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Abstract. New autonomous robotic platforms for observ-
ing the ocean, i.e. Biogeochemical-Argo (BGC-Argo) floats,
have drastically increased the number of vertical profiles of
irradiance, photosynthetically available radiation (PAR), and
algal chlorophyll concentrations around the globe indepen-
dent of the season. Such data may therefore be a fruitful
resource to improve performances of numerical models for
marine biogeochemistry. Here we present a work that inte-
grates 1314 vertical profiles of PAR acquired by 31 BGC-
Argo floats operated in the Mediterranean Sea between 2012
and 2016 into a one-dimensional model to simulate the ver-
tical and temporal variability of algal chlorophyll concen-
trations. The model was initially forced with PAR measure-
ments to assess its skill when using quality-controlled light
profiles, and subsequently with a number of alternative bio-
optical models to analyse the model capability when light
observations are not available. Model outputs were evaluated
against co-located chlorophyll profiles measured by BGC-
Argo floats. Results highlight that the data-driven model is
able to reproduce the spatial and temporal variability of deep
chlorophyll maxima depth observed at a number of Mediter-
ranean sites well. Further, we illustrate the key role of PAR
and vertical mixing in shaping the vertical dynamics of pri-
mary producers in the Mediterranean Sea. The comparison of
alternative bio-optical models identifies the best simple one
to be used, and suggests that model simulations benefit from
considering the diel cycle.

1 Introduction

In most biogeochemical models the description of optics is
generally (over)simplified. The integration of more complex
optical models, where inherent and apparent optical proper-
ties (IOPs and AOPs respectively) are already included as
model state variables (Fujii et al., 2007), therefore constitutes
one of the necessary improvements. The research community
is emphasizing the importance of merging different methods
in order to improve the skill of numerical models, such as the
assimilation of remote-sensing data or the use of in situ data
for both initialization and validation purposes. Until recently,
the use of the latter was especially critical due the scarcity of
observations; however the emergence of autonomous robotic
platforms such Biogeochemical-Argo floats (hereafter BGC-
Argo) helped reduce the gap in bio-optical measurements ac-
quired around the globe, regardless of the season.

The introduction of BGC-Argo floats has led to a dras-
tic increase in the number of radiometric measurements in
the Mediterranean Sea, such as downward planar irradiance
and photosynthetically available radiation (PAR), for which
specifically developed quality control procedures and refined
sensor calibration (Organelli et al., 2016a, 2017a) have made
their use widespread (Organelli et al., 2017b; Wojtasiewicz
et al., 2018; Gerbi et al., 2016; Leymarie et al., 2018). BGC-
Argo can therefore be an important source of high vertical
spatial and temporal resolution data that can be integrated in
the calibration and tuning of bio-optical numerical models
for understanding marine biogeochemistry processes.
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No studies have so far tried to assimilate radiometric quan-
tities into numerical models to improve the simulation of
chlorophyll dynamics in the Mediterranean Sea and to in-
vestigate the causes of the vertical, spatial, and temporal
variability of zonal gradients. Assimilating radiometric data
could prove to be more robust than chlorophyll assimilation
as a result of a more accurate uncertainty characterization of
optical measurements (Dowd et al., 2014; Organelli et al.,
2016a) compared to other biogeochemical variables, such as
fluorescence-derived chlorophyll.

Specific studies are required to demonstrate to what extent
the assimilation of radiometric data can improve the model
skill in simulating key biogeochemical variables (e.g. chloro-
phyll, nutrients, primary productivity). In this paper we de-
velop a one-dimensional (1-D) model that assimilates PAR
profiles acquired by BGC-Argo floats in order to replicate
the vertical and temporal dynamics of phytoplankton chloro-
phyll concentrations. As a first modelling attempt, the ex-
ploration is carried out with a “voxel” approach, where light
and mixing conditions were replicated from data available
from floats. We analyse and validate model performances
through a comparison of model outputs with the high number
of co-located vertical profiles of chlorophyll concentrations
(derived from fluorescence) measured by BGC-Argo floats.
In particular, such analysis allows us to study some of the
drivers modulating the deep chlorophyll maximum (DCM)
depth in stratified conditions. Subsequently, we test different
mixing and bio-optical models that simulate downward irra-
diance and evaluate their skills in order to estimate how well
they perform compared to in situ measurements of PAR. The
paper is organized as follows: in the Methods section, the
Mediterranean Sea BGC-Argo float network and the model
configurations are presented. In the Results and discussion
section, we analyse the 1-D biogeochemical simulations and
their sensitivity according to the objectives of the work. Gen-
eral remarks are illustrated in the Conclusions section.

2 Methods
2.1 BGC-Argo float data

The Mediterranean Sea BGC-Argo array operating in the pe-
riod 2012-2016 (Fig. 1) was composed of 31 floats that ac-
quired 1314 vertical profiles of temperature (7)) and salin-
ity (), chlorophyll a concentration (Chl, mgm™3), derived
from fluorescence measurements between 0 and 1000 m (see
Organelli et al., 2017b; Roesler et al., 2017), and radio-
metric quantities, such as downward planar irradiance (Ejq,
W cm—2 nm_l), at three different wavelengths (A = 380,
412, and 490 nm) and photosynthetically available radiation
(PAR, umol photonsm~2s~!) integrated between 400 and
700nm (Kirk, 1994). Radiometric measurements were ob-
tained in the upper 250 m, with vertical resolution of 1m
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Figure 1. Spatial distribution of BGC-Argo float profiles superim-
posed on subbasin division used in the Mediterranean Copernicus
Marine Environment Monitoring Service (CMEMS) system.

between 10 and 250 m and 0.20 m between 0 and 10m. All
profiles were acquired around local noon.

The quality control (QC) procedure of radiometric profiles
was specifically designed to identify and remove the dark sig-
nal, atmospheric clouds, and wave focusing at the surface
(Organelli et al., 2016a). Note that the operational definition
of PAR used by the BGC-Argo community takes into consid-
eration the planar irradiance Eq4 rather than the scalar one E,,
therefore differing from its theoretical definition and leading
to an underestimation of E, values by 30 % or more (Mobley
et al., 2010). The scalar values of PAR were thus derived ac-
cording to Baird et al. (2016), although the correction related
to the irradiance scattering was neglected due to the lack of
information on IOPs (see Sect. S1 in the Supplement).

Vertical profiles of Chl concentration were quality-
controlled according to the procedure of the international
BGC-Argo programme that removes spikes and corrects for
non-zero deep values and non-photochemical quenching at
the surface (Schmechtig et al., 2016; Organelli et al., 2017b).
Due to a factory calibration bias for WET Labs ECO se-
ries Chl fluorometers, Chl concentrations were corrected by
a factor of 0.5 (Roesler et al., 2017; Organelli et al., 2017a,
b; Barbieux et al., 2018).

All the data used in this study are freely available and com-
piled into the database published by Organelli et al. (2017b).
Seven variables (T, S, Chl, Eq(380), Eq(412), E4(490),
PAR) were vertically interpolated to a resolution of 1 m in the
upper 400 m. Finally, we partitioned the profiles geograph-
ically into 13 (out of 16) subbasins (Fig. 1), with the ma-
jority of profiles located in the northwestern Mediterranean
(NWM, 332 profiles), followed by northern Ionian (ION3,
172 profiles) and southern Tyrrhenian (TYR2, 162 profiles)
seas. No data were available for the southwestern Ionian
(ION1) and the eastern Levantine (LEV4) seas and only one
profile was present in the northern Adriatic Sea (ADRI1), as
well as in the western Levantine Sea (LEV1). The WMO
code specification for each BGC-Argo float (along with their
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operational periods) is provided in the Sect. S2 in the Sup-
plement.

2.2 1-D biogeochemical model

Biogeochemical processes have been simulated according to
the voxel approach (“volume element with biological con-
tent and processes”; Kohlmeier and Ebenhoh, 2009), dis-
cretized along the vertical direction in order to resolve verti-
cal irradiance attenuation and nutrient gradients. Each voxel
replicated light and mixing conditions according to the tra-
jectory and measurements of the corresponding BGC-Argo
float, thus simulating a pseudo-Lagrangian experiment. No
exchanges of mass between voxel and the surrounding field
have been considered, which implies smaller mass exchanges
due to horizontal diffusion and baroclinic components of
the (upper ocean) advection field compared to vertical pro-
cesses and biogeochemical dynamics. Conversely, a voxel
exchanges heat with the atmosphere and receives light in ac-
cordance with its moving position. Such an approach, similar
to the one adopted by Kohlmeier and Ebenhsh (2009), has
already been successfully applied by Mignot et al. (2018) in
order to analyse BGC-Argo floats in the North Atlantic.

Furthermore, it is assumed that major biogeochemical
transformations can be described by the Biogeochemical
Flux Model (BFM) parametrizations, properly driven by a
bio-optical model, which has been validated by contrasting
model results and experimental data. The model is formu-
lated through a system of partial differential equations:

3Ci(z,1) = 3.[Dy(z,1)3.Ci (z,1)] + Vsink,; 9:Ci (2, 1)
+BFM;(T, S,PAR, C(z,1)), (1)

where C; is the ith biogeochemical tracer simulated (i = 1,
50), Dy is the vertical eddy diffusivity derived with the ver-
tical mixing model described in Sect. 2.2.1, vgink is the sink-
ing velocity, and BFM; is the reaction term corresponding
to the tracer C;. T, S, and PAR are the data measured by
BGC-Argo floats. Since the surfacing of BGC-Argo floats is
programmed at around local noon, the variability related to
diurnal variation in solar irradiance is taken into considera-
tion according to Kirk (1994).

The biogeochemical model BEM (Vichi et al., 2013) is a
biomass-based numerical model that simulates the biogeo-
chemical fluxes of carbon, phosphorus, nitrogen, silicon, and
oxygen, characterizing the lower trophic level (producers,
consumers, and recyclers) of the marine ecosystem. Its ap-
plication is based on the coupled transport—biogeochemical
model OGSTM-BFM (Lazzari et al., 2012; Lazzari et al.,
2016). It includes four phytoplankton functional types (di-
atoms, nanoflagellates, picophytoplankton, and dinoflagel-
lates), carnivorous and omnivorous mesozooplankton, bac-
teria, heterotrophic nanoflagellates, and microzooplankton.
Each variable is described in terms of internal carbon, phos-
phorus, and nitrogen concentrations. Particulate and dis-
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solved organic matter are also included, with the latter parti-
tioned in labile, semi-labile, and semi-refractory phases (for
parameters’ specifications see Sect. S3 in the Supplement).
The present study is focused mainly on Chl, reserving for fu-
ture analysis (according to data availability and optical model
complexity) a study of plankton functional type (PFT) re-
source competition dynamics (Ryabov and Blasius, 2011,
2014).

In particular, the Mediterranean Sea Monitoring and Fore-
casting Centre (Med-MFC) has operatively produced anal-
yses, forecasts, and reanalyses of a series of biogeochemi-
cal state variables (e.g. Chl, nutrients, pCO») for Copernicus
Marine Environment Monitoring Services (CMEMS) since
2015 using the MedBFM model (Lazzari et al., 2010; Laz-
zari et al., 2012; Lazzari et al., 2016), which embeds the
OGSTM-BFM and assimilates surface Chl from satellite ob-
servations (Teruzzi et al., 2014, 2018).

We tested a total of 17 classes of simulations (summarized
in Tables 1 and 2).

— In the first set of simulations, the biogeochemical model
was forced with PAR from BGC-Argo floats. Exper-
imental values of temperature and density (computed
from float profiles) were also taken into consideration.
A simulation for each of the BGC-Argo float trajectories
was performed with this set-up, hereafter abbreviated as
REF.

— Four additional sets of simulations were performed on
the REF configuration by applying different values of
vertical eddy diffusivity coefficients (MLD1, MLD?2,
MLD3, and MLD4) in order to assess uncertainties due
to different vertical diffusion parametrizations.

— Six additional sets of simulations were performed by
forcing the biogeochemical model with PAR obtained
by alternative bio-optical parametrizations (OPTI,
OPT2a, b, ¢, d), one of which (OPT3) also considers the
current modelling approach used in the Med-MFC. In
this way, the possibility of using biogeochemical mod-
els in the absence of PAR measurements was assessed.

— A set of simulations was devoted to understanding the
impact of using a constant light approximation (CL1
and CL2 configurations) rather than following the di-
urnal light variation on Chl distribution.

— Furthermore, we evaluated the impact on light propaga-
tion due to coloured phytoplankton degradation prod-
ucts, i.e. coloured dissolved organic matter (CDOM)
(OPT4a, b, ¢, d and OPT5).

Initial conditions for all biogeochemical variables of BFM
are provided by the CMEMS reanalysis of Mediterranean
Sea biogeochemistry (period 1999-2015; Teruzzi et al.,
2014) produced by the MedBFM model system. The initial-
ization profiles for our 1-D configuration are extracted from

Biogeosciences, 16, 2527-2542, 2019
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Table 1. Model configurations considered in the present work. All simulations include diurnal variability except the two cases with continuous

light (CL1 and CL2), which use 24 h averaged irradiance values.

Simulation ~ Model description

REF PAR from BGC-Argo floats; DYk _ 1o—4 2 ¢—1
CL1 as REF with continuous daily light

CL2 as REF with continuous daily light and p2*k&d _ 106 2 s—1
MLDI as REF with DYAkeround _ 510=5 ;2 o1

MLD2 as REF with pYekeround _ =5 ;2 —1

MLD3 as REF with D2keround _ 5106 ;2 1

MLD4 as REF with p2ekeround _ 15-6 2 o1

OPT1 Riley: K4(PAR) = 0.04 + 0.054Chl% + 0.0088Chl

OPT2a

8535 K4(PAR) = aChl? + ¢

OPT2d

OPT3 K4(PAR) for the first optical depth zog = zeu/4.6

OPT4a as OPT2a + Chl degradation to CDOM — timescale 1d
OPT4b as OPT2a + Chl degradation to CDOM — timescale 1 week
OPT4c as OPT2a + Chl degradation to CDOM — timescale 1 month
OPT5 as OPT2a 4 CDOM following Dutkiewicz et al. (2015)

Table 2. Parameters derived for optical models using BGC-Argo float data. For each version of OPT2 the regression is performed in the
depth range indicated by zmax. Data points are averaged for layers of 15 m thickness.

Model Zmax R? a b c
OPT2a 150 0.53 0.075+0.0015 0.572+0.018 0.027 £0.001
OPT2b 75 0.61 0.064+0.0015 0.6154+0.021 0.040+£0.002
OPT2c 45 071 0.077£0.002 0.46940.021 0.034 £0.002
OPT2d 30 0.75 0.088+0.003 0.406£0.023 0.029 +0.003

the MedBFM model output array, taking the nearest model
point to the BGC-Argo position in time and space.

The simulations’ timescale corresponds to a typical BGC-
Argo time-series length during the period 2012-2016, i.e. 11
months on average, with a vertical resolution of 1 m. After
being initialized, the model evolves without further assimila-
tion of biogeochemical data from the 3-D configuration.

Vertical eddy diffusivity coefficient profiles Dy (z) are rep-
resented as Gaussian-shaped functions, thus allowing a grad-
ual increase in vertical mixing through the pycnocline. Ap-
proaches and impacts of using different parametrizations to
reconstruct mixing along the water column are shown and
discussed in Sect. 2.2.1.

2.2.1 Vertical mixing models

Vertical mixing is estimated from potential density (obtained
from temperature and salinity data from floats) along the wa-
ter column. Vertical eddy diffusivity coefficients (Dy) are de-
fined as Gaussian-shaped functions in the form of

2
—0.5( = :
D, = D\1>/ILD e ((U*MLD)) + D\t])ackground. )

Biogeosciences, 16, 2527-2542, 2019

o was identified after an initial tuning procedure and
equals 0.3 in all simulations. Values in the REF model are
equal to DMP = 1.0m?s~! and DSaCkgmund =10"*m?s~ .

The mixed-layer depth (MLD) was defined with the den-
sity criterion at the threshold value (de Boyer Montégut et al.,
2004; D’Ortenzio and Prieur, 2012):

Aps = |ps(10m) — py(z)| = 0.03kgm . 3)

MLD1, MLD2, MLD3, and MLD4,
values were perturbed by 2 orders of magnitude
(from 107 to 107*m?s~1) in order to estimate the impact
such variations have on modelled Chl profile shapes com-
pared to measured ones (see Table 1).

In simulations
background
Dy

2.2.2 Bio-optical models

Alternative parametrizations to measured PAR profiles were
used in models OPT1, OPT2abcd, OPT3, OPT4abc, and
OPTS. They differ in methods used to evaluate the diffuse
attenuation coefficient Kq(PAR), which is parametrized as a
function of Chl concentration rather than being directly cal-
culated from BGC-Argo irradiance data (see Tables 1 and 2).

www.biogeosciences.net/16/2527/2019/
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OPT]1 uses the relationship obtained by a statistical analy-
sis performed by Riley and Conover (1956); Riley (1975):

K4(PAR) = 0.04 -+ 0.0088 [Chl] + 0.054 [ChI]3 . 4)

In OPT2 models, statistical regressions were carried out be-
tween K4(PAR) and Chl measured by BGC-Argo floats at
four different depth ranges: 150, 75, 45 and 30 m (OPT2a to
OPT2d; see Table 2 for details):

K4(PAR) = a [Chl]’ +c. 5)

a and c represent regression coefficients and b the expo-
nent (values reported in Table 2). Confidence intervals were
calculated with a Student’s two-sided ¢ test, where the sig-
nificance level o was set equal to 0.05. Diffuse attenuation
coefficients K4q(PAR) were calculated for PAR measured by
BGC-Argo floats as the local slope of the natural logarithm
of downwelling irradiance for layers of 15 m thickness for
the euphotic depth range, which corresponds to an attenua-
tion of downward planar irradiance to 1 % of the subsurface
value (Kirk, 1994).

Albeit the regression in the upper 30 m of the water col-
umn showed the highest correlation, all four bio-optical mod-
els were considered and adopted in simulations OPT2a, b, c,
and d (Table 2).

In model OPT3, based on the BGC-Argo data set,
K4(PAR) is calculated for the first optical depth (Morel,
1988) and the layer of interest for satellite remote sensing
(Gordon and McCluney, 1975), and then adopted as a con-
stant parameter for the entire water column. Such a light ex-
tinction definition has also been used in the 3-D version of the
OGSTM-BFM model, which integrates K4(490) data from
satellite sensors as the external optical forcing in the expo-
nential formulation of downwelling irradiance (for more de-
tails see Lazzari et al., 2012, Sect. 2.2.3).

OPT4 and OPT5 models include CDOM dynamics, as in
the Mediterranean Sea the latter can absorb more than 50 %
of blue light (Organelli et al., 2014; Morel and Gentili, 2009),
thus significantly impacting its attenuation along the water
column. OPT4 assumes that CDOM is correlated to Chl pro-
duction (Organelli et al., 2014) and that the light attenuation
is therefore affected by a progressive accumulation of the lat-
ter (“dead” Chl, initialized at zero concentration). In OPT4,
accumulation is compensated for by a linear decay set at dif-
ferent e-folding characteristic times: 1d (OPT4a), 1 week
(OPT4b), and 1 month (OPT4c).

OPTS implemented a formulation of CDOM as described
in Dutkiewicz et al. (2015): a 2 % fraction of all dissolved
organic matter (DOM) fluxes is directed to CDOM, including
both temperature-related decay and a photodegradation term
based on PAR (Bissett et al., 1999). Given the mono-spectral
nature of the current description of light, the attenuation of
CDOM on PAR is computed by averaging the exponential
law of CDOM absorption (Bricaud et al., 1981) in the visible
range. Additional investigations are provided in Sect. 3.3 to
discuss CDOM dynamics along the water column.

www.biogeosciences.net/16/2527/2019/

2.3 Statistical analysis

According to the work’s objectives, four classes of simu-
lations were considered, which correspond to the follow-
ing subsections: the reference simulation, a subset with per-
turbed vertical mixing models, tests with different optical
configurations, and a last group of additional analyses in-
volving CDOM description and diurnal variability. Outputs
are validated qualitatively and quantitatively in terms of pro-
file shapes and the deep chlorophyll maximum (DCM) depth.
The DCM definition is based on the absolute maximum of
Chl, excluding results of DCM shallower than 40 m or deeper
than 200 m, as well as the ones with concentrations lower
than 0.1 mgm™3. All results, for both model and BGC-Argo
floats, are averaged on a weekly basis. Model outputs are
compared with a match-up shown as target and Taylor dia-
grams (Jolliff et al., 2009). The former evaluates results with
root-mean-square distance (RMSD) as the main statistical
parameter, which was calculated following Eq. (6):

1 2
RMSD=\/;2f=1(mi i), ©6)

where n is the number of data, m are the model values, and o
are the observables.

Due to the various sources of possible uncertainties in the
fluorescence-to-Chl conversion of BGC-Argo profiles, we
chose to focus our study on DCM depth rather than DCM
magnitude. This is additionally justified with the BFM sta-
tistical sensitivity analyses (see Sect. S4 in the Supplement),
which considered DCM width, DCM magnitude, and surface
Chl. Results indicate that DCM depth is the most effective
feature the model is able to reproduce.

3 Results and discussion
3.1 Reference simulation

The assimilation of PAR profiles helped to accurately esti-
mate the DCM depth (Fig. 2). Measured and modelled DCM
depth showed high correlation (r = 0.83, p value < 0.005).
Both model and measurements indicate that DCM depth
varies typically between 50 and 70 m in western areas (ALB,
SWMI1, SWM2, NWM, TYR) and is generally deeper in
eastern areas (ADR2, ION3, LEV2, LEV3), between 100 and
140 m. The model tends to slightly underestimate the DCM
depth variability (Fig. 2, regression slope =0.81 < 1): the
deepest simulated DCMs are around 125 m depth, whereas
data from floats reach 140 m (e.g. lovbioO18c).

Chl patterns display high variability at both temporal and
vertical scales (Figs. 3 to 6). The subsurface Chl pattern is
formed by patchy structures and it is generally deepening
eastward during stratification periods (Fig. 6). BGC-Argo
observations indicate that DCM is further eroded by vertical
mixing occurring predominantly in autumn and early win-
ter. At the ocean surface, the increase in Chl is triggered by

Biogeosciences, 16, 2527-2542, 2019
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Figure 2. Match-up diagram comparing DCM depth obtained from
BGC-Argo float data versus REF model results. Each dot corre-
sponds to a weekly profile. The red line depicts the linear regres-
sion between data and model values, defined by its slope and in-
tercept (Y-int) shown in the box. Units of RMSD, bias, and Y-
int are in metres. The correlation coefficient r is significant, with
p value < 0.005. The bottom sub-figure shows the residuals’ his-
togram.

rather shallow mixing (< 75 m). Simulations provide an ad-
equate reproduction of the Chl mixing timing and therefore
of the DCM erosion. By comparing Hovmoéller maps of all
31 floats (considering both depth and time variability) for
measured and simulated Chl, a significant average correla-
tion coefficient (r) of 0.75 is obtained: such a result quanti-
tatively confirms that the alternation of mixing and stratifica-
tion phases, as seen from BGC-Argo Chl measurements, is
well reproduced.

Simulated Chl also reproduces episodic signals, such as
Chl deepening due to specific mixing events. For example,
a mixing event in the NWM subbasin, reaching approxi-
mately 200 m depth during winter 2015, triggers an intrusion
of Chl (0.2mgm™3) in deeper layers consistent with BGC-
Argo float measurements (float lovbio067c, Fig. 3). Simi-
lar dynamics are reproduced in winter 2014 (Fig. 4) for the
lovbio035b float drifting from NWM toward the ALB sub-
basin.

Considering float trajectories, two kinds of situations are
possible: the BGC-Argo float trajectory is relatively station-
ary in the deployment area (Figs. 3, 5, and 6), or the float mi-
grates extensively by following a given water mass (Fig. 4).
Results confirm that in the second case, when lateral advec-
tion processes could play an important role in the float dy-
namics, the applied approach also allows an adequate repre-
sentation of measured Chl patterns. The present multi-float

Biogeosciences, 16, 2527-2542, 2019

simulation, however, does not include trajectories compris-
ing both west and east Mediterranean basins, where strong
gradients between deep water nutrient inventories could in-
validate the approach. In such cases, nudging or more sophis-
ticated techniques would be required (Kohlmeier and Eben-
hoh, 2009).

REEF results further demonstrate that irradiance along the
water column is the driving mechanism controlling DCM
depth in addition to mixing, which is proven by a signifi-
cant correlation between DCM and euphotic depths for both
measured and simulated Chl (Fig. 7a). Such findings were
already established in Mignot et al. (2014), indicating that
the DCM is located at a fixed PAR value, oscillating near the
5.8 umol photons m~2 s~ ! isolume (Fig. 7b, blue line). Data
and model outputs in the present study show a higher vari-
ability of critical PAR values in the case of shallower DCM
(Fig. 7b).

The Mediterranean Sea is a nutrient-limited basin (e.g.
Crispi et al., 2001; Lazzari et al., 2016; Powley et al., 2017);
therefore an insight into the role played by nutrients requires
further investigation. Phosphate dynamics show an increase
in surface Chl driven by nutrient uptake in upper layers due
to convective mixing (Figs. 3 to 6). During stratification pe-
riods, the phosphocline follows the euphotic layer threshold.
Results from the sensitivity analyses (Sect. S4 in the Sup-
plement) illustrate that the role of nutrients is significant in
regulating Chl concentration in DCM.

The REF simulation is forced by PAR measurements;
hence it is possible to evaluate the direct impact of nutrients’
vertical fluxes (Cullen, 2015) compared to light on DCM
properties. The effect of self-shading by Chl and CDOM can
increase the role of nutrients in terms of DCM depth mod-
ulation, which can be evaluated only by using bio-optical
models where attenuation is regulated by Chl or CDOM as
presented in Sect. 3.3.

3.2 Vertical mixing models

As shown in the previous section, the vertical distribution of
Chl displays a distinct variability, which can be at least par-
tially ascribed to mixing. Typically, higher vertical eddy dif-
fusivity values imply smoother structures. During the strati-

fication phase, when DCM forms, the controlling mixing pa-

rameter is the background diffusivity DEaCkgmund.

Simplified theoretical models, such as KiSS (Kierstead
and Slobodkin, 1953; Skellam, 1951), can provide rough
quantitative scales in order to determine the minimum ver-
tical length scales (Lg) that allow the formation of stable
biomass patches (Ryabov and Blasius, 2008), including the
DCM, in a steady-state hypothesis:
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where Dy is the vertical diffusivity coefficient and u is the
growth rate (in stratified conditions D, = DSaCkground). An
increase in background diffusion over a critical value will
produce a dispersal of patchy structures (i.e. a relative max-
imum of Chl concentration), whereas an increase in growth
rate 1 can drive the formation of finer-scale structures.

The dynamics presented in this study are, however, more
complex than KiSS, in terms of both BGC-Argo data and
the 1-D BFM model. Vertical eddy diffusivity can simultane-
ously affect nutrients, phytoplankton, and mesozooplankton
with intricate interactions, which in turn make it difficult to
derive analytical solutions. Moreover, unlike KiSS, both the
model and environment are hardly ever in a steady-state con-
dition, as a result of daily and seasonal oscillations in phys-
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ical forcings, which are essentially due to variability in diel
irradiance and vertical mixing.

Several simulations, labelled MLD1, MLD2, MLD3, and
MLD4, were carried out by changing the background vertical
eddy diffusivity coefficient values (DsaCkground) by 2 orders
of magnitude, i.e. from 1076 to 10~*m2s~! (Table 1). This
subset of simulations (with float-derived PAR) clusters at a
correlation of approximately 0.8 with RMSD of DCM depth
between 10 and 15 m, the same order of what was found by
Salon et al. (2019). Perturbing Dlvmkgmund over 2 orders of
magnitude (from REF to MLD4) shows that the impact on
DCM position is lower than 10m (Fig. 8b), with an uplift
of DCM depth with higher D2**¢™"™ (Cullen, 2015). The
direct impact of eddy diffusivity appears lower compared to
direct light modulation on DCM depth.

Biogeosciences, 16, 2527-2542, 2019
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3.3 Bio-optical models

The alternative bio-optical models (OPT1, OPT2, OPT3)
were slightly less accurate compared to REF, with correla-
tion decreasing from 0.8 to 0.6-0.5 (Fig. 8a). The OPT3 sim-
ulation showed a bias very close to zero, thus suggesting an
intermediate skill compared to assimilated PAR simulations
(e.g. REF) and the bio-optical models (OPT1 and OPT2).
OPT1 and OPT?2 cluster of simulations shows slightly lower
correlations and an increase in bias (almost zero for OPT1
and from 6 to —14 m for OPT2a to OPT2d) with a RMSD of
approximately 20 m in all cases.

Some of the bio-optical models considered, in particular
OPT1, OPT2a, and OPT2b, reproduce the DCM depth gradi-
ent between western and eastern subbasins with a tolerance
of £10m (Fig. 9). In previous studies (Crispi et al., 2002;
Lazzari et al., 2012), the correct simulation of the DCM
depth longitudinal gradient was obtained by forcing the sys-
tem with a space-time-dependent light attenuation parame-
ter based on Secchi disc climatology or on satellite K4(490)
data. Both empirical approaches prevent us from understand-
ing whether the origin of such gradients is directly related to

Biogeosciences, 16, 2527-2542, 2019

external forcings or if it can be interpreted as a self-emerging
property (i.e. related to the appearance of features which are
not directly and explicitly imposed from the choice of bound-
ary conditions or model parameters used in the numerical
experiment; de Mora et al., 2016). Results suggest that a gra-
dient in DCM depth could be partially reproduced and ex-
plained in terms of internal biogeochemical processes and
partially due to external forcings (i.e. downward irradiance
and nutrient initial conditions), even without considering lat-
eral dynamics (Fig. 9a, b).

A direct analysis of the impact of alternative bio-optical
models on light attenuation (Fig. 9¢) indicates that the sim-
ulated eastern basin waters present generally lower Kq val-
ues (and lower dispersion around the median) for REF and
OPT3. In other cases, where self shading is included, the
variability is driven by Chl (from OPT1 to OPT4c) or by Chl
and CDOM (OPT5), as bio-optical model parameters do not
depend on space and time explicitly. West—east gradients are
higher for maximum light attenuation along the water col-
umn (cross mark, Fig. 9c) where Chl concentration is higher.
For OPT3, the average and maximum K4 overlap since Ky is
parametrized as constant along the water column.
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Figure 5. As Fig. 3 but for BGC-Argo float lovbio016c (WMO code 6901510).

The average surface PAR of the data set considered is
higher in eastern areas, especially during the months of Jan-
uary (40 %), September (15 %), October (22 %), November
(36 %), and December (16 %), probably due to clearer atmo-
spheric conditions (image not shown). During summer, when
DCM stabilizes, the west—east differences in measured sur-
face PAR are lower and oscillate around 10 %; however they
still contribute to increasing irradiance penetration at deeper
layers.

The western and eastern subbasins are also different in
terms of nutrient regimes that in turn impact biogeochemical
dynamics and the DCM depth gradient in non-trivial ways.
The role of nutrients can be evaluated by perturbing initial
conditions for the trajectories starting in the western sub-
basin (see Sect. S4 in the Supplement). Results indicate that
increased nutrients in the western subbasin cause an ampli-
fication of the west—east light attenuation gradients (Fig. 9d)
due to the increase in Chl.

The emerging conceptual scheme is that the first-order
controlling mechanism for DCM depth is related to light
propagation along the water column, as shown in REF and
OPT3 simulations. Other tests indicate that nutrients modu-
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late Kq consistently with gradients simulated in REF. The
decadal temporal scale of subsurface nutrient variability
(Crispi et al., 2001) controlling self-shading mechanisms is
longer than that of simulations, suggesting that the role of
nutrients in DCM positioning is especially regulated through
initial conditions chosen for the present simulations.

Another key factor pertains to shorter wavelengths (400—
450nm) in the visible part of the spectrum: when light
penetrates deeper along the water column, compounds like
CDOM are more effective in absorbing light and might in
turn enhance spatial gradients in irradiance regimes, which
could synergistically contribute to a deeper DCM in east-
ern subbasins. However, with a current mono-spectral for-
mulation, such aspects still cannot be addressed. Multispec-
tral configurations linked with specific PFT and CDOM ab-
sorption terms are thus needed for future in-depth studies of
the questions raised in the present work (Dutkiewicz et al.,
2015).

3.4 Daily variable versus constant PAR forcings

The use of daily averaged irradiance (i.e. with continuous
light, CL1, and CL2) was compared against REF that in-

Biogeosciences, 16, 2527-2542, 2019



2536 E. Terzic et al.: Merging BGC-Argo bio-optical data with models

PAR Vert. eddy diff.
[umolphotons m=2 s71] [m? s71]
(a) (b) (c)
lovbio066d
s 7 Init: 20140804
s 0 s ot End: 20150520
'E 75 754
EQ- 100 100 1 102
10!
& 125 125 -
150 150 4 1073
175 o0 1757
107*
o o ) o o y
\?.?'\) ‘\D{O'?z . e’o ‘»Nv_\) ‘\D“oe . §\'o
) S g - ) &
BGC-Argo-float Chl-tot model (0.69) PO, model
[mgChia m~] [mgChla m~3] [mmolP m~3]
0.7
0.6 0.12
05 0.10
E 0.4 0.08
<
=
% 03 0.06
a
0.2 0.04
01 0.02
0.0
ke 3 - ho i -
,\P\? ’]’6\& ’P{; ’l’b,\u q?xk ’]9{'3
Figure 6. As Fig. 3 but for BGC-Argo float lovbio066d (WMO code 6901655).
® Model # BGC-float & Model & BGC-float
RMS =9.33 a ' b
140 1
Bias= - 6.28 ( ) = ( )
r=0.91 -
120 Slope =0.67 | w a0
¥ —int=32.77 I o
N=1038 g
— : .
E_ 100 ‘g
§ :
804 RMS =11.46 £
: Bias = -7.32 =
r=0.86 g
60 Slop-e =0.61 a
§ Y =int=38.00
N=1038
40 60 80 100 120 140 40 60 80 100 120 140
Zpem [m] Zpcu [m]

Figure 7. (a) DCM depth (zpcm, x axis) compared to the euphotic depth (zeu, ¥ axis) for both modelled (red dot) and measured results
(black dot). Red box (top left) reports statistics for model zpcy versus zeu, Whereas the black box (bottom right) shows statistics for zpcm
derived from Chl data versus zey. (b) Irradiance values (y axis) at DCM depth (x axis) for both modelled (red dot) and measured results
(black dot). Horizontal blue line marks the 5.8 irradiance threshold (units pmol photons m—2 s_l) as identified in Mignot et al. (2014).

Biogeosciences, 16, 2527-2542, 2019 www.biogeosciences.net/16/2527/2019/



E. Terzic¢ et al.: Merging BGC-Argo bio-optical data with models 2537

ien Coe

bet® 05010 0% cre,
ot 50, .
(a) s 030200 20203t

0.9 )

099

-1
30.0

Standard deviation

Bias
60.0 -----_ .

+ ref 0 ke '\\
& o 40.0 .. (b)
X o2 h R

mido1 \ \
§ mido2 20.0 '

mido3 \ \
¥ midoa \ y
O optol go 4 1
Q opto2a Oo.] |:- ] URMSD
% optozb 200 400 60.0
4+ opto2c + ’f !
Q optoz2d e} 7 !
X opto3 -20.0 —

opt04a o S /
§ opt04b /

opt04c ?,«"
¥V optos 400 ==

A
60.0 """

Figure 8. (a) Taylor diagram showing model skill in reproducing DCM depth compared to data. Correlation is represented by the angle
with a positive x axis, whereas distances from the origin depict standard deviations. Green circles illustrate iso-contours of RMSD levels; all
units are in metres. (b) Target diagram showing model skill in reproducing DCM depth compared to data. Distance to the origin defines the
RMSD; all units are in metres. The position on the x axis is positive if the model standard deviation is higher than the one from data results
and negative in the opposite situation. For the sake of completeness, all models considered are reported in these summarizing skill diagrams.

cludes the diurnal variability. A consistent reduction of sur-
face Chl concentrations was observed in the former case
(Fig. 10), with a correlation lower than REF, affecting (in
relative terms) the values around DCM much less (Fig. 11).

Near the surface, phytoplankton is limited by low nutrients
(especially in eastern subbasins), whereas closer to DCM the
trophic limitation is weaker, sometimes nonexistent (Behren-
feld and Boss, 2003; Behrenfeld et al., 2004). One possible
explanation could be that light limitation at the DCM at low
irradiance values is almost linear; thus the PAR daily av-
eraging effects have a larger impact at the surface, where
light limitation is highly non-linear due to saturation. Fur-
thermore, the BFM formulation for Chl acclimation (Gei-
der et al., 1998) in the case of diurnal variability gener-
ates an increase in Chl-to-carbon (Chl : C) ratio. This could
in turn have important consequences in operational applica-
tions, where data assimilation is employed for model skill
improvement: at the surface, the adoption of a diurnal cycle
formulation could reduce corrections made by the assimila-
tion scheme and therefore minimize possible spurious trends
introduced by it (Gehlen et al., 2015).

Combining daily-averaged irradiances with the lowest dif-
fusivity rates (DSaCkgmumjl =10"°m?s~!, simulation CL2)
results in additional relative Chl maxima at surface layers
(Fig. 11, panel “T =33 weeks”), as well as in increased
patchiness of the whole vertical profile. Similar Chl profiles
with multiple subsurface maxima were identified in a com-
prehensive fluorescence data analysis in the Mediterranean
Sea (Lavigne et al., 2015). Theoretical considerations pre-
dict different maxima along the water column based on the
Tilman resource competition theory applied to a heteroge-
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neous system (Ryabov and Blasius, 2011). At this stage,
however, it is difficult to assess whether the patchy structures
observed in data and model are, for various reasons, realis-
tic or artefactual. Nonetheless, it can be ascertained that the
background diffusion needed to maintain such structures in
model simulations is very low. As a result, within the frame-
work of currently used mathematical formulations in the 1-
D BFM model, the inclusion of diurnal variability tends to
reduce the formation of fine-scaled structures that could be
interpreted in terms of a reduction in diel growth (1) or seen
as a possible perturbation that has an equivalent effect of an
increased diffusion.

3.5 Bio-optical models with CDOM formulation

OPT4 and OPTS5 simulations take into consideration CDOM
dynamics by including an additional term in OPT2a, where
light attenuation by PAR was described only in terms of
Chl. In OPT4a, b, and ¢, CDOM is parametrized as dead
Chl by changing only the rate of Chl decay from 1d to
1 month. Such a simplified dynamics description derives
from the high correlation observed between Chl and CDOM
in Morel and Maritorena (2001). However, no analysis was
carried out within the present data set to corroborate findings
from Morel and Maritorena (2001) due to a lack of infor-
mation on CDOM fluorescence. In all three model configu-
rations, the dead Chl accumulation results in higher turbid-
ity levels that in turn reduce light penetration depths. This is
quantified by significantly negative DCM biases (over 40 m
in OPTO04c), which result in shallower DCM compared to
BGC-Argo-derived profiles since the attenuation of Chl is
overestimated even when considering the fastest degradation

Biogeosciences, 16, 2527-2542, 2019
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rates (Fig. 8). The experiment OPTS mimics the CDOM dy-
namics described in Dutkiewicz et al. (2015) where a lower
bias is observed compared to the (over)simplified OPT4 tests
(where correlation coefficients range from 0.6 to less than
0.1 for OPT4a to OPT4c respectively). OPTS5 still results in
a negative bias of around 10 m compared to the values from
—25 to —40m for OPT4a to OPT4c. The model, regardless
of initial conditions, correctly drives CDOM absorption co-
efficients in deeper layers to low values, while an enhanced
surface production reinforces mineralization and bleaching
(Fig. 12). Results of CDOM variability from the BOUS-
SOLE site (northwest Mediterranean; Antoine et al., 2008)
show that CDOM absorption ranges to a maximum value
of 0.07m™! and indicate that there is a temporal delay be-
tween phytoplankton bloom and a maximum in CDOM ab-
sorption (Fig. 3 in Organelli et al., 2014), whereas deeper
layers (below 100 m) have generally lower CDOM absorp-
tion. The data set shown in Organelli et al. (2014) evidences
that cycles of CDOM accumulation are followed by deple-
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Figure 11. Example of a 6-week time series of vertical profiles
from the lovbio035b BGC-Argo float (Fig. 4, from week 28 to
week 33) based on diel variability and constant daily light descrip-
tions, compared to BGC-Argo float Chl values (thicker blue line).
The horizontal dashed blue line represents the euphotic depth zey,
whereas the dashed black line indicates the depth where measured
PAR equals 5.8 pmol photons m~2s~! as identified in Mignot et al.
(2014). The legend reports model configurations listed in Table 1.

tion in the upper 10 m due to photodegradation in summer.
In the model results presented here, bleaching has a deeper
effect over the entire CDOM “productive” layer (see red and
blue lines, Fig. 12), while the subsurface CDOM maximum is
not reproduced. The lack of CDOM accumulation in deeper
layers for the OPTS5 configuration hinders a proper analy-
sis of mechanisms related to the emergence of CDOM from
subsurface dark layers. Improving model dynamics calibra-
tions could possibly be achieved by utilizing information on
CDOM light absorption from BGC-Argo float measurements
(Xing et al., 2012; Organelli et al., 2017b).

4 Conclusions

The coupled modelling—experimental approach presented
here provides a robust and accurate reproduction of the DCM
depth variability across the Mediterranean Sea. Such a com-
bined configuration of this kind can integrate multi-data mea-
surements provided by BGC-Argo floats in a single frame-
work. DCM is a ubiquitous feature of the Chl vertical struc-
ture in the Mediterranean, and different forcing conditions
generate geographical gradients in DCM characteristics (i.e.
shallower DCM in western regions, deepening eastwards).
Second-order features, such as impulsive vertical spikes or
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specific patterns observed in BGC-Argo profiles, are also
qualitatively reproduced. Results for the reference simula-
tion, where measured PAR is adopted, are summarized as
follows:

— mixing and irradiance propagation control Chl dynam-
ics,

— DCM position is mostly controlled by PAR,
— nutrients control the amount of biomass at DCM.

It was demonstrated that vertical processes considered in the
1-D model, such as irradiance regimes and vertical mixing,
allow us to properly reconstruct a large part of Chl dynamics,
which was also quantified by skill diagrams. Moreover, the
role of nutrients in modulating self-shading (as inferred with
bio-optical alternative experiments) appears relevant to shape
west—east heterogeneity of vertical light attenuation.

The emerging conceptual scheme is that DCM gradients
are directly controlled by irradiance modulation, in turn con-
trolled through bio-optical processes which change atten-
uation according to optically active substances (e.g. Chl,
CDOM). Nutrients can impact attenuation by regulating Chl
concentrations. The timescale of the subsurface nutrient in-
ventory variability is longer than the ones considered in the
present simulations; therefore initial conditions have an im-
pact on west—east gradients.
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Such data-rich experiments, combined with a 1-D nu-
merical model, could also be considered a useful tool for
a broader community, rather than only for biogeochemical
modellers, in particular to address process studies.

The presented approach might also be strategical to quan-
tify the amount of measured signal related to vertical dynam-
ics and the one derived from other processes, like horizontal
advection and subduction of water masses. The usage of PAR
measured from BGC-Argo floats (used in REF, CL1, CL2,
MLDI, MLD2, MLD3, and MLD4) provides higher correla-
tions compared to configurations with alternative bio-optical
models (used in OPT1, OPT2, OPT3, OPT4, and OPTS5). The
comparison of different bio-optical models indicates that,
when lacking direct measurements of PAR in subsurface lay-
ers, the most fitting alternatives would be OPT3, OPT2a, and
OPT]1, resulting in lower bias and higher correlation coeffi-
cients (between 0.5 and 0.7), as well as lower RMSD values
compared to REF. Our analysis can also help determine how
the use of light fully integrated in the visible range of the
spectrum (400 to 700 nm, REF) improves predictions when
compared to simplified approaches (i.e. all the OPT simula-
tions here considered).

Moreover, we show that on the timescales here considered
(months), vertical processes are more relevant than horizon-
tal ones, and the parametrizations used in the biogeochemi-
cal model are adequate to describe the main processes taking
place on these scales.

Results also highlight the strategic relevance of BGC-Argo
data: temperature, salinity, and radiometric parameters en-
capsulate fundamental information for the reconstruction of
primary producer dynamics and are paramount to investi-
gate hypotheses concerning DCM formation. CDOM fluo-
rescence data measured by BGC-Argo floats could be inte-
grated in simulations to further infer and reconstruct the ob-
served biogeochemical processes.

Considering a general 3-D biogeochemical model, it is not
possible to have a full data coverage of the in-water PAR
field without a fully coupled radiative transfer model. The
proposed approach could thus be exported and generalized at
a global scale.

Code and data availability. The BFM biogeochemical model and
its documentation can be downloaded at the following address:
http://bfm-community.eu/ (last access: 22 April 2019). The quality-
controlled databases used in the present paper are publicly avail-
able from the SEANOE (SEA scieNtific Open data Edition) pub-
lisher at https://doi.org/10.17882/49388 (Barbieux et al., 2017) and
https://doi.org/10.17882/47142 (Organelli et al., 2016b) for vertical
profiles and products within the first optical depth respectively.
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