β ξ x σ b|| L ∞ |||J prove Lemma 3.1, let us write T b k -b k,m = T b k -b k,m + T b k,m -b k,m and apply Lemma 7.1 first to b = b k -b k,m with H 1 = H 2 = C m . We obtain T C m J s T b k -b k,m ∇ũ, C m J s u |dt = T C m J s T b k -b k,m J -s ∇ṽ, C m v |dt ≤ A ν N (b 1,m ) 2 sup |β|≤N || ξ |β| ∂ β ξ x σ (b k -b k,m )|| L ∞ |||J |β|≤N || ξ |β| ∂ β ξ x σ b k || C τ |||J v = J s u and τ = inf{ , 1}.As for the study of the other term, we writeC m J s T b k,m -b k,m ∇ũ, C m J s u = C m J s T b k,m -b k,m J -s ∇ṽ, C m v = J s T b k,m -b k,m J -s ∇C m ṽ, C m v + [C m , J s T b k,m -b k,m J -s ∇]ṽ, C m v ,(97)and then apply Lemma 5.2(iii) to the second term in (97) to obtainT [C m , J s T b k,m -b k,m J -s ∇]ṽ, C m v |dt ≤ A ν N (b 1,m ) 2 ||b k,m -b k,m || C N T sup [0,T ]

  j∈N ϕ j (ξ), ξ ∈ R n ,where ϕ j (ξ) = ϕ 0 (2 -j ξ), ϕ and ϕ 0 are C ∞ functions, supp(ϕ) ⊂ B(0, 1) and supp(ϕ 0 ) ⊂ Γ = {1/2 ≤ |ξ| ≤ 3/2}. This allows us to write, for any u ∈ S (R n ), means of this decomposition, let us show that it suffices to prove the L 2 -boundedness of B. Indeed, assume that B ∈ L(L 2 (R n )). We can writeξ s Bu = ξ s Bϕ(D)u + j∈N ξ s Bϕ j (D)u.It follows from the assumption H2 that Bϕ(D)u is supported in a fixed compact set and that supp( Bϕ j (D)u) ⊂ 2 j Γ where Γ is a fixed compact set in R n \ 0. This implies that the terms of the above sum are almost orthogonal and therefore that|| ξ s Bu|| 2 L 2 ≤ C || Bϕ(D)u|| 2 L 2 + C j∈N 2 2js || Bϕ j (D)u|| 2H s -boundedness of B assuming its L 2 -boundedness. Now, going back to the decomposition (99), we can estimate the L 2 -norm of the first term of that sum as follows: N > n/2, we have applied Lemme 6 of[CoMe] and we refer to it for the proof. Hence,||Bϕ(D)u|| 0 ≤ C |α|≤N ||∂ α ξ b(x, ξ)|| L ∞ ||u|| 0 ,which proves the L 2 -boundedness of Bϕ(D). As for the other part of (99), thanks to the almost orthogonality of the sum, it suffices to study the operator Bϕ j (D). Let us write Bϕ j (D)u = B φ0 (2 -j D)u j where u j = ϕ j (D)u, φ0 ∈ D(R n \0) and φ0 = 1 on supp(ϕ 0 ), and let us estimate the operator norm of B φ0 (2 -j D). We can write, for any v ∈ S (R n ),B φ0 (2 -j D)v(2 -j x) = (2π) n e i2 -j xξ b(2 -j x, ξ) φ0 (2 -j ξ)v(ξ) dξ (2π) n = (2π) -n e ixξ b(2 -j x, 2 j ξ) φ0 (ξ)v(2 j ξ)2 jn dξ .Therefore, by applying once more Lemme 6 of[CoMe], we obtain2 jn ||B φ0 (2 -j D)v|| 2 0 ≤ C sup x∈R n |α|≤N ∂ α ξ b(2 -j x, 2 j ξ) φ0 (ξ) 2 dξ 2 jn ||v|| 2 0 ; hence, ||B φ0 (2 -j D)v|| 0 ≤ C |α|≤N ||∂ α ξ b(x, 2 j ξ) φ0 (ξ)|| L ∞ ||v|| 0 .

  |α|≤N || ξ |α| ∂ α ξ b(x, ξ)|| 2 L ∞ j ||u j || 2 0 ≤ C sup |α|≤N || ξ |α| ∂ α ξ b(x, ξ)|| 2 L ∞ ||u|| 2 0 ,which proves the L 2 -boundedness of the operator j∈N Bϕ j (D) and this achieves the proof of Lemma 2.5.

The para-linear equation, Proof of Proposition 3.1We follow the same steps as those in[Bie] or[BiBo] and refer to these papers for missing details.