
HAL Id: hal-02371701
https://hal.science/hal-02371701v1

Submitted on 20 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Plasmodium Purine Metabolism and Its Inhibition by
Nucleoside and Nucleotide Analogues

Thomas Cheviet, Isabelle Lefebvre-Tournier, Sharon Wein, Suzanne Peyrottes

To cite this version:
Thomas Cheviet, Isabelle Lefebvre-Tournier, Sharon Wein, Suzanne Peyrottes. Plasmodium Purine
Metabolism and Its Inhibition by Nucleoside and Nucleotide Analogues. Journal of Medicinal Chem-
istry, 2019, 62 (18), pp.8365-8391. �10.1021/acs.jmedchem.9b00182�. �hal-02371701�

https://hal.science/hal-02371701v1
https://hal.archives-ouvertes.fr


1 

 

PLASMODIUM PURINE METABOLISM AND ITS INHIBITION BY 

NUCLEOSIDE AND NUCLEOTIDE ANALOGUES 

 

Thomas Cheviet,1 Isabelle Lefebvre-Tournier,1 Sharon Wein,2 Suzanne Peyrottes1* 

1 Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 UM-CNRS-ENSCM, Univ. Montpellier, 

Equipe Nucléosides & Effecteurs Phosphorylés, Place E. Bataillon, cc 1704, 34095 Montpellier, France 

2 Dynamique des Interactions Membranaires Normales et Pathologiques (DIMNP), UMR 5235 UM-

CNRS, Univ. Montpellier, Place E. Bataillon, 34095 Montpellier, France 

 

ABSTRACT 

Malaria still affects around 200 million people and is responsible for more than 400,000 deaths per 

year, mostly children in subequatorial areas. This disease is caused by parasites of the Plasmodium genus. 

Only a few WHO-recommended treatments are available to prevent or cure plasmodial infections, but 

genetic mutations in the causal parasites have led to onset of resistance against all commercial antimalarial 

drugs. New drugs and targets are being investigated to cope with this emerging problem, including 

enzymes belonging to the main metabolic pathways, while nucleoside and nucleotide analogues are also 

a promising class of potential drugs. This review highlights the main metabolic pathways targeted for the 

development of potential antiplasmodial therapies based on nucleos(t)ide analogues, as well as the 

different series of purine-containing nucleoside and nucleotide derivatives designed to inhibit Plasmodium 

falciparum purine metabolism. 
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INTRODUCTION 

 WHO, in 2018, reported more than 435,000 deaths associated with malaria, and at least 219 million 

people—mostly children—are still affected by this disease in 91 countries located in Africa and Asia.1 The 

disease, which represents an endemic in tropical areas, is caused by protozoal parasites of the Plasmodium 

genus in the Apicomplexa phylum. Among the six human Plasmodium species (P. falciparum, P. vivax, P. 

malariae, P. ovale curtisi, P. ovale wallikeri 2,3 and P. knowlesi originally known to cause simian malaria), 

P. falciparum is the most widespread and lethal. The parasite is transmitted to humans by female mosquitos 

of the Anopheles genus (Figure 1). Plasmodium begins its development cycle in humans by multiplication 

in hepatocytes. After 10-12 days, the parasites are released in the blood and invade the erythrocytes 

(asexual multiplication). This intraerythrocytic phase constitutes the symptomatic phase of the disease, 

with massive destruction of erythrocytes and sometimes adherence to blood vessels of large organs like 

the brain, thus restricting the blood flow with serious consequences. A small proportion of the blood stages 

develop into sexual forms (so-called gametocytes) that are ingested by a feeding mosquito, therefore 

completing the cycle. Parasites of the P. vivax and P. ovale species can persist for years as dormant stages 

in the liver (so-called hypnozoites) and can cause relapses.  
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Figure 1 : Plasmodium falciparum life-cycle 

Since the historical use of quinine 400 years ago, particularly as of the late 19th century, several 

treatments of synthetic or natural origins have been developed (Figure 2) and have been successfully used 

to cure malarial diseases in infected human hosts. The various classes of antimalarial drugs belong to a 

few families according to their chemical structures, such as: aryl amino alcohols (quinine, mefloquine, 

halofantrine, etc.); 4-aminoquinolines (chloroquine, amodiaquine, piperaquine, etc.); 8-aminoquinolines 

(primaquine, tafenoquine), antifolates (proguanyl, pyrimethamine, sulfadoxine, dapsone, etc.); 

naphthoquinones (atovaquone); peroxides and sesquiterpene derivatives (artemisinin, artesunate, 

artemether, etc.); antimicrobials (tetracycline, azithromycin, fluoroquinolones, etc.). In addition to 

chemotherapy, an efficient vaccine would be a desirable tool to control and eventually eradicate malaria, 

but such a vaccine has yet to be validated despite clinical assays.4,5  
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Figure 2: Timeline of main antimalarials and occurring resistance 

Blue pills: first used as antimalarial; red circles: first reported resistance; black circles: no longer marketed 

AS/AQ, artesunate/amodiaquine; DHA-PPQ, dihydroartemisinin-piperaquine; A/P, atovaquone/proguanil; A/L, 

artemether/lumefantrine; ASSP, artesunate sufadoxine pyrimethamine; S/P, sulfadoxine/pyrimethamine; AS/MQ, 

arestunate/mefloquine; ACTs, artemisinin combination therapies; and C/D, chlorproguanil/dapsone. 

 

Mutations in the parasite genome have appeared over the last century, inducing fast spreading 

resistance against all commercial drugs (Figure 2). To address these issues, and in the absence of an 

available efficient vaccine, new drugs with original modes of action are crucial as resistance to front-line 

antimalarial drugs (essentially artemisinin-based combination therapies, ACTs) is spreading in Southeast 

Asia. A number of collaborative drug discovery programs have thus been initiated worldwide and a few 

drug candidates are currently under clinical development or have recently been approved for clinical use. 

Among them, most of the new drugs correspond to compounds that are structurally related to previously 

used drugs or artemisinin-based combinations, and some molecules with a novel mechanism of action 
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have been proposed. To our knowledge, none of them belong to the nucleos(t)ide analogue family, 

targeting proteins involved in purine or pyrimidine metabolism, except DSM265 (currently in phase IIa 

clinical trials).6 The latter is a selective inhibitor of Plasmodium dihydroorotate dehydrogenase 

(PfDHODH), which plays a central role within the de novo pyrimidine pathway. However, target 

mutations were found in patient's parasites (already observed in earlier in vitro studies) and concerned a 

few patients with recurrence at day 28 after receiving a single oral dose of DSM265. Once again, this data 

highlights the need to use combination therapies. 

 

Herein, we will focus on nucleobase, nucleoside and nucleotide analogues, which so far have been 

reported to target and inhibit proteins involved in the purine salvage pathway of Plasmodium falciparum. 

This family of derivatives is of special interest as they can mimic the endogenous substrates of these 

proteins, so the design of analogues and their study may result in a new class of antimalarial drugs. In 

addition, as Plasmodium falciparum relies solely on the de novo pathway for pyrimidine nucleotide 

biosynthesis and on the salvage pathway for purine nucleotides, both metabolic processes appear to be 

attractive chemotherapeutic targets. The development of these analogues as inhibitors of plasmodial 

purine metabolism is relatively recent and somehow associated with the discovery of the antiviral and 

antitumoral potential of such compounds. The main nucleic acid biosynthesis pathways of Plasmodium 

will be described as well as the wide collection of analogues targeting the corresponding proteins.  

 

I/ NUCLEIC ACID METABOLISM IN PLASMODIUM FALCIPARUM  

Mammalian cells are able to synthesize nucleic acids from small molecules through the de novo 

pathway but requiring 6 ATP equivalents for the synthesis of IMP from ribose-5-phosphate and a dozen 

steps. In contrast, the salvage pathway is based on the recycling of related metabolites, which is less 
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energy-demanding (a single step from hypoxanthine to IMP and 1 ATP equivalent is required for 

phosphoribosylpyrophosphate formation). The human host has both pathways to produce purine and 

pyrimidine nucleotides, whereas protozoan parasites such as Plasmodium only possess the salvage 

pathway for purine containing derivatives and de novo synthesis of pyrimidine derivatives. The latter are 

therefore essential for parasite growth, which requires a huge amount of purine and pyrimidine nucleoside 

triphosphates for its nucleic acid biosynthesis. A few reviews have provided detailed accounts of purine 

and pyrimidine pathways as chemotherapeutic targets.7–9 

 

1) Pyrimidine Metabolism 

Protozoan parasites rely solely on the de novo pathway to produce their pyrimidine derivatives, 

and they are not very capable of salvaging pyrimidines from erythrocytes. Briefly, Pf pyrimidine 

biosynthesis involves six enzymatic steps (Figure 3) as in the human host producing a central metabolite, 

i.e. uridine-5’-monophosphate (UMP), which is then used as precursor for all pyrimidine nucleotides 

(dUMP, dCTP, dTTP, UTP and CTP) required for DNA/RNA biosynthesis. The related enzymes can be 

divided in two groups of monofunctional and multifunctional proteins, i.e. the first and last three, 

respectively. Little attention has been focused on carbamoyl phosphate synthetase (CPS II) and aspartate 

transcarbamoylase (ATC), whereas Pf dihydroorotase (DHOase) has received much attention. The latter 

has been characterized and found to share many properties with mammalian proteins.10 The three 

following enzymes, i.e. orotate phosphoribosyltransferase (OPRT), dihydroorotate hydrogenase (DHODH) 

and dihydroorotase (DHOase), are considered as key enzymes to target the human parasite, and DHODH 

is one of the most widely studied.11,12 Their 3D crystal structures have been solved, their characteristics 

have been studied in detail and compared to their human counterpart. 
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This review is not intended to provide a detailed account of these proteins and their inhibitors, but 

these data may be gleaned from the literature7,13 

 

Figure 3 : Pf pyrimidine metabolism 

Enzymes: CPSII, carbamoyl phosphate synthetase II; CA, carbonic anhydrase; ATC, aspartate transcarbamoylase; 

DHO, dihydroorotase; DHODH, dihydroorotate dehydrogenase; OPRTase, orotate phosphoribosyl transferase; 

ODC, orotidine 5’-monophosphate decarboxylase; NMPK, nucleoside monophosphate kinase; RNR, 

ribonucleotide reductase; TS, thymidylate synthase; TMPK, thymidylate monophosphate kinase; CTPS, cytosine 

5’-triphosphate synthetase; TK, thymidine kinase; UPRT, uracile phosphoribosyl transferase; and UK, uridine 

kinase. 

Metabolites: UDP, uridine-5’-diphosphate; UTP, uridine-5’-triphosphate; dUDP, 2’-deoxyuridine-5’-diphosphate; 

dUMP, 2’-deoxyuridine-5’-monophosphate; CTP, cytidine-5’-triphosphate; dTMP, 2’-deoxythymidine-5’-

monophosphate; dTTP, 2’-deoxythymidine-5’-triphosphate; dCTP, 2’-deoxycytidine-5’-triphosphate; and CoQ, 

co-enzyme Q. 
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2/ Purine Metabolism 

 Plasmodium species are purine auxotroph parasites that depend exclusively on purine materials 

derived from erythrocytes. Furthermore, as the Plasmodium genome has an extremely high adenine 

content (over 80% AT content), the parasite requires a considerable amount of adenine nucleotides (dATP 

and ATP) to maintain its high replication rate. Erythrocytes are unable to perform de novo purine synthesis 

alone, so the corresponding nucleobases and nucleosides are taken up from the plasma by the erythrocytes 

and then by the parasites.14,15 Purine import from the host cell is mediated by membrane transporters such 

as equilibrative nucleoside transporters (ENTs, Figure 5), Pf ENT1 is the main one from the four 

transporters (Pf ENT1-4) reported to date and supplying the purine salvage pathway.15,16 Although the 

transport of purine and pyrimidine derivatives in mammalian cells is well-documented,17,18 few studies 

have been performed on the parasite transporters in the last decade and mainly concerned Pf ENT1. 

Further investigations are thus required for rational design of purine transport inhibitors as antimalarial 

drugs. 

 A few of the enzymes involved in Pf purine metabolism have attracted special attention, namely 

purine phosphoribosyl transferases (PRT), adenosine deaminases (ADA) and purine nucleoside 

phosphorylases (PNP). Phosphoribosyl transferases induce the ribophosphorylation of purine bases in a 

single step and are present in many parasites, as well as in mammalian cells. In Plasmodium, 

hypoxanthine-guanine-xanthine-phosphoribosyl transferase (HGXPRT) converts hypoxanthine, guanine 

and xanthine into inosine-5’-monophosphate (IMP), guanosine-5’-monophosphate (GMP) and 

xanthosine-5’-monophosphate (XMP), respectively (Figure 6). Purine nucleoside phosphorylases 

degrade nucleosides into their corresponding nucleobases and sugar counterparts (Figure 7). Adenosine 

deaminases convert the exocyclic amino group of purine nucleos(t)ides into their oxo-derivatives (Figure 

8). Moreover, HGXPRT, ADA and PNP enzymes are highly expressed and key players in purine 
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metabolism, but other enzymes are also involved, such as guanosine-5’-monophosphate synthase (GMPS), 

adenylosuccinate synthetase (AdSS), adenosine-5’-monophosphate deaminase (AMPDA) and inosine-5’-

monophosphate dehydrogenase (IMPDH). 

 This metabolism is remarkable because of the few enzymes involved even though it has a crucial 

role in parasite survival. In addition, these enzymes are also present in the metabolic pathway of other 

plasmodial parasites and may have a high degree of similarity. As example PvENT1 shares ∼75% amino 

acid sequence identity with PfENT1.  However, differences between P. vivax and P. falciparum were 

reported and resulted in modifications of the 3D protein structure and/or conformation.19 As example, 

structural differences between Pv and Pf ADA have been highlighted by computational studies and crystal 

structure analysis, and mainly concern the ligand recognition domain.20 

The parasite salvages adenosine from the erythrocytes and the combined action of ADA and PNP 

successively leads to the formation of inosine and hypoxanthine (Figure 4). As very little adenosine is 

available from the erythrocyte (due to the activity of erythrocytic adenosine kinases), the parasite 

essentially relies on hypoxanthine, which is also salvaged from the host. The key purine metabolism 

precursor is consequently hypoxanthine, and therefore malarial cultures are often enriched with this 

nucleobase, which serves as a nutrient to promote parasite growth. Hypoxanthine is then converted into 

IMP by HGXPRT (Figure 4). IMP is thus the nucleotidic precursor of all other purine nucleotides required 

for nucleic acid biosynthesis, especially adenosine 5’-monophosphate (AMP). As Pf does not have the 

genes coding for nucleoside kinases21,22 (AMP synthesis directly from adenosine), there is no other 

alternative to obtain AMP, and IMP is the sole adenosine 5’-monophosphate metabolite available. To a 

lesser extent, it has been shown that by using high concentrations of adenosine in Pf cultures, AMP 

synthesized by RBC could induce erythrocytic AMP uptake into the parasite.22 IMP is also transformed 

into XMP via IMPDH and then into GMP via GMPS. GMP is also produced via a second pathway 
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involving guanosine and guanine uptake, with the latter being PNP and HGXPRT substrates, respectively. 

Similarly, XMP is produced through HGXPRT activity following xanthine uptake.7 

 

Figure 4: Representative scheme of Pf purine metabolism 

In red: main path or nucleic acids synthesis in Pf 

Metabolites: IMP, inosine-5’-monophosphate; XMP, xanthosine-5’-monophosphate; AMP, adenosine-5’-

monophosphate; NDP, nucleoside diphosphate; and NTP, nucleoside triphosphate. 

Enzymes: HGXPRT, hypoxanthine-guanine-xanthine-phosphoribosyl transferase; ADA, adenosine deaminase; 

PNP, purine nucleoside phosphorylase; GMPs, guanosine-5’-mono-phosphate synthase; IMPDH, inosine-5’-

monophosphate dehydrogenase; AMPDA, adenosine-5’-monophosphate deaminase; AdSS, adenylosuccinate 

synthase; and AdSL, adenylosuccinate lyase. 

Transporters: ENT, equilibrative nucleoside transporter, notably Pf ENT1-4. PVM channel are represented at the 

parasitophorus vacuole membrane. 

  

To date, the main strategy developed to inhibit Plasmodium falciparum growth involved targeting PNP 

and ADA Pf enzymes, because of their importance in the hypoxanthine pathway in the parasite. 
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1. Uptake of purine bases and nucleosides into the parasite 

a. Erythrocyte transport pathways 

As for many human cells, mature erythrocytes have a profusion of transport systems (transporters and 

channels) located at the plasma membrane and responsible for the uptake of ions, hexoses, amino acids 

and other nutrients (Figure 5). Human nucleoside transporters (hNTs) thus include various transport 

system families, such as hENT1 and hENT2 (both equilibrative nucleoside transporters and responsible 

for purine and pyrimidine uptake, with nucleosides being the preferred substrates)18, hFNT1 (facilitated 

nucleobase transporter, which transports hypoxanthine and adenine) and hCNTs (concentrative ion-

coupled nucleoside transporters).16,14 It has been demonstrated that hENT1 and hFNT1 are the most 

important source of purine-containing derivatives in Pf-infected RBC, while parasite-induced new 

permeability pathways (NPP, an alteration in membrane permeability) has also been mentioned.23,14 NPP 

are designed to facilitate the uptake of low molecular weight metabolites required for the parasite growth, 

such as sugar, sugar-alcohols, polyamine, nucleosides, nucleobases, ions, amino-acids 24, etc.25,26 

b. Parasite transporters  

Four equilibrative nucleoside transporters (Pf ENT1-4) have been identified to date (Figure 5)—but they 

have yet to be fully characterized—and are expressed during the intraerythrocytic stage of the Plasmodium 

life cycle. 202 According to genetic studies, Pf ENT1 has only 17% identical sequence homology with 

hENT1 and only shares 15 to 22% identical amino acid sequence with other parasite ENT transporters, 

and all four share only 2% similarity between them.16  

Among them, Pf ENT1 (also called Pf NT1) is mainly responsible for the import of most purine 

nucleosides and nucleobases inside the parasite. Its characteristics (affinity and substrate specificity) have 

been the focus of some debate with regard to the model used for transport studies and the effects of purine 

metabolism upon import.27 In 2008, Quashie et al.15 suggested that hypoxanthine and purine nucleoside 
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uptake was mediated by a high-affinity and broad-specificity transporter, i.e. Pf NT1 (located at the 

parasite plasma membrane28), and the existence of another high-affinity transporter and two low-affinity 

systems. Downie and co-workers proposed an alternative model, taking into account the fact that high-

affinity proteins of purine metabolism readily transform Pf ENT substrates into nucleotides.27 They thus 

reported a fast, equilibrative and low-affinity mechanism for Pf NT1.29 Pf ENT1 is a proton-dependent 

transporter30 accepting inosine, hypoxanthine, guanine, adenosine and guanosine as substrates, but with 

higher affinities for hypoxanthine and adenosine (Ki 300-700µM range).31 They are reported to be 11 

transmembrane helix segment proteins, with intracellular N-ter and extracellular C-ter, which is the 

common structure for all protozoan and mammalian ENT1. Helices are mostly linked by short 

hydrophobic connectors, except for two large loops (one extracellular and one intracellular).32 As its 

human homologue, Pf ENT1 may also accept pyrimidine nucleosides as substrate.33 

Pf ENT2 and ENT3 have received much less attention. 16 Pf ENT2 was shown to be located at the 

parasitic endoplasmic reticulum membrane and thus may not be involved in purine uptake.34 Pf ENT3 has 

yet to be localized or shown to be involved in purine or pyrimidine transport.  

Frame et al. have shown that Pf ENT4 is a low-affinity (in the millimolar range) purine transporter 

able to transport both nucleosides and bases such as adenine, adenosine and 2’-deoxyadenosine with low 

affinity.35 Pf ENT4 does not transport AMP or hypoxanthine (the main metabolite in the purine pathway), 

thus presenting a different substrate profile from that of Pf ENT1.  

Like Pf, Pv parasites also present four equilibrative nucleoside transporters. Pv ENT1 shares an 

almost identical amino acid sequence with Pf ENT1, although small differences have been observed with 

variable affinities of both transporters for the same substrate.36 The substrate and inhibitor specificity of 

P. berghei ENT1 has been reported recently.37 
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Figure 5: Main transporters involved in the uptake of purines and derivatives into RBC and the 

parasite.  

PfENT3 is not yet localized; “?” sign, unknown transporters. 

 

2. HGXPRT 

HGXPRT is the most targeted purine metabolism enzyme in P. falciparum due to its major and multiple 

implications in the metabolism of this parasite (Figure 4). The crucial role of HGXPRT in purine 

metabolism has also been observed in P. vivax.38 Indeed, it provides the sole PRT activity for three 

substrates, i.e. converting hypoxanthine, xanthine and guanine into the corresponding nucleoside 5’-

monophosphates (IMP, GMP and XMP). Briefly, HG(X)PRT facilitates transfer of the phosphoribosyl 

moiety from PRib-PP (alpha-D-5-phopshoribosyl-1-pyrophosphate) to 6-oxopurines in the presence of 

divalent metal ions, i.e. usually Mg2+ in vivo (Figure 6). Reyes et al. reported a detailed enzymatic 
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characterization of Pf HGXPRT, demonstrating that phosphoribosyl transferases are the most important 

enzymes in purine metabolism.39  

 

Figure 6: Mechanism and transition state of the 6-oxopurinephosphoribosyltransferase catalyzed 

reaction 

Hx, hypoxanthine; X, xanthine; G, guanine; IMP, inosine 5’-monophosphate; XMP, xanthosine 5’-

monophosphate; GMP, guanosine 5’-monophosphate; α-D-PRib-PP, α-D-ribofuranose-5-phosphate-1-

diphosphate; and PPi, pyrophosphate. 

 

 Few differences between the human and Pf HGXPRT were revealed by Keough et al.40 when 

comparing the specific activity (greater for human enzymes), kinetic parameters and substrate selectivity 

(the human enzyme does not accept xanthine as substrate, contrary to the parasite protein). Both enzymes 

are active as a homotetrameric form and share 44% sequence identity and 76% similarity. Superposition 

of their structures (in the presence of substrates of the catalytic reaction) generates a good root-mean-

square deviation (rmsd) value (nearly 1,7 Å).41 Considering these structural similarities between the two 

enzymes, the challenge is to selectively target and inhibit the parasite phosphoribosyl transferases so as to 

avoid any toxicity for human cells. 

The crystal structures of the human 6-oxopurinephosphoribosyltransferase (Hs HGPRT) in the presence 

of nucleoside analogues have been often described. The human enzyme has three important binding sites 
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hosting the nucleobase (through hydrogen bonds with residues), the 5’-phosphate (binding pocket is 

located between residues 137-141) and the pyrophosphate moiety (of Prib-PP or only PPi). 

 In humans, PRib-PP first binds to the metal ion and then the required nucleobase associates with 

the complex to form the intermediate. Then the pyrophosphate dissociates from the ribooxocarbenium 

complex and nucleoside 5’-monophosphate is released from the enzyme catalytic site.42 The initial 

proposed mechanism for PfHGXPRT was slightly different and consisted of a ping-pong exchange, where 

PRib-PP first binds to the enzyme, followed by PPi release and then nucleobase entry43. These results 

have been contested by the reported crystal structure of PfHGXPRT complexed with 

hypoxanthine.PPi.Mg2+ and a few immucillin transition state analogues.175  It has been shown that 

nucleobase binding is conditional to PRib-PP entry, suggesting that PfHGXPRT proceeds through a 

steady-state-ordered mechanism. 176 

  

3. PNP 

PNP are also important enzymes present in both mammals and protozoan parasites. Like HGXPRT, PNP 

inhibition leads to death of the parasite by blocking the formation of hypoxanthine, a key metabolite of 

the Pf purine metabolism (Figure 4).46,47 Pf PNP is structurally different from the human protein (hexamer 

versus homotrimer and low sequence homology, ~20% identity of the primary amino acid sequence) and 

exhibits different catalytic rates with inosine as substrate (56 s-1 for hPNP and 0.34s-1 for Pf PNP).48–50 
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Figure 7: Mechanism and transition state of the Pf purine nucleoside phosphorylase catalyzed 

reaction 

 

 According to the mechanism proposed by Schramm et al. for both human and Pf PNPs,51,52 the 

nucleoside and phosphate (as nucleophilic participant) first bind to the active site of the enzyme and the 

reaction transforms the inosine/enzyme complex (located on a single active site of the homotrimer), into 

a hypoxanthine/ribose/enzyme complex (Figure 7). Then the enzyme catalyzes cleavage of the glycosidic 

bond to release the ribose-1’-phosphorylated moiety, giving rise to a tight binding hypoxanthine/enzyme 

complex. The latter finally dissociates within the corresponding nucleobase and the D-ribose 

phosphorylated moiety. Both enzymes have similar transition states, with the active site environment being 

more constrained in the parasite enzyme than in the human one (on the basis of different interactions 

between the active site and substrate).  

 

4. ADA 

ADA is a zinc-dependent hydrolase that catalyzes the irreversible hydrolysis of adenosine into inosine, its 

corresponding 6-oxopurine derivative. The reaction is triggered by the deprotonation of a water molecule 

which then reacts with the substrate, giving rise to 6-amino-6-hydroxypurine as intermediate, which 

provides the corresponding oxopurine by releasing one ammonia molecule (Figure 8).53 

 

Figure 8: Mechanism and transition state of the Pf adenosine deaminase catalyzed reaction 
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Human and Pf ADAs are functionally similar and have high sequence homology, but they differ 

slightly in terms of substrate specificity and catalytic turnover. Pf ADA thus accepts both adenosine and 

5’-methylthioadenosine (MTA, a polyamine biosynthesis metabolite) as substrate, which is not the case 

for its human homologue.54  

Pv ADA has been crystallized in a complex with three different ligands (adenosine, guanosine and 2’-

deoxycoformycin, i.e. a known human ADA inhibitor)55. A parasite-specific conformation was observed, 

which closed the substrate binding site within a solvent-less cavity, whereas the human enzyme does not 

close its active site. This difference may explain the recognition of MTA, as the solvent-less cavity hosts 

the hydrophobic thiomethyl group. Amino-acid changes in the active sites of Pv and Pf ADAs have been 

highlighted via computational studies and comparison with a Pf ADA homology model.20  

In addition, P. knowlesi growth (in infected primates) was found to be inhibited by 2’-deoxycoformycin, 

indicating that parasite survival was dependent on adenosine deaminase.56  

In 2017, the Pf proteome was studied to identify commercial drugs which could target and inhibit Pf 

enzymes. Dipyridamole (a nitrogen heterocycle derivative used as blood vessel dilatator) was thus 

reported to be a Pf ADA inhibitor with an IC50 of 30 nM.57 

 

5. IMPDH 

Inosine 5’-monophosphate dehydrogenase catalyzes XMP formation from IMP through a covalent 

mechanism (Figure 9) and serves as an alternative/complementary pathway for providing GMP. As GMP 

synthesis mediated by HGXPRT is not substantial enough to provide the overall amount of GMP required 

for nucleic acid biosynthesis in the parasite, IMPDH inhibition could indirectly and partially block GMP 

formation from XMP.58,59 IMPDH is a homotetramer protein. The active site is located at the C-terminal 

chain, whereas the cofactor (NAD+) binds at another site.60 Consequently, two classes of IMPDH 
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inhibitors can be developed, i.e. one targeting the substrate binding site and the other targeting the cofactor 

binding loops via an uncompetitive mechanism (e.g. mycophenolic acid and phenyl-oxazole urea, 

respectively).61 

Human and Pf IMPDH genome sequences shown only 48% of similar amino acid sequences and exhibit 

differences in the structure of the active site.60 That could possibly help to design selective inhibitors of 

the plasmodial enzyme.  

 

Figure 9: Pf inosine 5’-monophosphate deshydrogenase catalyzed reaction 

 

6. GMPS 

Pf GMP synthetase (belonging to the glutamine amidotransferase family) is a dimeric protein catalyzing 

the irreversible formation of GMP through XMP amination. GMP synthesis via HGXPRT is not enough 

to maintain optimal GMP levels in the parasite,62 thus blocking this enzyme may be a valuable approach 

to inhibit nucleic acid biosynthesis. Pf and human GMPS share 20-30% common chain sequence and both 

contain two domains, i.e. one catalyzing formation of the XMP-adenyl complex (ATPPase), and the other 

providing the required ammonia from glutamine hydrolysis (GATase, glutamine amidotransferase). The 

ammonia molecule is channeled to the other domain in order to generate the GMP product 63 (Figure 10), 
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which is a common amidotransferase reaction step (ping-pong mechanism).62 Both ATPPase and GATase 

sites can be targeted in competitive and uncompetitive ways, respectively. For instance, glutamine 

analogues, such as acivicin and 6-diazo-5-oxo-norleucine (use as antibiotics and known hGMPS 

inhibitors), are able to inactivate the enzyme by covalent modification of the GAT domain.62 Pf GMPS 

also differs with regard to other plasmodial species associated with a single 20 amino-acid long sequence 

located in its GAT domain.63 

 

Figure 10: Formation of GMP from XMP, catalyzed by Pf GMPS from its GAT and ATPPase 

domains 

 

II/ TARGETING PURINE METABOLISM WITH NUCLEOS(T)IDE ANALOGUES  

Because of the importance of purine metabolism for plasmodial parasites, the inhibition of related 

enzymes has been considered since 1984.64 Nucleoside analogues are well-known inhibitors of the nucleic 

acids biosynthesis, so they may also be viewed as potential candidates for targeting of purine metabolism 
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enzymes due to their structural similarities with their substrate. Series of purine-based heterocycles, 

nucleoside and nucleotide analogues have been studied with the aim of targeting these enzymes and related 

transporters. A few of them were designed on the basis of transition state studies. This part of the review 

concerns such compounds as inhibitors of transporters and/or enzymes involved in plasmodial purine 

metabolism. 

 

1. Purine-based Analogues 

In 2006, Keough et al. studied the effects of purine nucleobase skeleton modifications and the ability 

of these derivatives to bind to human and Pf HGXPRT, and the hypothetical discrimination between these 

two enzymes.65 By analogy with 6-mercaptopurines used in cancer chemotherapy66, the proposed 

mechanism of action consists of their conversion—mediated by 6-oxopurinePRTases—into their 

corresponding nucleoside 5’-monophosphate derivatives, thereafter incorporated into DNA or RNA and 

thus interfering with cell replication. Determination of the Km for these derivatives revealed that the 

presence of an exocyclic oxygen-containing group at position-2, and/or a chlorine atom at position-6, 

and/or the replacement of the carbon atom at position-8 by a nitrogen allowed strong discrimination 

between human and Pf HGXPRT. In addition, these nucleobases are able to inhibit P. falciparum in vitro 

growth. The best IC50 values were 1.3 µM and 6.6 µM for 6-mercaptopurine and 8-azaguanine, 

respectively. 

 

2. Nucleoside analogues 

Since natural substrates of the targeted enzymes are mostly nucleosides and derivatives, the easiest 

and most promising way to selectively inhibit them is to design analogues. In the field of antiviral and 

antitumoral chemotherapy, the search for nucleoside analogues has led to the discovery of the active 
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compounds which are nowadays used as drugs. Some of these derivatives were tested against the Pf purine 

salvage pathway, leading to the identification of lead compounds which served as a starting point for the 

synthesis of novel derivatives. 

a. Cordycepin 

Cordycepin (Table 1), an antibiotic and anti-tumoral nucleoside extracted from Cordyceps militari, 

was tested in vitro, by Trigg et al. in 1971 against P. knowlesi and in vivo in P. berghei-infected mice.67 

Effects were noted on in vitro parasite growth at micromolar concentrations, but a full cure was not 

obtained in mice even at high concentration. The fact that nucleic acid biosynthesis in the parasite was 

affected suggested that the purine metabolism of the parasite was targeted.  

b. Mizoribine and ribavirin derivatives 

Mizoribine (Table 1) is an immunosuppressive drug that was isolated from Eupenicillium 

brefeldianum in Japan in 1971. It is clinically used for renal transplantation68 as well as an inhibitor of Hs 

IMPDH in leukemia and viral diseases. Its proposed mechanism of action involves IMPDH inhibition by 

the mizoribine-5’-monophosphate, thus limiting both XMP formation and GMP synthesis mediated by 

GMPS.69 When tested as an antimalarial by Webster and Whaun in 1982, mizoribine appeared to be active 

against drug-resistant Pf strains at 50 µM.70 Variations in the concentration of several purine-containing 

nucleosides and nucleotides in infected RBCs have been studied and a significant decrease was observed 

in the presence of mizoribine. 

Recently, Raza et al. performed virtual screening of a library of ribavirin analogues (Table 1, a base 

modified nucleoside analogue known as a competitive inhibitor of human IMPDH71,72) using a 3D-

homology model of Pf IMPDH.60 Five promising ribavirin derivatives were identified as potential ligands, 

which should be able to selectively target the parasite enzyme by interacting with the active site (hydrogen 
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bonds and hydrophobic pockets). To date, these molecules have not yet been tested in vitro against P. 

falciparum growth. 

Table 1. Representative nucleoside analogues as potential purine metabolism inhibitors 

Cordycepin (3-deoxy-adenosine)67 
 

Inhibitors of Pf IMPDH60,70 

 

 
 

 
Ribavirin derivatives screened by Raza et al.60 

 
Adenosine analogues tested against Pf GMPS by Bhat et al.62 

 
Pyrrolidine nucleoside mono- and bisphosphonates73 
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Tubercidin and derivatives74 

 
Nitrobenzylthionucleosides75 

 
 

c. Psicofuranine and decoyinine 

As psicofuranine and decoyinine (Table 1) were reported to inhibit hGMPS (with 17.3 and 46.5 µM 

IC50 values),76 Baht et al. evaluated them on purified Pf GMPS. They reported a weak inhibitory effect of 

psicofuranine (25% inhibition at 0.5 mM) and no effect of decoynine.62 Only psicofuranine had an IC50 of 

0.3 mM when tested against Pf cultures (3D7 strain).77  

d. PNBPs – Pyrrolidine nucleoside bisphosphonates 

Initially synthesized and tested for their ability to inhibit E. coli, 6-oxopurine 

phosphoribosyltransferases,78 pyrrolidine nucleoside phosphonates (Table 1) were subsequently assessed 

as potential inhibitors of PvHGPRT and PfHGXPRT. The design of such compounds was based on a 

central 5-membered ring skeleton, bearing three substituents anchored through free rotation bonds, thus 

allowing to adopt the best conformation at the active site of the enzyme.73 

In comparison with compound 3, the addition of a second phosphonate tail to the pyrrolidine ring markedly 

decreased the Ki values (from millimolar to nanomolar range) for all three enzymes but to the detriment 

of selectivity. It should be noted that: (i) the nature of the nucleobase did not seem to have a real impact 
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on the activity, (ii) the addition of the hydroxyl group on the second phosphonate tail enhanced the 

inhibitory activity of these derivatives and the stereochemistry had an influence on the affinity of the 

studied enzyme. For instance, the (R)-isomer of compound 1 exhibited a 7.5-fold higher Ki
 value than that 

of its (S)-isomer on Pv HGPRT. Studies of the crystal structures of the Pv HGPRT-compound 1 complex 

revealed that the oxygen-linked phosphonate tail located within the 5’-phosphate binding pocket could 

explain the difference in Ki observed between the two stereoisomers. Additional interactions also occurred 

between water molecules, the hydroxyl group and the active site for the (S)-isomer of compound 1. 

Structural data regarding the Pf protein are currently not available. 

e. Tubercidins 

The successful use of adenosine analogues in cancer chemotherapy led Coomber et al. to test some of 

them against Plasmodium falciparum. In vitro, the most efficient ones were the 7-deaza-adenosine 

derivatives tubercidin and sangivamycin (Table 1), with IC37 of 0.7 and 0.3 µM (IC37 values are quite 

unusual compared to IC50, but it was used by the authors to compare their results with previously reported 

ones). Their mechanism of action was suggested to be related to purine metabolism, especially with a 

decrease of IMP content in treated Pf-infected erythrocytes.74 In addition, 5-iodotubercidin (a known 

human adenosine kinase inhibitor) has been shown to inhibit Pf growth in vitro (IC50 of 2 µM)22 and 

several tubercidin derivatives appeared to be Pf ENT1 substrates.31 However, no further studies have been 

recently reported in the literature concerning this family of compounds. 

f. NBMPR – nitrobenzylthioinosine 

Nitrobenzylthioinosine (NBMPR) and its guanine analogue (NBTGR) were first assayed as 

antimalarial drugs in 1989 (Table 1).75 In addition to their micromolar IC50 values in Pf-K1 strains (multi-

drug resistant)-infected erythrocytes, they were successfully used in an original approach based on the 

alteration of infected erythrocyte membrane permeability. Briefly, the two derivatives were used to 
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facilitate the uptake of cytotoxic nucleosides (presumably through permeability pathways induced by the 

parasite) into infected erythrocytes, while their ability to selectively inhibit the human transporters 

(hENT1)79 prevented the uptake and further toxic effects in uninfected cells. Later on, it was also proven 

that Pf ENT1 and Pf ENT4 were insensitive to NBMPR.80  

 

3. Transition state analogues as Pf purine metabolism inhibitors 

In theory, a perfect and chemically stable transition state analogue will bind tighter to the enzyme active 

site than the substrate. The protein will enclose the compound with a more thermodynamically stable and 

static conformation, thus preventing natural substrate binding until release of the transition state analogue. 

Moreover, an ideal transition state analogue will be highly selective of the targeted enzyme, avoiding 

toxicity and unwanted side-effects. 

Natural transition state species have a very short longevity and consequently are not directly observable, 

but they can be predicted, or hypothesized, by studying the reaction process mechanisms and determining 

the intrinsic kinetic effects of isotopic compounds. A chemical structure could then be proposed on the 

basis of in silico calculations. Transition state analogues of three parasite enzymes have thus been reported 

to date, i.e. Pf ADA, Pf PNP and Pf HGXPRT.81  

a. Pf ADA inhibition 

 Coformycin and derivatives 

Coformycin and 2’-deoxycoformycin (namely pentostatin) were both known as mammalian ADA 

inhibitors. In 2007, Tyler et al. studied the affinity of these derivatives toward human, bovine and Pf ADAs 

(Table 2) and inhibition constants in the low nanomolar range were observed, but with no specific 

selectivity.82 On the basis of previous results showing that 5’methylthioadenosine or inosine54 were Pf 

ADA substrates, 5’-alkylthio and 5’-phenylthio analogues of coformycin and 2’-deoxycoformycin were 
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synthesized.82 Among them, 5’-methylthio derivatives appeared to be highly selective of the parasite 

enzyme, with Ki of less than 1 nM (Table 2), especially 5’-methylthiocoformycin, which showed >20,000-

fold selectivity for Pf versus Hs ADA. However, no further studies have been reported.  

 L-nucleoside analogues 

In 1995, Upston et al. showed that L-adenosine was significantly transported (via a unique parasite-

induced pathway) and selectively metabolized (through ADA activity) within parasites infected-

erythrocytes.83 These preliminary results led the same team to investigate series of L-nucleoside analogues 

(Table 2).84,85 Among them, L-coformycin and L-isocoformycin were shown to specifically inhibit Pf 

ADA activity in the picomolar range (contrary to their D-isomer, especially 2’-deoxycoformycin, which 

interacted with both human and parasite enzymes).85 L-coformycin, L-isocoformycin and L-sangivamycin 

inhibited the in vitro growth of Pf with an ID50 in the micromolar range.84 

 

Table 2. Nucleoside analogues as Pf ADA inhibitors 

Coformycin and derivatives as inhibitors of human and plasmodic adenosine deaminases82 

 
Ki* values correspond to the equilibrium dissociation constant upon completion, after a slow onset, for tight 

binding inhibition of the enzyme (consequent upon a time-dependent conformational change in the enzyme 

that improve the binding after a moment, thus Ki* is lower than Ki) reported for transition state-analogues. 

Compounds with Ki* values are called slow-onset tight binding inhibitors. Ki values of >10,000 indicate that 

assays with 10 µM concentration of the compound showed no inhibition under the assay conditions 
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L-nucleoside derivatives as PfADA inhibitors84,85 

 
Dimers with L-nucleosides as carrier for cytotoxic D-nucleosides25 

 
 

Gero et al. took advantage of the ability of some L-nucleosides to be selectively transported into 

infected erythrocytes and proposed dinucleoside monophosphate prodrugs (Table 2) that combined a L-

nucleoside as carrier and a cytotoxic nucleoside as antimalarial agent.25 The release mechanism involved 

the cleavage of the 3’-5’ phosphodiester linkage, delivering the free 3’-OH L-nucleoside and the 5’-

monophosphate D-nucleoside (the position of the phosphate moiety, 3’- or 5’- inside the targeted cell, was 

shown to be crucial for the activity. The best results were obtained for dinucleotides containing 5-fluoro-

2’-D-deoxyuridine (FUdR) as cytotoxic nucleoside and 2’-deoxy-L-adenosine or L-adenosine as carriers, 

with in vitro antimalarial activities in the low micromolar range. No further information is currently 

available.  
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b. Pf PNP Inhibition 

 First generation: immucillins 

In 1966, Reist et al. first synthesized an adenosine analogue in which the sugar ring oxygen was replaced 

by a nitrogen.86 In 1998, studies on bovine PNP transition states led Miles et al. to design immucillin-H 

(Imm-H) and immucillin-G (Imm-G), as analogues of the proposed riboxocarbenium ion transition state.87 

These compounds are iminoribitol C-glycoside derivatives incorporating an iminoribitol sugar scaffold 

and 9-deazapurines. Replacement of the labile glycosidic bond by a C-N link led to a stable analogue with 

increased pKa values for the nucleobase N7 atom (Figure 11). Tight binding constants, in the picomolar 

range, were determined for these two immucillins on bovine and human PNP. 

 

Figure 11: Common structure of first-generation immucillins 

 

In 2002, Imm-H, Imm-G and analogues were evaluated as PfPNP inhibitors (Table 3)48 and Imm-H was 

also shown to be able to kill parasites in culture experiments, with an IC50 of 63 nM (3D7 strain).54 But 

these immucillin derivatives were first designed as substrates of human PNP and exhibited low to modest 

selectivity for parasite PNPs, which is a crucial point for the development of antimalarial immucillins. As 

the structures of the Pf PNP-ImmH complex revealed that the enzyme could accept 5’-substitued 

nucleosides,49 5’-methylthioimmucillin (MT-ImmH) was designed to selectively target the parasite 
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enzyme. 5’-MT-ImmH inhibited both human and Pf PNP in infected erythrocyte cultures and selectively 

bound to the Pf enzyme according to the Ki values (Table 3). Later, it was also demonstrated that MT-

ImmH was able to kill Pf in cultures, with an IC50 of 50 nM (3D7 strain).54 Other immucillin analogues 

(e.g. 2’-deoxy-Imm, 8-aza or fluorinated purine, 6-methoxy or thiopurine, 5’-acid or amide-Imm, ara-Imm, 

etc.) were reported by Lewandowicz et al., but they all exhibited higher binding affinity for human 

protein.88 Overall, these studies highlighted that the 5'-methylthiosubstitution resulted in a unique Pf PNP 

substrate specificity, as observed for MT-ImmH. 

 

Table 3. Transition state analogues as Pf PNP inhibitors 

 Immucillins and methylthioimmucillin (ND: not determined) 48,49 

 
 Second-generation immucillin derivatives88  

 
These compounds are represented in neutral form, but the nitrogen is protonated at physiological pH 

thus mimicking the cation of the transition state. No slow-onset tight binding inhibition was observed 

for Pf PNP 
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Fluorinated second-generation immucillins89 

 
Third-generation immucillin derivatives90,91 

  
The complete iminoribitol ring shown in red 

 
The intact iminoribitol ring is shown in red 

L-enantiomers of potent immucillins92 

 
 

 Second generation immucillins: N1-branched analogues 

To overcome the expensive and complex synthesis of these immucillins, the development of a second 

generation of Imm derivatives was considered while focusing on easier synthetic pathways. The latter 

initiatives generally involved the displacement nitrogen close to the C1’ position on the iminoribitol ring 
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to mimic the PNP transition state. This modification nevertheless requires removal of the 2’-hydroxy 

group to avoid the formation of an unstable hemiaminal scaffold and to eliminate one asymmetric carbon. 

On the basis of a structural analysis and theoretical calculations, Schramm’s group proposed DADMe-

immucillin-H (4’-deaza-1’-aza-2’-deoxy-1’-(9-methylene)-immucillin-H, derivatives (Table 3), where 

the introduction of a methylene bridge between the sugar residue and 9-deazahypoxanthine allows the 

leaving group to be more distant from the oxacarbenium ion mimic than in Imm-H.52 

DADMe-immucillin-H (BCX-3408) and DADMe-immucillin-G (4’-deaza-1’-aza-2’-deoxy-1’-(9-

methylene)-immucillin-G, BCX4945) (Table 3) have been identified as potent human PNP inhibitors 

(with picomolar Ki
* values)93 since 2003 while exhibiting lower affinities for Pf PNP. 88 Despite this, 

DADMe-immucillin-G has been shown to completely inhibit Pf PNP and suppress P. falciparum 

development in Aotus primates,94 but no further development has been reported to date. 

Many immucillin derivatives have been proposed and studied (fluorinated, N-alkylated, 5’H, 5’-

thiophenol, 5’-carboxylic acids, etc.) to revert the selectivity of these derivatives toward the Pf enzyme, 

but they preferentially bound to Hs PNP rather than Pf PNP (Table 3).88,89  

Second and first generation immucillins and transition state studies on bovine, human and malarial 

PNPs were reviewed by Schramm in 2005.95 

In 2010, Cui et al. proposed novel N-branched immucillin derivatives where the purine base was 

replaced by uracil, as uridine was reported to be a PNP substrate, including variations in the linker length 

between the base and the pyrrolidine ring.96 Modest affinities for Pf PNP were determined for uracil-based 

transition state analogues (Ki in the micromolar range), and no significant antiparasitic activity was 

observed in vitro.  

 

 



32 

 

 Third generation immucillins: Acyclic analogues 

As a continuation of their research program on transition state analogues as PNP inhibitors, Schramm’s 

group designed third generation acyclic immucillin derivatives by cleaving the iminoribitol ring, which 

led to iminoalcohol chains linked to 9-deazapurine 90, or by replacing the pyrrolidine ring by a serinol 

chain.91 The flexibility of the acyclic scaffold allowed the chain to rotate freely inside the active site, 

possibly enhancing the positioning of the compound. In addition, these compounds were easier to 

synthesized while using cheaper precursors. Only the acyclic iminoalcohol series was assessed against 

both human and Pf PNPs, and all compounds exhibited better selectivity for human protein. The best Kd 

value for the human enzyme was reported for the imino-tri-alcohol DATMe-Imm-H (Table 3). Pf PNP 

thus seemed to be more selective for the ribose ring than its human homologue, and consequently 

DADMe-immucillins and immucillins are still the best compounds in this series to date. 

 L-nucleosides 

Several studies carried out on L-enantiomers of known biologically active nucleoside analogues have 

highlighted the importance of isometry and the potential of L-nucleosides.97–99 Based on these 

observations, Clinch et al. synthesized and compared D-immucillins (Table 3) to their L- enantiomers 

against human and Pf PNPs (Table 3).92 All L-analogues were less potent than their D-enantiomers against 

malarial and human protein, while showing nanomolar range inhibition. No selectivity towards Pf 

enzymes was reported.  

c. Pf HGXPRT Inhibition 

 In 1999, Li et al. hypothesized that known transition state inhibitors of PNPs could also mimic 

HGPRT (human enzyme) and HGXPRT ribooxocarbenium species after phosphorylation of the 5’-

hydroxyl of the nucleoside analogue.100 The nitrogen atom replacing the intracyclic oxygen of ribose in 

immucillins can provide a cation which may serve as the ribocation transition state of the enzyme. 5’-
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monophosphate derivatives of immucillinH and immucillinG (Figure 12: Comparative affinities of 5’-

phosphate immucillin derivatives for Hs HGPRT and Pf HGXPRT) were thus synthesized and 

evaluated towards Pf and human HG(X)PRT, and the two compounds were found to exhibit similar 

affinities to both proteins in the low nanomolar range. Immucillin 5’-monophosphate derivatives were not 

further investigated due to their susceptibility to phosphates present in biological media. 

 

Figure 12: Comparative affinities of 5’-phosphate immucillin derivatives for Hs HGPRT and Pf 

HGXPRT 

 

In 2012, Hazleton et al. reported the synthesis and biological assessment findings of a second generation 

of immucillin-5’-monophosphate analogues belonging to the acyclic phosphonate family. In this review, 

these derivatives are part of the aza-ANPs section.101 Briefly, acyclic immucillin phosphonates (AIPs) 

were the first compounds to show tight binding inhibition of Pf (with Ki in the nanomolar range) and 

human (with Ki in the micromolar range) phosphoribosyl transferases, thus good selectivity for the parasite 

protein was observed.  

d. Conclusion on immucillins and transition state analogues 

The use of transition state analogues has been successful in inhibiting PNP, ADA and HGXPRT. A 

wide variety of structures, mainly based on the immucillin skeleton (four generations developed through 

the years), have been synthesized along with studies on the purified enzymes. One of their limitations is 

their lack of selectivity regarding human and parasite enzymes, and their entry into the parasite may also 
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be problematic due to their high polarity. To our knowledge, the mechanism of their uptake into parasites 

does not involve Pf ENT1 transporters.31 In 2012, Frame et al. demonstrated that immucillin and DADMe-

immucillins were recognized by Pf ENT4,35 suggesting the possible role of this transporter in the uptake 

of these compounds into the parasite  

The fourth generation of immucillins designed as human PNP transition state analogues were reviewed 

by Ho et al. in 2007.102 DADMe-immucillin-G was under preclinical development for malaria treatment 

in 2011,94 but the data are currently unavailable. Finally, as for all known antimalarial treatments, 

Plasmodium falciparum has developed genetic drug resistance (gene amplification and drug-binding 

mutations of Pf PNP gene) to PNP inhibition by DADMe-Imm-G, as recently demonstrated by Ducati et 

al.103 

 

4. Nucleotide analogues: the acyclic nucleoside phosphonate family 

a. Introduction to acyclic nucleoside phosphonate derivatives 

Since the 1960s, nucleoside analogues have been proposed as antiproliferative agents based on 

their ability to interfere (as their 5’-triphosphate derivatives) with the last steps of nucleic acid biosynthesis. 

Extensive modification of the nucleobase and/or sugar moiety was carried out to enhance their efficacy. 

In 1978, A. Holy and E. De Clercq described the broad spectrum antiviral activity of a new family of 

nucleoside analogues consisting of a simple aliphatic chain linked to a nucleobase, i.e. (S)-DHPA ( (S)-9-

(2,3-dihydroxypropyl)adenine, also known as Duviragel®, (Figure 13: First acyclic nucleoside and 

nucleoside phosphonate analogues designed).104 A few months earlier, G. Elion had reported a new 

antiherpetic agent, another acyclic nucleoside analogue,105 i.e. 9-(2-hydroxyethoxymethyl)guanine, 

currently known as acyclovir (Figure 13: First acyclic nucleoside and nucleoside phosphonate 

analogues designed) and in 1988 she shared the Nobel Prize with G. H. Hitchings and Sir J. Black for 
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this discovery. Studies on the antiviral potential of phosphonoacetic acid, with the aim of developing 

isopolar and catabolically stable nucleotide analogues, gave rise to the design of the first acyclic 

nucleoside phosphonate (ANP) in 1986 by Holy et al, i.e. (S)-HPMPA or ((S)-9-(3-hydroxy-2-

phosphonomethoxy-propyl)adenine) (Figure 13). The latter was described as a nucleotide analogue 

resistant to phosphoesterase hydrolysis due to the presence of the phosphonate moiety (P-C bond) and an 

acyclic chain replacing the sugar ring, and it was found to be active against anti-DNA viruses.106 

Meanwhile, the antiviral activity of 2-(phosphonomethoxy)ethyl-adenine (PMEA) was also reported.107 

(S)-HPMPC (cidofovir) was the first ANP marketed (in 1996) for cytomegalovirus retinitis treatment. 

Over the last three decades, many ANPs have been designed, synthesized and evaluated against viruses 

(cytomegalovirus, hepatitis B and HIV), and they still represent a promising and efficient family of 

drugs.108,109 

 

Figure 13: First acyclic nucleoside and nucleoside phosphonate analogues designed 

 

Due to their negative charge and relatively small structure, phosphonate derivatives are too polar to easily 

cross cell membranes, except by endocytosis. Infected erythrocytes, like normal RBCs, are not able to 

undergo endocytosis.110 The drug therefore must reach the intracellular parasite by successively crossing 
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erythrocyte, parasitophorous vacuole and parasite membranes. Consequently the use of prodrugs to 

enhance the lipophilicity of the drug by hiding charges and/or adding long aliphatic tails is essential to 

increase cell uptake and the overall bioavailability of these derivatives.111,112 These temporary 

phosphonate moiety protecting groups, once within the parasite or RBC, are cleaved to release the parent 

drug and eventually limit possible side-effects before delivery.  

Prodrug approaches have been successfully applied to ANPs in antiviral chemotherapy, including 

adefovir dipivoxil (Hepsera®, approved in 2002 for chronic HBV infection treatment) and tenofovir 

disoproxil fumarate (Viread®, approved in 2001 for HIV infection treatment).113,114  

b. Standard acyclic nucleoside phosphonates 

 Based on the success of ANPs in chemotherapeutic treatment of DNA virus infections, several 

groups have assessed their potential for treating other diseases, namely in protozoan infections like malaria. 

In this respect, (S)-HPMPA, (S)-3-deaza HPMPA and (S)-HPMPADAP (2,6-diaminopurine) were first 

tested in 1991 against Pf and P. berghei infected RBCs (Figure 14). S-HPMPA is active in vitro against 

Pf at nanomolar concentration, which is more than 1,000-fold less than the cytotoxic dose for human cells. 

115 When evaluated in P. berghei infected mice, four injections of 20 mg/kg HPMPA at 3-day intervals 

decreases parasitemia to low detectable levels but does not lead to a complete cure.115 Using extracted 

plasmodial DNA polymerases, the inhibitory activity of these compounds was also observed and 

interference with the replication process was hypothesized. Unfortunately, the effects of (S)-HPMPA in Pf 

infected mice were hampered by nephrotoxicity and hepatotoxicity as well as the limited half-life in 

plasma.116 

In 1999, Smeijsters et al. conducted an in vitro study of 48 ANPs belonging to five main structural groups 

with the aim of inhibiting plasmodial DNA polymerase activity (Figure 14).117 All HPMPA derivatives 

(except (S)-HPMPA and (S)-3-deaza-HPMPA) exhibited antiplasmodial activity in the micromolar range. 
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(S)-HPMPA was found to be less potent (0.18 µM) than reported by de Vries et al. due to the use of a 

different IC50 determination method. One of the most interesting results was the difference in IC50 between 

the two isomers of HPMPA and 3-deaza-HPMPA. Indeed, (R)-enantiomers of both compounds were less 

potent than the (S)-enantiomers. This was attributed to the fact that kinases may not be able to recognize 

(R)-enantiomers of phosphorylated substrates. 

Conversely, PMEA derivatives had no significant activity, presumably due to the lack of the hydroxyl 

group present in the HPMPA derivatives. Studies on hydrogenated and fluorinated ((S)-FPMPA) 

derivatives revealed no inhibition, thus confirming the previous hypothesis. However, the difference in 

antimalarial activity observed between PMEA (IC50> 250 µM) and its prodrugs bis(POM)PMEA (IC50 = 

37.3 µM) was significant. As the prodrug is more lipophilic and neutral than PMEA, the improved activity 

could be explained by the efficient prodrug uptake through the host cell and parasite membranes. 

Modification of the nucleobase counterpart with similar phosphonate tail was then envisaged. (S)-HPMPG 

exhibited a similar antimalarial activity of about 4 µM, as well as 2-chloroadenine, 2,6-diaminopurine, 7-

deazaadenine HPMP compounds, whereas 2-aminomethyladenine, 2-aminomethylhypoxanthine or 2-

methylthioadenine derivatives did not exhibit any activity at 100 µM.117 The nature of the nucleobase and 

the presence of the phosphonate moiety thus seemed to be crucial as non-phosphorylated compounds 

(acyclic nucleoside) were inactive. For the latter, either the lack of appropriate kinases in Plasmodium 

limits their transformation into active form and/or their polarity prevents their passive passage through the 

membranes. 
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Figure 14: IC50 of several ether ANPs in Pf-infected RBCs (from Smeijsters et al.) 

Obviously these compounds could target any enzymes involved in nucleic acid metabolism pathways, but 

Smeijsters et al. focused on the potency of ANPs to inhibit DNA replication (because (S)-HPMPA has 

been described as a viral DNA polymerase inhibitor) but did not envisage any other possibilities. Note 

also that pyrimidine-containing ANPs, such as (S)-HPMPU, (S)-HPMPT and (S)-HPMPC, did not show 

any parasite growth inhibition.117 

In conclusion, this pioneer work highlighted the antimalarial potency of ANPs and the importance of the 

nature of the nucleobase and the stereochemistry for in vitro antiplasmodial activity, as well as the possible 

passive uptake of these drugs when the corresponding prodrugs were used. 

In 2009, Keough et al. reported, for the first time, novel series of ANPs to target Pf HGXPRT.118 These 

authors performed an SAR study to compare the length and position of the oxygen atom within the 

phosphonate tail (e.g. cyclic-3-hydroxy-2-(phosphonomethoxy)-propyl (cyclic-HPMP), 2-

(phosphonoethoxy)ethyl (PEE), 2-(phosphonomethoxy)ethyl (PME), 3-fluoro-2-(phosphono-

methoxy)propyl (FPMP), 2-(phosphonomethoxy)propyl (PMP), etc., (Figure 15: Inhibition constants of 

two series (C4 and C5) of ether ANPs on parasite and human 6-oxopurine PRTs) and the nature of 

the nucleobase on the affinity for Pf and human enzymes, and selectivity toward the parasite protein. A 

comparison of several PME analogues revealed that the nature of the nucleobase had a crucial effect on 
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binding to the human HGPR catalytic site. The best tradeoff in terms of affinity (Ki in the low micromolar 

range) and selectivity was found to be the combination of a PEE tail and a 8-substituted guanine as 

nucleobase (i.e. 8-azaguanine, etc.). Selected derivatives were tested in vitro and were found to be able to 

inhibit the Pf growth, with IC50 values in the micromolar range (Figure 15).118 

 

 

Figure 15: Inhibition constants of two series (C4 and C5) of ether ANPs on parasite and human 6-

oxopurine PRTs 

 

In the absence of any crystallized Pf HGXPRT with the studied ANPs, human HGPRT complexes were 

used as models in structural studies and highlighted that the loop hosting the phosphonate or phosphate 

group seemed to be identical for both enzymes.118 The three oxygen atoms of the phosphonate group 

makes hydrogen bonds with the protein, whereas the natural substrate (GMP) has fewer hydrogen bonds, 

indicating that the phosphonate group is essential for tight binding at the active site while not being 

involved in any selectivity contribution. According to docking studies, the purine ring of ANPs binds at 

the nucleobase binding site of the enzyme. These results pave the way for the development of ANPs 

targeting HGXPRT, based on the fact that the potency of this family was found to inhibit Pf growth in 

vitro and on findings regarding their interaction within the active site of the enzyme. 
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Meanwhile, these authors also reported the synthesis of 43 α- and β-substituted PEE derivatives bearing 

guanine and hypoxanthine (Figure 16: Structure of α- and β- branched 2-(phosphonoethoxy)ethyl 

ANPs) and their inhibitory activity against Pf and human HG(X)PRT was determined.119 Overall, α-

substituted (R1=methyl or ethyl) phosphonate derivatives were either non-active or weakly active against 

both enzymes and it was suggested that these results were due to steric hindrance. 

 

Figure 16: Structure of α- and β- branched 2-(phosphonoethoxy)ethyl ANPs 

 

The study of β-branched ANPs revealed inhibition of both enzymes (Figure 17: Inhibitory activities of 

β- branched PEE ANPs on human HGPRT and Pf HGXPRT) in the micromolar range, but with low 

to reverse selectivity, with the natural nucleobases being preferred. The smallest substituents better 

accommodated the active site, and the absence of binding of a β-benzyl-substituted ANP was confirmed. 

It was hypothesized that the presence of substituents hampers proper closure of the loop in Pf HGXPRT. 

 

Figure 17: Inhibitory activities of β- branched PEE ANPs on human HGPRT and Pf HGXPRT 

 

Similarly, Cesnek et al. synthesized series of 9-phosphonoalkyl and 9-phosphonoalkoxyalkyl purines and 

tested them on human and Pv HGPRT, and on Pf HGXPRT (Figure 18: Studies of the impact of the 

chain length of ANPs on their inhibitory activities against Pf, Pv and human 6-oxopurinePRT).120 
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The optimal number of atoms within the linker thus seemed to be four or five, compounds with six atoms 

or more being highly selective for human HGPRT. This latter enzyme appears to be able to host longer 

derivatives than the parasite enzyme. The presence of an oxygen atom within the four-atom linker was 

mandatory for interfering with parasite proteins, indicating that the oxygen in the ribose ring may be 

responsible for important binding site interactions. As previously observed, guanine is apparently the 

preferred nucleobase and all modified nucleobases (2-amino-6-chloropurine, 6-bromopurine, etc.) lead to 

derivatives with weaker inhibitory activities (Ki values above 100 µM). This indicates that efficient 

binding of both the phosphonate group and the nucleobase is essential at the catalytic site to obtain optimal 

Ki values. In conclusion, at least a four carbon atom chain length and a guanine as nucleobase were 

required for significant inhibition of these proteins, but with low or no selectivity towards parasite proteins, 

while the presence of an oxygen atom in the linker was somewhat favorable. 
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Figure 18: Studies of the impact of the chain length of ANPs on their inhibitory activities against 

Pf, Pv and human 6-oxopurinePRTs 

 

Based on results on PEE derivatives, Krecmerova et al. proposed to study the effect of the insertion into 

the phosphonomethoxypropyl chain of a polar group (an hydroxyl or a carboxyl) at the β-position related 

to the nucleobase (Figure 19).121 These new derivatives, which incorporated a small polar or anionic side 

chain, were less efficient but presented some selectivity for Pf and Pv enzymes. These derivatives were 

all tested as racemic mixtures, so the impacts of stereoisomery could not be determined. 
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Figure 19: Representatives of PMP ANPs 

 

  In 2015, on the basis of the results obtained for the HPMP series (Figure 14) and computational 

studies, novel analogues bearing side chains in the -position related to the nucleobase were designed 

(Figure 20), including (S)-2-(phosphonoethoxy)propanoic acid (CPEE), (S)-3-hydroxy-2-

(phosphonoethoxy)propyl (HPEP) and (S)-2-(phosphonomethoxy)propanoic acid (CPME).122 Biological 

studies on Pf and human PRT enzymes revealed that CPME analogues were inactive, in agreement with 

the fact that a five-atom chain is optimal for tight interactions at the active site.123,124 Concerning HPEP 

derivatives, again the nature of the nucleobase was found to be crucial as only the 8-bromoguanine, 

guanine and hypoxanthine analogues showed some affinity (with Ki in the low micromolar range), but 

only the guanine HPEP ANP presented a 6-fold better selectivity for the parasite enzyme. CPEE 

derivatives exhibited similar activities against both enzymes, and in this case only the hypoxanthine 

derivatives appeared to be more selective for Pf HGXPRT than for human HGPRT. Finally, the presence 

of an acidic, ester or hydroxyl group as side chain did not lead to a significant difference between these 

three series of compounds. The crystal structures of HPEPG and HPEPHx revealed that residues located 
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in the vicinity of the active site were flexible and mobile, and the activity enhancement was hypothesized 

to be associated with the ‘locking’ of these residues (tighter binding). 

 

Figure 20: HPEP and CPEE ANPs and their corresponding prodrugs  

R1, HPEP or CPEE side-chain; R2, H or NH2. 

 

In order to facilitate cell uptake, phosphorobisamidate prodrugs incorporating L-phenylalanyl moieties 

(Figure 20: HPEP and CPEE ANPs and their corresponding prodrugs ) were prepared and assessed 

in vitro in Pf strains W2 and D6.122 Mono-substituted phosphorobisamidates did not exhibit significant 

antimalarial activity, probably due to the fact that the free amino group may not be easily hydrolyzed in 

cells. IC50 values of di-substituted phosphoramidate prodrugs ranged from 22 to 103 µM.  

c. Bisphosphonates ANPs - ANbPs 

On the basis of an analysis of the crystal structure of human HGPRT complexed with PEEG 

analogues, new series of ANPs containing a second oxymethylphosphonate group and increased flexibility 

of the two phosphonate tails were designed (Figure 21).125 Most of the compounds had Ki values in the 

sub-micromolar range, but little selectivity towards Pf HG(X)PRT was observed. Inhibitory activity 

against the parasite enzyme was noted when the oxygen atom of the phosphonate tail was moved from 
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position 4 to 3. The position of the oxygen atom may thus modify the chain conformation while enhancing 

its binding at the active site. Studies on the crystal structure of human HGPRT complexed with the first 

derivative of Figure 21 revealed that the second phosphonate group interacted with amino acid residues 

via Mg2+ ion, thus highlighting the contribution of this group in comparison to PEEG analogues. Docking 

studies also revealed that the second phosphonate group was located near the PPi binding site but did not 

share interactions inside this pocket. 

 

Figure 21: Bisphosphonate ANPs tested on human and malarial 6-oxopurinePRTs 

 

Two types of prodrug were proposed to increase the cell permeability of parent ANPs. The negative 

charges of PEEG (Figure 15) were either masked by one or two lipophilic chains (Figure 22), or as a bis 

phosphoramidate including an alanine ethyl ester. In comparison to the parent drug (PEEG, IC50 242 µM 

on Pf strain D6), the presence of two substituents decreased the biological activity (IC50 56 µM) and the 

best result was obtained for the prodrug that included a single hexadecyloxypropyl chain (7.6 µM)125, a 

behavior that had already been noted with antiviral compounds.126 For ANbPs (Figure 22), ethyl L-
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phenylalanyl (instead of alanyl) moieties were envisaged for phosphorobisamidate prodrugs with the aim 

of further increasing the lipophilicity of the final compounds. In vitro evaluation of these three prodrugs 

on Pf strains D6 and W2 led to similar results, with IC50 values in the low micromolar range.125 Note that 

some cytotoxicity on mammalian cells was observed for the lipophilic monoester PEEG prodrug (~36-61 

µM CC50 on all three human cell lines tested) as well as for bisphosphonate prodrugs (~41-130 µM 

CC50).
125 

 

Figure 22: Biological assessment of ANbP prodrugs on Pf strains 

 

In 2017, Spacek et al. proposed novel series of ANbPs derivatives (Figure 23) rationally designed on the 

basis of the crystal structure of the previous ANbP lead compound (Figure 21) complexed with human 

HGPRT and based on molecular docking studies, suggesting that increasing the length of the phosphonate 

tail by one atom could allow its location in the PPi binding pocket.127 Various nucleobase modifications 

showed that hypoxanthine (compound 7), 8-bromoguanine (compounds 5 and 8) and 7-deazapurine 
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(compound 6) derivatives were equally or less active than the guanine derivative (compound 4, Figure 

23). Adding one carbon atom into the phosphonate chain (Figure 23, compound 4) led to a 10-fold 

decrease in the Ki values on the human enzyme (0.006 µM to 0.03 µM) but had no effect on Pf HGXPRT 

(Ki = 0.07 µM). For this latter derivative, a crystal structure was obtained in a complex with human 

HGPRT and the affinity gain was associated with the location of the second phosphonate chain within the 

PPi binding site, whereas the phosphonate tail of the previous derivative was too short to reach this site 

and share interactions. They also showed that this new compound bonded strongly in the active site 

through a network of hydrogen bonds between protein residues, phosphonyl oxygen atoms and 

magnesium ions. Finally, phenylalanine phosphoramidate prodrugs were synthesized and their 

antimalarial and cytotoxicity activities were determined. Most of them exhibited IC50 values in the 

micromolar range against D6 and W2 Pf strains, and prodrugs of the best ANbPs in this series exhibited 

low cytotoxicity compared to the others (CC50 212 µM on human lung carcinoma cells).  

 

Figure 23: Novel ANbPs designed by Spacek et al. to study the impact of the phosphonate chain 

and nucleobase modifications on PRTase inhibition 
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d. Fluorinated ANPs 

In addition to the previously reported ANPs,149,119 a fluoromethyl group was incorporated as 

substituent at the beta-position related to the nucleobase on the basis of the PEE and PME scaffolds, giving 

rise to 3-fluoro-(2-phosphonoethoxy)propyl (FPEP) and 3-fluoro-(2-phosphonomethoxy) propyl (FPMP) 

derivatives, which were obtained as pure isomers (Figure 24).124 

 

Figure 24: Fluorinated ANPs and their biological activities 

 

 Briefly, FPMP derivatives were found to be very weak inhibitors (Ki >50 µM) of the three enzymes, 

except for the (S)-isomer incorporating hypoxanthine which exhibited a Ki of 13 µM toward Pf HGXPRT. 

Among the FPEP series, the guanine analogues exhibited inhibition constants in the low micromolar range 

for the three enzymes, with no significant selectivity for the parasite enzymes (Figure 24). No FPEP and 

FPMP derivatives were more active than PEEHx and PEEG ANPs. 

Molecular docking demonstrated that the fluoromethyl group was too small to interact significantly with 

protein residues at the active site, thus not really reflecting any effect of the fluorinated group on the 

activity. One interesting finding was the effect of stereoisomery, (S)- and (R)-isomers providing different 

profiles, as previously noted by other authors. Docking studies revealed different positioning of the 

nucleobase for each isomer, with one being closest to the aromatic ring of residue F186. The 

stereochemistry also influenced the position of the phosphonate group within the 5’-phosphate group loop, 

thus affecting the activity. Indeed, the binding of this group is one of the most crucial for the affinity.124 
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e. Acyclic immucillin phosphonates (AIP) 

In 2012, Schramm and co-workers concluded from their preliminary studies on immucillin 5’-

monophosphate derivatives that they were unable to act efficiently as antimalarials in vitro due to 

hydrolysis of the 5’-phosphate group by cellular phosphatases.101 As an alternative and inspired by the 

work done on ANPs, they designed acyclic immucillin phosphonate derivatives (AIPs, Figure 25), by 

cleaving the sugar moiety of immucillin derivatives and replacing the 5’-phosphate group by a hydrolysis-

resistant phosphonate bond and investigated them as potential PRTase inhibitors.101,123 

 

Figure 25: First AIPs tested to inhibit Pf HGXPRT and Hs HGPRT activities 

 

Pf enzymes were found to be remarkably selective for all derivatives (SI >350). The most potent 

compounds included a hydroxymethyl group as side chain, with sub-nanomolar Ki values (Figure 25, 

compounds 12-14). The most surprising result was the increased selectivity observed when a phosphate 

group linked to a serinol-like chain replaced the phosphonate tail (compound 14). The introduction of 

fluorine atom(s) in the α-position related to the phosphorus atom (compound 13) was envisaged so that 

phosphonate would mimic the pKa of a phosphate group, but this modification did not improve Ki values 

towards Pf and human PRTases.123 
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f. Aza-ANPs 

 In 2012, novel ANP analogues, where a nitrogen atom replaced the oxygen atom within the parent 

PEE scaffold, were compared for their ability to inhibit Pf HGXPRT, with the aim of introducing a novel 

class of nitrogen-containing ANPs (Figure 26)128 This modification led to less active derivatives and 

increased the affinity for the human enzyme (reversed selectivity). These negative effects on the activity 

and selectivity may be attributed to the ability of the secondary amino group to protonate at physiological 

pH, thus modifying the chain conformation (confirmed by docking studies).128 

 

Figure 26: Comparison the inhibitory activity of oxygen- and nitrogen-containing ANPs 

derivatives 

 

Then, N-branched ANPs including a second chain linked to the nitrogen atom were synthesized, thus 

leading to a tertiary amine at the core of the compounds (Figure 27: Evaluation of N-branched ANP 

potent inhibitors of malarial and human 6-oxopurinePRTs).128 The side chains were found to have 

various functionalities such as cyano- (compounds 15-16), hydroxy- (compound 17), methyl ester- 

(compounds 18-19) and carboxylic acids (compounds 20-21), as shown in Figure 27. In all cases, 

guanosine derivatives exhibited better affinity for the human enzyme than for the parasite enzyme, 

whereas some hypoxanthine derivatives exhibited sub-micromolar affinity and significant selectivity for 

the Pf protein. Cyano- and hydroxy-substituted aza-ANPs showed better affinity for the human enzyme. 

All compounds showed weak potency towards parasite enzymes. Finally, promising results were obtained 
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when the second tail had a length of three carbon atoms and included a carboxylic acid or a methyl ester 

group (compounds 19-20).  

Docking studies on these compounds were also performed with human HGPRT to support the biological 

results. The functional group is supposed to be located in a hydrophobic pocket differing from the PPi 

binding site. In the case of the hydroxyl compound, the -OH group is supposedly bound through hydrogen 

bonds to the internal phosphonate, thus hampering it from occupying the 5’-phosphate bonding pocket. 

The nature of the linker has a marked impact on the location of the second group within the active site, 

e.g. in the case of the two cyano compounds 15 and 16, thus lowering the affinity.  

 

Figure 27: Evaluation of N-branched ANP potent inhibitors of malarial and human 6-

oxopurinePRTs 

 

Prodrugs (Figure 28) of the previously described aza-cyano ANPs were subsequently synthesized in order 

to perform cell culture experiments against Pf strains.129 As expected, the use of bisamidate and diester 

prodrugs led to a potency gain in comparison to the parent compounds. However, some cytotoxicity was 

observed for the guanine derivatives, presumably due to the higher affinity of this ANP for the human 

protein, contrary to the hypoxanthine-containing prodrug. 
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Figure 28: Cyano-aza-ANPs and prodrugs against Pf HGXPRT and human HGPRT 

g. Bisphosphonate aza-ANPs  

By merging the scaffold of N-branched ANPs (AIP and aza-ANPs) and bisphosphonate ANPs (ANbPs) 

described previously, Hockova et al. proposed bisphosphonate aza-acyclic nucleosides (Figure 29: ). 128 

In theory, these compounds should form a tight drug-enzyme complex. Indeed, the presence of the nitrogen 

atom allows triple anchoring of the compound through the nucleobase and the formation of two 

phosphonate chains of different lengths. One phosphonate tail was designed to fill the Pf HGXPRT 

pyrophosphate binding site and the other one the phosphate binding pocket. The main chain included five 

atoms, which was found to be the optimum length for this target. Studies on their affinity towards human, 

Pf and Pv PRTases showed that the addition of a second phosphonate group seemed to create new 

interactions at the active site with the human enzyme, which may have been responsible for the 

improvement in all Ki values compared to their monophosphonate analogues (Figure 29). These 

compounds however remained poorly selective for the parasite enzymes. 
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Figure 29: Generic structure of the aza-ANPs bisphosphonates and first derivatives studied 

 

Modification of the length of the side chain and incorporation of an oxygen atom were then envisaged 

(Figure 30).129 Regardless of the nature of the second phosphonate tail, guanine derivatives showed 

similar or better affinity for human HGPRT, with Ki values in the sub-micromolar range. The increased 

length of the side chain to eight atoms and the presence of oxygen atoms led in all cases to more potent 

inhibitors for all three enzymes. In this case, selectivity was in favor of the parasite enzymes for 

hypoxanthine and 8-bromoguanine derivatives.  

Due to the polyanionic nature of the parent compounds, only the corresponding phosphoramidate 

prodrugs were tested in cell experiments (Pf D6 and W2 strains), and cytotoxicity was assessed on human 

lung carcinoma A549 cells. The prodrugs exhibited similar IC50 values, in the micromolar range, against 

both Pf W2 and D6 strains, with weak cytotoxicity against mammalian cells (SI for prodrugs ≥ 15).  

Extensive structural studies revealed that the main phosphonate chain was located in the 5’-

phosphate binding pocket, whereas the other chain was hosted by the PPi binding site. The importance of 

coordination of the magnesium ion with the second phosphonate moiety through a water molecule for 

tight binding was highlighted. It was also found that 8-bromoguanine induced inversion of the common 

positioning of the two phosphonate chains and led to occupation of the 5’-phosphate binding site by the 

second phosphonate group, not by the main one. The longer chain can enter deeply into the binding site, 
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and forming strong interactions. Finally, the hydrogen bond interactions of amino acid residues in the 

active site with the purine ring have been described and the most important ones were identified (hydrogen 

bond between V187 and the N1 of the purine ring is present in every case). The authors also observed a 

hydrogen bond between the N3 of the purine ring and water.129 

 

Figure 30: Biological activities of asymmetric aza-bisphosphonate-ANPs and their prodrugs 

 

h. Triazolo-ANPs 

Recently, ANPs containing a triazole ring instead of a ribose ring and a phosphonic acid group at 

position 4 were reported (Figure 31).130 Both guanine enantiomers exhibited the same Ki on purified Pf 

and human HG(X)PRT, which surprisingly indicated that stereoisomery had no effect on affinity. Also 

surprisingly, the xanthine compound showed the best selectivity for Pf enzymes among others (SI > 250). 
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Hypoxanthine compounds were found to be modest inhibitors of Pf and human HG(X)PRT ((R)-isomer 

Ki values of 3 and 8 µM were observed, respectively) and poorly active against Pv HGXPRT (Ki >100 

µM). 

 

Figure 31: Triazolo-ANPs as potent inhibitor of Pf HGXPRT and Hs HGPRT  

 

CONCLUSION 

As the resistance of Plasmodium species to all antimalarial medicines is spreading in Asia and 

Africa, the search for new treatments is crucial. The main recommendations of WHO to address the drug-

resistance problem include the use of a single-dose treatment to cure uncomplicated malaria, safety for 

vulnerable persons such as pregnant women and young children, combining drugs with different targets, 

activity against several stages of the parasite life cycle and low cost (~ US$1 per adult and US$0.60 for 

an average child's treatment). Consequently, the scientific community, especially medicinal chemists, 

biochemists and biologists working in the field of parasitology, is still facing a challenge to discover 

original drugs and identify novel targets.  

Here we have discussed nucleos(t)ide analogues as a class of potential antimalarials and the related 

metabolic pathway, i.e. enzymes belonging to the purine salvage pathway which have been investigated 

for chemotherapy. Indeed, Plasmodium parasites behave as purine auxotrophs and inhibition of the 

corresponding enzymes would lead to death of the parasites through purine starvation. Among the possible 
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targets, Pf PNP and Pf HGXPRT inhibition has been intensively investigated, along with Pf ADA and Pf 

IMPDH to a lesser extent. Molecular modelling approaches have been used to improve potential inhibitors. 

However, the weak (or the lack) of specificity of many compounds towards human and Pf species has 

somewhat limited their development as drug candidates. The antimalarial activity of immucillin 

derivatives and analogues has been demonstrated in vitro and in vivo. Within this class, DADMe-

immucillin-G (BCX4945) was identified as one of the most potent Pf PNP inhibitors (with subnanomolar 

affinity) while acting as a transition state analogue. This compound reached the preclinical phase in 2012, 

but no further information has been reported since then. The use of ANPs as inhibitors of the plasmodial 

purine metabolism was proposed in the late 1990s, and investigations are still ongoing. It could represent 

one of the most promising families of derivatives. Various series of ANPs have been reported to inhibit Pf 

HGXPRT and Pv HGPRT, leading to studies on the impact of the nucleobase nature, linker length, the 

presence of side-chains and their functionalities on the activity and selectivity. Docking studies were also 

performed to enhance their affinity and/or selectivity. However, the unknown structure of Pf HGXPRT is 

a major limitation which could hamper rational design of these derivatives based on docking studies. All 

computational studies have been performed with human and/or Pv HGPRT, which is not entirely 

comparable to the Pf HGPRT. In addition, the use of prodrug approaches is mandatory for such compounds 

since phosphonic acids do not readily cross biological membranes—an aspect that could complicate 

matters (i.e. synthesis and cost). 

The overall findings of all of these studies show us that nucleos(t)ide analogues are far from revealing 

their full potential. Two decades have been enough to develop a broad range of compounds effectively 

and selectively targeting different enzymatic steps of the Plasmodium purine salvage pathway, and it is 

hoped that the future of this class of compounds will meet with the success it deserves.  
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ABBREVIATION USED  

6-oxoPRTases or 6-oxopurinePRTs, 6-oxopurinephosphoribosyltransferases; A, adenine; ABC, ATP-

binding cassette; ABS, asexual blood stage; ACTs, artemisinin combination therapies; ADA, adenosine 

deaminase; ADC, aminodeoxychorismate; ADCL, aminodeoxychorismate lyase; ADCS, amino-

deoxychorismate synthase; ADP, adenosine 5’-diphosphate; AdSL, adenylosuccinate lyase; AdSS, 

adenylosuccinate synthase; AIP, acyclic immucillin phosphonate; AMPDA, adenosine-5’-monophosphate 

deaminase; ANbPs, acyclic nucleoside bisphosphonates; ANPs, acyclic nucleoside phosphonate; ATC, 

aspartate transcarbamoylase; ATP, adenosine 5’-triphosphate; ATPPase, adenosine 5’-triphosphate 

pyrophosphatase; BCX-1777, immucillin-H; BT1 family, high affinity folate-biopterin transporters C; 

cytosine CA, carbonic anhydrase; CC50, 50% cytotoxic concentration; CH2.THF, 5,10-methylene-

tetrahydrofolate; CH.THF, 5,10-methenyltetrahydrofolate; CoQ, co-enzyme; QCPEE, (S)-2-

(phosphonoethoxy)propanoic acid; CPME, (S)-2-(phosphonomethoxy)propanoic acid; CPSII, carbamoyl 

phosphate synthetase; IICS, chorismate synthase; CTP, cytidine-5’-triphosphate; CTPS, cytosine 5’-

triphosphate synthetase; CVPS, 5-O-(1-carboxyvinyl)-3-phosphoshikimatecyclic; HPMP, cyclic-3-

hydroxy-2-(phosphonomethoxy)-propyl; DADMe, 4’-deaza-1’-aza-2’-deoxy-1’-(9-methylene); DAP, 

2,6-diaminopurine; DATMe : , 4’-deaza-1’-aza-triol-1’-(9-methylene); dCTP, 2’-deoxycytidine-5’-

triphosphated; GMP, 2’-deoxyguanosine-5’-monophosphate; DHF, 7,8-dihydrofolate; DHFR, 

dihydrofolate reductase; DHNTP, 7,8-dihydroneopterin triphosphate; DHO, dihydroorotase; DHODH, 

dihydroorotate dehydrogenase; DHP, 7,8-dihydropteroate; DHPA, 9-(2,3-dihydroxypropyl)adenine; DNA, 

desoxyribonucleic acid; DON, 6-diazo-5-oxo-norleucine; DOXP, 1’-deoxy-D-xylulose-5’-phosphate 
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pathway / non-mevalonate pathway; dTMP, 2’-deoxythymidine-5’-monophosphate; dTTP, 2’-

deoxythymidine-5’-triphosphate; dUDP, 2’-deoxyuridine-5’-diphosphate; dUMP, 2’-deoxyuridine-5’-

monophosphate; dUTP, 2’-deoxyuridine-5’-triphosphate; dUTPase, deoxyuridine 5’-triphosphate 

nucleotidohydrolase; EC50, 50% effective concentration ; EMP1, erythrocyte membrane protein 1 ; 

ENT1/2/3/4, equilibrative nucleoside transporter 1/2/3/4; EPSPS, 5-enolpyruvylshikimate-3-phosphate 

synthase ; FUdR, 5-fluoro-D-2’-deoxyuridine ; FMet-tRNA, formylmethionyl-tRNA ; FPEP, 3-fluoro-(2-

phosphonoethoxy)propyl ; FPGS, folylpolyglutamate synthase ; FPMP, 3-fluoro-(2-phosphono-

methoxy)propyl; FOCM, folate-mediated one-carbon metabolism; FT1/2, folate/biopterin transporter 1/2; 

G, guanine; GAT, domain of GMPS responsible of glutamine hydrolyzation; GMP, guanosine 

monophosphate; GMPs, guanosine monophosphate synthetase; GTP, guanosine 5’-triphosphate; GTPC, 

GTP cyclohydrolase I; bis(POM)PMEA, bis(pivaloyloxymethyl)-9-[2-(phosphonomethoxy)ethyl]-

adenine, brand name Adefovir; dipivoxil HBV, hepatitis B virus; HGPRT, hypoxanthine-guanine 

phosphoribosyltransferase (human); HGXPRT, hypoxanthine-guanine-xanthine phosphoribosyl-

transferase (malarial); HG(X)PRT, both human HGPRT and malarial HGXPRT; Hs, Homo sapiens; HIV, 

human immunodefiency virus; HMDP, 6-hydroxymethyl-7,8-dihydropterin; HMDP-PP, 6-

hydroxymethyl-7,8-dihydropterin pyrophosphate; HomoCys, homocysteine; HPEP, (S)-3-hydroxy-2-

(phosphonoethoxy)propyl; HPMP, 9-(3-hydroxy-2-phosphonomethoxypropyl); IC37, molar concentration 

of an antagonist that inhibits 37% of the activity of a targeted function in vitro; IC50, 50% inhibitory 

concentration; ID50, 50% infectious dose; Imm, immucillin ; IMP, inosine monophosphate ; IMPDH, 

inosine monophosphate dehydrogenase ; Kd, dissociation constant, measure of the propensity of a complex 

(such as the substrate-enzyme complex) to separate into each of its components; Ki, dissociation constant 

for the enzyme-drug complex, measured from initial rates; Ki*, equilibrium dissociation constant; Me.THF, 

5-methyltetrahydrofolate; Met-tRNA, methionyl-tRNA; MTA, 5’-methylthioadenosine; MTHFD, 
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methylenehydrofolate dehydrogenase; MTHFR, methylenetetrahydrofolate reductase; MTI, 5’-

methylthioinosine; MT-Imm, 5’-methylthioimucillin; NAD+, oxidized nicotinamide adenine dinucleotide 

(coenzyme); NADH, reduced nicotinamide adenine dinucleotide (coenzyme); NBMPR, 

nitrobenzylthioinosine; NDP, nucleoside diphosphate; NMPK, nucleoside monophosphate kinase; NPP, 

new permeability pathway; NTP, nucleoside triphosphate; ODC, orotidine 5’-monophosphate 

decarboxylase; OPRTase, orotate phosphoribosyltransferase; pABA, para-aminobenzoic acid; Pb, 

Plasmodium berguei; PDB, protein data bank; PEE, 2-(phosphonoethoxy)ethyl; Pf, Plasmodium 

falciparum; Pf3D7, Plasmodium falciparum strain used in lab assays; Pfcrt, Pf chloroquine-resistant 

transporter gene; PfCRT, Plasmodium falciparum digestive vacuole chloroquine-resistant transmembrane 

transporter; PfMDR, Plasmodium falciparum multidrug resistance protein; Pfmdr1, gene of Plasmodium 

falciparum multidrug resistance protein; Pk, Plasmodium knowlesi; pKa, logarithm of acid dissociation 

constant Ka; PlasmoDB, the online plasmodic genomic resources http://PlasmoDB.orgPm: Plasmodium 

malariae; PME, 2-(phosphonomethoxy)ethyl; PMP, 2-(phosphonomethoxy)propyl; PNP, purine 

nucleoside phosphorylase; Po, Plasmodium ovale; PPi : inorganic pyrophosphate; PRib-PP, 

phosphoribosyl pyrophosphate; PSAC, plasmodial surface anion channel; PTPS, 6-pyruvoyl-

tetrahydropterin synthase III; Pv, Plasmodium vivax; PVM, parasitophorous vacuole membrane; RBC, 

red blood cell; RNA, ribonucleic acid; RNR, ribonucleotide reductase; ROS, reactive oxygen species; 

SHMT, serine hydroxymethyltransferase; SK, shikimate kinase; T, thymine; THF, 5,6,7,8-tetrahydrofolate; 

TK, thymidine kinase; TMP, thymidine-5’-monophosphate; TMPK, thymidylate monophosphate kinase; 

tRNA, transfer ARN; TS, thymidylate synthase; UDP, uridine-5’-diphosphate; UK, uridine kinase; UPRT, 

uracile phosphoribosyltransferase; UTP, uridine-5’-triphosphate; WHO, world health organization; XMP, 

xanthosine monophosphate. 

 



60 

 

 

 

 

AUTHOR INFORMATION 

Corresponding author: suzanne.peyrottes@umontpellier.fr 

ORCID: 0000-0003-1705-0576 

Biographies 

Thomas Cheviet holds an MSc degree from the University of Montpellier. He started his Ph.D. studies in 

2016 under the supervision of Dr. S. Peyrottes, at the Institut des Biomolecules Max Mousseron (IBMM). 

His research focuses on the synthesis and study of bioactive molecules on the Pf metabolism of purines.  

Isabelle Lefevbre-Tournier studied organic and analytical chemistry at the University of Montpellier. 

She joined the laboratory of Pr J.L. Imbach (Montpellier, France) in 1991 and obtained her Ph.D. in 

analytical chemistry in 1994 under the direction of Dr A. Pompon. In 1995, she was a postdoctoral fellow 

in the laboratory of Pr. J.P. Sommadossi (University of Alabama, USA), working on cellular 

pharmacology. In 1996, she joined the laboratory of Dr G. Gosselin (Montpellier, France) focusing on 

study of drugs in biological media by liquid chromatography. Nowadays, she occupies a position of 

Professor (University of Montpellier, France), working on identification and quantification of therapeutic 

agents in biological media. She has co-authored about 60 publications. 

Sharon Wein studied biochemistry at the University of Toulouse. In 2001, she became engineer at the 

CNRS and in the laboratory of Dr H. Vial (Montpellier, France), while working on the development of 

antimalarial compounds. After a MSc degree in Parasitology at the University of Montpellier, she obtained 

her Ph.D. in 2012 under the supervision of Dr H. Vial, while working on the mechanism of action of a 

choline analog with potent antimalarial activity. This choline analog (T3/albitiazolium) was develop in the 

mailto:suzanne.peyrottes@umontpellier.fr


61 

 

lab and reach clinical phase 2 in collaboration with Sanofi. Since 2016, she also worked with Prof. R. 

Cerdan on the study of the phospholipid metabolism of Plasmodium falciparum in particular by lipidomics. 

She has co-authored 36 publications and 2 patents. 

Suzanne Peyrottes studied organic chemistry at the University of Montpellier. In 1995, she obtained her 

PhD, in the laboratory of Prof. J.L. Imbach (Montpellier, France), while working on the synthesis and 

study of modified oligonucleotides. Then, she was a postdoctoral fellow in the laboratory of Dr M.J. Gait 

at MRC (Cambridge, UK) where she worked on the solid-phase synthesis of oligonucleotide-peptide 

conjugates. In 1998, she joined the laboratory of Dr G. Gosselin (Montpellier, France) and focused on the 

synthesis of antitumoral mononucleotide prodrugs, and became a Senior Scientist at CNRS (France). She 

is currently Research Director at CNRS, working on designing potential therapeutic agents, while 

developing new synthetic methodologies related to nucleic acid components. She has co-authored about 

70 publications and 6 patents. 

 

ACKNOWLEDGMENTS 

CNRS (Centre National de la Recherche Scientifique) and University of Montpellier are gratefully 

acknowledged for their support. 

 

REFERENCES 

(1)  WHO | World malaria report 2018 https://www.who.int/malaria/publications/world-malaria-

report-2018/en/ (accessed March 19, 2019). 

(2)  Sutherland, C. J.; Tanomsing, N.; Nold Pinto, J.; Mivhon, P.; er, D.; Oguike, M.; Jennison, C.; 

Pukrittayakamee, S.; Dolecek, C.; Hien, T. T.; Rosário, D.; E, V.; Arez, A. P.; Escalante, A. A.; Nosten, 

F.; Burke, M.; Lee, R.; Blaze, M.; Dan Otto, T.; Barnwell, J. W.; Pain, A.; Williams, J.; White, N. J.; 



62 

 

Day, N. P. J.; Snounou, G.; Lockhart, P. J.; Chiodini, P. L.; Imwong, M.; Polley, S. D. Two 

Nonrecombining Sympatric Forms of the Human Malaria Parasite Plasmodium Ovale Occur Globally. 

J. Infect. Dis. 2010, 201 (10), 1544–1550. https://doi.org/10.1086/652240. 

(3)  Calderaro, A.; Piccolo, G.; Gorrini, C.; Rossi, S.; Montecchini, S.; Dell’Anna, M. L.; De Conto, 

F.; Medici, M. C.; Chezzi, C.; Arcangeletti, M. C. Accurate Identification of the Six Human 

Plasmodium Spp. Causing Imported Malaria, Including Plasmodium Ovale Wallikeri and Plasmodium 

Knowlesi. Malar. J. 2013, 12, 321. https://doi.org/10.1186/1475-2875-12-321. 

(4)  Coelho, C. H.; Doritchamou, J. Y. A.; Zaidi, I.; Duffy, P. E. Advances in Malaria Vaccine 

Development: Report from the 2017 Malaria Vaccine Symposium. NPJ Vaccines 2017, 2. 

https://doi.org/10.1038/s41541-017-0035-3. 

(5)  Matuschewski, K. Vaccines against Malaria—Still a Long Way to Go. FEBS J. 2017, 284 (16), 

2560–2568. https://doi.org/10.1111/febs.14107. 

(6)  Llanos-Cuentas, A.; Casapia, M.; Chuquiyauri, R.; Hinojosa, J.-C.; Kerr, N.; Rosario, M.; Toovey, 

S.; Arch, R. H.; Phillips, M. A.; Rozenberg, F. D.; Bath, J.; Ng, C. L.; Cowell, A. N.; Winzeler, E. A.; 

Fidock, D. A.; Baker, M.; Möhrle, J. J.; van Huijsduijnen, R. H.; Gobeau, N.; Araeipour, N.; 

Andenmatten, N.; Rückle, T.; Duparc, S. Antimalarial Activity of Single-Dose DSM265, a Novel 

Plasmodium Dihydroorotate Dehydrogenase Inhibitor, in Patients with Uncomplicated Plasmodium 

Falciparum or Plasmodium Vivax Malaria Infection: A Proof-of-Concept, Open-Label, Phase 2a Study. 

Lancet Infect. Dis. 2018, 18 (8), 874–883. https://doi.org/10.1016/S1473-3099(18)30309-8. 

(7)  Cassera, M. B.; Zhang, Y.; Hazleton, K. Z.; Schramm, V. L. Purine and Pyrimidine Pathways as 

Targets in Plasmodium Falciparum. Curr. Top. Med. Chem. 2011, 11 (16), 2103–2115. 

(8)  El Kouni, M. H. Potential Chemotherapeutic Targets in the Purine Metabolism of Parasites. 

Pharmacol. Ther. 2003, 99 (3), 283–309. 



63 

 

(9)  Hyde, J. E. Targeting Purine and Pyrimidine Metabolism in Human Apicomplexan Parasites. Curr. 

Drug Targets 2007, 8 (1), 31–47. 

(10)  Krungkrai, S. R.; Wutipraditkul, N.; Krungkrai, J. Dihydroorotase of Human Malarial Parasite 

Plasmodium Falciparum Differs from Host Enzyme. Biochem. Biophys. Res. Commun. 2008, 366 (3), 

821–826. https://doi.org/10.1016/j.bbrc.2007.12.025. 

(11)  Phillips, M. A.; Rathod, P. K. Plasmodium Dihydroorotate Dehydrogenase: A Promising Target for 

Novel Anti-Malarial Chemotherapy. Infect. Disord. Drug Targets 2010, 10 (3), 226–239. 

(12)  Singh, A.; Maqbool, M.; Mobashir, M.; Hoda, N. Dihydroorotate Dehydrogenase: A Drug Target 

for the Development of Antimalarials. Eur. J. Med. Chem. 2017, 125, 640–651. 

https://doi.org/10.1016/j.ejmech.2016.09.085. 

(13)  Krungkrai, S. R.; Krungkrai, J. Insights into the Pyrimidine Biosynthetic Pathway of Human 

Malaria Parasite Plasmodium Falciparum as Chemotherapeutic Target. Asian Pac. J. Trop. Med. 2016, 

9 (6), 525–534. https://doi.org/10.1016/j.apjtm.2016.04.012. 

(14)  Quashie, N. B.; Ranford-Cartwright, L. C.; de Koning, H. P. Uptake of Purines in Plasmodium 

Falciparum-Infected Human Erythrocytes Is Mostly Mediated by the Human Equilibrative Nucleoside 

Transporter and the Human Facilitative Nucleobase Transporter. Malar. J. 2010, 9, 36. 

https://doi.org/10.1186/1475-2875-9-36. 

(15)  Quashie, N.; Dorin-Semblat, D.; G Bray, P.; Biagini, G.; Doerig, C.; Ranford-Cartwright, L.; De 

Koning, H. A Comprehensive Model of Purine Uptake by the Malaria Parasite Plasmodium Falciparum: 

Identification of Four Purine Transport Activities in Intraerythrocytic Parasites. Biochem. J. 2008, 411, 

287–295. https://doi.org/10.1042/BJ20071460. 



64 

 

(16)  Frame, I. J.; Deniskin, R.; Arora, A.; Akabas, M. H. Purine Import into Malaria Parasites as a Target 

for Antimalarial Drug Development. Ann. N. Y. Acad. Sci. 2015, 1342, 19–28. 

https://doi.org/10.1111/nyas.12568. 

(17)  De Koning, H.; Diallinas, G. Nucleobase Transporters (Review). Mol. Membr. Biol. 2000, 17 (2), 

75–94. 

(18)  Boswell-Casteel, R. C.; Hays, F. A. Equilibrative Nucleoside Transporters-A Review. Nucleosides 

Nucleotides Nucleic Acids 2017, 36 (1), 7–30. https://doi.org/10.1080/15257770.2016.1210805. 

(19)  Das, A.; Sharma, M.; Gupta, B.; Dash, A. P. Plasmodium Falciparum and Plasmodium Vivax: So 

Similar, yet Very Different. Parasitol. Res. 2009, 105 (4), 1169–1171. https://doi.org/10.1007/s00436-

009-1521-y. 

(20)  Ivanov, A. A.; Matsumura, I. The Adenosine Deaminases of Plasmodium Vivax and Plasmodium 

Falciparum Exhibit Surprising Differences in Ligand Specificity. J. Mol. Graph. Model. 2012, 35, 43–

48. https://doi.org/10.1016/j.jmgm.2012.02.004. 

(21)  Ward, P.; Equinet, L.; Packer, J.; Doerig, C. Protein Kinases of the Human Malaria Parasite 

Plasmodium Falciparum: The Kinome of a Divergent Eukaryote. BMC Genomics 2004, 5, 79. 

https://doi.org/10.1186/1471-2164-5-79. 

(22)  Cassera, M. B.; Hazleton, K. Z.; Riegelhaupt, P. M.; Merino, E. F.; Luo, M.; Akabas, M. H.; 

Schramm, V. L. Erythrocytic Adenosine Monophosphate as an Alternative Purine Source in 

Plasmodium Falciparum. J. Biol. Chem. 2008, 283 (47), 32889–32899. 

https://doi.org/10.1074/jbc.M804497200. 

(23)  Ginsburg, H.; Krugliak, M.; Eidelman, O.; Cabantchik, Z. I. New Permeability Pathways Induced 

in Membranes of Plasmodium Falciparum Infected Erythrocytes. Mol. Biochem. Parasitol. 1983, 8 (2), 

177–190. 



65 

 

(24)  Liu, J.; Istvan, E. S.; Gluzman, I. Y.; Gross, J.; Goldberg, D. E. Plasmodium Falciparum Ensures 

Its Amino Acid Supply with Multiple Acquisition Pathways and Redundant Proteolytic Enzyme 

Systems. Proc. Natl. Acad. Sci. U. S. A. 2006, 103 (23), 8840–8845. 

https://doi.org/10.1073/pnas.0601876103. 

(25)  Gero, A. M.; Dunn, C. G.; Brown, D. M.; Pulenthiran, K.; Gorovits, E. L.; Bakos, T.; Weis, A. L. 

New Malaria Chemotherapy Developed by Utilization of a Unique Parasite Transport System. Curr. 

Pharm. Des. 2003, 9 (11), 867–877. https://doi.org/10.2174/1381612033455233. 

(26)  Kirk, K.; Lehane, A. M. Membrane Transport in the Malaria Parasite and Its Host Erythrocyte. 

Biochem. J. 2014, 457 (1), 1–18. https://doi.org/10.1042/BJ20131007. 

(27)  Kirk, K.; Howitt, S. M.; Bröer, S.; Saliba, K. J.; Downie, M. J. Purine Uptake in Plasmodium: 

Transport versus Metabolism. Trends Parasitol. 2009, 25 (6), 246–249. 

https://doi.org/10.1016/j.pt.2009.03.006. 

(28)  Rager, N.; Mamoun, C. B.; Carter, N. S.; Goldberg, D. E.; Ullman, B. Localization of the 

Plasmodium Falciparum PfNT1 Nucleoside Transporter to the Parasite Plasma Membrane. J. Biol. 

Chem. 2001, 276 (44), 41095–41099. https://doi.org/10.1074/jbc.M107037200. 

(29)  Downie, M. J.; Kirk, K.; Mamoun, C. B. Purine Salvage Pathways in the Intraerythrocytic Malaria 

Parasite Plasmodium Falciparum. Eukaryot. Cell 2008, 7 (8), 1231–1237. 

https://doi.org/10.1128/EC.00159-08. 

(30)  Hyde, R. J.; Cass, C. E.; Young, J. D.; Baldwin, S. A. The ENT Family of Eukaryote Nucleoside 

and Nucleobase Transporters: Recent Advances in the Investigation of Structure/Function 

Relationships and the Identification of Novel Isoforms. Mol. Membr. Biol. 2001, 18 (1), 53–63. 

(31)  Riegelhaupt, P. M.; Cassera, M. B.; Fröhlich, R. F. G.; Hazleton, K. Z.; Hefter, J. J.; Schramm, V. 

L.; Akabas, M. H. Transport of Purines and Purine Salvage Pathway Inhibitors by the Plasmodium 



66 

 

Falciparum Equilibrative Nucleoside Transporter PfENT1. Mol. Biochem. Parasitol. 2010, 169 (1), 

40–49. https://doi.org/10.1016/j.molbiopara.2009.10.001. 

(32)  Sundaram, M.; Yao, S. Y. M.; Ingram, J. C.; Berry, Z. A.; Abidi, F.; Cass, C. E.; Baldwin, S. A.; 

Young, J. D. Topology of a Human Equilibrative, Nitrobenzylthioinosine (NBMPR)-Sensitive 

Nucleoside Transporter (HENT1) Implicated in the Cellular Uptake of Adenosine and Anti-Cancer 

Drugs. J. Biol. Chem. 2001, 276 (48), 45270–45275. https://doi.org/10.1074/jbc.M107169200. 

(33)  Jiang, L.; Lee, P. C.; White, J.; Rathod, P. K. Potent and Selective Activity of a Combination of 

Thymidine and 1843U89, a Folate-Based Thymidylate Synthase Inhibitor, against Plasmodium 

Falciparum. Antimicrob. Agents Chemother. 2000, 44 (4), 1047–1050. 

(34)  Downie, M. J.; El Bissati, K.; Bobenchik, A. M.; Nic Lochlainn, L.; Amerik, A.; Zufferey, R.; Kirk, 

K.; Ben Mamoun, C. PfNT2, a Permease of the Equilibrative Nucleoside Transporter Family in the 

Endoplasmic Reticulum of Plasmodium Falciparum. J. Biol. Chem. 2010, 285 (27), 20827–20833. 

https://doi.org/10.1074/jbc.M110.118489. 

(35)  Frame, I. J.; Merino, E. F.; Schramm, V. L.; Cassera, M. B.; Akabas, M. H. Malaria Parasite Type 

4 Equilibrative Nucleoside Transporters (ENT4) Are Purine Transporters with Distinct Substrate 

Specificity. Biochem. J. 2012, 446 (2), 179–190. https://doi.org/10.1042/BJ20112220. 

(36)  Deniskin, R.; Frame, I. J.; Sosa, Y.; Akabas, M. H. Targeting the Plasmodium Vivax Equilibrative 

Nucleoside Transporter 1 (PvENT1) for Antimalarial Drug Development. Int. J. Parasitol. Drugs Drug 

Resist. 2015, 6 (1), 1–11. https://doi.org/10.1016/j.ijpddr.2015.11.003. 

(37)  Arora, A.; Deniskin, R.; Sosa, Y.; Nishtala, S. N.; Henrich, P. P.; Kumar, T. R. S.; Fidock, D. A.; 

Akabas, M. H. Substrate and Inhibitor Specificity of the Plasmodium Berghei Equilibrative Nucleoside 

Transporter Type 1. Mol. Pharmacol. 2016, 89 (6), 678–685. https://doi.org/10.1124/mol.115.101386. 



67 

 

(38)  Keough, D.; Hockova, D.; Krecmerova, M.; Cesnek, M.; Holý, A.; Lieve, N.; Brereton, I.; J Winzor, 

D.; de Jersey, J.; Guddat, L. Plasmodium Vivax Hypoxanthine-Guanine Phosphoribosyltransferase: A 

Target for Anti-Malarial Chemotherapy. Mol. Biochem. Parasitol. 2010, 173, 165–169. 

https://doi.org/10.1016/j.molbiopara.2010.05.018. 

(39)  Reyes, P.; Rathod, P. K.; Sanchez, D. J.; Mrema, J. E.; Rieckmann, K. H.; Heidrich, H. G. Enzymes 

of Purine and Pyrimidine Metabolism from the Human Malaria Parasite, Plasmodium Falciparum. Mol. 

Biochem. Parasitol. 1982, 5 (5), 275–290. 

(40)  Keough, D. T.; Ng, A. L.; Winzor, D. J.; Emmerson, B. T.; de Jersey, J. Purification and 

Characterization of Plasmodium Falciparum Hypoxanthine-Guanine-Xanthine 

Phosphoribosyltransferase and Comparison with the Human Enzyme. Mol. Biochem. Parasitol. 1999, 

98 (1), 29–41. 

(41)  Raman, J.; Ashok, C. S.; Subbayya, S. I. N.; Anand, R. P.; Selvi, S. T.; Balaram, H. Plasmodium 

Falciparum Hypoxanthine Guanine Phosphoribosyltransferase. FEBS J. 272 (8), 1900–1911. 

https://doi.org/10.1111/j.1742-4658.2005.04620.x. 

(42)  Xu, Y.; Eads, J.; Sacchettini, J. C.; Grubmeyer, C. Kinetic Mechanism of Human 

Hypoxanthine−Guanine Phosphoribosyltransferase:  Rapid Phosphoribosyl Transfer Chemistry. 

Biochemistry 1997, 36 (12), 3700–3712. https://doi.org/10.1021/bi9616007. 

(43)  Sarkar, D.; Ghosh, I.; Datta, S. Biochemical Characterization of Plasmodium Falciparum 

Hypoxanthine-Guanine-Xanthine Phosphorybosyltransferase: Role of Histidine Residue in Substrate 

Selectivity. Mol. Biochem. Parasitol. 2004, 137 (2), 267–276. 

https://doi.org/10.1016/j.molbiopara.2004.05.014. 

(44)  Shi, W.; Li, C. M.; Tyler, P. C.; Furneaux, R. H.; Cahill, S. M.; Girvin, M. E.; Grubmeyer, C.; 

Schramm, V. L.; Almo, S. C. The 2.0 A Structure of Malarial Purine Phosphoribosyltransferase in 



68 

 

Complex with a Transition State Analogue Inhibitor. Biochemistry 1999, 38 (31), 9872–9880. 

https://doi.org/10.1021/bi990664p. 

(45)  Roy, S.; Nagappa, L. K.; Prahladarao, V. S.; Balaram, H. Kinetic Mechanism of Plasmodium 

Falciparum Hypoxanthine-Guanine-Xanthine Phosphoribosyltransferase. Mol. Biochem. Parasitol. 

2015, 204 (2), 111–120. https://doi.org/10.1016/j.molbiopara.2016.02.006. 

(46)  Madrid, D. C.; Ting, L.-M.; Waller, K. L.; Schramm, V. L.; Kim, K. Plasmodium Falciparum 

Purine Nucleoside Phosphorylase Is Critical for Viability of Malaria Parasites. J. Biol. Chem. 2008, 

283 (51), 35899–35907. https://doi.org/10.1074/jbc.M807218200. 

(47)  Kicska, G. A.; Tyler, P. C.; Evans, G. B.; Furneaux, R. H.; Schramm, V. L.; Kim, K. Purine-Less 

Death in Plasmodium Falciparum Induced by Immucillin-H, a Transition State Analogue of Purine 

Nucleoside Phosphorylase. J. Biol. Chem. 2002, 277 (5), 3226–3231. 

https://doi.org/10.1074/jbc.M105906200. 

(48)  Kicska, G. A.; Tyler, P. C.; Evans, G. B.; Furneaux, R. H.; Kim, K.; Schramm, V. L. Transition 

State Analogue Inhibitors of Purine Nucleoside Phosphorylase from Plasmodium Falciparum. J. Biol. 

Chem. 2002, 277 (5), 3219–3225. https://doi.org/10.1074/jbc.M105905200. 

(49)  Shi, W.; Ting, L.-M.; Kicska, G. A.; Lewandowicz, A.; Tyler, P. C.; Evans, G. B.; Furneaux, R. H.; 

Kim, K.; Almo, S. C.; Schramm, V. L. Plasmodium Falciparum Purine Nucleoside Phosphorylase: 

Crystal Structures, Immucillin Inhibitors, and Dual Catalytic Function. J. Biol. Chem. 2004, 279 (18), 

18103–18106. https://doi.org/10.1074/jbc.C400068200. 

(50)  Schnick, C.; Robien, M. A.; Brzozowski, A. M.; Dodson, E. J.; Murshudov, G. N.; Anderson, L.; 

Luft, J. R.; Mehlin, C.; Hol, W. G. J.; Brannigan, J. A.; Wilkinson, A. J. Structures of Plasmodium 

Falciparum Purine Nucleoside Phosphorylase Complexed with Sulfate and Its Natural Substrate 



69 

 

Inosine. Acta Crystallogr. D Biol. Crystallogr. 2005, 61 (9), 1245–1254. 

https://doi.org/10.1107/S0907444905020251. 

(51)  Kline, P. C.; Schramm, V. L. Pre-Steady-State Transition State Analysis of the Hydrolytic Reaction 

Catalyzed by Purine Nucleoside Phosphorylase. Biochemistry 1995, 34 (4), 1153–1162. 

https://doi.org/10.1021/bi00004a008. 

(52)  Lewandowicz, A.; Schramm, V. L. Transition State Analysis for Human and Plasmodium 

Falciparum Purine Nucleoside Phosphorylases. Biochemistry 2004, 43 (6), 1458–1468. 

https://doi.org/10.1021/bi0359123. 

(53)  Luo, M.; Singh, V.; Taylor, E. A.; Schramm, V. L. Transition state Variation in Human, Bovine, 

and Plasmodium Falciparum Adenosine Deaminases. J. Am. Chem. Soc. 2007, 129 (25), 8008–8017. 

https://doi.org/10.1021/ja072122y. 

(54)  Ting, L.-M.; Shi, W.; Lewandowicz, A.; Singh, V.; Mwakingwe, A.; Birck, M. R.; Ringia, E. A. T.; 

Bench, G.; Madrid, D. C.; Tyler, P. C.; Evans, G. B.; Furneaux, R. H.; Schramm, V. L.; Kim, K.  

Targeting a Novel Plasmodium Falciparum Purine Recycling Pathway with Specific Immucillins. J. 

Biol. Chem. 2005, 280 (10), 9547–9554. https://doi.org/10.1074/jbc.M412693200. 

(55)  Larson, E. T.; Deng, W.; Krumm, B. E.; Napuli, A.; Mueller, N.; Van Voorhis, W. C.; Buckner, F. 

S.; Fan, E.; Lauricella, A.; DeTitta, G.; Luft, J.; Zucker, F.; Holl, W. G. J.; Verlinde, C. L. M.; Merrit, 

E. A. Structures of Substrate- and Inhibitor-Bound Adenosine Deaminase from a Human Malaria 

Parasite Show a Dramatic Conformational Change and Shed Light on Drug Selectivity. J. Mol. Biol. 

2008, 381 (4), 975–988. https://doi.org/10.1016/j.jmb.2008.06.048. 

(56)  Webster, H. K.; Wiesmann, W. P.; Pavia, C. S. Adenosine Deaminase in Malaria Infection: Effect 

of 2’-Deoxycoformycin in Vivo. Adv. Exp. Med. Biol. 1984, 165 Pt A, 225–229. 



70 

 

(57)  Mogire, R. M.; Akala, H. M.; Macharia, R. W.; Juma, D. W.; Cheruiyot, A. C.; Andagalu, B.; 

Brown, M. L.; El-Shemy, H. A.; Nyanjom, S. G. Target-Similarity Search Using Plasmodium 

Falciparum Proteome Identifies Approved Drugs with Anti-Malarial Activity and Their Possible 

Targets. PLOS ONE 2017, 12 (10), e0186364. https://doi.org/10.1371/journal.pone.0186364. 

(58)  Hedstrom, L. IMP Dehydrogenase: Structure, Mechanism and Inhibition. Chem. Rev. 2009, 109 

(7), 2903–2928. https://doi.org/10.1021/cr900021w. 

(59)  Fotie, J. Inosine 5’-Monophosphate Dehydrogenase (IMPDH) as a Potential Target for the 

Development of a New Generation of Antiprotozoan Agents. Mini Rev. Med. Chem. 2018, 18 (8), 656–

671. https://doi.org/10.2174/1389557516666160620065558. 

(60)  Raza, M.; Khan, Z.; Ahmad, A.; Raza, S.; Khan, A.; Mohammadzai, I. U.; Zada, S. In Silico 3-D 

Structure Prediction and Molecular Docking Studies of Inosine Monophosphate Dehydrogenase from 

Plasmodium Falciparum. Comput. Biol. Chem. 2017, 71, 10–19. 

https://doi.org/10.1016/j.compbiolchem.2017.09.002. 

(61)  Cuny, G. D.; Suebsuwong, C.; Ray, S. S. Inosine-5’-Monophosphate Dehydrogenase (IMPDH) 

Inhibitors: A Patent and Scientific Literature Review (2002-2016). Expert Opin. Ther. Pat. 2017, 27 

(6), 677–690. https://doi.org/10.1080/13543776.2017.1280463. 

(62)  Bhat, J. Y.; Shastri, B. G.; Balaram, H. Kinetic and Biochemical Characterization of Plasmodium 

Falciparum GMP Synthetase. Biochem. J. 2008, 409 (1), 263–273. 

https://doi.org/10.1042/BJ20070996. 

(63)  Ballut, L.; Violot, S.; Shivakumaraswamy, S.; Thota, L. P.; Sathya, M.; Kunala, J.; Dijkstra, B. W.; 

Terreux, R.; Haser, R.; Balaram, H.; Aghajari, N. Active Site Coupling in Plasmodium Falciparum 

GMP Synthetase Is Triggered by Domain Rotation. Nat. Commun. 2015, 6, 8930. 

https://doi.org/10.1038/ncomms9930.  



71 

 

(64)  Wang, C. C. Parasite Enzymes as Potential Targets for Antiparasitic Chemotherapy. J. Med. Chem. 

1984, 27 (1), 1–9. https://doi.org/10.1021/jm00367a001. 

(65)  Keough, D. T.; Skinner-Adams, T.; Jones, M. K.; Ng, A.-L.; Brereton, I. M.; Guddat, L. W.; de 

Jersey, J. Lead Compounds for Antimalarial Chemotherapy:  Purine Base Analogs Discriminate 

between Human and P. Falciparum 6-Oxopurine Phosphoribosyltransferases. J. Med. Chem. 2006, 49 

(25), 7479–7486. https://doi.org/10.1021/jm061012j. 

(66)  Erb, N.; Harms, D. O.; Janka-Schaub, G. Pharmacokinetics and Metabolism of Thiopurines in 

Children with Acute Lymphoblastic Leukemia Receiving 6-Thioguanine versus 6-Mercaptopurine. 

Cancer Chemother. Pharmacol. 1998, 42 (4), 266–272. https://doi.org/10.1007/s002800050816. 

(67)  Trigg, P. I.; Gutteridge, W. E.; Williamson, J. The Effects of Cordycepin on Malaria Parasites. 

Trans. R. Soc. Trop. Med. Hyg. 1971, 65 (4), 514–520. https://doi.org/10.1016/0035-9203(71)90162-3. 

(68)  Kawasaki, Y. Mizoribine: A New Approach in the Treatment of Renal Disease. Clin. Dev. Immunol. 

2009, 2009, 681482. https://doi.org/10.1155/2009/681482. 

(69)  Yokota, S. Mizoribine: Mode of Action and Effects in Clinical Use. Pediatr. Int. Off. J. Jpn. Pediatr. 

Soc. 2002, 44 (2), 196–198. 

(70)  Webster, H. K.; Whaun, J. M. Antimalarial Properties of Bredinin. Prediction Based on 

Identification of Differences in Human Host-Parasite Purine Metabolism. J. Clin. Invest. 1982, 70 (2), 

461–469. 

(71)  Streeter, D. G.; Witkowski, J. T.; Khare, G. P.; Sidwell, R. W.; Bauer, R. J.; Robins, R. K.; Simon, 

L. N. Mechanism of Action of 1-β-D-Ribofuranosyl-1,2,4-Triazole-3-Carboxamide (Virazole), A New 

Broad-Spectrum Antiviral Agent. Proc. Natl. Acad. Sci. U. S. A. 1973, 70 (4), 1174–1178. 



72 

 

(72)  Thomas, E.; Ghany, M. G.; Liang, T. J. The Application and Mechanism of Action of Ribavirin in 

Therapy of Hepatitis C. Antivir. Chem. Chemother. 2012, 23 (1), 1–12. 

https://doi.org/10.3851/IMP2125. 

(73)  Keough, D. T.; Rejman, D.; Pohl, R.; Zborníková, E.; Hocková, D.; Croll, T.; Edstein, M. D.; 

Birrell, G. W.; Chavchich, M.; Naesens, L. M. J.; Pierens, G. K.; Brereton, I. M.; Guddat, L. W. Design 

of Plasmodium Vivax Hypoxanthine-Guanine Phosphoribosyltransferase Inhibitors as Potential 

Antimalarial Therapeutics. ACS Chem. Biol. 2018, 13 (1), 82–90. 

https://doi.org/10.1021/acschembio.7b00916. 

(74)  Coomber, D. W. J.; O’Sullivan, W. J.; Gero, A. M. Adenosine Analogues as Antimetabolites against 

Plasmodium Falciparum Malaria. Int. J. Parasitol. 1994, 24 (3), 357–365. 

https://doi.org/10.1016/0020-7519(94)90083-3. 

(75)  Gero, A. M.; Scott, H. V.; O’Sullivan, W. J.; Christopherson, R. I. Antimalarial Action of 

Nitrobenzylthioinosine in Combination with Purine Nucleoside Antimetabolites. Mol. Biochem. 

Parasitol. 1989, 34 (1), 87–97. 

(76)  Nakamura, J.; Lou, L. Biochemical Characterization of Human GMP Synthetase. J. Biol. Chem. 

1995, 270 (13), 7347–7353. https://doi.org/10.1074/jbc.270.13.7347. 

(77)  McConkey, G. A. Plasmodium Falciparum: Isolation and Characterisation of a Gene Encoding 

Protozoan GMP Synthase. Exp. Parasitol. 2000, 94 (1), 23–32. https://doi.org/10.1006/expr.1999.4467. 

(78)  Keough, D. T.; Hocková, D.; Rejman, D.; Špaček, P.; Vrbková, S.; Krečmerová, M.; Eng, W. S.; 

Jans, H.; West, N. P.; Naesens, L. M. J.; De Jersey, J.; Guddat, L. W. Inhibition of the Escherichia Coli 

6-Oxopurine Phosphoribosyltransferases by Nucleoside Phosphonates: Potential for New Antibacterial 

Agents. J. Med. Chem. 2013, 56 (17), 6967–6984. https://doi.org/10.1021/jm400779n. 



73 

 

(79)  Young, J. D.; Jarvis, S. M. Nucleoside Transport in Animal Cells. Biosci. Rep. 1983, 3 (4), 309–

322. https://doi.org/10.1007/BF01122895. 

(80)  Parker, M. D.; Hyde, R. J.; Yao, S. Y. M.; Mcrobert, L.; Cass, C. E.; Young, J. D.; Mcconkey, G. 

A.; Baldwin, S. A. Identification of a Nucleoside/Nucleobase Transporter from Plasmodium 

Falciparum, a Novel Target for Anti-Malarial Chemotherapy. Biochem. J. 2000, 349 (1), 67–75. 

https://doi.org/10.1042/bj3490067. 

(81)  Schramm, V. L. Enzymatic Transition State Theory and Transition State Analogue Design. J. Biol. 

Chem. 2007, 282 (39), 28297–28300. https://doi.org/10.1074/jbc.R700018200. 

(82)  Tyler, P. C.; Taylor, E. A.; Fröhlich, R. F. G.; Schramm, V. L. Synthesis of 5’-Methylthio 

Coformycins: Specific Inhibitors for Malarial Adenosine Deaminase. J. Am. Chem. Soc. 2007, 129 (21), 

6872–6879. https://doi.org/10.1021/ja0708363. 

(83)  Upston, J. M.; Gero, A. M. Parasite-Induced Permeation of Nucleosides in Plasmodium 

Falciparum Malaria. Biochim. Biophys. Acta 1995, 1236 (2), 249–258. 

(84)  Gero, A. M.; Perrone, G.; Brown, D. M.; Hall, S. T.; Chu, C. K. L-Purine Nucleosides as Selective 

Antimalarials. Nucleosides Nucleotides 1999, 18 (4–5), 885–889. 

(85)  Brown, D. M.; Netting, A. G.; Chun, B. K.; Choi, Y.; Chu, C. K.; Gero, A. M. L-Nucleoside 

Analogues as Potential Antimalarials That Selectively Target Plasmodium Falciparum Adenosine 

Deaminase. Nucleosides Nucleotides 1999, 18 (11–12), 2521–2532. 

(86)  Reist, E. J.; Gueffroy, D. E.; Blackford, R. W.; Goodman, L. Pyrrolodine Sugars. Synthesis of 4'-

Acetamidoadenosine and Other Derivatives of 4-Amino-4-Deoxy-D-Ribose. J. Org. Chem. 1966, 31 

(12), 4025–4030. https://doi.org/10.1021/jo0135a033. 



74 

 

 (87)  Miles, R. W.; Tyler, P. C.; Furneaux, R. H.; Bagdassarian, C. K.; Schramm, V. L. One-Third-the-

Sites Transition State Inhibitors for Purine Nucleoside Phosphorylase. Biochemistry 1998, 37 (24), 

8615–8621. https://doi.org/10.1021/bi980658d. 

(88)  Lewandowicz, A.; Ringia, E. A. T.; Ting, L.-M.; Kim, K.; Tyler, P. C.; Evans, G. B.; Zubkova, O. 

V.; Mee, S.; Painter, G. F.; Lenz, D. H.; Furneaux, R. H.; Schramm, V. L. Energetic Mapping of 

Transition State Analogue Interactions with Human and Plasmodium Falciparum Purine Nucleoside 

Phosphorylases. J. Biol. Chem. 2005, 280 (34), 30320–30328. 

https://doi.org/10.1074/jbc.M505033200. 

(89)  Mason, J. M.; Murkin, A. S.; Li, L.; Schramm, V. L.; Gainsford, G. J.; Skelton, B. W. A Beta-

Fluoroamine Inhibitor of Purine Nucleoside Phosphorylase. J. Med. Chem. 2008, 51 (18), 5880–5884. 

https://doi.org/10.1021/jm800792b. 

(90)  Taylor, E. A.; Clinch, K.; Kelly, P. M.; Li, L.; Evans, G. B.; Tyler, P. C.; Schramm, V. L. Acyclic 

Ribooxacarbenium Ion Mimics as Transition State Analogues of Human and Malarial Purine 

Nucleoside Phosphorylases. J. Am. Chem. Soc. 2007, 129 (22), 6984–6985. 

https://doi.org/10.1021/ja071087s. 

(91)  Clinch, K.; Evans, G. B.; Fröhlich, R. F. G.; Furneaux, R. H.; Kelly, P. M.; Legentil, L.; Murkin, 

A. S.; Li, L.; Schramm, V. L.; Tyler, P. C.; Woolhouse, A. D. Third-Generation Immucillins: Syntheses 

and Bioactivities of Acyclic Immucillin Inhibitors of Human Purine Nucleoside Phosphorylase. J. Med. 

Chem. 2009, 52 (4), 1126–1143. https://doi.org/10.1021/jm801421q. 

(92)  Clinch, K.; Evans, G. B.; Fleet, G. W. J.; Furneaux, R. H.; Johnson, S. W.; Lenz, D. H.; Mee, S. P. 

H.; Rands, P. R.; Schramm, V. L.; Ringia, E. A. T.; Tyler, P. C. Syntheses and Bio-Activities of the L-

Enantiomers of Two Potent Transition State Analogue Inhibitors of Purine Nucleoside Phosphorylases. 

Org. Biomol. Chem. 2006, 4 (6), 1131–1139. https://doi.org/10.1039/B517883E. 



75 

 

(93)  Lewandowicz, A.; Tyler, P. C.; Evans, G. B.; Furneaux, R. H.; Schramm, V. L. Achieving the 

Ultimate Physiological Goal in Transition State Analogue Inhibitors for Purine Nucleoside 

Phosphorylase. J. Biol. Chem. 2003, 278 (34), 31465–31468. https://doi.org/10.1074/jbc.C300259200. 

(94)  Cassera, M. B.; Hazleton, K. Z.; Merino, E. F.; Obaldia, N.; Ho, M.-C.; Murkin, A. S.; DePinto, 

R.; Gutierrez, J. A.; Almo, S. C.; Evans, G. B.; Babu, Y. S.; Schramm, V. L. Plasmodium Falciparum 

Parasites Are Killed by a Transition State Analogue of Purine Nucleoside Phosphorylase in a Primate 

Animal Model. PloS One 2011, 6 (11), e26916. https://doi.org/10.1371/journal.pone.0026916. 

(95)  Taylor Ringia, E. A.; Schramm, V. L. Transition States and Inhibitors of the Purine Nucleoside 

Phosphorylase Family. Curr. Top. Med. Chem. 2005, 5 (13), 1237–1258. 

(96)  Cui, H.; Ruda, G. F.; Carrero-Lérida, J.; Ruiz-Pérez, L. M.; Gilbert, I. H.; González-Pacanowska, 

D. Exploring New Inhibitors of Plasmodium Falciparum Purine Nucleoside Phosphorylase. Eur. J. 

Med. Chem. 2010, 45 (11), 5140–5149. https://doi.org/10.1016/j.ejmech.2010.08.026. 

(97)  Gumina, G.; Chong, Y.; Choo, H.; Song, G.-Y.; Chu, C. K. L-Nucleosides: Antiviral Activity and 

Molecular Mechanism. Curr. Top. Med. Chem. 2002, 2 (10), 1065–1086. 

(98)  Gumina, G.; Song, G. Y.; Chu, C. K. L-Nucleosides as Chemotherapeutic Agents. FEMS Microbiol. 

Lett. 2001, 202 (1), 9–15. 

(99)  Mathé, C.; Gosselin, G. L-Nucleoside Enantiomers as Antivirals Drugs: A Mini-Review. Antiviral 

Res. 2006, 71 (2–3), 276–281. https://doi.org/10.1016/j.antiviral.2006.04.017. 

(100)  Li, C. M.; Tyler, P. C.; Furneaux, R. H.; Kicska, G.; Xu, Y.; Grubmeyer, C.; Girvin, M. E.; Schramm, 

V. L. Transition state Analogs as Inhibitors of Human and Malarial Hypoxanthine-Guanine 

Phosphoribosyltransferases. Nat. Struct. Biol. 1999, 6 (6), 582–587. https://doi.org/10.1038/9367. 

(101)  Hazleton, K. Z.; Ho, M.-C.; Cassera, M. B.; Clinch, K.; Crump, D. R.; Rosario, I.; Merino, E. F.; 

Almo, S. C.; Tyler, P. C.; Schramm, V. L. Acyclic Immucillin Phosphonates: Second-Generation 



76 

 

Inhibitors of Plasmodium Falciparum Hypoxanthine-Guanine-Xanthine Phosphoribosyltransferase. 

Chem. Biol. 2012, 19 (6), 721–730. https://doi.org/10.1016/j.chembiol.2012.04.012. 

(102)  Ho, M.-C.; Shi, W.; Rinaldo-Matthis, A.; Tyler, P. C.; Evans, G. B.; Clinch, K.; Almo, S. C.; 

Schramm, V. L. Four Generations of Transition State Analogues for Human Purine Nucleoside 

Phosphorylase. Proc. Natl. Acad. Sci. U.S.A. 2010, 107 (11), 4805–4812. 

https://doi.org/10.1073/pnas.0913439107. 

(103)  Ducati, R. G.; Namanja-Magliano, H. A.; Harijan, R. K.; Fajardo, J. E.; Fiser, A.; Daily, J. P.; 

Schramm, V. L. Genetic Resistance to Purine Nucleoside Phosphorylase Inhibition in Plasmodium 

Falciparum. Proc. Natl. Acad. Sci. U.S.A. 2018, 115 (9), 2114–2119. 

https://doi.org/10.1073/pnas.1525670115. 

(104)  DeClercq, E.; Descamps, J.; Somer, P. D.; Holý, A. (S)-9-(2,3-Dihydroxypropyl)Adenine: An 

Aliphatic Nucleoside Analog with Broad-Spectrum Antiviral Activity. Science 1978, 200 (4341), 563–

565. https://doi.org/10.1126/science.200.4341.563. 

(105)  Elion, G. B.; Furman, P. A.; Fyfe, J. A.; de Miranda, P.; Beauchamp, L.; Schaeffer, H. J. Selectivity 

of Action of an Antiherpetic Agent, 9-(2-Hydroxyethoxymethyl) Guanine. Proc. Natl. Acad. Sci. U. S. 

A. 1977, 74 (12), 5716–5720. 

(106)  De Clercq, E.; Holý, A.; Rosenberg, I.; Sakuma, T.; Balzarini, J.; Maudgal, P. C. A Novel Selective 

Broad-Spectrum Anti-DNA Virus Agent. Nature 1986, 323 (6087), 464–467. 

https://doi.org/10.1038/323464a0. 

(107)  De Clercq, E.; Sakuma, T.; Baba, M.; Pauwels, R.; Balzarini, J.; Rosenberg, I.; Holý, A. Antiviral 

Activity of Phosphonylmethoxyalkyl Derivatives of Purine and Pyrimidines. Antiviral Res. 1987, 8 (5–

6), 261–272. 



77 

 

(108)  De Clercq, E. The Clinical Potential of the Acyclic (and Cyclic) Nucleoside Phosphonates. The 

Magic of the Phosphonate Bond. Biochem. Pharmacol. 2011, 82 (2), 99–109. 

https://doi.org/10.1016/j.bcp.2011.03.027. 

(109)  Thornton, P. J.; Kadri, H.; Miccoli, A.; Mehellou, Y. Nucleoside Phosphate and Phosphonate 

Prodrug Clinical Candidates. J. Med. Chem. 2016, 59 (23), 10400–10410. 

https://doi.org/10.1021/acs.jmedchem.6b00523. 

(110)  Pouvelle, B.; Gormley, J. A.; Taraschi, T. F. Characterization of Trafficking Pathways and 

Membrane Genesis in Malaria-Infected Erythrocytes. Mol. Biochem. Parasitol. 1994, 66 (1), 83–96. 

https://doi.org/10.1016/0166-6851(94)90038-8. 

(111)  Pradere, U.; Garnier-Amblard, E. C.; Coats, S. J.; Amblard, F.; Schinazi, R. F. Synthesis of 

Nucleoside Phosphate and Phosphonate Prodrugs. Chem. Rev. 2014, 114 (18), 9154–9218. 

https://doi.org/10.1021/cr5002035. 

(112)  Wiemer, A. J.; Wiemer, D. F. Prodrugs of Phosphonates and Phosphates: Crossing the Membrane 

Barrier. Top. Curr. Chem. 2015, 360, 115–160. https://doi.org/10.1007/128_2014_561. 

(113)  Hadziyannis, S. J.; Tassopoulos, N. C.; Heathcote, E. J.; Chang, T.-T.; Kitis, G.; Rizzetto, M.; 

Marcellin, P.; Lim, S. G.; Goodman, Z.; Wulfsohn, M. S.; Xiong, S.; Fry, J.; Brosgart, C. L. Adefovir 

Dipivoxil for the Treatment of Hepatitis B & Antigen-Negative Chronic Hepatitis B. N. Engl. J. Med. 

2003, 348 (9), 800–807. https://doi.org/10.1056/NEJMoa021812. 

(114)  Robbins, B. L.; Srinivas, R. V.; Kim, C.; Bischofberger, N.; Fridland, A. Anti-Human 

Immunodeficiency Virus Activity and Cellular Metabolism of a Potential Prodrug of the Acyclic 

Nucleoside Phosphonate 9-R-(2-Phosphonomethoxypropyl)Adenine (PMPA), Bis(Isopropyloxy-

methylcarbonyl)PMPA. Antimicrob. Agents Chemother. 1998, 42 (3), 612–617. 



78 

 

(115)  de Vries, E.; Stam, J. G.; Franssen, F. F. J.; Nieuwenhuijs, H.; Chavalitshewinkoon, P.; de Clercq, 

E.; Prosper Overdulve, J.; van der Vliet, P. C. Inhibition of the Growth of Plasmodium Falciparum and 

Plasmodium Berghei by the DNA Polymerase Inhibitor HPMPA. Mol. Biochem. Parasitol. 1991, 47 

(1), 43–50. https://doi.org/10.1016/0166-6851(91)90146-W. 

(116)  Smeijsters, L. J.; Nieuwenhuijs, H.; Hermsen, R. C.; Dorrestein, G. M.; Franssen, F. F.; Overdulve, 

J. P. Antimalarial and Toxic Effects of the Acyclic Nucleoside Phosphonate (S)-9-(3-Hydroxy-2-

Phosphonylmethoxypropyl)Adenine in Plasmodium Berghei-Infected Mice. Antimicrob. Agents 

Chemother. 1996, 40 (7), 1584–1588. 

(117)  Smeijsters, L. J.; Franssen, F. F.; Naesens, L.; de Vries, E.; Holý, A.; Balzarini, J.; de Clercq, E.; 

Overdulve, J. P. Inhibition of the in Vitro Growth of Plasmodium Falciparum by Acyclic Nucleoside 

Phosphonates. Int. J. Antimicrob. Agents 1999, 12 (1), 53–61. 

(118)  Keough, D. T.; Hocková, D.; Holý, A.; Naesens, L. M. J.; Skinner-Adams, T. S.; Jersey, J. de; 

Guddat, L. W. Inhibition of Hypoxanthine-Guanine Phosphoribosyltransferase by Acyclic Nucleoside 

Phosphonates: A New Class of Antimalarial Therapeutics. J. Med. Chem. 2009, 52 (14), 4391–4399. 

https://doi.org/10.1021/jm900267n. 

(119)  Hocková, D.; Holý, A.; Masojídková, M.; Keough, D. T.; de Jersey, J.; Guddat, L. W. Synthesis of 

Branched 9-[2-(2-Phosphonoethoxy)Ethyl]Purines as a New Class of Acyclic Nucleoside 

Phosphonates Which Inhibit Plasmodium Falciparum Hypoxanthine-Guanine-Xanthine 

Phosphoribosyltransferase. Bioorg. Med. Chem. 2009, 17 (17), 6218–6232. 

https://doi.org/10.1016/j.bmc.2009.07.044. 

(120)  Česnek, M.; Hocková, D.; Holý, A.; Dračínský, M.; Baszczyňski, O.; Jersey, J. de; Keough, D. T.; 

Guddat, L. W. Synthesis of 9-Phosphonoalkyl and 9-Phosphonoalkoxyalkyl Purines: Evaluation of 

Their Ability to Act as Inhibitors of Plasmodium Falciparum, Plasmodium Vivax and Human 



79 

 

Hypoxanthine-Guanine-(Xanthine) Phosphoribosyltransferases. Bioorg. Med. Chem. 2012, 20 (2), 

1076–1089. https://doi.org/10.1016/j.bmc.2011.11.034. 

(121)  Krečmerová, M.; Dračínský, M.; Hocková, D.; Holý, A.; Keough, D. T.; Guddat, L. W. Synthesis 

of Purine N9-[2-Hydroxy-3-O-(Phosphonomethoxy)Propyl] Derivatives and Their Side-Chain 

Modified Analogs as Potential Antimalarial Agents. Bioorg. Med. Chem. 2012, 20 (3), 1222–1230. 

https://doi.org/10.1016/j.bmc.2011.12.034. 

(122)  Kaiser, M. M.; Hocková, D.; Wang, T.-H.; Dračínský, M.; Poštová-Slavětínská, L.; Procházková, 

E.; Edstein, M. D.; Chavchich, M.; Keough, D. T.; Guddat, L. W.; Janeba, Z. Synthesis and Evaluation 

of Novel Acyclic Nucleoside Phosphonates as Inhibitors of Plasmodium Falciparum and Human 6-

Oxopurine Phosphoribosyltransferases. ChemMedChem 2015, 10 (10), 1707–1723. 

https://doi.org/10.1002/cmdc.201500322. 

(123)  Clinch, K.; Crump, D. R.; Evans, G. B.; Hazleton, K. Z.; Mason, J. M.; Schramm, V. L.; Tyler, P. 

C. Acyclic Phosph(on)Ate Inhibitors of Plasmodium Falciparum Hypoxanthine-Guanine-Xanthine 

Phosphoribosyltransferase. Bioorg. Med. Chem. 2013, 21 (17), 5629–5646. 

https://doi.org/10.1016/j.bmc.2013.02.016. 

(124)  Baszczyňski, O.; Hocková, D.; Janeba, Z.; Holý, A.; Jansa, P.; Dračínský, M.; Keough, D. T.; 

Guddat, L. W. The Effect of Novel [3-Fluoro-(2-Phosphonoethoxy)Propyl]Purines on the Inhibition of 

Plasmodium Falciparum, Plasmodium Vivax and Human Hypoxanthine-Guanine-(Xanthine) 

Phosphoribosyltransferases. Eur. J. Med. Chem. 2013, 67, 81–89. 

https://doi.org/10.1016/j.ejmech.2013.06.032. 

(125)  Keough, D. T.; Špaček, P.; Hocková, D.; Tichý, T.; Vrbková, S.; Slavětínská, L.; Janeba, Z.; 

Naesens, L.; Edstein, M. D.; Chavchich, M.; Wang, T. H.; De Jersey, J.; Guddat, L. W. Acyclic 

Nucleoside Phosphonates Containing a Second Phosphonate Group Are Potent Inhibitors of 6-



80 

 

Oxopurine Phosphoribosyltransferases and Have Antimalarial Activity. J. Med. Chem. 2013, 56 (6), 

2513–2526. https://doi.org/10.1021/jm301893b. 

126)  Tichý, T.; Andrei, G.; Snoeck, R.; Balzarini, J.; Dračínský, M.; Krečmerová, M. Synthesis and 

Antiviral Activities of Hexadecyloxypropyl Prodrugs of Acyclic Nucleoside Phosphonates Containing 

Guanine or Hypoxanthine and a (S)-HPMP or PEE Acyclic Moiety. Eur. J. Med. Chem. 2012, 55, 307–

314. https://doi.org/10.1016/j.ejmech.2012.07.027. 

(127)  Špaček, P.; Keough, D. T.; Chavchich, M.; Dračínský, M.; Janeba, Z.; Naesens, L.; Edstein, M. D.; 

Guddat, L. W.; Hocková, D. Synthesis and Evaluation of Asymmetric Acyclic Nucleoside 

Bisphosphonates as Inhibitors of Plasmodium Falciparum and Human Hypoxanthine–Guanine–

(Xanthine) Phosphoribosyltransferase. J. Med. Chem. 2017, 60 (17), 7539–7554. 

https://doi.org/10.1021/acs.jmedchem.7b00926. 

(128)  Hocková, D.; Keough, D. T.; Janeba, Z.; Wang, T.-H.; de Jersey, J.; Guddat, L. W. Synthesis of 

Novel N-Branched Acyclic Nucleoside Phosphonates as Potent and Selective Inhibitors of Human, 

Plasmodium Falciparum and Plasmodium Vivax 6-Oxopurine Phosphoribosyltransferases. J. Med. 

Chem. 2012, 55 (13), 6209–6223. https://doi.org/10.1021/jm300662d. 

(129)  Keough, D. T.; Hocková, D.; Janeba, Z.; Wang, T.-H.; Naesens, L.; Edstein, M. D.; Chavchich, M.; 

Guddat, L. W. Aza-Acyclic Nucleoside Phosphonates Containing a Second Phosphonate Group as 

Inhibitors of the Human, Plasmodium Falciparum and Vivax 6-Oxopurine Phosphoribosyltransferases 

and Their Prodrugs as Antimalarial Agents. J. Med. Chem. 2015, 58 (2), 827–846. 

https://doi.org/10.1021/jm501416t. 

(130)  Lukáč, M.; Hocková, D.; Keough, D. T.; Guddat, L. W.; Janeba, Z. Novel Nucleotide Analogues 

Bearing (1H-1,2,3-Triazol-4-Yl)Phosphonic Acid Moiety as Inhibitors of Plasmodium and Human 6-



81 

 

Oxopurine Phosphoribosyltransferases. Tetrahedron 2017, 73 (6), 692–702. 

https://doi.org/10.1016/j.tet.2016.12.046. 

 

 

 

 



82 

 

Table of Contents graphic  


