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DiCoDiLe: Distributed Convolutional Dictionary Learning
Thomas Moreau and Alexandre Gramfort

Abstract—Convolutional dictionary learning (CDL) estimates shift invariant basis adapted to represent signals or images. CDL has
proven useful for image denoising or inpainting, as well as for pattern discovery on multivariate signals. Contrarily to standard
patch-based dictionary learning, patterns estimated by CDL can be positioned anywhere in signals or images. Optimization techniques
consequently face the difficulty of working with extremely large inputs with millions of pixels or time samples. To address this
optimization problem, we propose a distributed and asynchronous algorithm, employing locally greedy coordinate descent and a
soft-locking mechanism that does not require a central server. Computation can be distributed on a number of workers which scales
linearly with the size of the data. The parallel computation accelerates the parameter estimation and the distributed setting allows our
algorithm be used with data that does not fit into a single computer’s RAM. Experiments confirm the theoretical scaling properties of
the algorithm, allowing us to learn patterns on images from the Hubble Space Telescope containing tens of millions of pixels.

Index Terms—Convolutional Dictionary Learning, Distributed System, Coordinate Descent.
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1 INTRODUCTION

CONVOLUTIONAL sparse linear models consider that signals
or images are obtained by linear combination of a few

patterns localized in time or space. Patterns, which typically
have a finite support, encode local variations such as edges
in images or transient events in signals. The benefit of this
model over traditional sparse coding technique based on local
patches is that it is shift-invariant. While sparse coding encodes
every local patch in the data, the convolutional linear model
selects and encodes few patches leading to sparser and sharper
reconstruction [3]. Over the last ten to fifteen years, these
models have been used successfully for various signal and
image processing applications. It was first proposed by Grosse
et al. [14] for music recognition. It was then used extensively
for denoising and inpainting of images [5, 17, 22, 28]. Beyond
denoising or inpainting, recent applications used this shift-
invariant model as a way to learn and localize relevant patterns
in signals or images. Yellin et al. [29] used it to count the
number of blood-cells present in holographic lens-free images.
Jas et al. [15] and Dupré la Tour et al. [10] learned recurring pat-
terns in univariate and multivariate signals from neuroscience.
This model has also been used for denoising astronomical data
[26] and localizing predefined patterns from space satellite
images [9].

Convolutional dictionary learning (CDL) is the technique com-
monly employed to estimate the parameters of such shift-
invariant models. The dictionary is here formed by the set
of patterns (or atoms), whose positions in time or space are
encoded by some sparse activation vectors. CDL then boils
down to an optimization problem, where the variables are
the dictionary as well as the activations. This problem is non-
convex and approximate solutions can be found by using
alternating minimization over each variable. The estimation of
the activation – which is commonly referred to as convolutional
sparse coding (CSC) – is the critical bottleneck when it comes
to applying CDL to large data.

As CSC is a convex problem, classical optimization tools can
be employed. Chalasani et al. [6] used an accelerated proxi-
mal gradient method based on Fast Iterative Soft-Thresholding
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Algorithm (FISTA; [2]). Bristow et al. [5] proposed the Fast
Convolutional Sparse Coding (FCSC) method, a splitting al-
gorithm based on Alternating Direction Method of Multipliers
(ADMM; [12]). While it is possible to leverage the Fast Fourier
Transform to reduce the complexity of these approaches [28],
both algorithms require to compute Fourier transforms of the
entire data at each iteration. The cost can therefore be pro-
hibitive for large signals or images. To avoid such costly global
operations, several works have proposed to use local compu-
tations [14, 17, 19, 22, 31]. A first line of work proposed by
Kavukcuoglu et al. [17] uses greedy coordinate descent (GCD;
[21]) with an efficient mechanism to compute the update value.
In their seminal work, Grosse et al. [14] propose to adapt the
Feature Sign Search algorithm to only process small window
of the signal at a time. Similarly, Papyan et al. [22] proposed
to solve the problem locally over smaller continuous chunks of
signal and then aggregate these local results by solving a global
optimization problem. In our recent work [19], we proposed
to use locally greedy coordinate descent (LGCD). Based on
updates similar to GCD, this method has a lower per-iteration
complexity as it relies on local computation in the data. It does
so like a patch-based technique would do, yet solving the non-
local problem.

To further reduce the computational burden of CDL, recent
studies consider parallelization strategies. Skau and Wohlberg
[25] proposed a parallel method based on consensus ADMM.
It does so by splitting the computation across the different
atoms. This limits the number of cores that can be used to the
number of atoms in the dictionary, and it still requires Fourier
transforms on the entire data. Concurrently, we proposed an
alternative parallel algorithm for CSC, called DICOD [19], that
distributes GCD updates when working with one dimensional
signals. DICOD could be used with multidimensional data such
as images, yet only by splitting the data along one dimension,
hence limiting its interest in this setting.

In the present paper, we propose a distributed solver for
CDL, which can be used to learn recurring patterns in large
multidimensional data. For the CSC step, we extend DICOD
to use local updates with lower complexity while still working
in the asynchronous setting without a central server. We detail
a soft-lock mechanism, necessary to ensure the convergence of
the algorithm with a grid of workers while remaining asyn-
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chronous. Then, we explain how to also leverage the distributed
set of workers to further reduce the cost of the dictionary
update. This is done by precomputing in parallel sufficient
statistics used in the gradient operator. Extensive numerical
experiments confirm the agreement between the theoretical
complexity of our algorithm and its running time, allowing us
to learn patterns from an astronomical image formed by tens
of millions of pixels. Code is made available to replicate our
results.

In Section 2, we describe the convolutional linear model and
the estimation of its parameters with CDL. Our distributed al-
gorithm DiCoDiLe is introduced in Section 3. Section 4 presents
results on simulations, signals and images.

Notation For a vector U ∈ RP we denote Up ∈ R its pth

coordinate. For a finite d-dimensional domain Ω =
∏d
i=1[0, Ti[,

where [0, Ti[ are the integers from 0 to Ti−1, |Ω| =
∏d
i=1 Ti is its

size. We will denote T =
∏d
i=1 Ti whenever the link between T

and Ti is unambiguous. We denote XPΩ (resp. XP×QΩ ) the space
of observations defined on Ω with values in RP (resp. RP×Q).
For instance, X 3

Ω with d = 2 is the space of RGB-images with
height T1 and width T2. The value of an observation X ∈ XPΩ
at position ω ∈ Ω is given by X[ω] = X[ω1, . . . , ωd] ∈ RP , and
its restriction to the pth coordinate at each position is denoted
Xp ∈ X 1

Ω. All signals are 0-padded, i.e. for ω 6∈ Ω, X[ω] = 0. The
convolution operator is denoted ∗ and is defined for X ∈ XPΩ
and YYY ∈ XP×QΩ as the signal X ∗ YYY ∈ XQΩ with

(X ∗ YYY )[ω] =
∑
τ∈Ω

X[ω − τ ] · YYY [τ ] , ∀ω ∈ Ω . (1)

For any signal X ∈ XPΩ , the reversed signal is defined as
X�[ω] = X[T1 −ω1, . . . , Td −ωd]>. Computing the convolution
with X� is equivalent to computing the cross-correlation with
X . The p-norm is defined as ‖X‖p =

(∑
ω∈Ω ‖X[ω]‖pp

)1/p. We
denote F the Discrete Fourier transform (DFT) of a signal and
for a multivariate signal X ∈ XPΩ , X̂ = F(X) denotes the DFT
of each of its coordinates. Finally, we will also denote ST the
soft-thresholding operator defined as

ST(u, λ) = sign(u) max(|u| − λ, 0) .

2 CONVOLUTIONAL DICTIONARY LEARNING

In this section, we recall the convolutional linear model and
the classical way to estimate its parameters by alternating
minimization.

2.1 Convolutional Linear Model
For an observed X ∈ XPΩ , signal or image, the convolutional
linear model reads

X = Z ∗DDD + ξ , (2)

with DDD ∈ XK×PΘ a dictionary of K atoms DDDk in dimension
P defined on a sub-domain Θ =

∏d
i=1[0, Li[⊂ Ω, also called

support of the atom. The activations are denoted Z ∈ XKΩ and
ξ ∈ XPΩ is an additive noise term which is typically considered
white and Gaussian. The dictionary elements DDDk are prototyp-
ical patterns present in the data. They typically have a much
smaller support Θ than the full domain Ω (i.e. L = |Θ| � T ).
The activations Zk encode the localization of the pattern k in
the data. A non-zero coefficient Zk[ω] indicates the presence
of the pattern DDDk around the position ω. As patterns typically
occur at few locations in each observation, the coding signal
Z is considered to be sparse. The aim of this model is truly to

X

∗ZDDD

Fig. 1. Decomposition of a noiseless univariate signal X (blue) as the
convolution Z ∗DDD between a temporal patternDDD (orange) and a sparse
activation signal Z (green).

separate the shape of the local variation in the observation –
encoded in the dictionary – from their localization in space or
time. Figure 1 illustrates the decomposition of a temporal signal
with one pattern.

The parameters of this model are estimated by solving the
following CDL optimization problem:

min
Z,DDD
‖DDDk‖≤1

1

2
‖X − Z ∗DDD‖22︸ ︷︷ ︸

F (Z,DDD)

+λ‖Z‖1︸ ︷︷ ︸
G(Z)

, (3)

where the first term F (Z,DDD) measures how well the model fits
the data and the second termG(Z) promotes sparse activations.
The regularization parameter λ > 0 balances these two terms.
The constraint ‖Dk‖2 ≤ 1 is used to avoid the scale ambiguity
in our model due to the `1 constraint. Indeed, the `1-norm of Z
can be made arbitrarily small by rescaling D by α ∈ R∗+ and Z
by 1

α
. This problem is bi-convex, i.e. it is not jointly convex in

(Z,DDD) but it is convex in each of its coordinates. It is usually
solved with an alternating minimization algorithm, updating
at each iteration one of the block of coordinates, Z or DDD. As
each of the sub-problems are convex, the alternated descent
is guaranteed to decrease the cost function, converging to a
critical point of (3). It is however not guaranteed to be a global
minimizer.

2.2 Convolutional Sparse Coding (CSC)
Given a dictionary of patterns DDD, CSC aims to retrieve the
sparse decomposition Z∗ associated to the signal X . When
minimizing only over Z, (3) becomes

Z? = argmin
Z

1

2
‖X − Z ∗DDD‖22 + λ ‖Z‖1 . (4)

This boils down to a Lasso problem with a Toeplitz design
matrix. Therefore, classical optimization techniques for the
Lasso can be applied with the same convergence guarantees.
In practice, these methods are adapted to leverage the convo-
lutional structure of the problem, reducing the computational
complexity to solve (4).

2.2.1 Locally Greedy Coordinate Descent (LGCD)
Coordinate descent (CD) is an algorithm which updates a single
coefficient at each iteration. Following Moreau et al. [19], we use
locally greedy coordinate selection to solve efficiently the CSC
(4). Algorithm 1 summarizes the computations for LGCD.

Coordinate update For (4), it is possible to compute efficiently
the optimal update for a given coordinate when all the others
are fixed. Denoting q the iteration number, and Z̃

(q)
k0

[ω0] (atom
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k0 at position ω0) the optimal value of the activation Z
(q)
k0

[ω0],
the update reads

Z̃
(q)
k0

[ω0] =
1

‖DDDk0‖22
ST(β

(q)
k0

[ω0], λ) , (5)

where β(q) is an auxiliary variable in XKΩ defined for (k, ω) ∈
[1,K]× Ω as

β
(q)
k [ω] =

((
X − Z(q) ∗DDD + Z

(q)
k [ω]eω ∗DDDk

)
∗DDD�

k

)
[ω] , (6)

and where eω is a dirac (canonical vector) with value 1 in
ω and 0 elsewhere. The value of the auxillary variable in
(k0, ω0) corresponds to the gradient of F for a point Z(q) with
the coordinate (k0, ω0) set to 0. To enable efficient coordinate
update, an important property is that Z̃(q)[ω] only depends on
a small neighborhood around ω.

Definition 2.1 (Θ-neighborhood). Let us consider a support Θ =∏d
i=1[0, Li[. For Ω0 ∈ Ω, the Θ-neighborhood VΘ(ω0) is defined as

VΘ(ω0) =

d∏
i=1

[ω0,i − Li + 1, ω0,i + Li[ .

Proposition 2.2 (Weak dependence). If the coordinate (k0, ω0) is
updated in Z(q), then the value of Z̃(q+1) differs from Z̃(q) only for
ω in a Θ-neighborhood VΘ(ω0) of ω0.

Proof. If the coordinate Zk0 [ω0] is updated with an additive
update ∆Zk0 [ω0] = Z̃

(q)
k0

[ω0]−Z(q)
k0

[ω0], Kavukcuoglu et al. [17]
showed that β(q+1) can be obtained using the relation

β
(q+1)
k [ω] = β

(q)
k [ω]− (DDDk0 ∗DDD

�
k)[ω − ω0]∆Z

(q)
k0

[ω0] , (7)

for all (k, ω) 6= (k0, ω0). As the support of (DDDk0 ∗ DDD
�
k)[ω] is

VΘ(0), this implies that the value β(q+1)
k only changes in the

neighborhood VΘ(ω0) = ω0 + VΘ(0).

This proposition shows that the optimal value for a coordinate
only depends on the current values of the activations in a
neighborhood of size |VΘ(0)| = 2dL. This corresponds to twice
the size of the dictionary in each dimension. Using this prop-
erty, the computational complexity of updating a coordinate
is O(2dKL), as it is only necessary to update β and Z̃(q) on
VΘ(ω0).

Coordinate selection The selection of the updated coordinate
(k

(q)
0 , ω

(q)
0 ) can follow different strategies. Following our work

in [10, 19], we propose to select the coordinates with a locally
greedy rule (LGCD).

Definition 2.3 (Disjoint and contiguous partition). Let us con-
sider a domain Ω. For M ∈ N, a M disjoint and contiguous partition
{Cm}Mm=1 is a set of subsets of Ω such that

d∏
i=1

[ωi, ω
′
i] ⊂ Cm for ω, ω′ ∈ Cm ,⋃

m

Cm = Ω , Cm ∩ Cm′ = ∅ for m 6= m′ .

At iteration q, the coordinate to update is selected greedily
among the m-th sub-domain Cm with

(k
(q)
0 , ω

(q)
0 ) = argmax

(k,ω)∈[1,K]×Cm

∣∣∣ Z̃(q)
k [ω]− Z(q)

k [ω]︸ ︷︷ ︸
∆Z

(q)
k

[ω]

∣∣∣ , (8)

Algorithm 1 Locally Greedy Coordinate Descent
Require: DDD,X , parameter ε > 0, sub-domains Cm,

1: Initialization: ∀(k, ω) ∈ [1,K]× Ω,

2: Zk[ω] = 0, βk[ω] =
(
DDD�
k ∗X

)
[ω]

3: repeat
4: for m = 1 . . .M do
5: ∀(k, ω) ∈ [1,K]× Cm,

Z̃
(q)
k [ω] =

1

‖DDDk‖22
ST(β

(q)
k [ω], λ) ,

6: Choose (k0, ω0) = arg max
(k,ω)∈[1,K]×Cm

|∆Zk[ω]|

7: Update β using (7) and Zk0 [ω0]← Z̃
(q)
k0

[ω0]
8: end for
9: until ‖∆Z(q)‖∞ < ε

with m = q mod M . This strategy cycles through each of
the M sub-domains and select the coordinate in Cm which is
the farthest away from its optimal value when all the other
coordinates are fixed. The quantity ∆Zk[ω] acts as a proxy for
the reduction of the cost function obtained with the update of
coordinate (k, ω) to the value Z̃(q)

k [ω] [21]. The complexity of
the locally greedy selection rule is linear with the size of the
sub-segments O(K|Cm|). In the case where M = KT , this rule
boils down to the cyclic CD [11] with a coordinate selection
complexity in O(1), while setting M = 1 boils down to greedy
CD [21] where the complexity of the selection is linear with
the size of the signal O(KT ). The selection of M in LGCD acts
as a tradeoff between the computational complexity and the
convergence speed of these two methods.

As it was shown in recent studies [16, 20], updating in priority
the important coordinates by greedy selection leads to faster
convergence rates, although it increases the cost of one iteration.
The LGCD strategy proposes to use sub-domains Cm such that
the computational complexities of selecting and updating the
coordinate match. By using sub-domains of the VΘ(0)’s size i.e.
|Cm| = 2dL, the global iteration complexity of LGCD scales
with 2d times the size of the dictionary DDD i.e. O(2dKL). By
doing so LGCD achieves faster convergence rates than non-
greedy coordinate selection rule while limiting the per-iteration
cost.

Stopping criterion The stopping criterion used for this algo-
rithm follows [21]. The algorithm is stopped once the magni-
tude of all possible coordinate updates are below a threshold
ε > 0 specified by the user, i.e.

max
(k,ω)∈[1,K]×Ω

|∆Z(q)
k [ω]| < ε . (9)

2.2.2 Global solvers
Chalasani et al. [6] propose to solve (4) by proximal gradient
methods exploiting the convolution in the gradient computa-
tion to save time. The core idea behind this method is to use a
proximal splitting of the cost function between its smooth part
F (·,DDD) and a proximable part G. Proximal gradient descent
(ISTA) reads

Z(q+1) = prox
γG

(
Z(q+1) − γ∇ZF (Z(q+1),DDD)

)
, (10)

where γ is the step size of the algorithm, usually chosen as
the inverse of the smoothness constant of F , and prox

γG
is the

proximal operator of γG. For G(·) = λ‖ · ‖1, this corresponds to
the soft-thresholding operator ST(·, γλ). To make this algorithm
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efficient the key is to rely on the FFT for the gradient com-
putations, as described in [28]. Doing the computation in the
Fourier domain, the computational complexity of each iteration
of this algorithm is O(KT log T ). It is also possible here to use
an accelerated version FISTA to solve the problem [2, 6].

An alternative global algorithm proposed by Bristow et al. [5]
is based on the ADMM algorithm [12]. The core idea in this line
of work is to introduce an auxiliary variable and split the two
part of the objective with an equivalent problem

min
Ŷ ,Z

1

2

∥∥∥X̂ − Ŷ D̂DD∥∥∥2

F
+ λ ‖Z‖1 s.t. F(Z) = Ŷ . (11)

This problem is then solved using ADMM in its scaled form [4,
Section 3.1.1]. The critical part in this algorithm is the mini-
mization of the augmented Lagrangian relatively to Y which
necessitates multiple FFT as well as the inversion of T linear
systems of size K ×K. The overall complexity of this method
is thus O(KT (log T +K2)).

For these global solvers, the complexity of each iteration scales
with the size of the data in O(T log T ) and the convergence
rate is independent of T . In contrast, the iteration of LGCD are
independent of T but the number of iterations needed to reach
convergence scales with the number of non-zero coefficients
which also depends on T . For large and sparse data, LGCD
tends to be more efficient as the overall complexity depends
linearly in T and not in T log T . However, the choice between a
local vs a global algorithm depends on the sparsity level of the
desired solution, controlled by the value of the regularization
parameter λ [10].

2.3 Dictionary Update
Given an activation signal Z(q), the dictionary is updated to
improve how the model reconstructs the signal. The problem
reads

DDD∗ = argmin
‖DDDk‖2≤1

1

2

∥∥∥X − Z(q) ∗DDD
∥∥∥2

2
. (12)

This problem is smooth and convex and can be solved using
algorithms designed for smooth constrained optimization.

2.3.1 Projected Gradient Descent
The projected gradient descent (PGD; [7]) and its accelerated
version (APGD) are possible strategies. These two algorithms
are equivalent to ISTA and FISTA iterations where the proximal
operator is a simple projection [7]. The efficiency of these two
methods relies on pre-computations of sufficient statistics for
fast evaluation of the gradient of the objective ∇DDDF [10]. The
computations can be factorized as

∇DDDF (Z,DDD) = Z� ∗ (X − Z ∗DDD) = ΨΨΨ−ΦΦΦ ∗DDD , (13)

where ΦΦΦ ∈ XK×KVΘ(0) and ΨΨΨ ∈ XK×PΘ are respectively defined as
the convolution Z� ∗ Z restricted to VΘ(0) and the convolution
Z� ∗X restricted to Θ, i.e.

ΦΦΦ[ω] = Z� ∗ Z =
∑
τ∈Ω

Z[ω + τ ]Z>[τ ] for ω ∈ VΘ(0) , (14)

ΨΨΨ[ω] = Z� ∗X =
∑
τ∈Ω

Z[ω + τ ]X>[τ ] for ω ∈ Θ . (15)

The complexity to obtain the two constants ΦΦΦ and ΨΨΨ scales as
O(K(K+P )LT ). This is comparable with the cost of computing
the gradient directly O(KPT log T ). However, once the two
constants are pre-computed, the gradient of F is obtained using
(13) with complexityO(2dK2PL log(L)). This is independent of
the data size T , making each iteration efficient.

2.3.2 Related solvers
The block coordinate descent for dictionary learning [18], which
consists in updating one atom at a time, can also be extended to
the convolutional case. As PGD for full dictionary updates, this
technique benefits from sufficient statistics pre-computations
and the complexity is similar. Another possibility is to rely
on ADMM to update the dictionary [5, 28]. However, ADMM
algorithms can be slow to reach a convergence, yielding sub-
optimal reconstruction performances as the feasible point is not
directly optimized but results from a consensus. Yellin et al. [29]
proposed to adapt the K-SVD dictionary update method [1] to
the convolutional setting but this technique is adapted to an `0
penalty for the activation Z. It also requires to compute costly
singular value decompositions (SVD).

2.4 Choice of initialization and regularization parameter
In practice, the quality of the solution obtained by CDL is
impacted by the choice of the regularization parameter λ. Also,
due to the iterative nature of the solvers, the initialization of the
dictionary DDD0 can play an important role.

Regularization parameter selection

The choice of a regularization parameter λ in the context of
dictionary learning is often selected by cross-validation on a
subsequent task such as denoising or classification. However in
the context of purely unsupervised learning, e.g. matrix factor-
ization, this is still an open problem. This problem has recently
received some attention using Bayesian methods [23, 27]. For
the specific case of CDL using an `1 norm, it is useful to note
that there exists a value λmax such that for λ ≥ λmax, 0 is
solution of (4). The first order condition for (4) reads

∇ZF (0,DDD(0)) = X ∗DDD(0)� ∈ ∂G(0) = [−λ, λ]KT . (16)

This condition is always verified if λ > λmax = ‖X ∗DDD(0)�‖∞.
In the following, the regularization parameter λ is chosen
as a fraction of λmax. Using this data dependent value, the
ratio λ/λmax is chosen in [0, 1], making the definition of the
regularization parameter common to all input signals X .

Dictionary initialization

The standard strategy to initialize DDD(0) for CDL methods is to
generate random atoms with Gaussian white noise. However,
as these atoms generally poorly correlate with the data, the
initial value of λmax is low compared to the following ones,
leading to dense activation Z. For dictionary learning, a classi-
cal way to initialize the dictionary is to take samples from the
input data [18]. In the convolutional setting, this boils down
to taking random patches of the size of the dictionary directly
from the data. This can be theoretically motivated by the work
of Zhang et al. [30] that demonstrate improvements in pattern
recovery under suitable assumptions.

3 DISTRIBUTED CONVOLUTIONAL DICTIONARY LEARN-
ING (DICODILE)
In this section, we introduce DiCoDiLe, a distributed algorithm
for convolutional sparse coding. Its steps are summarized in
Algorithm 2. The CSC part of this algorithm will be referred
to as DiCoDiLeZ . It extends our previous work DICOD [19]
by handling multidimensional data, in particular images. The
algorithm proposes to distribute the computation on a grid
of workers. To guarantee convergence with multidimensional
data in an asynchronous setting, we introduce the notion of
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Algorithm 2 DiCoDiLe with W workers

Require: DDD(0), X , stopping criterion ν.
1: repeat
2: Compute Z(q+1) with DiCoDiLeZ(X,DDD(q),W ).
3: Compute φ and ψ with (14) and W workers.
4: UpdateDDD(q+1) with PGD and Armijo backtracking line-

search.
5: until Cost variation is smaller than ν

soft-locks described in Subsection 3.1. Details on how the dictio-
nary updates can also benefit from the distributed setting are
presented in Subsection 3.2.

3.1 DiCoDiLeZ : Distributed CSC with coordinate descent
In the convolutional setting, coordinates that are far enough
– relatively to the size of the dictionary – are only weakly
dependent (Proposition 2.2). It is thus natural to distribute the
computation of CD by splitting the data in continuous sub-
domains [19].

The DiCoDiLeZ algorithm, described in Algorithm 3, is dis-
tributed over W workers which update asynchronously the co-
ordinates of Z. We consider {Sw}Ww=1, a disjoint and contiguous
partition of Ω. Each worker w ∈ [1,W ] is in charge of updating
the coordinates of the sub-domain Sw. These sub-domains are
also partitioned with disjoint and contiguous sub-domains C(w)

m

of size |VΘ(0)|. Then, the worker w chooses at each iteration q
an update candidate (k0, ω0) which corresponds to a greedy
update in one of its sub-domain C(w)

m , i.e.

(k0, ω0) = argmax
(k,ω)∈[1,K]×C(w)

m

|∆Zk[ω]| , (17)

with m = q mod M . The sub-domains C(w)
m are selected in a

cyclic order but empirical test showed no significant differences
for random sub-domain selection. Then, this candidate update
is accepted or rejected using the soft-lock mechanism described
in Subsection 3.1.1. If the candidate is rejected, the worker
moves on to the next sub-domain Cwm+1 without updating
a coordinate. If the candidate is accepted, the value of the
coordinate Zk0 [ω0] is replaced by Z̃

(q)
k0

[ω0] and β is updated
with (7). To ensure the convergence, it is sufficient to notify the
neighboring workers if a local update changes the value of β
outside of Sw, i.e. if VΘ(ω0) 6⊂ Sw.

Definition 3.1 (Θ-Border). Let us consider a sub-domain, Sw =∏d
i=1[li, ui[, where (li, ui) are the lower and upper limits of this

sub-domain for dimension i. For Θ =
∏d
i=1[0, Li[, the Θ-border is

defined as the set of points ω ∈ Sw such that VΘ(ω) 6⊂ Sw, i.e.

BΘ(Sw) =

d∏
i=1

[li, li + Li[∪[ui − Li, ui[ . (18)

In the case where the updated coordinate (k, ω0) is in Sw \
BΘ(Sw), then VΘ(ω0) is included in the set of coordinates Sw
updated by the worker w. In this case, the update is not at
the border of the sub-domain, so the values of β and Z̃(q)

need no update for the other workers w′. Thus, there is no
need to exchange information between the workers. However,
for ω0 ∈ BΘ(Sw), it is necessary to notify other workers w′

whose domain overlap with the Θ-neighborhood of ω0 i.e.
VΘ(ω0) ∩ Sw′ 6= ∅. The notification can be done by sending the
triplet (k0, ω0,∆Zk0 [ω0]) to these workers. These information
are sufficient to keep β up to date for all workers using (7). Fig-
ure 2 illustrates this communication process on a 2D example.

Algorithm 3 DiCoDiLeZ with W workers
1: Input: DDD,X , parameter ε > 0, sub-domains Sw,
2: In parallel for w = 1 · · ·W
3: Compute a partition {C(w)

m }Mm=1 of the worker domain Sw
with sub-domains of size 2dL.

4: Initialize βk[ω] and Zk[ω] ∀(k, ω) ∈ [1,K]× Sw,
5: repeat
6: for m=1. . . M do
7: Receive messages and update Z and β with (7)
8: Choose (k0, ω0) = argmax

(k,ω)∈[1,K]×C(w)
m

|∆Zk[ω]|

9: if |∆Zk0 [ω0]| < max
(k,ω)∈[1,K]×VΘ(ω0)

|∆Zk[ω] then

10: The coordinate is soft-locked, goto 6
11: end if
12: Update β with (7) and Zk0 [ω0]← Z̃

(q)
k0

[ω0]
13: if ω0 ∈ B2L(Sw) then
14: Send (k0, ω0,∆Zk0 [ω0]) to neighbors
15: end if
16: end for
17: until global convergence ‖∆Z‖∞ < ε

With this distributed algorithm, the inter-processes communi-
cations are minimal, as only d+ 2 values need to be exchanged.
Moreover, as it does not rely on centralized communication,
the necessary bandwidth between the workers is also reduced
as a worker only communicates with its direct neighbors. This
contrasts with other distributed algorithms for CDL such as [25]
that requires centralized communication of full support values
between the workers. Finally, the communication only occurs
when ω0 ∈ BΘ(Sw), which happens rarely especially when
working with large data and patterns of small support. This
reduces even further the need of bandwidth between workers.

3.1.1 Interferences and Soft-Locks in asynchronous setting
While it is now clear how communication should be done
between workers, one need to clarify how to proceed to ensure
convergence in the case of asynchronous updates. When W
coordinates (kw, ωw)Ww=1 of Z are updated simultaneously by
respectively ∆Zkw [ωw], the updates might not be independent.
The local version of β used for the update does not account for
the other updates. The cost difference resulting from all these
simultaneous updates is denoted ∆E, and the cost reduction
induced by only one update w is denoted ∆Ekw [ωw]. Simple
derivations, detailed in Proposition A.2, show that

∆E =

iterative steps︷ ︸︸ ︷
W∑
i=1

∆Ekw [ωw] (19)

−
∑
w 6=w′

(DDDkw ∗DDD
�
kw′ )[ωw′ − ωw]∆Zkw [ωw]∆Zkw′ [ωw′ ])

︸ ︷︷ ︸
interference

,

If for all w, all other updates w′ are such that if ωw′ /∈ VΘ(ωw),
then (DDDkw∗DDD�

kw′ )[ωw′−ωw] = 0. The updates can be considered
to be sequential as the interference term is zero. This also di-
rectly results from Proposition 2.2. When

∣∣{ωw}w ∩ VΘ(ω0)
∣∣ =

I0 > 1, the interference term does not vanish. Moreau et al.
[19] show that if I0 < 3, then, under mild assumption, the
interference term can be controlled and DICOD converges.
While this is sufficient for 1D partitioning as I0 cannot be larger
than 2 (if Sw is larger than VΘ(0)), this analysis cannot be
extended to I0 ≥ 3. This limits the partitioning of Ω along one
single dimension.
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Sw
Sw−1 Sw+1

Sw−W1−1 Sw−W1 Sw−W1+1

Sw+W1 Sw+W1+1

T1/W1

T2/W2

L1 L1

ω0
•

ω1
•

k1, ω1,∆Zk1
[ω1]

ω2
•

k2, ω2,∆Zk2 [ω2]

Sw VΘ(ωi) BΘ(Sw) EΘ(Sw)
Soft-lock area Messages

Fig. 2. Communication process in DiCoDiLeZ with d = 2 and 9 workers
centered around worker w. The update in ω0 is independent of the other
workers. The update in ω1 is performed if no better coordinate update
is possible in the soft-lock area VΘ(ω1) ∩ Sw+1 (red hatched area).
If accepted, the worker w + 1 needs to be notified. The update in ω2

changes the value of the optimal updates in the Θ-extension of the
other workers sub-domains. Thus it needs to notify all the neighboring
workers.

To avoid this limitation, we propose the soft-lock, a novel mech-
anism to avoid interfering updates of higher order. The idea
is to avoid updating concurrent coordinates simultaneously. A
classical tool in computer science to address such concurrency
issue is to rely on a synchronization primitive, called lock. This
primitive can ensure that at most one worker enters a protected
block of code simultaneously. In our case, it would be possible
to use this primitive to restrict updates in BΘ(Sw) only when
none of its neighbors is updating BΘ(Sw′). This would avoid
interfering updates. However, the drawback of this method is
that it prevents the algorithm to be asynchronous, as typical
lock implementations rely on centralized communications. In-
stead, we propose to use an implicit locking mechanism which
keeps our algorithm asynchronous.

Definition 3.2 (Θ-extension). We consider Sw =
∏d
i=1[li, ui[ a

sub-domain of Ω. For Θ =
∏d
i=1[0, Li[, the Θ-extension of Sw is

defined as EΘ(Sw) = (Sw + VΘ(0)) \ Sw, i.e.

EΘ(Sw) =

d∏
i=1

[li − Li, li[∪[ui, ui + Li[ . (20)

The idea of the soft-lock is the following. Additionally to the
sub-domain Sw, each worker also maintains the value of Z̃(q)

and β on the Θ-extension EΘ(Sw) (See Figure 2). At each iter-
ation, the worker w considers a candidate coordinate (k0, ω0)
to update from (17). If ω0 6∈ BΘ(Sw), the coordinate is updated
like in LGCD. When ω0 ∈ BΘ(Sw), the candidate is accepted if
there is no better coordinate update in VΘ(ω0) ∩ EΘ(Sw), i.e. if

|∆Zk0 [ω0]| > max
k,ω∈[1,K]×VΘ(ω0)∩EΘ(Sw)

|∆Zk[ω]| . (21)

In case of equality, the update in the sub-domain Sw′ with the
minimal index w′ is preferred. Using this mechanism effectively
prevents any interfering update. If two workers w < w′ have

update candidates ω0 and ω′0 such that ω′0 ∈ VΘ(ω0), then with
(21), only one of the two updates will be accepted. It will be
either the largest one if |∆Zk0 [ω0]| 6= |∆Zk′0 [ω′0]| or the one from
w if both updates have the same magnitude. The other update
will be rejected and there will be no interference. By doing so
this mechanism is fully asynchronous. The updates on the bor-
ders are implicitly ordered, preventing interference. The update
are guaranteed to be performed as if they were run sequentially,
ensuring convergence of the algorithm. This requires to increase
slightly the communication between the workers and to double
the size of the Θ-border in each direction. This is however not
a bottleneck as demonstrated in the following experiments.

3.1.2 Speed-up analysis of DiCoDiLeZ
In this section, we consider the speed-up provided by this
distributed algorithm. As each worker runs LGCD locally, the
computational complexity of a local iteration in a worker w
is O(2dKL). This complexity is independent of the number of
workers used to run the algorithm. Thus, the speed-up obtained
is equal to the number of updates that are performed in parallel.
If we consider W update candidates (kw, ωw) chosen by the
workers, the number of updates that are performed corre-
sponds to the number of updates that are not soft-locked. When
the updates are uniformly distributed on Sw, the probability
that an update candidate located in ω ∈ Sw is not soft-locked
can be lower bounded by

P (ω 6∈ SL) ≥
d∏
i=1

(
1− WiLi

Ti

)
(22)

Computations are detailed in Proposition B.1. When the ratios
Ti

WiLi
are large for all i, i.e. when the size of the workers sub-

domains |Sw| are large compared to the dictionary size L, then
P (ω 6∈ SL) ' 1. In this case, the expected number of accepted
update candidates is close to W and DiCoDiLeZ scales almost
linearly. When Wi reaches Ti

Li
( 21/d

21/d−1
), then P (ω 6∈ SL) & 1

2
,

and the acceleration is reduced to W
2

.

In comparison, we report in [19] a super-linear speed-up for
DICOD on 1D signals. This is due to the fact that we are using
GCD locally in each worker. GCD has a very high iteration
complexity whenW is small, as it scales linearly with the size of
the considered sub-domain. Thus, when sub-dividing the signal
between more workers, the iteration complexity is decreasing
and more updates are performed in parallel. This explains why
the speed-up is almost quadratic for low W . As the complexity
of iterative GCD are worse than LGCD, DiCoDiLeZ has better
performance than DICOD in low W regime. Furthermore, in
the 1D setting, DICOD becomes similar to DiCoDiLeZ once
the size of the workers sub-domain becomes too small. This
happens when the local domain of LGCD becomes comparable
to the size of the sub-domains Sw. This implies that DiCoDiLeZ
always outperforms DICOD.

3.1.3 Stopping criterion
In this distributed setting, it is non-trivial to know when
the algorithm reaches convergence. To match the sequential
stopping criterion of GCD (9), the convergence is considered
to be reached once no worker can perform a coordinate update
|∆Z(q)| that is higher than ε > 0. However, as a worker can
be affected by its neighboring workers, the stopping criterion
of CD cannot be applied independently in each worker. Once a
worker reaches this state, the potential update can still increase
above ε because of updates in EΘ(Sw) by another worker.
To make sure the correct criterion is achieved, workers that
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reach the local criterion are paused. They are restarted when a
neighboring workers triggers an update on EΘ(Sw). The global
convergence can be decided when all workers are paused.
While this process is based on centralized communication, it
can still be performed asynchronously using message passing
to a designated master process that will notify the end of the
algorithm to all workers.

3.2 Dictionary updates in a distributed setting
For the dictionary, a change in a coordinate in Z at any point in
Ω can impact the solution of (12). Moreover, the atoms are in-
terdependent of each other. It is thus complicated to parallelize
the dictionary update as it is centralized by nature and there
is no natural division of the computation. However, the size
of DDD is way smaller than Z and (12) can be solved efficiently
when applying the PGD algorithm described in Subsection 2.3.
The main computational bottleneck is the computation of the
constants ΦΦΦ and ΨΨΨ. For these, it is possible to leverage the
distributed setting as the computation are separable between
the different workers. The computations can be made embar-
rassingly parallel among the workers as

ΦΦΦ[ω] =

W∑
w=1

∑
τ∈Sw

Z[τ ]Z>[τ + ω] for ω ∈ VΘ(0) , (23)

ΨΨΨ[ω] =

W∑
w=1

∑
τ∈Sw

Z[τ ]X>[τ + ω] for ω ∈ Θ . (24)

For all (ω, τ) ∈ VΘ(0) × Sw, we have ω + τ ∈ Sw ∪ EΘ(Sw).
Thus, the computations of the inner sum ΦΦΦw can be made in-
dependently by each worker. These partial results are gathered
and reduced with ΦΦΦ =

∑W
w=1 ΦΦΦw. By making use of these dis-

tributed computation, ΦΦΦ and ΨΨΨ can be computed with respec-
tively O(K2|Sw| log(|Sw ∪ EΘ(Sw)|)) and O(KP |Sw| log(|Sw ∪
EΘ(Sw)|)) operations. The values of ΨΨΨ and ΦΦΦ are sufficient
statistics to compute ∇DDDF and F . The dictionary can thus be
updated without having to gather the full activation Z on one
machine. This allows to learn a dictionary for a signal X that
does not fit in memory, as each worker only needs to store a
part of the full signal and the dictionary updates only require
storing these sufficient statistics.

4 NUMERICAL EXPERIMENTS

The numerical experiments are performed on a SLURM cluster
with 30 nodes. Each node has 20 physical cores, 40 logical cores
and 250 GB of RAM. A worker is typically one logical core
on one of the machine. In practice we use up to 400 workers.
DiCoDiLe is implemented in Python [24] using mpi4py [8]1.

Experiments make use of simulated one dimensional signals,
generated following the sparse convolutional linear model (2)
with d = 1 and P = 7. The dictionary is composed of
K = 25 atoms DDDk of length L = 250. Each atom is sampled
from a standard Gaussian distribution and then normalized.
The sparse code entries are drawn from a Bernoulli-Gaussian
distribution, with Bernoulli parameter ρ = 0.007, mean 0 and
standard variation 10. The noise term ξ is sampled from a
standard Gaussian distribution with variance 1. The length of
the signals X is denoted T .

For experiments with images, we will use the standard colored
image Mandrill (P = 3) at full resolution (512×512). Finally, for
large scale experiments, we used an image of the Great Obser-
vatories Origins Deep Survey (GOODS) South field, acquired

1. Code available at github.com/tommoral/dicodile.

Fig. 3. Average running time of CD with four coordinate selection
schemes – (blue) Locally Greedy, (green) Cyclic, (orange) Randomized
and (red) Greedy – for two signal lengths and λ = 0.5λmax. LGCD
consistently outperforms the two other strategies.

by the Hubble Space Telescope [13]. We used the STScI-H-2016-
39 image2 with resolution 6000× 3600.

In all experiments, we used λ = 0.1λmax as a default regular-
ization parameter, unless specified otherwise.

4.1 Performance of distributed sparse coding
The performances of the distributed sparse coding step in
DiCoDiLe is impacted by the choice of coordinate descent strat-
egy, as well as soft-lock mechanism and the data partitioning
scheme. The following experiments discuss their effects on the
scalability on DiCoDiLeZ .

4.1.1 Coordinate Selection Strategy
Using one worker, Figure 3 compares the average running times
of three CD strategies to solve (4): Cyclic, Greedy and LGCD.
LGCD consistently outperforms the other strategies for both
T = 150L and T = 750L. For LGCD and Cyclic, the iteration
complexity is constant compared to the size of the signal,
whereas the complexity of each Greedy iteration scales linearly
with T. This makes running time of Greedy explode when T
grows. Besides, as LGCD also prioritizes the more important
coordinates, it is more efficient than Cyclic that selects the
coordinate to update independently of the data. This explains
the performances observed in Figure 3 and justifies the use of
LGCD as the base of the DiCoDiLeZ distributed algorithm. In
the following, we will not include Cyclic coordinate selection
in our distributed algorithm as it is less efficient. We include
Greedy as its complexity depends on the size of the signal,
meaning that it can be competitive when the workload is
distributed on many workers.

4.1.2 Need for soft-lock mechanism
The reconstruction of the Mandrill with and without soft-locks
is shown in Figure 4. It uses a dictionaryDDD consisting ofK = 25
patches of size 16×16 extracted randomly from the original im-
age. The reconstructed image Z ∗DDD obtained without soft-lock
shows artifacts around the edges of some of the sub-domains
Sw, as the activations diverge in these locations. This visually
demonstrates the need for controlling the interfering updates
when more than two workers can interfere. When using the
soft-lock mechanism, the algorithm returns the expected result.

4.1.3 Impact of data partitioning
To demonstrate the impact of the domain partitioning strategy
on images, Figure 5 shows the average runtime for DiCoDiLeZ

2. The image is publicly available on Hubble website:
www.hubblesite.org/image/3920/news/58-hubble-ultra-deep-field

https://github.com/tommoral/dicodile
http://hubblesite.org/image/3920/news/58-hubble-ultra-deep-field
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Fig. 4. Reconstruction of the image Mandrill using DiCoDiLeZ (left)
without and (right) with soft-locks for a grid of 7×7 workers. The dashed
lines show the partitions of the domain Ω. The algorithm diverges at the
edges of some of the sub-domains due to interfering updates between
more than two workers.

100 101 102

# workers W

102

Ru
nt

im
e 

[s
ec

] Linear Split
Grid Split

Fig. 5. Scaling on 2D images of DiCoDiLeZ with the number of workers
for two partitioning strategies of Ω: (blue) Ω is split only along one
direction, as in DICOD [19], (orange) Ω is split along both directions,
on a grid. The running times are similar for low number of workers but
the performances with the linear splits stop improving once W reaches
the scaling limit T1/4L1 (green). With the grid of workers adapted to
images, the performance improves further. The linear split stops when
W reached T1/L1 because no more coordinate in Sw are independent
from other neighbors.

using either a line of worker (unidirectional partitioning) or a
grid of workers (bidirectional partitioning). In this experiment
K = 5 and the atom size is 8× 8. Both strategies scale similarly
in the regime with low number of workers. But when W
reaches T1/3L1, the performances of DiCoDiLeZ stops improv-
ing when using the unidirectional partitioning of Ω. Indeed in
this case many update candidates are selected at the border of
the sub-domains Sw, therefore increasing the chance to reject an
update. Moreover, the scaling of the unidirectional partitioning
is limited to W = T1/2L1 = 32, whereas the bidirectional
partitioning can be used with W up to 1024 workers.

4.1.4 Scaling of DiCoDiLeZ

Scaling for 1D signals Figure 6 investigates the role of
CD strategies in the distributed setting with 1D signals. The
average runtime of DICOD (with GCD on each worker), and
DiCoDiLeZ (with LGCD) are reported in Figure 6. DiCoDiLeZ
with LGCD scales sub-linearly with the number of workers
used, whereas DICOD scales almost quadratically. However,
DiCoDiLeZ outperforms DICOD consistently, as the perfor-
mance of GCD is poor for low number of workers using large
sub-domains. The two coordinate selection strategies become
equivalent when W reaches T/4L, as in this case DiCoDiLe
has only one sub-domain C(w)

1 . This is consistent for larger
signals. Indeed, in the case where T = 750, DiCoDiLeZ scales

T = 150L
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Fig. 6. Scaling of DICOD (orange) and DiCoDiLeZ (blue) with the
number of workers W . DiCoDiLeZ scales sub-linearly while DICOD
scales super-linearly. However, DiCoDiLeZ is more efficient than DICOD
in a regime with a low number of workers W , leading to improved
performances in all regimes. The green line denotes the number of cores
where DiCoDiLeZ and DICOD become the same as DiCoDiLeZ only
has one sub-domain in each worker. The results are consistent for both
small (top, T = 150L) and large (bottom T = 750L) signals sizes.

linearly with the number of workers. We do not see the drop
in performance, as in this experiments W does not reach the
scaling limit T/4L. Importantly, DiCoDiLeZ still outperforms
DICOD for all regimes.

Scaling for 2D signals Figure 7 illustrates the scaling perfor-
mance of DiCoDiLeZ on images. The average running times of
DiCoDiLeZ are reported as a function of the number of workers
W for different regularization parameters λ and for greedy and
locally greedy selection. As for the 1D CSC problem, the locally
greedy selection consistently outperforms the greedy selection.
This is particularly the case when using low number of workers
W . As for signals, once the size of the sub-domains becomes
smaller, the performances of both coordinate selection methods
become closer as both algorithms become equivalent. One can
also notice that the convergence of DiCoDiLeZ is faster for large
λ. This is expected, as in this case, the solution Z∗ is sparser and
less coordinates need to be updated.

4.2 Comparison with Skau and Wohlberg [25]

Figure 8 displays the evolution of the objective function (3) as
a function of time for DiCoDiLe and the Consensus ADMM
algorithm3 proposed by Skau and Wohlberg [25]. To the best
of our knowledge, the work of Skau and Wohlberg [25] is
the only approach in the literature that proposes a parallel
algorithm for CDL. Both algorithms were run on a single node
with 36 workers. We used the Hubble Space Telescope GOODS
South image as input data. As the algorithm by Skau and
Wohlberg [25] raised a memory error with the full image on

3. Code available at https://sporco.readthedocs.io/

 https://sporco.readthedocs.io/en/latest/ 
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Fig. 7. Scaling of DiCoDiLeZ with the number of workersW for different
values of λ and for two strategies of coordinate selection: Greedy and
Locally Greedy. The convergence is faster when λ is large because the
activation becomes sparser and less coordinates need to be updated.
Also, the locally greedy coordinate selection outperforms the greedy
selection up to a certain point where the performances become similar
as the sub-domain Sw becomes too small to be further partitioned with
sub-domains of size Θ.
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Fig. 8. Comparison of DiCoDiLe algorithm with Consensus ADMM
dictionary learning proposed by Skau and Wohlberg [25]. Algorithms
were run 5 times with 36 workers on a random-patch of size 512 × 512
taken from the Hubble Space Telescope GOODS South image. The
solid lines denote the median curves obtained through interpolation.

a machine with 250 GB of RAM, we used a random-patch of
size 512 × 512 as input data. Due to the non-convexity of the
problem, the algorithms converge to different local minima,
even when initialized with the same dictionary. To deal with
this difficulty, the Figure 8 shows 5 restarts of both algorithms,
as well as the median curve, obtained by interpolation. We can
see that DiCoDiLe outperforms the Consensus ADMM as it
converges faster and to a better local minima. To ensure a fair
comparison, the objective function is computed after projecting
back the atoms of the dictionary DDDk to the `2-ball by scaling
it with ‖DDDk‖22. This implies that we also needed to scale Z by
the inverse of the dictionary norm i.e. 1

‖DDDk‖22
. This projection

and scaling step is necessary for the solver as ADMM iterations
do not guarantee that all iterates are feasible (i.e., satisfy the
constraints). This also explains the presence of several bumps
in the evolution curve of the objective function.

4.3 Learning dictionary on Hubble Telescope images
We present here results using DiCoDiLe to learn patterns
from an image of the GOODS South field, acquired by the
Hubble Space Telescope [13]. We used W = 400 workers to
learn 25 atoms of size 32 × 32 with regularization parameter
λ = 0.1λmax. The learned patterns are presented in Figure 9.
This unsupervised algorithm is able to highlight structured
patterns in the image, such as small stars. Patterns 1 and 7 are
very fuzzy. This is probably due to the presence of very large
object in the foreground. As this algorithm is not scale invariant,

Fig. 9. 25 atoms 32 × 32 learned from the Hubble Telescope im-
ages (STScI-H-2016-39-a) using DiCoDiLe with 400 workers and a
regularization parameter λ = 0.1λmax. The atoms are sorted based
on ‖Zk‖1 from the top-left to the bottom-right. Most atoms displays a
structure which corresponds to spatial objects. The atoms 1 and 7 have
fuzzier structure because they are mainly used to encode larger scale
objects.

the objects larger than our patterns are encoded using these low
frequency atoms.

5 CONCLUSION

This work introduces DiCoDiLe, an asynchronous distributed
algorithm to apply convolutional dictionary learning to very
large multidimensional data such as signals and images. The
number of workers that can be used to solve the CSC scales
linearly with the data size, allowing to adapt the computational
resources to the problem dimensions. Using careful distributed
pre-computations, the complexity of the dictionary update step
is independent of the data size. Experiments show that it has
good scaling properties and demonstrate that DiCoDiLe is able
to learn patterns in astronomical images for large size which
are not handled by other state-of-the-art parallel algorithms.

APPENDIX A
COMPUTATION FOR THE COST UPDATES

When a coordinate Zk[ω] is updated to Z̃(q)
k [ω], the cost update

is a simple function of Zk[ω] and Z̃(q)
k [ω].

Proposition A.1. If the coordinate (k0, ω0) is updated from value
Zk0 [ω0] to value Z̃

(q)
k0

[ω0], then the change in the cost function
∆Ek0 [ω0] is given by:

∆Ek0 [ω0] =
‖DDDk0‖22

2
(Zk0 [ω0]2 − Z̃(q)

k0
[ω0]2)

− βk0 [ω0](Zk0 [ω0]− Z̃(q)
k0

[ω0])

+ λ(|Zk0 [ω0]| − |Z̃(q)
k0

[ω0]|).



10

Proof. We denote Z
(1)
k [ω] =

{
Z̃

(q)
k0

[ω0], if (k, ω) = (k0, ω0)

Zk[ω], elsewhere
.

Let α0 be the residual when coordinate (k0, ω0) of Z is set to 0.
For ω ∈ Ω,

αk0 [ω] = (X − Z ∗DDD)[ω] +DDDk0 [ω − ω0]Zk0 [ω0]

= (X − Z ∗DDD)[ω] + Zk0 [ω0](eω0 ∗DDDk0)[ω0] .

We also have αk0 [ω] = (X−Z(1) ∗DDD)[ω] +DDDk0 [ω−ω0]Z̃
(q)
k0

[ω0].
Then

∆Ek0 [ω0] =
1

2

∑
ω∈Ω

(X − Z ∗DDD)2 [ω] + λ‖Z‖1

− 1

2

∑
ω∈Ω

(
X − Z(1) ∗DDD

)2

[ω] + λ‖Z(1)‖1

=
1

2

∑
ω∈Ω

(αk0 [ω]−DDDk0 [ω − ω0]Zk0 [ω0])2

− 1

2

∑
ω∈Ω

(
αk0 [ω]−DDDk0 [ω − ω0]Z̃

(q)
k0

[ω0]
)2

+ λ(|Zk0 [ω0]| − |Z̃(q)
k0

[ω0]|)

=
1

2

∑
ω∈Ω

DDDk0 [ω − ω0]2(Zk0 [ω0]2 − Z̃(q)
k0

[ω0]2)

−
∑
ω∈Ω

αk0 [ω]DDDk0 [ω − ω0](Zk0 [ω0]− Z̃(q)
k0

[ω0])

+ λ(|Zk0 [ω0]| − |Z̃(q)
k0

[ω0]|)

=
‖DDDk0‖22

2
(Zk0 [ω0]2 − Z̃(q)

k0
[ω0]2)

− (αk0 ∗DDD
�
k0

)[ω0]︸ ︷︷ ︸
βk0

[ω0]

(Zk0 [ω0]− Z̃(q)
k0

[ω0])

+ λ(|Zk0 [ω0]| − |Z̃(q)
k0

[ω0]|)

This concludes our proof.

Using this result, we can derive the optimal value Z̃(q)
k0

[ω0] to
update the coordinate (k0, ω0) as the solution of the following
optimization problem:

Z̃
(q)
k0

[ω0] = arg min
y∈R

ek0,ω0(u) (A.1)

= arg min
u∈R

‖DDDk0‖22
2

(u− βk0 [ω0])2 + λ|u| .

In the case where multiple coordinates (kw, ωw) are updated in
the same iteration to values Z̃(q)

kw
[ωw], we obtain the following

cost variation.

Proposition A.2. The update of the W coordinates (kw, ωw)Ww=1

with additive update ∆Zkw [ωw] changes the cost by:

∆E =

iterative steps︷ ︸︸ ︷
W∑
i=1

∆Ew

−
∑
w 6=w′

(DDDkw ∗DDD
�
kw′ )[ωw′ − ωw]∆Zkw [ωw]∆Zkw′ [ωw′ ]

︸ ︷︷ ︸
interference

,

Proof. We define Z(1)
k [ω] =

{
Z̃

(q)
kw

[ωw], if (k, ω) = (kw, ωw)

Zk[ω], otherwise
.

Let

γ[ω] =(X − Z ∗DDD)[ω] +

K∑
w=1

DDDkw [ω − ωw]Zkw [ωw] (A.2)

=(X − Z(1) ∗DDD)[ω] +

K∑
w=1

DDDkw [ω − ωw]Z̃
(q)
kw

[ωw] , (A.3)

and

αw[ω] =(X − Z ∗DDD)[ω] +DDDkw [ω − ωw]Zkw [ωw] (A.4)

=γ[ω]−
∑
w′ 6=w

DDDkw′ [ω − ωw′ ]Zkw′ [ωw′ ] . (A.5)

Then

∆E =
1

2

∑
ω∈Ω

(
X[ω]− Z ∗DDD[ω]

)2

+ λ‖Z‖1 (A.6)

−
∑
ω∈Ω

(
X[ω]− Z(1) ∗DDD[ω]

)2

− λ‖Z(1)‖1

=
1

2

∑
ω∈Ω

(
γ[ω]−

W∑
w=1

DDDkw [ω − ωw]Zkw [ωw]
)2

− 1

2

∑
ω∈Ω

(
γ[ω]−

W∑
w=1

DDDkw [ω − ωw]Z̃
(q)
kw

[ωw]
)2

(A.7)

+ λ

W∑
w=1

(|Zkw [ωw]| − |Z̃(q)
kw

[ωw]|)

=
1

2

W∑
w=1

(∑
ω∈Ω

DDDkw [ω − ωw]2
)

(Zkw [ωw]2 − Z̃(q)
kw

[ωw]
2
)

+ λ

W∑
w=1

(|Zkw [ωw]| − |Z̃(q)
kw

[ωw]|)

−
W∑
w=1

∑
ω∈Ω

(
γ[ω]DDDkw [ω − ωw]

)
∆Zkw [ωw] (A.8)

−
∑
w 6=w′

[∑
ω∈Ω

(
DDDkw [ω − ωw]DDDkw′ [ω − ωw′ ]

)
× (Zkw [ωw]Zkw′ [ωw′ ]− Z̃(q)

kw
[ωw]Z̃

(q)
kw′ [ωw′ ])

]
=

W∑
w=1

[‖DDDkw‖22
2

(Zkw [ωw]2 − Z̃(q)
kw

[ωw]
2
)

−
(∑
ω∈Ω

αkw [ω]DDDkw [ω − ωw]︸ ︷︷ ︸
αkw∗DDD

�
kw

[ωw ]

)
∆Zkw [ωw]

+ λ(|Zkw [ωw]| − |Z̃(q)
kw

[ωw]|)
]

(A.9)

−
∑
w 6=w′

[
(DDDkw′ ∗DDD�

kw )[ωw − ωw′ ]

×
(

∆Zkw [ωw]Z̃
(q)
kw′ [ωw′ ] + ∆Zkw′ [ωw′ ]Z̃

(q)
kw

[ωw]

− Zkw [ωw]Zkw′ [ωw′ ]− Z̃(q)
kw

[ωw]Z̃
(q)
kw′ [ωw′ ]

)]
=

W∑
w=1

∆Ekw [ωw] (A.10)

−
∑
w 6=w′

(DDDkw′ ∗DDD�
kw )[ωw − ωw′ ]∆Zkw [ωw]∆Zkw′ [ωw′ ]
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APPENDIX B
PROBABILITY OF A COORDINATE TO BE SOFT-LOCKED

Proposition B.1. We consider DiCoDiLeZ with W workers (Wi in
each direction), run on a signal with d dimensions. We denote Ti the
length of the signal and Li the length of the atoms in each dimension i.
Assuming that the updates are spread uniformly on Ω, the probability
that an update candidate at random localization ω is accepted is lower
bounded by

P (ω 6∈ SL) ≥
d∏
i=1

(
1− WiLi

Ti

)
.

Proof. We denote ω0 the position of an update candidate, and
Wω0 = {w ∈ [1,W ] s.t. Sw ∩ VΘ(ω) = ∅} the set of workers
that are impacted by this update. We denote jω0 = |Wω0 | the
number of workers in this set. With the definition of the soft-
lock, there exists at least one worker w in Wω0 which has a
coordinate that is not soft-locked. As the updates are uniformly
spread across the workers, the probability of an update in ω0

being accepted satisfies P (ω 6∈ SL | ω = ω0) ≥ 1
jω0

.

Since one assumes uniform update distribution, the probability
to update a coordinate at location ω0 is P (ω0) = 1

|Ω| . The
probability for an update candidate at a random location ω to
be accepted satisfies

P (ω 6∈ SL) =

W∑
w=1

∑
ω0∈Sw

P (ω 6∈ SL | ω = ω0)P (ω0) (B.1)

≥
W∑
w=1

∑
ω0∈Sw

1

jω0

1

|Ω| (B.2)

≥ 1

|Ω|

W∑
w=1

d∏
i=1

(
Ti
Wi
− Li

)
(B.3)

≥ 1

|Ω|

d∏
i=1

(Ti −WiLi) (B.4)

≥
d∏
i=1

(
1− WiLi

Ti

)
, (B.5)

where (B.3) results from the summation on Ω. Basically, in each
worker w, there is

∏d
i=1(Ti/Wi − 2Li) coordinates for which

jω0 = 1. This corresponds to the coordinate in the worker that
are not on the border i.e. Sw \ BΘ(Sw). For a coordinate at the
border with jω0 = k > 1, it suffices to notice that it will appear
k times in the sum due to symmetry considerations. This is
illustrated in Figure 10.
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