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Abstract. Stochastic subgrid parameterizations enable en-
semble forecasts of fluid dynamic systems and ultimately
accurate data assimilation (DA). Stochastic advection by
Lie transport (SALT) and models under location uncer-
tainty (LU) are recent and similar physically based stochas-
tic schemes. SALT dynamics conserve helicity, whereas
LU models conserve kinetic energy (KE). After highlight-
ing general similarities between LU and SALT frameworks,
this paper focuses on their common challenge: the param-
eterization choice. We compare uncertainty quantification
skills of a stationary heterogeneous data-driven parameter-
ization and a non-stationary homogeneous self-similar pa-
rameterization. For stationary, homogeneous surface quasi-
geostrophic (SQG; QG) turbulence, both parameterizations
lead to high-quality ensemble forecasts. This paper also
discusses a heterogeneous adaptation of the homogeneous
parameterization targeted at a better simulation of strong
straight buoyancy fronts.

1 Introduction

Geophysical fluid dynamics and other turbulent flows cover
a wide range of spatial and temporal scales (see, e.g. Fox-
Kemper, 2018). However, numerical simulations and obser-
vations are limited in the range of scales that can be simu-
lated or observed. Accordingly, deterministic subgrid models
or parameterizations (e.g. Margolin et al., 2006; San et al.,
2013; Bachman et al., 2017; Voosen, 2018) and regulariza-
tions (e.g. nugget in optimal interpolation, Tandeo et al.,

2014) are incorporated into numerical simulations and mea-
surement processes. The limited resolution of these numer-
ical simulations introduces unknown errors which are con-
tinuously amplified during the course of the simulation and
which compound with the measurement errors to the extent
that the simulations model the true chaotic nature of fluid
dynamics. Improvements in accuracy of these simulations
can sometimes be made by judicious use of data assimilation
(DA) techniques. In the data assimilation process, observa-
tions (data) are integrated into the model state of the numer-
ical simulation limited by imperfect physics and imperfect
initial conditions. DA proceeds by alternating between fore-
cast and analysis cycles. In each analysis cycle, observations
are combined with the results from a prediction model (the
forecast) to produce a so-called analysis. The analysis is ex-
pected to be more accurate than either predictions based on
physical models without incorporating observations or pre-
dictions from physics-free interpolations of the observations.
In order to optimize the analysis cycle, confidence in both
the observations and the prediction needs to be quantified.
Observational accuracy depends on the instrumental preci-
sion and sampling; and well-known uncertainty quantifica-
tion (UQ) techniques are available to estimate the uncertainty
associated with these limitations. In contrast, the uncertainty
due to imperfect model physics is more difficult to quan-
tify because often a “perfect model”, exact solution, or di-
rect numerical simulation is not available or feasible for the
intended application.

Historically introduced to address the limited range of
scales simulated (e.g. Orszag, 1970; Leith, 1971), stochas-
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tic subgrid parameterization is now a widely used UQ tool
for assessing the impact of imperfect physics in numerical
simulations. In particular, it is generally thought that build-
ing such stochastic parameterizations from physical princi-
ples promises accuracy and robustness (Berner et al., 2017).
Several authors have addressed the issue of stochastic sub-
grid parameterization evaluation through averaging or ho-
mogenization procedures (e.g. Majda—Timofeyev—Vanden-
Eijnden — MTV — method; see Majda et al., 1999). Corre-
lated additive and multiplicative noises usually play a key
role in these approaches (e.g. Gottwald and Melbourne,
2013). Sardeshmukh and Sura (2009), Sardeshmukh et al.
(2015), and Pearson and Fox-Kemper (2018) highlight the
relevance of skew-symmetric and multiplicative noises in
geophysical fluid dynamic applications. Mimetic symmetries
built into the fluid dynamics and stochastic subgrid model
formulations may preserve some important physical invari-
ants — a desired properties of many UQ models (e.g. Frank
and Gottwald, 2013; Sapsis and Majda, 2013; Mitchell and
Gottwald, 2012; Majda, 2015) and DA algorithms (Janji¢
et al., 2014). Other stochastic subgrid parameterizations in-
volve memory terms, justified by the Mori-Zwanzig equa-
tions (Chekroun et al., 2011; Lu et al., 2017).

The dynamics under location uncertainty (LU) are a type
of systematic stochastic subgrid parameterization introduced
by Mikulevicius and Rozovskii (2004b) and Flandoli (2011)
for the theory of well-posedness of stochastic partial dif-
ferential equations and by Mémin (2014) for more applied
purposes. More theoretical results about models under loca-
tion uncertainty are discussed in Resseguier et al. (2017a).
This framework has been successfully applied to uncer-
tainty quantification (Resseguier et al., 2017b), geophysics
(Resseguier et al., 2017c), attractor exploration (Chapron
et al., 2018), and optical flow (Cai et al., 2018).

A similar class of models called stochastic advection by
Lie transport (SALT) was first derived in Holm (2015) for the
time-homogeneous subgrid parameterization and extended to
the inhomogeneous case in Gay-Balmaz and Holm (2018).
In the following, we will refer to this class of models as
SALT. The approach used is Hamilton’s variation principle
with the constraint that fluid parcels move according to a Eu-
lerian stochastic subgrid model; see Holm (2015) and Cotter
et al. (2017). A local well-posedness result for the 3D SALT
Euler equations is proved in Crisan et al. (2019), and a global
well-posedness result for the 2D case is proved in Crisan and
Lang (2019). Numerical studies for the implementation of
the SALT subgrid parameterization are discussed in Cotter
et al. (2019a, 2018) for a 2D Euler model and two-layer 2D
QG dynamics. A first study on employing SALT dynamics
for data assimilation is provided in Cotter et al. (2019b).

In both LU and SALT frameworks, the velocity is decom-
posed into a random large-scale component, w, and a time-
uncorrelated component, 0B =0dB, /dt. The latter is Gaus-
sian (conditionally on some large-scale quantities), corre-
lated in space, with possible heterogeneities and anisotropy.
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Hereafter, this unresolved velocity component will further
be assumed to be solenoidal. To parameterize those spatial
correlations, we apply an infinite-dimensional linear opera-
tor, o, to a d-dimensional space—time white noise, B. Holm
and coauthors rely on a different but equivalent notation. It
directly explicates the spectral decomposition of the time-
uncorrelated velocity spatial covariance. Specifically, the
small-scale velocity reads a(x)B = Zpsp(x)de (t)/dz,
where (W), is a set of independent 1D Brownian motions
and (¢ p) p is a set of orthogonal functions.

That unresolved velocity is the central object of both
SALT and LU approaches. The statistics of this velocity —
defined either by o or (§,), — constitute the parameteriza-
tion of the random model. In this paper, we discuss several
choices for this parameterization and dedicate significant dis-
cussion to the physical principles and assumptions about the
flow regime underlying each choice. To better motivate this
work, we will highlight the strong links and some formal dif-
ferences between the LU and the SALT approaches. How-
ever, a full — theoretical and numerical — comparison of LU
and SALT is beyond the scope of this paper.

The paper is structured as follows.

— Section 2.1 focuses on parametric non-data-driven
choices. Specifically, we propose a non-stationary and
tuning-free improvement of the work of Resseguier
et al. (2017b) based on self-similar assumptions and
possible heterogeneous modulation. Links with the
Smagorinsky subgrid parameterization and non-linear
energy fluxes are also discussed.

— Section 2.2 discusses a data-driven stationary but pos-
sibly heterogeneous parameterization implemented by
Cotter et al. (2019a, 2018). The method relies on de-
composition of empirical orthogonal functions (EOF)
also known as proper orthogonal decomposition (POD)
or principal component analysis (PCA).

— Section 3 begins by presenting the deterministic and
stochastic surface quasi-geostrophic (SQG) models,
their numerical setup, and simulation parameters. These
are followed by detailed discussions of uncertainty
quantification skills in Sect. 3.4.

— Sections 4 and 5 concludes this work.

Additionally, in Appendix A we include a mathematical
summary of LU and SALT formulations for the interested
readers. The aim here is to highlight the similarities and dif-
ferences between the two approaches. Their differing sets of
invariants are listed.

The choice of surface quasi-geostrophic flow is conve-
nient, since the SALT and LU versions of the SQG dynamics
coincide; thus the results presented apply to both SALT and
LU models. Furthermore, present interest in oceanic subme-
soscale motions for which SQG dynamics are often a rea-
sonable approximation (e.g. Lapeyre and Klein, 2006b; Cal-
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lies et al., 2016) and the fact that SQG offers the possibil-
ity of reconstructing subsurface flow properties from surface
satellite observations (e.g. LaCasce and Mahadevan, 2006;
Isern-Fontanet et al., 2006, 2008; Klein et al., 2009; Wang
et al., 2013) have resulted in a recent surge in the use of the
SQG equations for geophysics. Accordingly, the discussion
can focus on the parameterization choices in this timely ap-
plication.

2 Parameterization of SALT and LU models: the
statistics of the unresolved velocity

2.1 Parametric and self-similar model for the
unresolved velocity

In this section, we propose parametric non-data-driven
models for the unresolved velocity statistics. Similar to the
Kraichnan model (Kraichnan, 1968, 1994; Gawedzky and
Kupiainen, 1995; Majda and Kramer, 1999), Resseguier et al.
(2017b) introduce an unresolved velocity which is homoge-
neous and isotropic. Even though this method leads to good
numerical results, some parameters need to be tuned. To
overcome this drawback, we propose here a parameter-free
improvement based on what we call the absolute diffusiv-
ity spectral density (ADSD). New subgrid statistics will be
defined at each time step from the resolved velocity kinetic
energy (KE) spectrum. Finally, we also propose a heteroge-
neous modulation of the previous method based on the local
energy flux and discuss the link with Smagorinsky-like sub-
grid parameterizations.

2.1.1 Parameter-free and non-stationary homogeneous
model

We first define the statistics of the small-scale velocity
through what we call the ADSD. Then, we explicate how to
sample the unresolved velocity from this ADSD.

In Resseguier et al. (2017b), the absolute diffusivity (i.e.
KE times correlation time; Falkovich et al., 2001; Penland,
2003; Klyatskin, 2005; Vallis, 2006; Keating et al., 2011) of
the unresolved velocity is twice the variance tensor trace,
tr(a) = IE||(7dBt||2 /dt, whereas the unresolved kinetic en-
ergy is tr(a)/dt. Clearly, this kinetic energy has no physical
meaning. Indeed, it depends on the simulation time step, and
one should have the possibility to choose the time step as
close as possible to zero. Thus, the unresolved velocity am-
plitude is specified through an absolute diffusivity rather than
through a KE. In the mathematics literature of homogeniza-
tion, Kubo-type formulas may be seen as what physicists call
absolute diffusivities. More generally, since the variance of a
time-continuous white noise is infinite, it is more relevant to
deal with absolute diffusivity rather than kinetic energy in or-
der to describe the statistics of the time-uncorrelated veloc-
ity. Thus, keeping a spectral approach, we define — for any
spatiotemporal field — an absolute diffusivity spectral den-
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sity denoted A (k) at the wavenumber k. We will rely on this
ADSD rather than on the KE spectrum, E(x). Since the ab-
solute diffusivity is the variance multiplied by the correlation
time, it is naturally to define the ADSD as follows:

Lk — 1/k
Ve  KE(®K)

is the eddy turnover time at the scale 1/« and v, is at char-
acteristic velocity at this scale. Accordingly, we have

A() 2 E(0)t(x), where (k) =

ey

Al) =k 3PEV2 (1), )
If in addition we assume a KE self-similar distribution,
E(k)=C*™, (3)
and we obtain

A(k)=Ck™", 4)

where r = (s 4+ 3) /2.

We aim at defining the unresolved velocity ADSD from
the large-scale velocity. For this purpose, we will assume the
self-similar model (Eq. 4) is valid at all spatial scales. At
each time step, we compute the ADSD of the large-scale ve-
locity, Ay, from Eq. (2). Then, we fit the coefficients C and
r of Eq. (4), as illustrated by Fig. 1. Let us denote these co-
efficients with Cy, and ry,. Note that they are time-dependent
because they depend on w which is. More precisely, we es-
timate the coefficients Cy and ry in a wavenumber interval
which approximately represents a inertial range of fully re-
solved scales (i.e. before the spectrum roll-off). In the left
panel of Fig. 1, this interval is delimited by two vertical lines.

From there, we can define the unresolved velocity ADSD
in such a way that the total velocity — resolved plus unre-
solved — meets Eq. (4) at small spatial scales with the same
coefficients (Cy and ry). Since the two velocity components
are not correlated, the total ADSD is the sum of the ADSD
of each velocity component. In the inertial range, this reads

Ak)= Awk) + Agpk) =Cyux ™. 3)
;\/_/
Leading at Leading at

large scales  small scales

Therefore, the unresolved ADSD is chosen to compensate
the resolved ADSD roll-off — introduced by the deterministic
subgrid parameterization — at small scales. Specifically, the
unresolved ADSD is set to

Ag B (i) = max (0, Cpk ™™ — Ay (k) fip (k). (6)
As previously, fép is a band-pass filter between «,,, and x ;.
In practice, we set « s to the theoretical resolution,

T

KM
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Figure 1. Buoyancy field (m 5_2) (a, b), KE spectrum (m2 s—2 /(rad m~ 1)) (¢, d), and ADSD (m2 s—1 /(rad m~1)) (e, ) of the resolved
velocity, at t =0d (a, ce) and r = 15d (b, d, f), in blue; ADSD of the unresolved velocity (without a multiplicative constant), in green; and
slope —% (¢, d) and corresponding ADSD (e, f) in a black solid line. The two dashed vertical lines define the interval where coefficients
Cw and ry are fitted. The right-hand-side dashed vertical line is fixed (see Appendix B for its specification). The left-hand-side dashed line
corresponds to the energy-injecting scale. This scale is estimated — at each time step — as corresponding to the maximum of the compensated
KE spectrum (i.e. KE spectrum divided by a theoretical spectrum). The dashed oblique line is the resulting fit (it is set to meet Ay in the
left bound of the fitting interval). The unresolved velocity is still restricted to a narrow spectral band, specifically between the dotted dashed
line and the right end of the plot. Nevertheless, the form of its spectrum varies in time and is determined by the spectrum of the large-scale
velocity. This particular initial condition corresponds to case 2 studied by Constantin et al. (1994, 1999, 2012) at a resolution of 1282

and «,, to the effective resolution, which is estimated as fol-

lows:
1/p
(R o

where p is the order of the Laplacian used as a deterministic
subgrid tensor (i.e. % = —v(—A)?b). The justification of
the above formula is left in Appendix B. Compared to the
work of Resseguier et al. (2017b), the value of «,, is less
critical. Indeed, Eq. (6) implies a weaker unresolved ADSD
at larger scales where the resolved ADSD, A, is stronger.
This softens the threshold effect introduced by the band-pass
filter fgp.

In practice, we set an upper bound for the estimation of r,.
Without this upper bound, a concentration of energy at rela-
tively large wavenumbers — scales smaller than «,, — in the
resolved fields can become unstable. Indeed, this localized
energy concentration would decrease the r, estimation, and
hence increase the unresolved ADSD A through Eq. (6)
at large wavenumbers — larger than «,,. This implies a larger

1n(0.95)
In(0.1)

®)

Km
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noise intake, which can induce a larger concentration of en-
ergy at relatively large wavenumbers in the resolved fields,
resulting in a positive feedback loop. To prevent these un-
physical instabilities, the slope r, is bounded.

We have proposed a way to compute the unresolved
ADSD A j; from the large-scale velocity statistics. From that
ADSD, it is possible to sample the unresolved velocity, as ex-
plained in the following.

A 2D homogeneous divergence-free small-scale velocity
can be constructed by filtering a 1D white noise B with a 2D
divergence-free filter 6 = Vi, (Resseguier et al., 2017b).

€))

where » denotes a spatial convolution. This velocity field can
be easily sampled in Fourier space.

GB:&*B:VLJG*B,

— - -~ 1 - EB\

o B(k) =ik, (k)B(k) = ik s (k) —=(k), (10
(k) =ik~ v, (k)B(k) mlW(||||)m() (10)

where c@, is the spatial Fourier transform of dB; and j%’t

is a discrete scalar white-noise process of unit variance in
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space and time. Thus, the small-scale velocity is defined by

the Fourier transform of the streamfunction kernel, IZU.
In order to link the unresolved ADSD to the kernel o
which defines the unresolved velocity, we note that

A () = E; (k)dr = ﬁ % dbgx Hg(t,/c)H2
[0,27]

—2m*| 7, (I,K)f, (11)

where £ (€2) is the surface of the spatial domain 2 and 6 is
the angle of the wave vector k. From Egs. (6)—(11), we can
finally express the unresolved velocity as follows:

;E(t,k)
\/_ «/A_

\/maX(O Cullkl ™ — Ay (IK]))
f 27 [[k|13

— ik (1, ||k||) L (k), (12)

13
m {13)

Again the simulated unresolved velocity ADSD is physi-
cally relevant, while the KE spectrum is not. Indeed, the sim-
ulated unresolved velocity ADSD is expected to match the
true (time-correlated) unresolved velocity ADSD, whereas
the KE spectra of the simulated and true unresolved veloc-
ities differ. Indeed, the true unresolved velocity correlation
time spectral distribution t(x) is not restricted to the time
step dr.

The tuning-free Eq. (12) is attractive because it is not a
priori restricted to stationary flows or to a particular type
of 2D incompressible dynamics. In order to appreciate that,
we can numerically compare it with the previous method of
Resseguier et al. (2017b). For stationary, fully developed tur-
bulence and after including a tuning stage to optimize the
match, both parameterizations give approximately the same
results. Therefore, in order to perceive improvements be-
tween the two simulations, we must either work with non-
stationary flows or with erroneous tuning. This latter scenario
is of course the meaningful one for the application of such
models to the real world, where turbulence is non-stationary
and heterogeneous, and so region-by-region and season-by-
season tuning is impossible to do with quality checks in
place.

We believe that non-stationarity may yield a fair, yet ide-
alized, comparison. So, we here compare the two parame-
terizations in a non-stationary case. Figure 2 below shows
simulated buoyancy fields initialized with “case 2 of Con-
stantin et al. (1994) and corresponding errors. After 2d of
advection, there is no turbulence yet, and a 128 x 128 resolu-
tion is sufficient to correctly resolve every scale. Therefore,

www.nonlin-processes-geophys.net/27/209/2020/

no stochastic subgrid parameterization is needed. The self-
similar method automatically adapts to the situation, whereas
the method of Resseguier et al. (2017b) introduces spurious
buoyancy isoline roughness by randomly folding the isolines.
Accordingly, the method of Resseguier et al. (2017b) intro-
duces more errors.

2.1.2 Heterogeneity

Our stochastic parameterization randomly folds tracer iso-
lines. This process is often desirable. For instance, it can
trigger physically relevant instabilities, such as the filament
instabilities highlighted by Resseguier et al. (2017b). Af-
ter these instabilities have been randomly triggered, ed-
dies are formed by non-linear processes. In a similar way,
Figs. 3 and 4 show that our stochastic dynamics enable a
more-realistic eddy distribution than deterministic simula-
tions. However, a homogeneous small-scale velocity may
also perturb the tracer isolines which should remain still (i.e.
which remain still in high-resolution deterministic simula-
tions), e.g. sharp, straight, and coherent fronts. Figure 4 also
highlights this drawback. A typical application of this prob-
lem in more realistic flow simulations is the simulation of jets
like the Gulf Stream and regions of the Antarctic Circumpo-
lar Current. These real-world jets are associated with diffu-
sivity suppression (Ferrari and Nikurashin, 2010), and this
effect is not present in our formulation so far. If we seek to
preferentially perturb some tracer gradients, a heterogeneous
small-scale velocity is required. Note that the heterogeneity
discussed here needs to be non-stationary and thus cannot be
represented by the stationary EOF presented later in this pa-
per. Besides, in a small ensemble of realizations, relevant het-
erogeneity of the small scales may make the spreading more
accurate for UQ and enable comparable ensemble forecast
accuracy with fewer members. We here propose a possible
heterogeneous version of the previous method.

In order to obtain a heterogeneous model of the unresolved
velocity, we need a heterogeneous version of the ADSD
(Eq. 4). Since the wavenumber, k, cannot depend on the posi-
tion, x, the constant, Cy, and/or the spectrum slope, 7, should
do. A spatially varying spectrum slope is probably difficult to
estimate. Hence, we restrict ourselves to a spatially varying
constant, Cy, and a spatially homogeneous spectrum slope.
The constant may also varies with the time and the wavenum-
ber. According to the Kolmogorov theory (e.g. Frisch, 1995)
and Eq. (3):

Cw(x,1,K) = cst.ef (x, k), (14)

where ep is the energy flux through the spatial scales and
p = 1/3 for a SQG flow (cst. is an abbreviation for constant).
More specifically, the energy flux describes the energy mov-
ing from scales larger than 1/« toward smaller scales and can
be computed as follows:

er(x.1.6) 2 g7 (w-V)q)z. (15)

Nonlin. Processes Geophys., 27, 209-234, 2020
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Figure 2. Buoyancy field (m s_2) (a, b, ¢) and corresponding normalized error (dimensionless) (d, e) after 1 d of advection for the 1024 x 1024
reference deterministic simulation (a), the 128 x 128 LU simulation with the self-similar parameterization (b, d), and the 128 x 128 LU

simulation with the method of Resseguier et al. (2017b) (c, e).
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Figure 3. Presented from left to right are the buoyancy field (m s_z), KE spectrum (m2 s—2 /(rad m_l)), ADSD (m2 s—1 /(rad m_l)), and
variance tensor at ¢ = 15 d for (from top to bottom) a 10242-resolution deterministic dynamics and a 1282-resolution deterministic dynamics.
This particular initial condition corresponds to case 2 studied by Constantin et al. (1994, 1999, 2012) at a resolution of 1282. The low-
resolution deterministic dynamics shows too many filaments and not enough eddies.

where ¢ is the transported (up to possible source terms) quan-
tity, g~ is the low-pass filtered version of g (setting to zero
the Fourier modes of g which have frequencies larger than
k), and ‘e stands for the spatial average (Frisch, 1995). For a
SQG flow, g corresponds to the buoyancy normalized by the
stratification: ¢ = b/N. The energy flux is essentially a third-

Nonlin. Processes Geophys., 27, 209-234, 2020

order moment. It is very important because it describes the
cascade of the flow by non-linear energy transfers (Frisch,
1995).

If the energy flux through scale is understood locally in
space (as indeed Smagorinsky, 1963, also assumes), Eq. (14)
provides a natural parameterization of the unresolved ve-

www.nonlin-processes-geophys.net/27/209/2020/
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variance tensor at # = 15 d for 1282-resolution stochastic dynamics with (from top to bottom) homogeneous unresolved velocity, unresolved

velocity modulated by || Vb]|1/4

, and unresolved velocity modulated by eé/ ® This particular initial condition corresponds to case 2 studied

by Constantin et al. (1994, 1999, 2012) at a resolution of 1282. The low-resolution stochastic simulations do not show too many filaments
and show enough eddies. Among the stochastic simulations, the energy-flux modulation better preserves the sharp straight fronts (e.g. front

from (0m, 2 x 105 m) to (2.5 x 105 m, 5 x 10° m)).

locity heterogeneities. We simply modulate the unresolved

ADSD (Eq. 6) by the heterogeneous ratio e{; /g, averaged
over the resolved inertial range wavenumbers.

=~ 1 max (0, Cy k[~ — Ay (1))
oB(t,k) = ikt
0= 21kl
dB,
k| k), 16
Jee(llkll m( ) (16)
. ek (t,x) ~
aB(l,x):P e oB(t,x) s (17)
e (1) —
—~—  Homogeneous
Heterogeneous  velocity
modulation

www.nonlin-processes-geophys.net/27/209/2020/

where P =13 — A~'VVT is the projector onto the space
of free-divergence functions. This parameterization is phys-
ically meaningful, since, locally in space, a stronger direct
cascade at large scales (larger er and thus larger Cy) sug-
gests that the unresolved velocity (large) should maintain
this cascade by folding smaller-scale tracer structures. Fur-
thermore, considering that the energy flux is a third-order
structure makes this parameterization relevant to differenti-
ate between strait fronts and curved structures (e.g. eddies).
Indeed, at least three points are needed to define a curvature
and differentiate between these structures. Figure 4 confirms
that this modulation enables a more accurate spatial distribu-
tion of the stochastic folding.

In order to keep a divergence-free velocity and the ensuing
properties (e.g. energy conservation), the modulated velocity
is projected onto the space of free-divergence functions, us-
ing the operator P. Because of that we do not consider the
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advection correction w* — w = —%(V -a)T of the LU for-
malism. Indeed, here the variance tensor has the simple form
a= %tr(a)ld. As such, the advection correction is a gradient
field and is hence removed by the projection onto the space
of free-divergence functions.

Although relevant, the comparison of Figs. 3 and 4 —
about front dynamics — remains qualitative. For a quantita-
tive demonstration, adapted metrics should be used. Indeed,
simple isotropic, homogeneous second-order statistics (e.g.
KE spectra) cannot distinguish between eddies and filaments.
Bi-spectra may overcome this drawback, since they express
three-point statistics. This quantitative analysis would ne-
cessitate studies of the metrics themselves. Therefore, these
analyses will be addressed in future work.

Many other closures rely on the Kolmogorov (Kol-
mogorov, 1941) model (Eqs. 3-14): in particular, the fa-
mous Smagorinsky model (Smagorinsky, 1963) and its vari-
ants (e.g. Fox-Kemper and Menemenlis, 2008; Bachman
et al., 2017) provide a path to developing deterministic
and dissipative scale-aware subgrid models. Typically, these
models result in a Laplacian dissipation which involves
a heterogeneous eddy diffusivity or viscosity coefficient,
vsm- Aside from their heuristic theoretical justification, these
Smagorinsky-type subgrid terms are formally equivalent to

the turbulent dissipation of our stochastic model: V - (%qu)

(Resseguier et al., 2017a), where a = 2vsy 14 and g is a trans-
ported quantity. This similarity suggests that a Smagorinsky-
type model could provide a good estimate for our variance
tensor and thus for the heterogeneity of the unresolved ve-
locity.

The goal of the Smagorinsky model is to optimize the
KE spectrum by targeting a specific turbulent diffusive scale
adapted to the simulation resolution. A turbulent dissipation
coefficient expression can be derived from the Kolmogorov
model (Egs. 3 and 14) and the closure,

€F = €D, (18)

where ep is the dissipation, a second-order moment re-
lated to the molecular or turbulent diffusion. To develop a
Smagorinsky-type model, the resolved flux of the energy-
like conserved invariant is equated to the dissipation of the
energy invariant such that

ép = vsm| Vall*. (19)

From there, one can obtain an eddy diffusivity or viscosity
coefficient proportional to || Vg I". For an SQG flow, the ex-
ponent is h = 1/2, where ¢ = b is the buoyancy (Bachman
et al., 2017).

In the Kolmogorov theory of homogeneous and stationary
turbulence, the energy flux is a constant of the flow, and the
closure (Eq. 19) is an exact result of a simple energy budget
over an ensemble mean. Indeed, there is no accumulation of
energy at any scales in a stationary regime. This closure is
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very useful since the dissipation (Eq. 19) is generally much
simpler to compute than the energy flux. Nevertheless, in ev-
ery flow realization, the energy flux and the diffusion vary
with space and time, and they do not match each other lo-
cally. For instance, a strong straight front of an SQG flow
involves a large dissipation but no energy cascade because
the velocity is aligned with front (see Eq. 15). Moreover, in
any bounded, limited resolution situation, the inertial cascade
range is limited so the energy flux through scale varies with
the wavenumber, especially outside the inertial range.

The discrepancy between energy flux and dissipation is not
so much of an issue for the Smagorinsky model because its
aim is the optimization of a second-order statistics at small
scales. Unfortunately, this closure cannot be used to sim-
plify the modulation computation in our parametric random
model. Indeed, the stochastic dynamics relies on processes —
such as folding — associated with higher-order statistics. Fig-
ure 4 (middle right) illustrates this statement. The following
unresolved velocity parameterization is used there:

=~ 1 max (0, Cy k]| ™" — Ay (|Ik[))
aB(t, k) = ikt
0 ="a 2 kP
dB,
Br(lIkI) k), (20)
Jee(lIk|l Jar
. V||V, ~
aB(t,x):P{ IV o) } @
1/2 —
VoI~ Homogeneous
Heterogeneous velocity
modulation

Along sharp straight fronts, the dissipation will be larger. Ac-
cordingly, the associated modulation || V5||!/# enhances the
stochastic folding where one would need it to weaken.

2.2 Data-driven model for the unresolved velocity

In this section, we detail a procedure proposed by Cotter et al.
(2019a) for the estimation of the (weighted) EOFs, (&; )k, in-
volved in the unresolved velocity definition,

oB =Y EdW,/dt. (22)
k

If we denote Ag as the L2 norm of those EOFs, their nor-
malized versions (§;, = &,/ x)r are the eigenvectors of the
self-adjoint operator,

s [[owa™ oy rmay. e3)
Q

defined by the small-scale velocity covariance
[o(x)aT (y)/dt]. (h/di)i is the set of eigenvalues of
this operator.

The data-driven methods of Cotter et al. (2019a) relies on
Lagrangian paths defined at two “resolutions”. The first para-
graph of this section defines these two types of Lagrangian
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paths. Then, we propose several ways to identify the time in-
crements of the infinite-dimensional Brownian motion, o B;,
from these Lagrangian paths. Preprocessing of the incre-
ments are needed in order to meet some structural assump-
tions. After this, we relate the increment covariance to the
EOFs.

2.2.1 Preliminary definitions

We introduce two types of velocity field:

— ahigh-resolution velocity, v, on a fine mesh-grid (5122),

— a low-resolution velocity, v, on a coarse mesh-grid
(64%). This velocity field is a spatially low-pass-filtered
version of f.

Then, two types of Lagrangian path are defined:
— a “high-resolution flow”, X;; (t, t), defined by the high-
resolution velocity, u:

4Xij 1y = y y .
(t)_u(tvxl](t()vt)) and le(t()vto)_xl]vand

dr
24
with Xij = (iAx, jAY).

— a “low-resolution flow”, X j(t0, 1), defined by the low-
resolution velocity u:

dX;; o _
dt’(to,t)zu(t,Xij(to,t)) and X;;(fo.t0) =x;;. (25)

2.2.2 Candidate for the increment realization

In order to estimate the EOFs, (&;);, involved in Eq. (AS), we
assume that we can observe increments

0 AByuar =0 (Bmin)ar — Bmar.) (26)

We will interpret the following residual flow increments as a
realization of the above:

— A
AX[; = X;;(mAT, (m+ 1)AT)

—X;j(mAT, (m+ DAT). 27)
2.2.3 Preprocessing

The increments are supposed to be centred and divergence
free (as V - &; = 0, Vi). Therefore, after computing the resid-

ual flow increments, (&7( :;l) , they are centred,
m
m A —<.m A= m
AX’,.]. = AX;; —E{AX;;), (28)

with the estimator

(29)

m=0

and projected onto the space of divergence-free functions,

A . _
AX]P=P{AX']}), with P=T4—A'VVT. (30)
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2.2.4 Covariance, quadratic covariation, and EOF

Then, we can define the EOFs by an estimate of the spatial
covariance of the residual flow increments (averaging over
the time index, m).

D E (xiE (xpg)
k
=0 (x;j)0! (xpg) (3D
| N=1 -
~ omar 2 AN (axn) @

In order to properly define the EOFs, we must add the fol-
lowing orthogonal constraint:

/ E;(0)TE;(x)dx =0 if i # . (33)
Q

Finally, after estimating the (&;); offline, the ensemble
forecast can generated online with Eq. (22).

3 Numerical simulations and uncertainty
quantification

3.1 Surface quasi-geostrophic model
3.1.1 Deterministic SQG

This is a simplified model to describe the ocean surface dy-
namics at mesoscales (i.e. horizontal length scale of the order
of 100km) (Blumen, 1978; Held et al., 1995; Lapeyre and
Klein, 2006a; Constantin et al., 1994, 1999, 2012; Lapeyre,
2017). The buoyancy, b, is transported at the ocean surface
by a horizontal velocity field,

Db

Dt (34
where % stands for the horizontal (deterministic or stochas-
tic) material derivative and S represents possible sources and
sinks. As the potential vorticity is assumed to be zero in the
fluid interior, the Fourier transform of the velocity stream-
function, 3@, is related to the Fourier transform of the buoy-
ancy, b, by the following SQG relationship:

. 1 .
¥ =———b, (35)
N k|

where N is the stratification and k is the wave vector.
3.1.2 Stochastic SQG

The LU and SALT versions of the SQG dynamics are for-
mally similar to the deterministic model. However, the buoy-
ancy transport (Eq. 34) has to be understood in the stochastic
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sense (Eq. A4). Furthermore, the SQG relationship (Eq. 35)
must be interpreted with

w* =Viy =vE=A)""2b/N), (36)

in the SALT context, and w = V¢ = VE(—A)"1/2(b/N),
in the LU one. Besides, in the LU SQG, the advecting drift
w* has to be divergence-free. We enforce this constraint by
projecting the drift correction (w* — w) onto the space of
free-divergence functions. So, we have

w'=Pw* —w)+w= —%P(V-a)T
+VE(=A)2b/N), (37

where P =13 — A~'VVT. Indeed, the SQG model is de-
rived from a QG model with a transport of the buoyancy
at the surface. Then, the potential vorticity (PV) is assumed
to be zero inside the fluid. In the SALT framework, the PV
reads 0 = PVg = V4 - w* + f + (fo/N)?32y, w* = Viy
and b = fpd; . For the LU dynamics, 0 = PV}, = Vi.w+
F+(fo/ N 02y, w= Vg and b = fod. .

Nevertheless, the slight difference between the SQG SALT
and the SQG LU models are not considered in this sec-
tion since we neglect the advection correction of the LU
framework (w* —w). So, we simulate the stochastic transport
(Eq. 34) coupled with the SQG relation (Eq. 36). The unre-
solved velocity statistics encoded in o are specified either by
the self-similar method of Sect. 2.1.1 or by the data-driven
method of Sect. 2.2.

3.1.3 Flow simulation
We perform a high-resolution simulation (5122 spatial grid)

of the deterministic SQG model with the following initial
condition:

2
b(x,t =0)=0.2Bgcos (T (x+ y))

+F(x—x80>+F(x—x(l)O)

—F(x—x81>—F(x—x?1), (38)
2
with F(x) = Bpexp (—%(%) <x2+ (%)2>), (39)
o L1\ L(i
and x;; = 2 <1> + 5 (]) (40)

The source term, S, involves a hyperviscosity, a linear drag,
and an additive stationary forcing such that

2

S = —vuvA*h— le + Apsin (kfx) sin (K y) . A1)
F

The parameters of the simulations are summed up in Table 1.
The influence of the initial condition remains for about a

Nonlin. Processes Geophys., 27, 209-234, 2020

Table 1. Parameters of the simulation.

Parameters Value

L (domain length) 10°m

By/N 324ms~!

Vb2(t = 0)/N 1.16ms™!

VB2t =100d)/N 228 ms~!

Aptg/N 324ms~!

1/t 216 x 1077 s~ ~ 1/(54d)
(k& k) (3Q2r/L),2(2m/L))

vy /dx8 3.39x 1078571

month. Then, the turbulence is maintained by the forcing as
illustrated by Fig. 5.

From r =50d to t = 100d, the EOFs of the data-driven
method are learned. From ¢ = 100d to ¢t = 130d, the deter-
ministic high-resolution simulation is used as a reference.
In this time interval, several stochastic low-resolution (64%)
simulations are performed and compared. These simulations
are initialized at = 100 d with the reference high-resolution
simulation projected at low resolution (i.e. keeping only the
Fourier modes associated with a coarse-resolution grid).

3.2 Learning and analysis of the EOF

Here, we describe the convergence of the EOF estimation.
The accuracy of this estimation is in particular a function of
the number of snapshots used and of the Lagrangian advec-
tion time, AT. We first describe the convergence with the
number of snapshots and then — as a remark — the conver-
gence with the Lagrangian advection time, AT .

The EOFs are learned between t =50d and r =100d
from 12465 spatial fields of residual flow increments. Even
though a large number of snapshots are used, the correla-
tion time of the residual flow increments is about 1d. This
is not negligible compared to the estimation time window:
50d. Accordingly, the EOFs are not fully converged. But,
we expect this convergence to be sufficient for the present
work. Moreover, for real applications at this spatial scale, we
expect the unresolved velocity statistics to be non-stationary
on temporal scales larger 50d. Thus, learning a unresolved
velocity stationary statistical representation on a larger time
window might be difficult in practice. Therefore, even if our
EOF estimation is not converged, it represents a realistic test
case.

Remark 1. The integration time of the flows, AT,
is a critical parameter for the definition of the EOF.
Indeed, for small advection time, AT, the length
of an increment of a Lagrangian flow path is pro-
portional to the velocity and to the advection time.
This is the so-called ballistic regime (Falkovich
et al., 2001; Vallis, 2006). In particular, residual
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flow increments squared norm would be propor-
tional to AT?Z; the variance tensor estimator would
be proportional to AT; and the estimated EOFs
would be proportional to v/AT. With a larger ad-
vection time, AT, the Lagrangian velocity decor-
relates — along the flow path — from the initial
Lagrangian velocity. When the advection time be-
comes larger than the correlation time of the La-
grangian velocity, the flow path begins to act as
a Brownian motion (Falkovich et al., 2001; Pen-
land, 2003; Klyatskin, 2005; Vallis, 2006; Keating
et al., 2011). The length of a displacement scales

www.nonlin-processes-geophys.net/27/209/2020/
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as v/AT; ie. the Lagrangian velocity acts as a
white noise in time. This is the so-called diffusive
regime. Figure 6 illustrates this convergence with
the average tensor ag = %tr(a) with AT. In this
paper, the Lagrangian advection time AT is com-
puted from a CFL (Courant—Friedrichs—-Lewy con-
dition) at the coarse resolution of 642 — about 300 s.
Although it corresponds to the ballistic regime (i.e.
the flow increments are correlated), this choice is
coherent with the work of Cotter et al. (2019a) and
gives very good UQ results. Moreover, the resid-
ual flow increments — and hence the EOFs — are

219

Figure 5. Buoyancy (ms~2) (left), KE spectrum (m? s~2/(rad m~!)) (middle), and ADSDs (m? s~ ! /(radm™1)) (right) at z = 0, 30, 50 and
70 d of advection, for the deterministic SQG model at a resolution of 5 122.

Nonlin. Processes Geophys., 27, 209-234, 2020



220 V. Resseguier et al.: Data-driven versus self-similar parameterizations for SALT and LU

% 10° Convergence
T T T T
7 (a)

e tensor
w
T
©-
L

g
=
@
3
it
=
<

2000
1500
1000

500

Advection time (d)
Convergence

Averaged variance tensor

. .
0 0.5 1 1.5 2 2.5 3 35 4
Advection time (d)

Figure 6. Estimation of the spatial average of the trace of
the variance tensor divided by d =2, ﬁZf:]tr(a(xq)) =
ﬁzq’ilwi(xq)llz, as a function of the Lagrangian advection
time AT, for method 1 (described in Sect. 2.2) (blue plot) and
for method 2 (the flow increments defined by the integration of
the small-scale velocity along the high-resolution flow: AX?}- =

DA (4 — @) (1, X (m AT, 1))dr) (black plot). The red plot re-
lies on another method not described here. The bottom plot is an
enhancement of the top plot. For low AT values, the Lagrangian
velocities remain highly correlated during the interval [0, AT], i.e.
during the Lagrangian advection. It is the ballistic regime where
the flow increments scale linearly in time: ||§( ZL || o< AT. In that
regime, methods 1 and 2 are very similar, since the high-resolution,
X;j(mAT,t), and low-resolution, Y,-j (mAT,t), flows remain close
to each other. Above AT =1d, the final and initial small-scale
Lagrangian velocities, (u — %), are decorrelated. It is the diffusive
regi/mnfi where the flow increments scale as the square root of time:
IAX; | | o V/AT. This is the relevant regime for the estimation of
the EOF, since we meet the fundamental assumption of our model: a
Brownian behaviour for the small-scale flow. For method 1, the dif-
fusive regime is not visible, at least in this advection time window,
and the EOF estimation is theoretically not possible. In contrast,
method 2 provides a converged estimator of the variance tensor for
an advection time A7 > 1d.

spatially aliased, since a large part of those incre-
ments lives at small spatial scales but are spatially
sampled on a coarse spatial grid, x;;. Figure 7 con-
firms this idea. If all the 2 x 64> — 1 = 8191 EOFs
are considered, the ADSD of the unresolved veloc-
ity reveals a strong spatial aliasing.

Both the data-driven and the non-data driven methods ex-
hibit large unresolved velocities at the smallest scales of the
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coarse resolution grid (see Fig. 7). Nevertheless, the two
ADSDs are distinct. In particular, the data-driven method in-
volves some large spatial scales. One could think that these
large-scale components would disappear if the flow X and
X are integrated in a Eulerian way rather than in a La-
grangian way. However, with the advection time, AT, being
very small, few differences are expected between a Eulerian
and a Lagrangian advection. New numeric experiments con-
firm this idea (not shown). A complete study of these effects
is beyond the scope of this paper.

3.3 One realization

We now simulate the LU SQG dynamics (equivalent to SALT
SQG) (Egs. 34-36), at low resolution (642), with two pos-
sible parameterizations for the unresolved velocity: either
the data-driven model (see Sect. 2.2) or the parametric and
self-similar model (see Sect. 2.1). For the data-driven model,
we keep 200 EOFs. This choice will be explained in the
next section. For all simulations, there is a unique refer-
ence initial condition at = 100 d. This initial condition is
the low-resolution (64%) projection of the reference deter-
ministic high-resolution (5122) simulation (i.e. the Fourier
modes associated with large wave vectors are set to zero,
and the obtained spatial field is subsampled at the low res-
olution). Spatial fields, KE spectra and ADSD are plotted
in Figs. 8 and 10. For comparison purposes, we also show
the low-resolution deterministic SQG simulations and the
low-resolution (64) projection of the reference determin-
istic high-resolution simulation. As already pointed out by
Resseguier et al. (2017b) for free-decaying turbulence, the
realizations of the LU dynamics are no worse than a low-
resolution deterministic simulation. For the short-term sim-
ulations, our stochastic subgrid parameterizations have often
weak improvements on the low-resolution simulations, even
though, sometimes, the stochastic subgrid parameterization
can improve the simulation. Indeed, Resseguier et al. (2017b)
show that the LU dynamics at a resolution of 128 x 128 can
trigger filament instabilities by random destabilization and
hence obtain a more realistic proportion of eddies and fila-
ments. This is confirmed by Figs. 3 and 4, also at a resolu-
tion of 128 x 128. In Fig. 8, the resolution is coarser (64 x 64).
Therefore, the stabilizing deterministic subgrid tensor (hyper
viscosity) is stronger. This may explain an inhibition of fila-
ment instabilities here and hence less difference between de-
terministic and stochastic coarse simulations. Nevertheless,
our main goal is not improving a single simulation. Our main
goal is improving the uncertainty quantification — as devel-
oped below — without deteriorating single simulations.

Att =110d, all the spatial fields of Figs. 8 and 9 are still
similar, whereas at t = 120 d, the spatial fields strongly differ.
Thus, the predictability timescale — i.e. the time over which
initial conditions are forgotten — is between 10 and 20 d. The
larger features evolve more slowly, leading to a longer pre-
dictability timescale. This effect can be seen in the similar lo-
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cation across simulations of larger vortices in Fig. 10, while
the filaments between the vortices have lost all coherence. In
Fig. 11, the larger, more-coherent features persist in the en-
semble mean of the coarse-resolution simulations, while the
smaller scales cancel. It is the persistent features which are
the basis for robust forecasts as will become clear in the next
section, and it is the improvement of these robust features
that is the goal of the parameterizations, not the improvement
of individual filaments in individual ensemble members.

3.4 Uncertainty quantification

We now forecast two ensembles of 200 realizations following
the stochastic SQG dynamics (Eqs. 34-36), with the same
unique reference initial condition at = 100 d. Again, the en-
sembles members evolve at low resolution (64%). The first
ensemble is generated with the data-driven model for the un-
resolved velocity (see Sect. 2.2), while the second ensemble
is generated with the parametric and self-similar model for
the unresolved velocity (see Sect. 2.1). For the data-driven
model, we keep only 200 EOFs, since the number of EOFs
cannot be larger than the ensemble size without increasing
the complexity of the algorithm.

With such ensemble forecasts, we aim at representing the
variety of possible behaviours of the fluid dynamic system.
In particular, the spreading (i.e. the variance increase) of an
ensemble is expected to make an ensemble be closer to the
reference. In such a case, the standard deviation — at each
point and at each time — is expected to be of the order of
the bias. Figure 12 shows that both the data-driven and the
self-similar parameterizations achieve this goal everywhere
and for every time. The pointwise biases of the data-driven
method, of the self-similar method, and of a deterministic
simulation (at the same low resolution) are very similar (not
shown). Therefore, we only plot the pointwise bias of the
data-driven method. In Fig. 12, the represented biases and
error estimations (mean £1.96 times the pointwise standard
deviation') are normalized by the squared energy of the ref-
erence solution. Note that those relative pointwise biases in-
crease very quickly with time.

After + = 105d and especially after r = 115d, a bifurca-
tion plays a large role in the simulation error and its estima-
tion. This bifurcation is due to the chaotic trajectory of an
eddy — centred on (525, 300 km) at # = 105 d. Due to the in-
correct trajectory in the ensemble mean, a large yellow spot
develops in the bias images. Both ensembles capture well
this variability by creating similar spots. According to the
doubling of those spots, there are probably only two likely
trajectories for this eddy, at least until # = 118 d.

Similar UQ results have been obtained on a free-
turbulence flow (Resseguier et al., 2017b). This close anal-

Here, the buoyancy is not Gaussian. However, it is reasonable
to believe that mean 4-1.96 times the pointwise standard deviation
remains a simple and convenient approximate metric to define an
acceptable bias.

www.nonlin-processes-geophys.net/27/209/2020/

ysis has also compared the UQ potential of LU/SALT algo-
rithms against that of a deterministic dynamics with random
initial conditions. The latter has shown an underestimation of
errors by one order of magnitude.

Figure 12 offers a visual validation of our methods’ UQ
potential in the whole spatial domain. Nevertheless, the
pointwise laws of the ensembles are not Gaussian, since we
consider a non-linear evolution law with multiplicative noise.
Therefore, the pointwise confidence interval is not in gen-
eral a symmetric interval centred on the pointwise mean with
width 2 x 1.96 times the pointwise standard deviation. Such
an interval is only a first approximation. In order to be more
accurate in our analysis, we now focus on few spatial points.
There, we compute — at each time — the true ensemble-based
confidence intervals at 95 % and at 50 % and compare them
with the reference value. Figure 13 display the results at two
grid points. Again, the results are impressively good. Similar
UQ proxies have been presented by Cotter et al. (2019a) with
a SALT 2D Euler dynamics with Dirichlet boundary condi-
tions. This work also highlights the excellent UQ skills of our
frameworks.

To conclude this quantitative UQ analysis, we study the
effect of the number of realizations needed. How many is a
main issue in operational weather forecast centres, since each
realization is costly. Accordingly, we start again the UQ anal-
ysis but with 20 ensemble members only. Figure 14 shows
that the 97.5 % and the 2.5 % quantiles get closer, compared
to the 200-ensemble-member case. It means that the proba-
bility density tail estimations — i.e. the representations of ex-
tremes — are slower to converge than the more likely values.
Nevertheless, the ensembles still capture well the reference
dynamics of the centre of the distribution.

4 Conclusion

This paper develops the SALT and LU models which coexist
in a single family of stochastic schemes. In addition to their
general theoretical properties, we have discussed and com-
pared possible parameterizations for this new scheme family.

Appendix A highlights the strong theoretical similarities
between SALT and LU stochastic subgrid tensors at the heart
of their parameterizations. These frameworks assume that
tracers are transported by the sum of a resolved large-scale
velocity and an unresolved time-uncorrelated velocity. As
already mentioned in the literature, these subgrid models
can conserve some but not all invariants. The SALT frame-
work imposes helicity and circulation conservation in two
and three dimensions and enstrophy conservation in two di-
mensions, whereas LU dynamics strictly conserves kinetic
energy. Yet, for a homogeneous unresolved turbulence, we
have proved that — on average — LU dynamics also conserve
the helicity and circulation.

This paper mainly focuses on numerical parameterization.
We have formulated and described several parameterizations
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which apply to both SALT and LU frameworks. Parame-
terization for SALT or LU means choosing a spatial co-
variance for the unresolved small-scale velocity (i.e. choos-
ing o). The stationary homogeneous self-similar parameter-
ization of Resseguier et al. (2017b) has been improved to
make it non-stationary and tuning-free. Spectral properties
are learned “on the fly” from the resolved large-scale ve-
locity as is common in the practice of large-eddy simula-
tion. A heterogeneous modulation of that parameterization
— based on the energy flux through scales — is also proposed.
This modulation naturally comes into play when considering
Kolmogorov-like energy cascades and spectra. Because the
energy flux quantifies the energy cascade, which is assumed
to be constant across scales, the modulated unresolved ve-
locity acts only where there is a large-scale energy cascade.
This parameterization improvement enables a better simula-
tion of straight strong fronts in SQG dynamics. However, the
usual convenient approximation produced in the Smagorin-
sky diagnosis of the energy flux — the dissipation — cannot
be used accurately here. We also recall the stationary het-
erogeneous data-driven parameterization method of Cotter
et al. (2019a, 2018). Here, small Lagrangian displacement
increments are computed at distinct resolutions from high-
resolution simulation outputs. The spectral decomposition of
the Lagrangian displacements covariance leads to a light and
convenient representation of the unresolved velocity statis-
tics: the Lagrangian displacement EOFs.

Finally, two tuning-free parameterizations have been nu-
merically compared: the new non-stationary homogeneous
self-similar parameterization for LU and the stationary het-
erogeneous data-driven one of Cotter et al. (2019a, 2018) for
SALT. The test case is a homogeneous and stationary forced
SQG turbulence whose LU and SALT versions are equiva-
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lent. Single realizations of the LU test case are found to be
— at least — as good as the result of the corresponding deter-
ministic simulation at the same resolution. For both param-
eterizations, the ensemble forecasts are found to predict the
right amplitudes and positions of numerical errors. The un-
certainty skills of the ensemble forecasts remain impressively
good even with only 20 realizations.

5 Discussion

A lot of theoretical and practical questions remain about
SALT and LU schemes.

The numerical explorations of this paper have focused on
SQG dynamics because — except for the neglected advection
correction — SALT and LU SQG models coincide. This sim-
plification has enabled a clearer parameterization compari-
son. An interesting dual study would be the comparison of
distinct SALT and LU models but with a fixed parameteriza-
tion (i.e. fixed o model).

For this purpose, the simplest dynamics to consider would
be 2D incompressible Navier—Stokes equations. The 3D or
quasi-geostrophic (QG) dynamics would be appropriate, al-
though they possess a larger parameter space and more costly
computation. The SALT version will conserve helicity and
circulation, while the LU one will conserve kinetic energy.
It would be a very interesting exercise to examine the iner-
tial cascades of energy, enstrophy, and potential enstrophy in
these systems and how they are affected by the SALT ver-
sus LU assumptions. Nonetheless, even an understanding of
these cascades is probably not sufficient to objectively con-
clude which framework is more appropriate in general, as the
answer will likely depend on the application, model resolu-
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tion, etc. A variety of idealized and applied numerical studies
will probably be necessary to gain insight into how to opti-
mize in a variety of settings. And even for one specific situ-
ation, the quality and skill metrics of choice are not obvious.
Even in the simple cases studied here, the usual second-order
statistics are probably not sufficient to discriminate between
these dynamics. Furthermore, it is important to note that the
exact conservation of vorticity by the SALT scheme and en-
ergy by the LU scheme may be counterproductive in certain
heterogeneous settings where the small-scale features are re-
quired to exhibit systematic property transport. One interest-
ing example is the oceanic wind-driven gyre, whose circula-
tion magnitude depends critically on the gyre and its turbu-
lence to relocate the source of vorticity and energy from the
wind to the regions where dissipation occurs. An eddy vortic-
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ity transport across large-scale streamlines (i.e. affecting the
interpretation of the Kelvin circulation theorem) is needed
(Fox-Kemper and Pedlosky, 2004). A cross-streamline en-
ergy transport is also part of the system equilibration (Scott
and Straub, 1998). In the real ocean, the eddies shed in
the Agulhas retroflection are a classic example of organized
small-scale transport (Gordon, 1985) as are the “eddy can-
nons” that fire mesoscale eddies across the Antarctic Circum-
polar Current (Hallberg and Gnanadesikan, 2006).

In the presence of turbulence heterogeneity, another dis-
tinction between SALT and LU models is the advection cor-
rection. It is also the single distinction between LU dynam-
ics and Mikulevicius and Rozovskii (2004a). So far, it is not
clear what constitutes a “large-scale velocity” in practice.
Again, this probably depends on the situation. Even though
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Cotter et al. (2017) have provided some first theoretical clues,
further explorations are needed. Numerical and experimental
work will probably help if one identifies and studies simple
heterogeneous flows meeting the main assumption of SALT
and LU models: the velocity timescale gap.

The parameterizations for SALT and LU presented in this
study (e.g. the ADSD method) could be naturally extended
to physical-domain-based implementation, as is an important
step in evaluating schemes for operational use, e.g. Pearson
et al. (2017). Indeed, Sect. 2.1 details this tuning-free param-
eterization in the Fourier space only. A convenient dual of
self-similar spectra (i.e. spectra scaling as || k||%) in the phys-
ical space is the widely used Matérn covariance (Williams
and Rasmussen, 2006; Lim and Teo, 2009; Lilly et al., 2017).
Thus, the spatial filter & — appearing in 6dB; = ¢ *dB; — of
a possible future 2D physical-domain-based ADSD parame-
terization would probably be built from the curl of a Matérn
covariance.

Nevertheless, the homogeneity of the ADSD parameter-
ization is a drawback. Heterogeneous solutions need to be
developed. Unfortunately, the ADSD heterogeneous mod-
ulation of this paper remains expensive to compute, even
making use of the Fourier space. Moreover, even though its
third-order physical meaning and its natural association with
SALT and LU is very instructive, its additive value for UQ is
not clear.

The heterogeneous parameterization method of Cotter
etal. (2019a, 2018) is valuable in the presence of some turbu-
lence heterogeneities (e.g. heterogeneities induced by fixed
boundary conditions). However, the practical usefulness of
this parameterization remains debatable, because its hetero-
geneity is assumed to be stationary. Other ways for calibrat-
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ing the subgrid unresolved statistics using machine learning
is also on-going research.

Many parameterizations for SALT and LU are now avail-
able. Regardless of their differences, the resulting stochas-
tic dynamics and associated UQ skill seems to be rela-
tively independent of the particular parameterization choice.
Notwithstanding, we think that learning-free heterogeneous
and non-stationary parameterizations may further improve
SALT and LU UQ skills and/or enable smaller ensemble size
and thus more efficient computation.

Finally, the main goal of all these studies is SALT- and LU-
based data assimilation. Cotter et al. (2019b) have opened
the way, using a particle filter and the heterogeneous param-
eterization method of Cotter et al. (2019a, 2018). Observed
data from a dynamical system of O (10°) degrees of freedom
were successfully assimilated into the parameterized system
of 0(10%) degrees of freedom. We expect that many other
data assimilation studies will follow.
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Appendix A: Theoretical motivations

Here, we briefly highlight the similarities and differences be-
tween the location uncertainty model and the stochastic Lie
transport model. To simplify the comparison, we work in the
Stratonovich representation and restrict ourselves to the in-
compressible case.

Al Lagrangian path

From a large-scale under-resolved point of view, SALT and
LU methods assume that the fluid velocity is partially uncor-
related in time. Hence, the position of a Lagrangian particle
X evolves in time according to

dX; N .

o = (X1, )+ (6 B) (X, 1), (A1)
where ¢ B is time-uncorrelated and w* is the Stratonovich
large-scale drift term. Formally, for a spatial domain € C R?,
the process (t — B;) is a cylindrical I4 (2 (Q))d-Wiener
process (see Da Prato and Zabczyk, 1992, and Prévot and
Rockner, 2007, for more information on infinite-dimensional
Wiener processes and cylindrical Iy-Wiener processes). Re-
cently, Cotter et al. (2017) have rigorously shown that such
a decomposition corresponds to the limit of a deterministic
flow when the correlation time of the small-scale velocity
goes to zero.

A2 Notation correspondences

The Lagrangian equation can also be written with Itd nota-
tions as follows:

Xijar — Xe=wX;,)dt +0 (X, 1) (Bryar — By). (A2)

Note the difference in the drift term when compared with
Eq. (Al). Table Al summarizes the notations differences be-
tween SALT and LU both for Itd and Stratonovich notations.
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A3 Scalar transport

For a — possibly active — scalar-tracer denoted ¢, the SALT
prescribes the same type of evolution equation as the LU
models.

Dq o =0 A3
E(x’t)_d_t(q( D)y, =0, (A3)

where the material derivative, %,

tions) is simply

(in Stratonovich nota-

Dq _ 0 .

E—a—l—x,-V, (A4)
with

2 w0 + (0 B)(x.0). (AS5)

In It form, the transport Eq. (A3) makes explicit the tur-
bulent diffusion and the centred anti-symmetric multiplica-
tive noise (Resseguier et al., 2017a).

We again highlight that this analysis holds for both SALT
and LU approaches.

A4 Euler models

Nonetheless, the incompressible stochastic transports of ve-
locity and vorticity differ between LU and SALT. First, the
SALT approach considers the transport — through a spe-
cific Lagrangian choice and up to some forcings — of the
Stratonovich large-scale linear momentum, pw*, whereas
the LU Euler derivation assumes the transport of the Itd
large-scale linear momentum, pw. Furthermore, due to its
geometrical approach, the SALT Euler equation involves an
additional term.

Specifically, the LU Euler equation with neither viscosity
nor Coriolis force reads

b lV A6
Dt X = P pPs (A6)
Due to the
transport
of pw

whereas the SALT version is

D w* + Vv X-:Tw* — ! \v4
D ! =——Vp. (A7)
Di  —— —_— P
Due tothe  Additional
transport term
of pw*

Unlike in the SALT model, the large-scale transported veloc-
ity of the LU Euler, w, differs from the large-scale transport-
ing velocity, w*. The latter implicitly appears in the stochas-
tic transport operator, D%, of both the SALT and LU equa-
tions. Thus, in the LU equations, we can see the correction
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Table A1. Notation equivalences between LU and SALT approaches.

229

LU SALT
Unresolved velocity (aB)(x, t)= dez6 (x,2)dB;(z)/dt Zp'g'p(x)de (t)/dt
Covariance ox)o T (y)/dt = dez&(x,z)&T(y,z)/dt Zpsp(x)’;‘IT,(y)/dt
Variance tensor a(x) =00l (x) = [odzé (x,2)67 (x,2) Zpip(x)é';(x)
Stratonovich drift w* u
1t drift w=w*+1(v.a)7 u+%(v.(2px§pgg))T

w*—w= —%(V -a)” as a modification of the large-scale
advection. Note that this modification cancels for a homoge-
neous small-scale velocity. Otherwise, whether the Ito drift,

A
w(x,?) =EX;ra — XX, =x)/dt, (A8)
or the Stratonovich drift,
* A
w (x7t)ZE(Xt-i-dt/Z_Xt—dt/Z'Xt=x)/dt’ (A9)

should be (randomly) transported is still an open question.
A related question is how to interpret the large-scale veloc-
ity derived from observations or from numerical simulations.
Depending on the situation, this velocity may better corre-
spond to the Itd drift or to the Stratonovich drift. Cotter et al.
(2017) may help answer this question from a theoretical per-
spective.

On top of this large-scale advection difference be-
tween SALT and LU modelling, the SALT additional term,
V! w*, has major consequences on the dynamics invariants,
as explained in Sect. A6.

A5 Other dynamical models

The differences between LU and SALT momentum equa-
tions — Egs. (A6) and (A7) respectively — resemble the
distinctions between other classical and geophysical fluid
dynamic models. Table A2 recalls some of these classi-
cal models in SALT and LU stochastic formulations. The
LU Euler equations can be found in Mémin (2014) without
noise and in Resseguier (2017) including noise. The vortic-
ity equation in each case is easily derived by taking the curl
of the Euler equation. The LU QG equations under moder-
ate influence of turbulence has been derived by Resseguier
et al. (2017b) with Ito notation. In Table A2, we have written
the same equation in Stratonovich notation. The SALT Eu-
ler, vorticity and quasi-geostrophic equations are derived by
Holm (2015).

Both SALT and LU assumes the stochastic transport of
tracers (e.g. temperature and salinity). For QG models, it
implies the transport of buoyancy, b, at the surface (z = 0).
Therefore, up to the drift correction w* — w in the stream-
function definition, SALT and potential vorticity (PV) coin-
cide. In the SQG framework, the PV is assumed to be zero
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in the ocean interior (z < 0). This leads to the same relation-
ship between buoyancy and streamfunction, ¥, in LU and
SALT dynamics. Therefore, in the Sect. 3 of this paper, we
will choose this model to compare two parameterization (i.e.
choice of ) for SALT and LU methods in a common ground.

A6 Invariants

To interpret these results which apply more generally, mutatis
mutandis the KE is conserved by the LU scheme and its vari-
ants (Resseguier et al., 2017a), while the enstrophy, its gener-
alizations (e.g. PV), the circulation, and the helicity are con-
served by the SALT scheme and its variants (Holm, 2015).
In the specific case of homogeneous small-scale velocity, the
LU dynamics also conserve circulation and helicity in av-
erage (see Appendix A7 for circulation mean conservation;
the proof of helicity mean conservation is similar). However,
in the homogeneous case, this stochastic dynamics increases
enstrophy mean and its generalizations (Resseguier et al.,
2017b), while SALT models increase KE mean (Resseguier,
2017).

These distinctions between conservation of vorticity in the
SALT approach and conservation of energy in the LU ap-
proach would be of critical importance when choosing a
model for 2D or QG turbulence, as Kraichnan (1967) and
Charney (1971) show that the conservation of energy and
enstrophy lead to turbulence typified by an inverse energy
cascade at large scales and a direct (potential) enstrophy cas-
cade at small scales (Fox-Kemper and Menemenlis, 2008). In
SQG, Blumen (1982) shows that a dual cascade results from
conservation of depth-integrated energy and available poten-
tial energy on level boundaries. The former is not singled out
for special treatment in the SALT or LU SQG formulation,
but the latter is exactly conserved in both formulations.

A7 Kelvin theorem under location uncertainty

The Kelvin theorem describes the variation of the circulation,
which is defined as follows for LU dynamics as follows:

r— fw(x,n-dl: f wX; (o), 0" Iy dlo,

C() C(0)

(A10)

where I = X,(lp) is the Lagrangian path labelled by the ini-
tial position I, C(t) = X;(C(0)) is a material loop at time
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Table A2. Some LU and SALT dynamics models with Stratonovich notations.

Equations LU

SALT

3D Euler equation in a rotating

p(%+fX)w+f><aB=(pg7Vp),

p(DQz+VizT+f><)W*+fXGB=(pngp),

frame (with 3D V) Dip=0. Dip =0.
Incompressible 3D w V xw, ®* =V x w*,
vorticity equation D— (a) V)x; — Zzle(,\",)q x Vuwyg, DT";* = (w*- V)i,,
(with 3D V) V. =0,V.0=0. V.w*=0,V.0=0.
Incompressible = vi.w, r* = vi.w*,

2D vorticity % = —tr (VL TVw ) DDKt' =0,

equation (with 2D V) V. =0, V.o =0. V.-w*=0, V.o =0.

wzvlw,v-w*zo,v-azo,
PV =AY+ f+ (fo/ N2y,

Quasi-geostrophic
equations (with 2D

V and A) fod 1 = b,
DPV
Dt — (w* -

D—b_Oforz—O

w*=VLly, V.o =0,
PV = Ay + f + (fo/N)?92,
fodz v =b,

).Vfdtftr(VJ-)'ctTVwT), forz<0 L2V 0 forz <0

Dt
Bb —0forz=0.

Surface quasi-geostrophic w= Vixp, V-w*=0,V.-0=0,

w*=Vyiy, V.¢=0,

equation (with 2D V and A) (=A)/2y = L (=A)1/2y =L
Db _ Db _
Dt Dt
t and Jyr =Juo, 1) = [VXZT]T(IO) is the Jacobian ma- and DgtM = dﬁ—t’” = [VJ'C,T]TJM as follows:
trix of the flow. The time differentiation of the circulation
involves the time variation of the Jacobian matrix (dJy = EE {r}
[V)'ctT]TJM) as follows: dr
1 T
) wﬂVadBT]J>dL

dr?ngJ+[V'T]TJ " dtf( (@ odBu)" | Ju ) dlo
— = — w x
ar Dr UM p M 0 C(0) )

o f Z T[Vol] Judlo. (B,

= % (——Vp—i—[Vfc,T] w> -dl co
0
c) = _]E % Zw <(a.k V) + [Va,k] )
- f (Vx,Tw) dl. (A1) co ¥
T

o [Vol.| Judt,
This equation is the equivalent of the Reynolds transport the- 1
orem for vorticity Fox-Kemper and Pedlosky (2004) but in = E]E f quV *0p (0gk0 k)dlp,
the stochastic framework. This noise term is a priori not cen- c@) cst.
tred, since it is a Stratonovich noise. However, in the homo- —0. (A12)

geneous case, its ensemble mean cancels. Indeed, using Itd
notations, we simply need to compute a quadratic cross varia-
tion. This calculus is possible in Lagrangian coordinates (i.e.
when functions are composed by x —> X;) by noticing that

Dw .
It is a term in dt, Dt =(x;-V)o,

Nonlin. Processes Geophys., 27, 209-234, 2020

Therefore, the mean LU circulation is conserved in the ho-
mogeneous case.
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Appendix B: Effective resolution and inertial range

Let us assume the simulated evolution law is D;b =
—v(—A)Pbdt. The deterministic subgrid model —v(—A)?b
acts, in a finite time 7, as a low-pass filter. In Fourier space,
this filter is

FAIel) = exp (—ve kI ). (B1)

If the hyperviscosity v is well chosen, we may expect that
at the Shannon resolution w/Ax = ks, only 10 % of the en-
ergy is left by the filter, i.e.

F(ky) =1/10. (B2)

A ratio smaller than 10 % may lead to an over-damped sim-
ulation. Moreover, the precise value of this ratio does not in-
fluence much our final estimate.

www.nonlin-processes-geophys.net/27/209/2020/

We may define the effective resolution as the scale k = k,,
where the deterministic subgrid model influence is negligi-
ble. There, we may expect the filter to be equal to 95 %, i.e.

F (k) = 95/100. (B3)

The ratio «,,/kp can then be derived from Egs. (B1), (B2),
and (B3).
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