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Quantum optimal control theory is applied to determine numerically the terahertz and nonres-
onant laser pulses leading respectively to the highest degree of orientation and alignment of the
asymmetric-top H2S molecule. The optimized terahertz pulses retrieved for temperatures of zero
and 50 K lead after 50 ps to an orientation with 〈ΦZx〉 = 0.95973 and 〈〈ΦZx〉〉 = 0.74230, respec-
tively. For the zero temperature, the orientation is close to its maximum theoretical value; for the
higher temperature it is below. The mechanism by which the terahertz pulse populates high lying
rotational levels is elucidated. The 5 ps long optimized laser pulse calculated for a zero temperature
leads to an alignment with 〈Φ2

Zy〉 = 0.94416 and consists of several kick pulses with a duration of
≈ 0.1 ps. It is found that the timing of these kick pulses is such that it leads to an increase of the
rotational energy of the molecule. The optimized laser pulse retrieved for a temperature of 20 K is
6 ps long and yields a lower alignment with 〈〈Φ2

Zy〉〉 = 0.71720.

I. INTRODUCTION

Controlling molecular rotational degrees of freedom
is an important field of research with many promis-
ing applications.1,2 The most successful techniques de-
veloped so far employ intense nonresonant laser pulses
and terahertz pulses. The former relies on the interac-
tion between the electric field and the induced dipole3–5

and leads to molecular alignment; the latter is based on
the coupling between the permanent dipole and the elec-
tric field6,7 and results in molecular orientation. With
nonresonant laser pulses, a fairly large alignment with
〈cos2 θ〉 = 0.8 could be reached for the iodine molecule.5

With terahertz pulses, the degree of orientation is usu-
ally smaller and a value of 〈cos θ〉 of the order of 0.005
was obtained at room temperature for the linear OCS
and the symmetric-top methyle iodide molecules.7,8 In-
creased alignment or orientation can be obtained with
various experimental techniques involving state-selected
molecules,9 two-color laser fields,10 and combining an
electrostatic field and laser pulses11–13 or terahertz and
femtosecond laser pulses.14

Pulse shaping in the case of both laser15,16 and
terahertz17 pulses in conjunction with quantum optimal
control theory18–25 provides us with another mean to sub-
stantially enhance orientation or alignment. Such a pro-
cedure was shown, at least theoretically, to be very effec-
tive in the case of linear molecules. An alignment with
〈cos2 θ〉 = 0.99 could be reached by Lapert et al.22 for the
CO molecule and an orientation with 〈cos θ〉 = 0.91 could
be attained by Salomon et al.26 for the HCN molecule.
Only a limited number of theoretical results are available
for asymmetric-top molecules. An elliptically polarized
nonresonant laser pulse was computed by Artamonov and
Seideman27 to obtain three-dimensional alignment. The
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alignment obtained is characterized by 〈cos2 χ〉, 〈cos2 θ〉,
and 〈cos2 φ〉 close to 0.76, 0.55, and 0.32, respectively.
Due to the fact that only eight parameters describing the
pulse shape were optimized and that an assumed time
dependence was taken for the electric field enveloppe,
the alignment is smaller than that achieved by Lapert
et al.22 albeit for a linear molecule. More recently, with
an optimized terahertz pulse designed at 0 K for the
H2S molecule28 an orientation with 〈ΦZx〉 = 0.93 was at-
tained without making any assumption on the time vari-
ation of the electric field. Compared to linear molecules,
asymmetric-top molecules display no periodic revivals29

and are characterized by an additional degree of free-
dom described by the Euler angle χ. There are no re-
sults about the maximum attainable field free orientation
or alignment that can be achieved with an asymmetric-
top molecule and the way the pulse interacts with the
molecule is not known.

In this investigation, quantum optimal control is ap-
plied to find terahertz and nonresonant laser pulses lead-
ing respectively to the highest degree of orientation and
alignment of an asymmetric-top molecule. The H2S
molecule is taken as a test case as it is spectroscopically
very well characterized30 and displays a permanent dipole
moment31 as well as large enough components of its po-
larizability tensor32 so that it can be used in both tera-
hertz and nonresonant laser pulses experiments. In the
first part of the paper, using the two-point boundary-
value quantum control paradigm (TBQCP) of Ho and
Rabitz23 and its extended version for mixed states of
Liao et al.,25 the optimal control theory equations are
solved to derive the terahertz pulse leading to the largest
degree of orientation of an ensemble of molecules initially
described by a temperature T . In the second part of the
paper, using the monotonically convergent algorithm of
Lapert et al.,21 designed for Stark coupling beyond the
linear dipole interaction, the nonresonant laser pulse al-
lowing us to achieve the highest alignment of an ensemble
of molecules is calculated. In both parts, the maximum
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attainable field free orientation or alignment is evaluated
and its temperature dependence is calculated. The mech-
anism by which the pulse interacts with the molecule is
also investigated.

In Section II, the calculation of the rotational energy
levels of the semi-rigid asymmetric-top H2S molecule is
presented and matrix elements arising in the second order
Stark coupling Hamiltonian are derived. In Sections III
and IV, the optimized terahertz and laser pulses are de-
rived and the mechanism allowing high lying rotational
to be populated is elucidated. Section V is the conclu-
sion.

II. THEORY

In this paper, we only consider degrees of freedom
corresponding to the overall rotation of an asymmetric-
top molecule; vibrational degrees of freedom are ignored.
These rotational degrees of freedom are parameterized
by the three usual Eulerian angles describing the orien-
tation of the molecule-fixed xyz axis system with respect
to the laboratory-fixed XYZ axis system. The rotational
energy calculation and the matrix elements of the Stark
coupling Hamiltonian are dealt with below.

A. Rotational energy levels

The H2S asymmetric-top C2v molecule is attached
to the molecule-fixed axis system using the Ir

representation.33 Its two-fold axis of symmetry and
molecular plane are the x axis and the xz plane, respec-
tively. Since in this light molecule centrifugal distortion
effects are important, they are taken into account in the
rotational energy calculation and incorporated in the ef-
fective rotational Hamiltonian. The latter is written with
the A reduced form proposed by Watson34–36 taking the
following form:

HR = BJ2
x + CJ2

y +AJ2
z −∆KJ

4
z −∆KJJ

2J2
z

−∆JJ
4 − {δKJ2

z + δJJ
2, J2

xy}+HKJ
6
z

+HKKJJ
2J4
z +HKJJJ

4J2
z +HJJ

6

+ {hKJ4
z + hKJJ

2J 2
z + hJJ

4, J2
xy}+ · · · ,

(1)

where Jx, Jy, and Jz are dimensionless molecule-fixed
components of the rotational angular momentum; J2

xy =

J2
x − J2

y ; {, } is the anticommutator; A, B, and C are
the rotational constants; and ∆K ,∆KJ , . . . , hJ are dis-
tortion constants. The matrix of the Hamiltonian in
Eq. (1) can be setup using symmetric top rotational func-
tions |J, k,M〉 defined in agreement with Wigner37 in
Eq. (1.43) of Svidzinskii38 and in Eq. (8-67) of Bunker’s
book.33 These functions are eigenfunctions of the total
rotational angular momentum J2, of its molecule-fixed
component Jz, and of its laboratory-fixed component JZ
with eigenvalues J(J + 1), k, and M , respectively. The

Table I. Symmetry species of the |Kα, J,M〉 rotational func-
tionsa

J even J odd

Label Kb α Γ(C2v) Γ(C2) Γ(C2v) Γ(C2)

E+ e +1 A1 A B1 B

E− e −1 B1 B A1 A

O+ o +1 A2 A B2 B

O− o −1 B2 B A2 A

a Symmetry species in the C2v and C2 symmetry groups for the
Wang-type rotational functions introduced in Section II A.

b The symbols e and o stand for even and odd, respectively.

matrix of the rotational Hamiltonian in Eq. (1) can be
split into 4 submatrices using the |Kα, J,M〉 Wang-type
linear combinations39 of |J, k,M〉 functions in Eq. (20)
of Coudert.40 As indicated by Table I, these linear com-
binations are labeled E+, E−, O+, and O−, depending
on the parity of K and the value of α, and can be as-
signed a symmetry species of the C2v and C2 symmetry
groups.33 Rotational functions belonging to the A and B
symmetry species of the latter group have a statistical
weight28 g equal to 1 and 3, respectively. Numerical di-
agonalization of the submatrices yields asymmetric-top
rotational energy levels and eigenfunctions labeled using
the rotational quantum number J , the pseudo rotational
quantum numbers Ka and Kc, and the quantum num-
ber M . The rotational energy ERot(JKaKc) does not
depend on the latter. The symmetry species in C2v of
the rotational levels depends on the parity of Ka and Kc

and can be found in Table I of Coudert.28

B. Stark coupling Hamiltonian

The Stark coupling Hamiltonian HS accounts for the
linear coupling of the electric field with the dipole mo-
ment and for the quadratic coupling described by the
polarizability tensor:

HS = −µ ·E− 1
2E ·α ·E, (2)

where E is the electric field; µ the dipole moment; and α
is the 3×3 symmetrical polarizability tensor. Matrix ele-
ments of the linear coupling term in Eq. (2) between two
asymmetric-top rotational wavefunctions can be found
in Eqs. (4)–(7) of Coudert28 where they are expressed in
terms of the laboratory-fixed components of the electric
field and of the molecule-fixed components of the dipole
moment. For the quadratic coupling term in Eq. (2), the
matrix elements can be similarly retrieved using tensorial
operator algebra.41 There arise two rank 2 tensorial op-
erators E(2) and α(2) and two rank 0 tensorial operators
E(0) and α(0). Their spherical components are expressed
in terms of Cartesian coordinates in Table II. Defining
the scalar product of two irreducible tensor operators as
in Eq. (5.2.4) of Edmonds,41 the last term in Eq. (2) can
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be written as the sum of two such products:

E ·α ·E = E(2) · α(2) + E(0) · α(0). (3)

Evaluation of the matrix elements between two
asymmetric-top eigenfunctions of the E(2) · α(2) term
in this equation leads to the following results when
laboratory-fixed spherical components are used:

〈JKaKc,M |E(2) · α(2)|J ′K ′aK ′c,M ′〉 =

+2∑
q=−2

(−1)q

× E(2)
−q 〈JKaKc,M |α(2)

q |J ′K ′aK ′c,M ′〉.

(4)

As the asymmetric-top eigenfunctions are expanded in
terms of symmetric top rotational functions, evaluation
of the last term of Eq. (4) leads to matrix elements of

the form 〈J, k,M |α(2)
q |J ′, k′,M ′〉. Using Eq. (5.4.1) of

Edmonds,41 such matrix elements can be rewritten:

〈J, k,M |α(2)
q |J ′, k′,M ′〉 = (−1)J−M

×

(
J ′ J 2

M ′ −M q

)
〈J, k||α(2)||J ′, k′〉.

(5)

The reduced matrix element in this equation can be re-
trieved from Eqs. (3.24) of Svidzinskii:38

〈J, k||α(2)||J ′, k′〉 = [(2J + 1)(2J ′ + 1)]1/2

× (−1)J−k

(
J ′ J 2

k′ −k p

)
MFα

(2)
p ,

(6)

where k′ − k + p = 0 and MFα
(2)
p denotes the constant

molecule-fixed spherical components of α(2). They can
be expressed in terms of Cartesian coordinates using Ta-
ble II. Evaluation of the matrix elements between two
asymmetric-top functions of the E(0) ·α(0) term in Eq. (3)
is straightforward. As rank 0 tensorial operators are in-
volved, diagonal matrix elements arise:

〈JKaKc,M |E(0) · α(0)|J ′K ′aK ′c,M ′〉 =

E
(0)
0 α

(0)
0 δJ,J ′δM,M ′δKa,K′

a
δKc,K′

c
.

(7)

In the remaining sections, the matrix of HS will be
setup using a maximum value of J denoted JMax. The
number of field-free rotational levels arising for a given M
value and a given symmetry species Γ depends on JMax

and |M |; it will be denoted p(Γ, |M |). The optimized
terahertz and laser pulses calculated below depend on
JMax. In each calculation, the value adopted for JMax

ensures converged results, that is, increasing JMax does
not alter the final orientation or alignment by more than
0.1%.

The spectroscopic constants used to compute rota-
tional energies with the effective Hamiltonian in Eq. (1)
are given in a table available as supplementary mate-
rial. The value taken for the permanent dipole mo-
ment component along the molecule-fixed x axis µx is

Table II. Spherical componentsa of the tensorial operators in
Eqs. (3)–(7)

q E
(2)
q α

(2)
q

±2 (E2
X − E2

Y )/2± iEXEY (αXX − αY Y )/2± iαXY

±1 ∓EXEZ − iEY EZ ∓αXZ − iαY Z

0 (2E2
Z − E2

X − E2
Y )/
√

6 (2αZZ − αXX − αY Y )/
√

6

E
(0)
q α

(0)
q

0 −(E2
X + E2

Y + E2
Z)/
√

3 −(αXX + αY Y + αZZ)/
√

3

a Laboratory-fixed spherical components are given in terms of
Cartesian coordinates. For molecule-fixed spherical
components, the subscripted upper case X, Y , and Z should be
replaced by lower case letters.

0.978 Debye.31 A strong electric field will lead to orien-
tation of this axis in the direction of the electric field.28

For the three nonvanishing components of the polariz-
ability tensor, αxx, αyy, and αzz, the values taken are32

3.841, 3.955, and 3.863 Å3, respectively. As αyy is the
largest diagonal component, a strong linearly polarized
laser field will lead to an alignment of the molecule-fixed
y axis parallel to the axis of polarization.29

III. OPTIMIZED TERAHERTZ PULSE

The electric field of the terahertz pulse, taken parallel
to the laboratory-fixed Z axis, is written E(t) = E(t) iZ ,
where E(t) is the amplitude of the field and iZ is the unit
vector along the laboratory-fixed Z axis. The electric
field is optimized so as to maximize the orientation of the
molecule-fixed x axis along the laboratory-fixed Z axis.
Retaining only the linear coupling term in the Stark cou-
pling Hamiltonian of Eq. (2), the time-dependent Hamil-
tonian describing the molecule is written:

H(t) = HR − µxE(t)ΦZx, (8)

where ΦZx = − cosχ sin θ is a direction cosine. The
Hamiltonian in Eq. (8) belongs to the completely sym-
metrical A symmetry species of C2 and only displays
∆M = 0 matrix elements. Its matrix with the |J, k,M〉
basis set functions of Section II A can be split into
2JMax + 1 submatrices identified by M . Each subma-
trix is of n× n dimensions, with n = (JMax + 1)2 −M2,
and can be split into two blocks corresponding to the A
and B symmetry species of C2. Each block is of p× p di-
mensions where p is p(A, |M |) or p(B, |M |). For M = 0,
both blocks can be further split into two sub-blocks be-
cause the Stark coupling operator in the Hamiltonian of
Eq. (8) then only displays nonvanishing |∆J | = 1 matrix
elements. The resulting four sub-blocks are labeled Ae,
Ao, Be, and Bo and the relevant Wang-type functions
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Table III. |Kα, J,M〉 rotational functionsa for M = 0

Labelb J even J odd Labelb J even J odd

Ae E+ O− Be E− O+

Ao O+ E− Bo O− E+

a The Wang-type |Kα, J,M〉 functions allowing us to block
diagonalize the Hamiltonian in Eq. (8) into four sub-blocks for
M = 0.

b The label of each sub-block is given in this column.

appear in Table III. The same block diagonalization is
valid for other operators and is used below for the direc-
tion cosine ΦZx, the density matrix ρ(t), and the time
evolution operator U(t, t′).

A. Monotonically convergent algorithm

Applying the TBQCP of Ho and Rabitz23 requires
choosing the operator O(t) introduced in their Section II.
Using their Eq. (A9) and accounting for the symmetry
properties of the Hamiltonian in Eq. (8), we express O(t)
as:

O(t) =
∑

Γ=A,B

+JMax∑
M=−JMax

∑
k

σM,Γ
k |χM,Γ

k (t)〉〈χM,Γ
k (t)|, (9)

where σM,Γ
k are positive constants and |χM,Γ

k (t)〉 are or-
thogonal wavefunctions characterized by M , a C2 sym-
metry species Γ, and the index k, which are solutions
of the time-dependent Schrödinger equation with the
Hamiltonian in Eq. (8). Equation (9) ensures that the
operator O(t) is positive semidefinite, hermitian, and sat-
isfies the invariant equation.42

The extended TBQCP for mixed states of Liao et al.25

leads to a monotonically convergent algorithm based on
their Eq. (21). This equation, rewritten below, allows us
to express the optimized field E(t) in term of the initial
field E(0)(t) according to:

E(t) = E(0)(t) + ηS(t)fρ(t), (10)

where η is a positive constant; S(t) is the field envelope;
and fρ(t) is a functional of the electric field. In agreement
with Eq. (19) of Liao et al.,25 it should be expressed in
terms of the operator O(t) in Eq. (9) and of the density
matrix ρ(t) as:

fρ(t) = − 1

ih̄
Tr{[O(t), µxΦZx]ρ(t)}, (11)

where [, ] is the commutator. The density matrix satis-
fies the von Neumann equation for the Hamiltonian in
Eq. (8). At time T , the operator O(t) in Eq. (9) should
coincide23 with a specific physical operator OT so as to
maximize the thermal average 〈〈OT 〉〉. In the present case,
maximum orientation is sought and OT is taken equal to

Figure 1. The largest eigenvalue λM,ΓMax of the direction cosine
ΦZx as a function of M for JMax = 20. A solid (dashed) line
corresponds to the C2 symmetry species A (B).

1+ΦZx, where 1 is the unity operator. The operator OT
can be expressed in terms of the eigenfunctions |φM,Γ

k 〉
and eigenvalues λM,Γ

k of ΦZx as:

OT =
∑

Γ=A,B

+JMax∑
M=−JMax

p(Γ,|M |)∑
k=1

(1 + λM,Γ
k )|φM,Γ

k 〉〈φM,Γ
k |.

(12)
Comparing this equation with Eq. (9) shows that

|χM,Γ
k (T )〉 = |φM,Γ

k 〉 and that σM,Γ
k = 1 + λM,Γ

k , ensuring

σM,Γ
k > 0.
Eigenvalues and eigenfunctions of ΦZx should be com-

puted to obtain the operator O(t). The matrix of ΦZx
is set up with the |J, k,M〉 basis set functions of Sec-
tion II A, using the matrix elements in Eqs. (4)–(7) of
Coudert.28 This matrix can be block-diagonalized in the
same way as the Hamiltonian in Eq. (8). Figure 1 shows

λM,Γ
Max the largest eigenvalues of ΦZx for JMax = 20,

0 ≤ M ≤ JMax, and both C2 symmetry species. A fast
variation with the parity of M superimposed on a slower
decrease with M can be seen. For an even (odd) value
of M , the largest eigenvalue for Γ = A is larger (smaller)
than that for Γ = B. Figure 1 emphasizes that the largest
eigenvalue of ΦZx is obtained for M = 0 and Γ = A; its
eigenfunction involves Ae-type rotational functions.

The maximum orientation for a given temperature T
can be estimated, as Liao et al.,25 expressing ρ(T ) the
density matrix at time T with the eigenfunctions of ΦZx:

ρopt =
∑

Γ=A,B

+JMax∑
M=−JMax

p(Γ,|M |)∑
k=1

ω
Γ,J(k)
n(k) |φ

M,Γ
k 〉〈φM,Γ

k |,

(13)
where ωΓ,J

n is the Boltzmann factor for the field-free ro-
tational level characterized by a C2 symmetry species Γ,
a rotational quantum number J ≥ |M |, and the index n.
For each symmetry species Γ and for each M value, there
arises p(Γ, |M |) field-free rotational levels and eigenval-

ues λM,Γ
k . The one to one correspondence between J, n

and k allows us to choose the functions J(k) and n(k)
in Eq. (13) so that the lowest lying field-free levels are
associated with the largest eigenvalues. This choice leads
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Figure 2. The largest orientation 〈〈ΦZx〉〉Max, defined in
Eq. (14), is plotted as a function of the temperature in Kelvin
for JMax = 9, 13, and 20, in solid, dashed, and dotted lines,
respectively.

to the largest value of the thermal average of ΦZx:

〈〈ΦZx〉〉Max =
∑

Γ=A,B

+JMax∑
M=−JMax

p(Γ,|M |)∑
k=1

ω
Γ,J(k)
n(k) λM,Γ

k . (14)

Figure 2 shows the variations of 〈〈ΦZx〉〉Max with the tem-
perature for several value of JMax. For a given tempera-
ture, it can be seen that taking a larger JMax leads to a
larger maximum orientation. For a given value of JMax,
the maximum orientation decreases with the tempera-
ture.

B. Numerical results

In the iterative procedure,23 the optimization time T
was set to 50 ps and 1024 time intervals of equal duration
were used for the computation of the time evolution of
the density matrix and of O(t) in Eq. (9). The field cor-
rection was computed using Eq. (49) of Ho and Rabitz23

where f
(n+1)
µ (t) was obtained from Eq. (11) of the present

paper, the parameter η was set to 1, and the field enve-
lope S(t) was taken as:

S(t) =
A

1 + 500[(2t− T )/T ]16
. (15)

The constant A is 1500 for the zero temperature and 2100
for the temperature of 50 K, expressing the electric field
in kV/cm. The electric field was optimized starting from
a zero initial field E(0)(t).

1. Zero temperature

For a zero temperature, only one wavefunction arises
and the density matrix reduces to ρ(t) = |ψ(t)〉〈ψ(t)|.
For t = 0, |ψ(t)〉 is the Ae-type wavefunction of the
000,M = 0 ground rotational level. For t > 0, |ψ(t)〉 re-
mains an Ae-type wavefunction due to the block decom-
position of the time evolution operator. Taking JMax = 9,
convergence was reached after 600 iterations and the av-
erage value of ΦZx at the end of the pulse was 0.95973.

Figure 3. The optimized electric field E(t) obtained for a
temperature of 0 K in Section III B 1 (top panel) and the
average value 〈ΦZx〉 (lower panel) as a function of the time t
in ps. For the optimization time T = 50 ps, indicated by a
vertical line in both panels, 〈ΦZx〉 = 0.95973.

This number should be compared to 0.97391, the value

of λM,Γ
Max for M = 0 and Γ = A.

Figure 3 shows the variations of the electric field and
of the average value 〈ΦZx〉. The electric field displays
slow and small variations from 0 to 30 ps and faster and
larger variations between 30 and 50 ps. For 〈ΦZx〉, a
nearly periodic behavior can be seen from 3 to 20 ps.
The windowed Fourier transform of the electric field is
shown in Fig. 4. This figure displays a limited number of
horizontal features characterized by wavenumbers rang-
ing from 15 to 155 cm−1. These correspond to frequency
components of the electric field and the wavenumbers
of the lowest components are 15, 23, 33, and 43 cm−1.
Table IV, where the field-free strongest electric dipole ro-
tational transitions involving M = 0, Ae-type levels are
listed up to 160 cm−1, allows us to assign these wavenum-
bers in terms of transitions. The wavenumbers of 15,
23, and 33 cm−1 can be unambiguously assigned to the
111 ← 000, 202 ← 111, and 313 ← 202 transitions, respec-
tively. There is no obvious assignment for the transition
at 43 cm−1 which can either be the 404 ← 313 or the
220 ← 111 transition. Figure 4 also shows that the fre-
quency components do not appear at the same time. The
transition at 15 cm−1 can be seen from 2 to 25 ps while
the one at 23 cm−1 can be seen later, from 8 to 42 ps. The
former transition ensures that the terahertz pulse first
populates the 111 level and, once it is enough populated,
the 202 level start being populated with the second tran-
sition. The 33 cm−1 wavenumber appearing between 24
and 47 ps enables the terahertz pulse to populate the 313

level since the 202 is populated for t > 24 ps. The tran-
sition at 43 cm−1 can now be unambiguously assigned
as the 220 ← 111 transition since it starts appearing at
t = 8 ps when the 111 level is populated but the 313 level
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Figure 4. Windowed Fourier transform of the optimized elec-
tric field obtained in Section III B 1 for a zero temperature.
The x and y axes are the time and the frequency in picosec-
ond and cm−1, respectively. A darker color indicates larger
values of the squared Fourier transform modulus.

Table IV. Strongest M = 0, Ae-type transitionsa

JKaKc JKaKc σb Sc JKaKc JKaKc σb Sc

111 000 15.090 0.32 624 533 80.525 0.13

202 111 22.926 0.16 440 331 81.462 0.16

313 202 33.449 0.20 919 808 89.839 0.22

404 313 42.707 0.21 735 624 90.604 0.15

220 111 43.279 0.09 551 440 99.302 0.19

515 404 52.172 0.21 826 735 99.767 0.16

331 220 56.972 0.17 937 826 109.126 0.17

606 515 61.601 0.22 753 642 117.938 0.09

717 606 71.025 0.22 660 551 120.742 0.19

533 422 74.057 0.12 955 844 129.902 0.11

808 717 80.438 0.22 771 660 140.060 0.20

a Transitions are assigned using the rotational quantum numbers
J , Ka, and Kc of the upper and lower M = 0, Ae-type levels.

b Transition wavenumber in cm−1.
c Transition strength in Debye2 for M = 0.

is not. The other frequency components in Fig. 4 can be
similarly interpreted. The population is transferred from
the 000 level to higher lying level by a mechanism quite
analogous to the rotational ladder climbing theoretically
predicted for linear molecules by Salomon et al.26

At time T , the wavefunction of the molecule can be
expanded in terms of M = 0, Ae-type eigenfunctions of
ΦZx associated with the largest eigenvalues. The wave-
function is 77.6, 1.8, 15.7, 0.7, and 2.9% of the eigen-
functions associated with the nondegenerate eigenvalues
0.97391, 0.88141, 0.86506, 0.69206, and 0.67941, respec-
tively. These 5 eigenfunctions account for 98.8% of the
wavefunction.

Figure 5. The optimized electric field E(t) obtained for a
temperature of 50 K in Section III B 2 (top panel) and the
thermal average 〈〈ΦZx〉〉 (lower panel) as a function of the
time t in ps. For the optimization time T = 50 ps, indicated
by a vertical line in both panels, 〈〈ΦZx〉〉 = 0.74230.

2. Temperature of 50 K

At t = 0, the density matrix of the molecule is
ρboltz(T ), the density matrix describing a Boltzmannian
equilibrium characterized by a temperature T = 50 K.
When t > 0, the density matrix is propagated using
the time evolution operator; each M value and C2 sym-
metry species being propagated independently. Taking
JMax = 13, convergence was reached after 700 itera-
tions and the thermal average of ΦZx was 0.74230. This
number should be compared to 0.93014, the value of
〈〈ΦZx〉〉Max for a temperature of 50 K.

Figure 5 shows the variations of the electric field and
of 〈〈ΦZx〉〉 the thermal average of ΦZx. Fast variations of
the electric field can be seen throughout the pulse. Its
windowed Fourier transform is displayed in Fig. 6. A lim-
ited number of frequency components can be observed, as
in the case of the zero temperature, but their number is
larger. For instance a wavenumber of 5 cm−1 can clearly
be seen in the present figure and has no counterpart in
Figure 3. Using the table given as supplementary ma-
terial, where all the allowed transitions are listed up to
160 cm−1, allows us to assign the wavenumbers in Fig. 6.
It is found that the additional wavenumbers are those of
transitions that are not allowed for a zero temperature
because they either do not appear for M = 0, like the
transition at 5 cm−1 which turns out to be the Q-type
110 ← 101 transition, or they involve levels belonging to
the B symmetry species of C2. Figure 6 also shows that
most frequency components start appearing in the be-
ginning of the pulse, unlike in the zero temperature case.
In the case of a finite temperature, low lying rotational
levels are already populated and the terahertz pulse is
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Figure 6. Windowed Fourier transform of the optimized elec-
tric field obtained in Section III B 2 for a temperature of 50 K.
The x and y axes are the time and the frequency in picosec-
ond and cm−1, respectively. A darker color indicates larger
values of the squared Fourier transform modulus.

able to change their population.

IV. OPTIMIZED LASER PULSE

The laser field, taken polarized along the laboratory-
fixed Z axis, is written E(t) = E(t) cosωt iZ , where ω is
the angular frequency of the laser and E(t) is the laser
field envelope. The latter is optimized so as to maximize
the alignment of the molecule-fixed y axis parallel to the
laboratory-fixed Z axis. The time-dependent Hamilto-
nian describing the molecule includes the quadratic cou-
pling term of the Stark coupling Hamiltonian in Eq. (2):

H(t) = HR −
E(t)2

4

∑
γ=x,y,z

αγγΦ2
Zγ , (16)

where Φ2
Zγ , with γ = x, y, z, are squared direction cosines.

In this equation, the 1/4 factor replaces the 1/2 factor in
Eq. (2) because Eq. (16), obtained after time averaging
over the laser period, is expressed in terms of the laser
field envelope. The Hamiltonian in Eq. (16) belongs to
the completely symmetrical A1 symmetry species of C2v.
Its matrix with the |J, k,M〉 basis set functions of Sec-
tion II A can be split into the same number of subma-
trices, with the same dimensions, as the Hamiltonian in
Eq. (8). Each submatrix is identified by M and can be
split into four blocks corresponding to the four symmetry
species of C2v. Each block is of p×p dimensions where p
is p(Γ, |M |). For M = 0, each block can be further split
into two sub-blocks because the Stark coupling operator
in the Hamiltonian of Eq. (16) then only displays nonvan-
ishing |∆J | = 0,±2 matrix elements. The resulting eight
sub-blocks can be identified using the symmetry species
of C2v and the parity of J .

A. Monotonically convergent algorithm

The monotonically convergent algorithm of Lapert et
al.21 is based on a target state described by its density
matrix. Using the notation of the present paper and
remembering that the C2v group should be utilized, this
density matrix becomes:

ρopt =
∑

Γ

+JMax∑
M=−JMax

p(Γ,|M |)∑
k=1

ω
Γ,J(k)
n(k) |φ

M,Γ
k 〉〈φM,Γ

k |, (17)

where Γ spans the four symmetry species of C2v; ω
Γ,J
n

is the Boltzmann factor for the field-free rotational level
characterized by a C2v symmetry species Γ, a rotational

quantum number J ≥ |M |, and the index n; and |φM,Γ
k 〉

is an eigenfunction of Φ2
Zy. As in Eq. (13), the one to one

correspondence between J, n and k allows us to choose
the functions J(k) and n(k) so that the lowest lying
field-free levels are associated with the largest eigenval-
ues. This choice leads to the largest value of the thermal
average of Φ2

Zy. In the algorithm of Lapert et al.,21 a den-

sity matrix ρ(t) and its adjoint χ(t) are also used. Both
satisfy the von Neumann equation with the Hamiltonian
in Eq. (16) and are propagated forward and backward
with initial and final conditions ρ(t = 0) = ρboltz(T ) and
χ(T ) = ρopt, respectively.

In the present optimization, a cost function which is
quartic in the electric field is adopted.21 In the equations
of this reference allowing us to update the laser field en-
velope, the matrix elements µp,q and βp,q, corresponding
to the permanent dipole moment and the hyperpolariz-
ability, are ignored and the matrix element αp,q, corre-
sponding to the polarizability, is rewritten:

αp,q = − i
2

Tr{ρ(q)(t)[χ(p)(t),
∑

γ=x,y,z

αγγΦ2
Zγ ]}, (18)

where ρ(q)(t) and χ(p)(t) are the density matrix and its
adjoint computed for the laser field envelopes E(q)(t) and
E(p)(t) at the qth and pth iterations, respectively.

To determine ρopt, eigenvalues and eigenfunctions of
Φ2
Zy should be computed. Setting up its matrix with

the |J, k,M〉 basis set functions of Section II A and using
the results in Section II B yields a matrix which can be
block-diagonalized in the same way as the Hamiltonian

in Eq. (16). Figure 7 shows λM,Γ
Max the largest eigenvalues

of Φ2
Zy for JMax = 9, 0 ≤ M ≤ JMax, and for all four

symmetry species of C2v. These largest eigenvalues are
doubly degenerate for |M | ≥ 2. For |M | < 2, this is
only the case for the B1 and B2 symmetry species. As
in the case of the direction cosine ΦZx, there is a fast
variation with the parity of M superimposed on a slower
decrease with M . For an even (odd) value of M , the
eigenvalues for Γ = A1 and A2 are larger (smaller) than
those for Γ = B1 and B2. The largest eigenvalue of Φ2

Zy

is obtained for M = 0 and Γ = A1 (Γ = A2) when JMax

is even (odd); the corresponding eigenfunction involves
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Figure 7. The largest eigenvalue λM,ΓMax of the squared direction
cosine Φ2

Zy as a function of M for JMax = 9. Solid and dotted
lines correspond to the C2v symmetry species A1 and A2,
respectively. A dashed line corresponds to the C2v symmetry
species B1 and B2.

Figure 8. The maximum alignment 〈〈Φ2
Zy〉〉Max, calculated

with Eq. (19), is plotted as a function of the temperature
in Kelvin in solid, dashed, and dotted lines, for JMax = 8, 11,
and 20, respectively.

rotational functions with J even (odd). For a given C2v

symmetry species Γ and a given M value, the direction
cosine Φ2

Zy only displays nondegenerate eigenvalues. This
allows us to unambiguously assign a field-free rotational
level to an eigenvalue of Φ2

Zy in Eq. (17).
The maximum alignment for a given temperature T

can be estimated evaluating the thermal average of Φ2
Zy

with the target state ρopt. This leads to:

〈〈Φ2
Zy〉〉Max =

∑
Γ

+JMax∑
M=−JMax

p(Γ,|M |)∑
k=1

ω
Γ,J(k)
n(k) λM,Γ

k , (19)

where Γ spans the four symmetry species of C2v. Figure 8
shows the variations of 〈〈Φ2

Zy〉〉Max with the temperature
for several values of JMax. As in the case of the largest
orientation, taking a larger JMax leads to a larger max-
imum alignment for a given temperature. For a given
value of JMax, the maximum alignment decreases with
the temperature.

B. Numerical results

In the iterative procedure,21 the optimization time T
was set to 5 ps for the zero temperature, to 6 ps for the
temperature of 20 K, and 1024 time intervals of equal

duration were used for the computation of the time evo-
lution of the density matrix and its adjoint. The penalty
factor λ in the cost functional of Eq. (3) of Lapert et al.21

was written:

λ(t) =
λ0

sin2(πt/T )
, (20)

where λ0 was set to 3.7× 10−7 for the zero temperature
and to 1.8×10−7 for the temperature of 20 K, expressing
the laser field envelope in kV/cm units. The initial laser
field envelope E(0)(t) was set to a small constant value.
Equations (24) and (25) of Lapert et al.21 were solved to
update the laser field envelope after the backward and
forward propagations, respectively. In these equations,
η1 and η2 were set to 1.

The values chosen for λ0 in Eq. (20) lead to maxi-
mum intensities on the order of 2 × 1014 W/cm2 for
the designed laser pulses. Such a large value ensures,
at least for the zero temperature, a significant align-
ment with 〈Φ2

Zy〉 > 0.9. Large intensities arise because
αyy, the largest component of the polarizability tensor,

is only 0.114 and 0.092 Å3 larger than its two other
components, αxx and αzz, respectively, and a very large
electric field is required to interact efficiently with the
molecule. It should be kept in mind that an intensity of
2×1014 W/cm2 may be close or even larger than the off-
sets of both tunnel and multiphoton ionization. A max-
imum intensity on the order of 5× 1013 W/cm2, 4 times
smaller and physically more satisfactory, can be obtained
setting λ0 in Eq. (20) to 4× 10−6 and 8.5× 10−7 for the
zero and 20 K temperatures, respectively. Much smaller
alignments are then reached for both temperatures.

1. Zero temperature

For a zero temperature, only one term arises in the
density matrix ρ(t), in its adjoint χ(t), and in the tar-

get state ρopt. The latter is simply |φM,Γ
Max〉〈φ

M,Γ
Max|, where

|φM,Γ
Max〉 is the eigenfunction of the largest eigenvalue of

Φ2
Zy for M = 0 and the A1 symmetry. The density ma-

trix and its adjoint reduce to |ψ(t)〉〈ψ(t)| and |φ(t)〉〈φ(t)|,
respectively. For t = 0, |ψ(t)〉 is the A1 symmetry wave-
function of the 000,M = 0 ground rotational level; for

t = T , |φ(t)〉 is |φM,Γ
Max〉. Both |ψ(t)〉 and |φ(t)〉 remain A1

symmetry wavefunctions due to the block decomposition
of the time evolution operator. Taking JMax = 11, con-
vergence was reached after 400 iterations and the average
values of Φ2

Zx, Φ2
Zy, and Φ2

Zz at the end of the pulse were
0.02093, 0.94416, and 0.03491, respectively. The average
value of Φ2

Zy should be compared to 0.96346 the value of

λM,Γ
Max for M = 0 and the A1 symmetry species.
Figure 9 depicts the variations of the intensity of the

laser pulse and of the average value 〈Φ2
Zy〉. The laser

pulse consists of a series of short kick pulses with a
duration of approximately 0.1 ps; the intensity of the
strongest pulse is 1.8 × 1014 W/cm2. The average value
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Figure 9. The intensity of the optimized laser pulse I(t) ob-
tained for a zero temperature in Section IV B 1 (top panel)
and the average value 〈Φ2

Zy〉 (lower panel) as a function of the
time t in ps. For the optimization time T = 5 ps, indicated
by a vertical line in the lower panel, 〈Φ2

Zy〉 = 0.94416.

〈Φ2
Zy〉 is 1/3 for t = 0 and displays smooth variations be-

tween 0 and 2 ps. Insight into the mechanism by which
the laser pulse interacts with the molecule can be re-
trieved computing the average values of the operators
J2
z and J2

x + J2
y containing information about the na-

ture of the rotational levels involved in the expansion
of the wavefunction. Figure 10 displays the variation of
the average values 〈J2

z 〉 and 〈J2
x + J2

y 〉. Both increase
almost monotonically with time during the pulse. After
the pulse, small variations of 〈J2

z 〉 and 〈J2
x +J2

y 〉 can still

be observed because neither J2
z nor J2

x + J2
y commute

with the field-free Hamiltonian. Examining Fig. 9 shows
that both averages increase significantly with each kick
pulse of the laser. This can clearly be seen at t = 1.3 and
2.5 ps. At the end of the pulse, the larger value of 〈J2

z 〉
compared to 〈J2

x + J2
y 〉 and the smallness of 〈Φ2

Zx〉 and

〈Φ2
Zz〉 are consistent with the molecule rotating mainly

about its molecule-fixed z axis. The laser pulse thus pop-
ulates high lying rotational characterized by a large Ka

value.

At time T , the wavefunction of the molecule can be
expanded in terms of M = 0, A1-type eigenfunctions of
Φ2
Zy involving rotational levels with J even and associated

with the largest eigenvalues. The wavefunction is 89.1,
4.4, 5.2, and 0.6% of the eigenfunctions associated with
the nondegenerate eigenvalues 0.96346, 0.83926, 0.81743,
and 0.59275, respectively. These 4 eigenfunctions ac-
count for 99.3% of the wavefunction. Although the initial
laser field envelope E(0)(t) is not quite satisfactory from
the physical point of view, Fig. 9 emphasizes that the op-
timized laser field envelope displays the correct behavior
as it vanishes at the beginning and the end of the laser
pulse.

Figure 10. The average values 〈J2
z 〉 and 〈J2

x+J2
y 〉 as a function

of the time t in ps in solid and dashed lines, respectively, for
the optimized laser pulse obtained in Section IV B 1 for a zero
temperature.

Selecting a maximum intensity 4 times smaller, equal
to 5 × 1013 W/cm2, leads to a much smaller alignment
with the average values of Φ2

Zx, Φ2
Zy, and Φ2

Zz being
0.069303, 0.825396, and 0.105301, respectively, at the end
of the pulse.

2. Temperature of 20 K

For a nonzero temperature, both the density matrix
and its adjoint are propagated using the initial condi-
tions in Section IV A for T = 20 K. Due to the block
decomposition of the evolution operator, each M value
and C2v symmetry species can be propagated indepen-
dently. Taking JMax = 11, convergence was reached after
500 iterations and the thermal averages of Φ2

Zx, Φ2
Zy, and

Φ2
Zz at the end of the pulse were 0.13991, 0.71720, and

0.14289, respectively. The thermal average of Φ2
Zy should

be compared to 0.93921 the value of 〈〈Φ2
Zy〉〉Max for a tem-

perature of 20 K.
Figure 11 shows the variations of the intensity of the

laser pulse and of the thermal average 〈〈Φ2
Zy〉〉. Just as for

the zero temperature, the laser pulse consists of a series of
short kick pulses with a duration of approximately 0.1 ps;
the intensity of the strongest pulse is 1.9× 1014 W/cm2.
Taking a maximum intensity 4 times smaller, close to 5×
1013 W/cm2, leads to a much smaller alignment with the
thermal averages of Φ2

Zx, Φ2
Zy, and Φ2

Zz being respecively
0.228479, 0.529576, and 0.241945 at the end of the pulse.

V. DISCUSSION

Although optimal control theory has already been
applied to the orientation and alignment of linear
molecules,22,26 it has not been applied yet to asymmetric-
top molecules. The present paper reports on the appli-
cation of control theory to the optimal orientation and
alignment of such molecules with terahertz and laser
pulses. The theoretical treatment presented is suited
for any asymmetric-top molecule displaying a permanent
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Figure 11. The intensity of the optimized laser pulse I(t) ob-
tained for a temperature of 20 K in Section IV B 2 (top panel)
and the thermal average 〈〈Φ2

Zy〉〉 (lower panel) as a function of
the time t in ps. For the optimization time T = 6 ps, indicated
by a vertical line in the lower panels, 〈〈Φ2

Zy〉〉 = 0.71720.

dipole moment or large and different enough polarizabil-
ity tensor components. In the present paper, it is applied
to the asymmetric-top H2S molecule. Its C2v symme-
try permits a block diagonalization of the various op-
erators involved in the calculation, reducing computing
time. The large rotational constants of the H2S molecule
also allows us to obtain converged numerical results with
a maximum value of J smaller than 15, even for a tem-
perature of 50 K, further reducing computing time. The
theoretical treatment could be used with other C2v sym-
metry asymmetric-top molecule like, for instance, the
formaldehyde (H2CO) molecule. In this molecule, as the
dipole moment lies along the molecule-fixed z axis and
the largest component of the polarizability tensor is αzz
(using the Ir representation), the orientation and align-
ment will be qualitatively different.43 In the case of Cs or
C1 symmetry molecules, the theoretical treatment should
be modified to account for the fact that a block diagonal-
ization of the operators involved in the calculation is not
possible as the dipole moment is not parallel to either
principal axes of inertia. Such would be the case for the
Cs symmetry vinyl chloride (H2CCHCl) molecule with
a dipole moment neither parallel to the a nor to the b
principal axes.

Using the TBQCP of Ho and Rabitz23 and its ex-
tended version for mixed states of Liao et al.,25 ter-
ahertz pulses were designed to maximize the orienta-
tion of the molecule-fixed x axis along the laboratory-
fixed Z axis. The electric field was optimized iteratively
making use of an update relation based on Eq. (11) of
the present paper. This equation involves the positive
semidefinite operator O(t) satisfying the invariant equa-
tion introduced by Ho and Rabitz.23 In the present case,

it is expressed in terms of the eigenvalues and eigenfunc-
tions of the direction cosine ΦZx, as appropriate for an
asymmetric-top molecule. A zero and a finite temper-
atures of 50 K were considered and the time variation
of the optimized electric field is displayed in Figs. 3 and
5. Both pulses are 50 ps long and the maximum value
of the electric field is less than 2 MV/cm. For the zero
temperature the orientation achieved 〈ΦZx〉 = 0.95973
compares favorably with the maximum theoretical orien-
tation, 〈ΦZx〉Max = 0.97391. For the finite temperature,
the designed terahertz pulse is not as effective and the
orientation obtained 〈〈ΦZx〉〉 = 0.74230 is below that for
the zero temperature and for the maximum theoretical
orientation 〈〈ΦZx〉〉Max = 0.93014. For the zero tempera-
ture, the mechanism by which the terahertz pulse popu-
lates high-lying rotational levels, starting from the J = 0
ground rotational level, is a rotational ladder climbing
during which population is transferred between levels
connected by electric dipole transitions. This mechanism
is analogous to the one evidenced in linear molecules.26

For the finite temperature, a similar mechanism takes
place, but several levels are populated before the pulse.

The monotonically convergent algorithm of Lapert et
al.21 was utilized to build laser pulses maximizing the
alignment of the molecule-fixed y axis parallel to the
laboratory-fixed Z axis. This algorithm also leads to
an iterative process and is based on a target state ex-
pressed in term of its density matrix. The latter, ini-
tially written for a linear molecule,21 was modified for an
asymmetric-top molecule and appears in Eq. (17) of the
present paper. It involves the eigenvalues and eigenfunc-
tions of the squared direction cosine Φ2

Zy, computed for
this type of molecule. A zero temperature and a finite
temperature of 20 K were considered and the time vari-
ation of the intensity of the laser pulse can be seen in
Figs. 9 and 11. For both temperatures, the laser pulse
consists of a series of kick pulses. This result is similar
to that derived by Lapert et al.22 for the alignment of
CO molecules without spectral constraints. For the zero
temperature, the alignment achieved in the present in-
vestigation with a 5 ps laser pulse, 〈Φ2

Zy〉 = 0.94416, is
quite close the maximum theoretical one. For the finite
temperature, although a longer 6 ps long laser pulse was
built, the alignment achieved 〈〈Φ2

Zy〉〉 = 0.71720 is well
below the maximum theoretical one.

Although the irregular and incommensurable spac-
ings of the rotational energy levels of an asymmetric-
top molecules might reduce the effectiveness of control
theory,44 the present paper shows that, at least for a zero
temperature, it is as effective for this type of molecule as
in the simpler case of linear molecules.

SUPPLEMENTARY MATERIAL

See supplementary material for a PDF file containing
two tables. The spectroscopic constants for the ground
vibrational state of H2S appear in the first one and the
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allowed dipole moment transitions of H2S are listed up to 160 cm−1 in the second one.
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