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ABSTRACT

Context. Type Ia supernovae (SNe Ia) are widely used to measure the expansion of the Universe. Improving distance measurements
of SNe Ia is one technique to better constrain the acceleration of expansion and determine its physical nature.
Aims. This document develops a new SNe Ia spectral energy distribution (SED) model, called the SUpernova Generator And Recon-
structor (SUGAR), which improves the spectral description of SNe Ia, and consequently could improve the distance measurements.
Methods. This model was constructed from SNe Ia spectral properties and spectrophotometric data from the Nearby Supernova Fac-
tory collaboration. In a first step, a principal component analysis-like method was used on spectral features measured at maximum
light, which allowed us to extract the intrinsic properties of SNe Ia. Next, the intrinsic properties were used to extract the average
extinction curve. Third, an interpolation using Gaussian processes facilitated using data taken at different epochs during the lifetime
of an SN Ia and then projecting the data on a fixed time grid. Finally, the three steps were combined to build the SED model as a
function of time and wavelength. This is the SUGAR model.
Results. The main advancement in SUGAR is the addition of two additional parameters to characterize SNe Ia variability. The first
is tied to the properties of SNe Ia ejecta velocity and the second correlates with their calcium lines. The addition of these parameters,
as well as the high quality of the Nearby Supernova Factory data, makes SUGAR an accurate and efficient model for describing the
spectra of normal SNe Ia as they brighten and fade.
Conclusions. The performance of this model makes it an excellent SED model for experiments like the Zwicky Transient Facility,
the Large Synoptic Survey Telescope, or the Wide Field Infrared Survey Telescope.

Key words. supernovae: general – cosmology: observations
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1. Introduction

Type Ia supernovae (SNe Ia) are excellent cosmological probes:
they are very luminous objects that are visible up to a red-
shift of z ∼ 2 (Guillochon et al. 2017), and their luminos-
ity dispersion is naturally low and can be further reduced
by an appropriate standardization process. As precise dis-
tance indicators, comparing their luminosity and their redshift
allowed Perlmutter & Aldering (1998), Perlmutter et al. (1999),
Riess et al. (1998), and Schmidt et al. (1998) to demonstrate that
the expansion of the Universe is accelerating; a feature that
gave rise to the dark energy paradigm. This result, obtained
with a small sample of SNe Ia, has since been repeatedly
confirmed with larger samples (Astier et al. 2006; Guy et al.
2010; Suzuki et al. 2012; Rest et al. 2014; Betoule et al. 2014;
Scolnic et al. 2018), and in combination with other cosmologi-
cal probes like the cosmological microwave background (CMB;
Planck Collaboration XIII 2016), baryon acoustic oscillations
(BAO; Delubac et al. 2015), and cosmic shear (Troxel et al.
2018) led to the so-called concordance model, the flat-Λ cold
dark matter model.

Improving our description of SNe Ia as a cosmological
probe is needed, not only to discriminate among alternate dark
energy models (Copeland et al. 2006), but also in order to
address existing tensions, such as the 3.4σ difference between
the values of the Hubble constant H0 from the local measure-
ment by Riess et al. (2016) and the cosmological fit from the
Planck Collaboration XIII (2016). The current uncertainty budget
due to limited SN Ia statistics will be greatly improved by current
surveys like the Zwicky Transient Facility (ZTF; Bellm 2014) or
next generation surveys like the Large Synoptic Survey Telescope
(LSST) or the Wide Field Infrared Survey Telescope (WFIRST)
(LSST Dark Energy Science Collaboration 2012; Spergel et al.
2015). Since, systematic and statistical uncertainties are already
of the same order of magnitude (Betoule et al. 2014; Scolnic et al.
2018), a better understanding of systematics will be needed to
improve the accuracy of SNe Ia as a cosmology probe.

Part of the systematic uncertainty comes from the standard-
ization process; the observed flux of the SN Ia has to be cor-
rected for variations observed from one object to another. Two
main contributions to this variation have been observed. The
first one, seen by Rust (1974) and Pskovskii (1977, 1984),
is the correlation between the peak luminosity of a SNe Ia
and the light curve decrease time, the so-called brighter-slower
effect. Various parametrizations have been proposed for this
effect, the most commonly used being ∆m15 (Phillips 1993),
stretch (Perlmutter et al. 1997), or X1 (Guy et al. 2007). The
second contribution, observed first by Hamuy et al. (1995) and
Riess et al. (1996), is that the peak luminosity depends on color,
the so-called brighter-bluer effect. This effect can be explained
by the presence of dust in varying quantities along the line of
sight that is possibly combined with an intrinsic color-brightness
correlation after the stretch effect has been taken into account.
Most standardization techniques in photometry thus rely on a
stretch and color relation known as the Tripp (1998) relation.
The SALT2 model (Guy et al. 2007) is one such standardization
method, and has over the years become the reference in cos-
mological analysis. Despite many attempts, no consensus has
yet emerged on how to go beyond a two-component model to
describe SNe Ia light curves. However, the observation of a step
in the standardized luminosity with respect to the host mass by
Kelly et al. (2010) and Sullivan et al. (2010) has led to the inclu-
sion of a corrective term in the subsequent cosmological anal-

ysis. This corrective term linked to the environment hints that
more fundamental properties of SNe Ia physics are not captured
by the stretch-color standardization scheme, and that there is
room for improvement.

However, the most obvious indication that the parameteriza-
tion used is insufficient comes from the observation of a residual
dispersion of SNe Ia luminosity around the Hubble diagram after
standardization. In order to obtain statistically coherent results,
Perlmutter et al. (1999) and Astier et al. (2006) introduced an
intrinsic dispersion in luminosity as an additional uncertainty
in the fit. Betoule et al. (2014) estimate the dispersion value at
0.11 mag using a SALT2 standardization, for an observed total
dispersion of 0.16 mag. Since the intrinsic dispersion is due to
unmodeled SN Ia variations that may depend on the redshift, this
may result in a significant error on the extraction of cosmological
parameters (Rigault et al. 2018). The precision of SNe Ia as cos-
mological probes therefore depends on this intrinsic dispersion
in luminosity. However, the intrinsic dispersion strongly depends
on the assumptions about measurement uncertainties. A way to
characterize the overall accuracy obtained by a given standard-
ization method is to use the weighted root mean square (wRMS)
metric on the standardized magnitude (e.g., Blondin et al. 2011).
Thus, in order to reduce the effects of unmodeled variations of
SNe Ia, an improved standardization procedure must also involve
reducing the wRMS.

Most efforts to improve the standardization of SNe Ia involve
the search for a new parameter correlated with the intrinsic
luminosity. After the discovery of the mass-step, many efforts
focused on describing the environmental effects of the SNe Ia
(Kelly et al. 2010; Sullivan et al. 2010; Rigault et al. 2013, 2015,
2018; Roman et al. 2018). A complementary approach consists
of directly looking for this new parameter from the analysis of
the light curves or observed spectra. For example, Mandel et al.
(2017) proposed that the color of SNe Ia is a mixture of intrin-
sic color and extinction by dust, and proposed a Bayesian model
to separate these two components. For their part, Chotard et al.
(2011) showed that once the Ca ii H&K variability is taken into
account, the color law is compatible with a Cardelli et al. (1989)
extinction curve. Moreover, Mandel et al. (2014) highlighted the
dependence of the extinction curve on the minima of P Cygni
profiles. Thus the use of additional variables related to spectral
indicators seems to be a promising avenue to describe the vari-
ability of SNe Ia.

The use of spectral indicators to standardize SNe Ia has
a long history (Nugent et al. 1995; Arsenijevic et al. 2008;
Bailey et al. 2009; Wang et al. 2009; Foley & Kasen 2011;
Chotard et al. 2011). As example, using only the flux ratio
R642/443, Bailey et al. (2009) is able to get a significatively bet-
ter standardization in B-band in comparison to the classical
Tripp (1998) relation. The method of using spectral informa-
tion is also suggested by the analysis of Fakhouri et al. (2015),
which shows that the best method to measure distance with
SNe Ia is with spectroscopic twins SNe Ia. Another recent
study by Nordin et al. (2018) has shown that the use of spec-
tral information from the UV part of the spectra improves
distance measurement compared to the Tripp (1998) relation.
However, those methods do not currently lead to a spectral
energy distribution (SED) model, which is necessary for cos-
mological analyses on purely photometric data, such as LSST
(LSST Dark Energy Science Collaboration 2012). Thus we pro-
pose here a full SED model which will be based on spectral
indicators generalizing the procedure originally developed in
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Chotard et al. (2011). This method uses spectral features, which
allows for the addition of more than one intrinsic parameter and
they offer a possible way to separate intrinsic properties from
extrinsic properties. From it, we build a full SED model which
may be used for purely photometric surveys.

The aim of this study is to revisit the parametrization of
SNe Ia SED in light of the SNfactory spectrophotometric dataset
(Aldering et al. 2002), and to seek new sources of variability by
statistical analysis. Our model is trained using spectral indica-
tors, derived around maximum light in B-band, as features to
describe the model. They provide both a reduced dimensionality
description of spectra, and a description which is linked to the
physics of the explosion. In addition, we select indicators insen-
sitive to reddening in order to decouple the characterization of
the reddening from effects purely linked to the intrinsic part of
the explosion. This new SNe Ia SED model is named the SUper-
nova Generator And Reconstructor (SUGAR) model.

Another approach to develop a new SED model was under-
taken in parallel by Saunders et al. (2018), using the same
dataset and based on a “SALT2 like” framework. Saunders et al.
(2018) generalized a strategy that was originally proposed by
Guy et al. (2007) and which was first performed on broad band
photometry from the SNfactory dataset in Kim et al. (2013). In
brief, Saunders et al. (2018) did a principal component analy-
sis (PCA)-like study on interpolated spectral time series in order
to go beyond the classical Tripp (1998) relation. Saunders et al.
(2018) is able to significatively improve the SED description
with respect to the SALT2 model. The SNEMO model devel-
oped in Saunders et al. (2018) differs from the SUGAR model in
that SNEMO attempts to find principal components purely based
on spectral time series variability in the relative luminosities at
each wavelength and as a function of time, whereas SUGAR
uses spectral features to try to find a compact description of
such spectral time series. However, both models share some
technical details in the model training and were developed in
common.

This paper is organized as follows: Sect. 2 presents how the
spectrophotometric time series of the SNfactory were obtained,
Sect. 3 focuses on the intermediary data used in building the
SUGAR model (spectral indicators at maximum light, dimen-
sionality reduction through factor analysis, derivation of extinc-
tion parameters and time interpolation). Section 4 describes
the SUGAR model: its formalism, training, and components.
Section 5 presents the performance of the model for fitting spec-
tral time series using SUGAR model. These results are com-
pared to the performance achieved by SALT2 for the same data.
Finally, Sect. 6 discusses adding additional components to the
SUGAR model and some technical choices that were made in the
training of the SUGAR model. The appendices describe details
of the mathematical implementation of the SUGAR model. The
SUGAR template is available online1, while the data used to
train SUGAR are available online2.

2. Spectrophotometric time series from SNfactory

This analysis is based on 171 SNe Ia obtained by the SNfac-
tory collaboration beginning in 2004 (Aldering et al. 2002) with
the SuperNova Integral Field Spectrograph (SNIFS, Lantz et al.
2004) installed on the University of Hawaii 2.2-m telescope
(Mauna Kea). SNIFS is a fully integrated instrument optimized
for semi-automated observations of point sources on a structured

1 http://supernovae.in2p3.fr/sugar
2 https://snfactory.lbl.gov/sugar

background over an extended optical window at moderate spec-
tral resolution. SNIFS has a fully-filled 6.4′′ × 6.4′′ spectro-
scopic field-of-view subdivided into a grid of 15 × 15 con-
tiguous square spatial elements (spaxels). The dual-channel
spectrograph simultaneously covers 3200–5200 Å (B-channel)
and 5100–10 000 Å (R-channel) with 2.8 and 3.2 Å resolution,
respectively. The data reduction of the x, y, λ data cubes is
summarized by Aldering et al. (2006) and updated in Sect. 2.1
of Scalzo et al. (2010). The flux calibration is developed in
Sect. 2.2 of Pereira et al. (2013) based on the atmospheric extinc-
tion derived in Buton et al. (2013). In addition, observations are
obtained at the SN Ia location at least one year after the explosion
to serve as a final reference to enable subtraction of the underly-
ing host and the host subtraction, as described in Bongard et al.
(2011). For every SN Ia followed, the SNfactory creates a spec-
trophotometric time series, typically composed of ∼14 epochs,
with the first spectrum taken on average three days before max-
imum light in B-band (Bailey et al. 2009; Chotard et al. 2011).
The sample of 171 SNe Ia contains the objects with good
final references, objects that passed quality cuts suggested by
Guy et al. (2010), and is restricted to objects with at least one
observation in a time window of ±2.5 days around maximum
light in B-band. The size of this window is kept identical with
respect to the study of Chotard et al. (2011) and is discussed in
Léget (2016). After flux calibration, host-galaxy subtraction and
correction for Milky Way extinction, the flux of the 171 spectra
is integrated in synthetic top-hat filters defined in Pereira et al.
(2013) and for reference a SALT2 fit is applied with the model
from Betoule et al. (2014) in order to obtain the X1,C, and mB
parameters. The spectra of the 171 SNe Ia are transformed to
the rest frame with a fiducial cosmology and an arbitrary Hub-
ble constant. It is allowing to respect blinding of future cos-
mological analysis using this dataset. For the spectral analysis
here, the spectra are rebinned at 1500 km s−1 between 3254 and
8649 Å (197 bins per spectra) for computational efficiency while
still resolving spectral features and converted to the absolute AB
magnitude system. The training is done on 113 SNe Ia observed
before 2010 and the validation is done on 58 SNe Ia observed
after 2010.

3. Derived data

Any empirical SN Ia modeling must solve three problems3:
Choose what features to model, account for color, and deal
with the data sampling. For the features modeling of SUGAR,
we used spectral features at maximum light to describe the
intrinsic part of the SED. This is described successively in
Sects. 3.1 and 3.2. Section 3.1 describes how the spectral fea-
tures are selected and measured. Section 3.2 explains how the
spectral features are projected onto a new basis that allows us to
work in an orthogonal basis for the SUGAR training. To estimate
the average color curve of SNe Ia, we generalize the method of
Chotard et al. (2011). This is described in Sect. 3.3. To deal with
the data sampling, we project the observed spectra onto a com-
mon time grid so that the SED model can be calculated on the
same time grid. This is done in Sect. 3.4 using the Gaussian pro-
cess method. The following sections describe those intermedi-
ate steps that determine the full SUGAR SED model in Sect. 4.
We use the spectral features derived and color curve parameters

3 In general, empirical SNIa modeling must also handle spectroscopic
and photometric data that are not observed on the same day or by the
same instruments. However, this is not a problem with the SNfactory
dataset.
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Fig. 1. Pseudo-equivalent widths of absorption lines at maximum light
as well as minima of P-Cygni profiles at maximum of light which are
used in our analysis. They are represented on the spectrum of SN-
training-77 at a phase of 1 day after maximum brightness.

derived at maximum light combined with the interpolated spec-
tra to infer the full SED at all epochs.

3.1. Spectral indicators at maximum light

Spectral indicators are metrics of empirical features of the input
spectrum such as equivalent widths or line velocities. They offer
an efficient characterization of spectral variability by represent-
ing the underlying spectral complexity with a few key numbers,
and play a role in nonlinear dimensionality reduction of the orig-
inal data. These two characteristics, interpretability and simplic-
ity, make them ideal for describing the intrinsic part of SNe Ia
SED, and consequently derive the extrinsic part in the same spirit
as Chotard et al. (2011). This decoupling restricts the set of spec-
tral indicators to pseudo-equivalent widths and the wavelengths
of P-Cygni profile minima. As the spectral indicators evolve
with phase, we select the spectrum closest to maximum light in
B-band, if it is within a time window of ±2.5 days. This window
size was chosen to optimize the trade-off between the total num-
ber of SNe Ia in the sample and the potential loss in precision
due to time evolution.

Near maximum light and within the spectral range cov-
ered by the SNfactory, it is possible to systematically obtain
the 13 spectral indicators represented in Fig. 1. They are the
nine pseudo-equivalent widths of Ca ii H&K, Si ii λ4131, Mg ii,
Fe λ4800, S ii W, Si ii λ5972, Si ii λ6355, O i λ77734, and
Ca ii IR features, as well as four minima of P Cygni profiles
(Si ii λ4131, S ii λ5454, S ii λ5640, and Si ii λ6355). For the
pseudo-equivalent widths, we rely only on well-defined troughs
that are present in all SNe Ia in the sample, and consider line
blends as a whole. Some of the possible minima were also dis-
carded either because the corresponding lines form a complex
mixture or because the corresponding trough is too shallow to
accurately define a minimum for some SNe Ia. This is why the
Si ii λ5972 feature velocity is rejected. The spectral indicators
and their uncertainties were automatically derived from the spec-
tra at maximum light following the procedure of Chotard et al.
(2011), which is described in detail in Appendix A.

4 We refer to this as O i λ7773 but note it overlaps with Mg ii λ7812.

3.2. Factor analysis on spectral features

3.2.1. Factor analysis model

The space defined by the 13 selected spectral indicators has too
high dimensionality to efficiently train a model. Additionally,
some of the spectral indicators are correlated, and therefore con-
tain redundant information. Most of the model variation can be
captured in a reduced number of dimensions. Principal compo-
nent analysis (Pearson 1901) is one of the methods to imple-
ment such a dimensionality reduction. It consists of diagonaliz-
ing the covariance matrix of the sample and projecting the data
into the resulting eigenvectors basis. In this new basis, the vari-
ables are uncorrelated, and an approximation of the input data is
found by neglecting the dimensions corresponding to the small-
est eigenvalues. This method has been employed in the case of
SNe Ia by Guy et al. (2007), Kim et al. (2013), and Sasdelli et al.
(2015). However, in the case considered here, some directions
are dominated by noise, so their eigenvectors would align along
the direction of measurement errors rather than the intrinsic sam-
ple variance. To solve this problem, we employ a variant of PCA,
Factor Analysis (Spearman 1904, 1927), which has the advan-
tage of taking into account the variance caused by measurement
uncertainties. This technique decomposes the observables into
two terms, one representing the explanatory factors and one rep-
resenting the noise affecting each variable. This is expressed by
the following relation (Ghahramani & Hinton 1997):

xi = Λqi + ui, (1)

where xi is the spectral feature vector with s components for the
ith SN Ia. qi is the explanatory factor vector of dimension m ≤ s,
and is linearly related to xi by the matrix Λ of dimensions m× s.
ui is the noise with varianceΨ of dimensions s× s. In order to fix
the normalization of Λ and qi, we assume that the qi are drawn
from a centered normal distribution:

P
(
qi
)
∼ N (0, I) . (2)

In the framework of the PCA, and up to a normalization, the
matrixΛ and the qi are respectively equivalent to the eigenvector
matrix and the projections into the new basis. Factor analysis
thus consists of determining the matricesΛ andΨ that maximize
the likelihood, under the assumption that the xi are distributed
according to a normal distribution with both intrinsic scatter and
measurement noise:

P (xi) ∼ N
(
0,ΛΛT +Ψ

)
. (3)

To estimate Λ, Ψ, and the explanatory factors qi,
Ghahramani & Hinton (1997) propose a solution based on an
expectation-maximization algorithm where qi and Λ are esti-
mated iteratively. Here, unlike in conventional factor analysis,
a reliable estimate of the spectral indicator measurement error is
provided. For each SN Ia i, Ψi is the known diagonal matrix that
contains the squared errors of the spectral indicators, hence, it
is not necessary to fit for a global Ψ. We adapted the aforemen-
tioned expectation-maximization algorithm to take this change
into account. Additional details can be found in Appendix B.

Finally, a prescription is needed to normalize each individ-
ual variable. The amplitude of the spectral indicator variation,
expressed in Å, is not a good indicator of their impact on the
spectral shape. As an example, Branch et al. (2006) show that
the weak Si ii λ5972 line can play a significant role in subclass-
ing SNe Ia. As a consequence, the input data are normalized to
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unit variance prior to the factor analysis, so that no spectral indi-
cator is favored a priori. Within this framework, the eigenval-
ues of ΛΛT represent the variance explained by each factor, and
s − Tr(ΛΛT ) is the variance coming from the noise, where here
s = 13 is the number of spectral indicators and Tr is the trace
operator.

3.2.2. Outlier rejection

Outliers affect the sample variance of any population. As we
care most about a correct description of the bulk of SNe Ia,
it is desirable to identify and remove these outliers. Amongst
them, SNe Ia of type SN1991T (Filippenko et al. 1992a) or
SN1991bg (Filippenko et al. 1992b) are known to have dif-
ferent spectral and photometric behavior from other SNe Ia.
However, basing an outlier rejection on this empirical identifi-
cation has two issues. The first is that within the spectral indi-
cator space, some of those subtypes may not appear as distinct
subclasses, and do not offer objective grounds for rejection. The
second issue is that the attribution of a given SN Ia to one of
these subclasses by SNID (Blondin & Tonry 2007) may provide
inconsistent results depending on the epoch considered for the
identification. In order to apply a self-contained criterion for
defining an outlier, we thus resorted to a χ2-based definition
for identifying outliers: this quantity can be interpreted as the
squared distance to the center of the distribution normalized by
the natural dispersion. For SN Ia i, it is given by

χ2
i = xT

i

(
ΛΛT +Ψi

)
xi. (4)

In the case of a Gaussian distribution, χ2
i should follow a

χ2-distribution with 13 degrees of freedom. An iterative cut at
3σ on the value of χ2

i rejects 8 SNe Ia from the sample. A
visual inspection carried out on each of these 8 SNe Ia, as
well as a sub-classification made using SNID, show that four
of those objects exhibit shallow silicon features as defined by
Branch et al. (2006), two of them have high-velocity silicon fea-
tures as defined by Wang et al. (2009), one is within the broad
line subcategory, and the remaining one has a failed estimation
of one of the spectral indicators.

We studied the influence of the 3σ cut by carrying out the
analysis successively with and without the cut. Even though this
had no major effect on the direction of the vectors, the cut is
applied to the rest of the analysis to avoid training the model on
outliers.

3.2.3. Factor analysis results on spectral features

The expectation–maximization factor analysis (EM-FA) algo-
rithm described in the previous sections is applied to the 13 spec-
tral features measured at maximum light. The relative weight
of the eigenvalues on the total variance is shown in Fig. 2, and
the correlations between the eigenvectors, and the spectral indi-
cators are presented in Fig. 3. The significance of the correla-
tion is expressed in units of σ, meaning that the null hypothesis,
that is 0 correlation is rejected at σ confidence level. Figure 2
shows that two vectors dominate the variability in the space of
spectral indicators. The first vector is linked with coherent vari-
ations of the pseudo-equivalent widths, except the widths of the
Ca ii H&K and S iiW lines as seen in Fig. 3. The second vector
is anticorrelated with these same two features, and describes a
coherent variation of the velocities. Since the first vector is very
similar to the pseudo-equivalent width of Si ii λ4131, which is
shown by Arsenijevic et al. (2008) to be highly correlated with
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Fig. 2. Relative importance of the eigenvalues associated with the eigen-
vectors. They are ordered in decreasing order of variance, and the total
amounts to 100% once the contribution of the noise (indicated by a red
line) is taken into account. We can see that the first three vectors domi-
nate the variability of this space.

the stretch parameter, it is therefore natural to assume that this
vector represents the main source of intrinsic variability already
known for SNe Ia. The second vector is mostly driven by the
line velocities, pEW(Ca ii H&K), and pEW(S ii W) lines, with
smaller dependencies from the other pseudo-equivalent widths.
Interestingly, while investigating the spectral diversity of SNe Ia
beyond stretch and color, Chotard et al. (2011) demonstrated the
role of pEW(Ca ii H&K), while Wang et al. (2009) focused on
the role of the speed of Si ii λ6355. Our second vector unifies
these two approaches. The interpretation of the next vectors is
less straightforward. As their rank increases, they describe less
of the sample variance, and thus exhibit lower correlations with
the original data. The third vector is the last of the eigenvectors
to show strong correlation with one of the spectral indicators,
pEW Si ii λ5972. The correlations with the SALT2 parameters
are presented in Fig. 4. As expected from the correlations with
the pseudo-equivalent widths, q1 is strongly correlated with X1.
Also, q3 exhibits a significant correlation with X1, which may be
an indication that the stretch is driven by two different parame-
ters. Remaining factors are only weakly correlated with X1. The
correlations between SALT2 color and any of the factors are
close to zero. The SALT2 absolute magnitude cosmology resid-
ual, ∆µB, are mainly correlated with q1 and q3, presumably due
to the correlation of both with X1.

Within this framework, the eigenvalues of ΛΛT represent the
variance explained by each factor, and s − Tr(ΛΛT ) is the vari-
ance coming from the noise, where here s = 13 is the number
of spectral indicators and Tr is the trace operator. Noise, in this
situation, represents 18% of the variability observed, so only the
first two vectors clearly outweigh the noise and it is legitimate
to ask whether or not the other vectors are sensitive to statisti-
cal fluctuations. For the rest of the analysis, we keep the first
three factors for the final training and discuss this choice in the
Sect. 6.2, by looking at the impact on the final model.

3.3. Extinction curve estimation

In this section, we estimate the average extinction curve by gener-
alizing the procedure described in Chotard et al. (2011). For this,
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a model of the SED at maximum light is derived. This model
allows us to deduce the average extinction curve and the proce-
dure to estimate it: the results are described in the following.

3.3.1. Empirical description

The SED model at maximum light presented here is a generaliza-
tion of the model presented in Chotard et al. (2011), in which the

authors removed intrinsic variability tied to spectral features and
measured the remaining spectral variation, which was found to
be consistent with an extinction curve like that for the Galaxy.
The major difference is that the intrinsic description is here
motivated by the factors derived in Sect. 3.2 rather than being
described only by pEW(Si ii λ4131) and pEW(Ca ii H&K) as
was done in Chotard et al. (2011). To model the SED we define
for the SN Ia i the vector xi ≡ {hi,1, hi,2, hi,3}, which is the true
value of the measured factor qi = {qi,1, qi,2, qi,3}. We propose that
these are related to the intrinsic absolute magnitude by:

Mi(λ) = M0(λ) +

j=3∑
j=1

hi, jα j(λ) + Aλ0,i γ(λ), (5)

where M0(λ) is the average spectrum in absolute magnitude,
α j(λ) is the spectrum related to the factor hi, j, where j is the
factor index running from one to three (the choice of the number
of components is discussed in Sect. 6.2). Aλ0,i is a free parame-
ter that can be interpreted as the absorption due to extinction at
a reference wavelength λ0 (set here at the median wavelength,
5305 Å, without loss of generality). γ(λ) is an arbitrary func-
tion that represents the effect of the extinction, and we have
not set any prior on its shape. Once the function γ(λ) is fixed,
it is possible to fit the total-to-selective extinction ratio of the
Cardelli et al. (1989) law, RV , and the absorption in V-band, AV
to it; this is described in the next sub-section. The model param-
eters here are M0(λ), the α j(λ), the γ(λ), the hi, j, and the Aλ0,i.
It is understood that we are modeling the SED at specific wave-
lengths where we have measurements. For notational efficiency
we rewrite Eq. (5) as:

Mi = Ahi, where (6)
A = (M0,γ,α1,α2,α3) , (7)

hT
i =

(
1, Aλ0,i, hi,1, hi,2, hi,3

)
. (8)
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In Chotard et al. (2011), the parameters α j(λ) were computed in
sequential order, and the reddening curve γ(λ) as well as the
extinction Aλ0,i were determined in a second step. We improve
on this procedure by applying a global fit for all parameters at
once. This is described below, and allows us to derive a global
average RV for all SNe Ia, and an AV for each SN Ia.

3.3.2. Fitting the model at maximum light and RV

In this section we explain the framework for fitting the free
parameters of Eq. (5) and how we then determine the AV and
RV parameters. Fitting the parameters of the absolute SED of
Eq. (5) is done using an orthogonal distance regression. Esti-
mating these parameters within the framework of an orthogonal
distance regression amounts to minimizing the following χ2:

χ2 =
∑

i

(
Mobs

i − Ahi

)T
WMi

(
Mobs

i − Ahi

)
+

(
qi − xi

)T Wqi

(
qi − xi

)
, (9)

where Mobs
i is the observed spectrum of the SN Ia i in absolute

AB magnitude and WMi is the weight matrix of Mobs
i , defined

as:

WMi =



. . . 0

σ2
λi

0
. . .

 +
(
σ2

cal + σ2
z

) 
1 · · · 1
...

. . .
...

1 · · · 1

 + D


−1

,

(10)

where σλi is the uncertainty of the SN Ia i at the wavelength
λ derived from spectral error, σcal the per-spectrum calibration
uncertainty, taken to be 0.03 mag, σz the combination of the
redshift error and the uncertainty of 300 km s−1 due to pecu-
liar velocities, and D is the dispersion matrix. The dispersion
matrix is fit to deal with the remaining variability which is not
described by the three factors and the extinction. It includes an
estimate of the remaining chromatic and achromatic (gray) dis-
persions. The estimation of D is described in Appendix D. Wqi

is the weight matrix of qi that comes from projecting the spec-
tral feature uncertainties into the factor sub-space, and is defined
as:

Wqi
= ΛTΨ−1

i Λ, (11)

where Λ and Ψi are the same as in Sect. 3.2. The unknown
parameters of the model are the matrix A and the vector hi.
These are found by minimizing Eq. (9) using an expectation-
minimization algorithm described in Appendix C.

Once the parameters that minimize Eq. (9) have been found,
we can compare γλ with an extinction curve to see if it is com-
patible. It is straightforward to directly estimate the global mean
RV from γλ by minimizing

χ2
RV

=

[
γ −

(
a +

1
RV

b
)]T [

γ −

(
a +

1
RV

b
)]
, (12)

where the a and b vectors are the extinction curve coefficients
defined in Cardelli et al. (1989). Minimizing χ2

RV
as a function

of RV then gives:

RV =
bT b

γT b − aT b
· (13)

We note that the value we quote for RV within the context
of our model depends on the assumptions adopted in the evalu-
ation of the dispersion matrix (discussed in detail in Sect. 6.1)
and therefore does not necessarily correspond to the true mean
properties of dust. This uncertainty associated with separating
SN Ia color behavior from dust behavior is common to all SN Ia
fitting methods. Once the value of the global mean RV is fixed,
we determine the absorption in the V-band, AV for each SN Ia.
This amounts to minimizing

χ2
AV

=
∑

i

(
δM̃i − AV,i

(
a +

1
RV

b
))T

WMi

×

(
δM̃i − AV,i

(
a +

1
RV

b
))
, (14)

where AV,i is the absorption in the V-band for the SN Ia i and
δM̃i are the residuals corrected for the intrinsic variabilities

δM̃i = Mobs
i −M0 −

∑
j

qi, jα j. (15)

Taking the derivative of χ2
AV

by AV we find:

AV,i =

(
a + 1

RV
b
)T

WMiδM̃i(
a + 1

RV
b
)T

WMi

(
a + 1

RV
b
) · (16)

3.3.3. Results

The model above is trained on the 105 SNe Ia that remain in the
training sample. The vectors α j for j = 1, j = 2, and j = 3, as
well as their effect on the average spectrum M0, are presented
in Fig. 5. To quantify the overall impact of each vector in units
of magnitude, we compute the average rms of h jα j, the deviation
from the average spectrum M0.

The vector α1 presented in Fig. 5, has an average impact of
0.17 mag when multiplied by the standard deviation of q1. This
is the expected amplitude for a stretch effect. The structure of
this vector is associated with variations of the line depths, con-
sistent with the correlation of the factor q1 with both the pseudo-
equivalent widths and the stretch (cf. Figs. 3 and 4).

The vector α2 shown in Fig. 5, which is correlated with
velocities, has a much weaker impact of 0.05 mag on the aver-
age spectrum M0. This is consistent with the fact that this effect
has not yet been detected on purely photometric data. Moreover,
the associated variability is centered in localized structures such
as the regions of the Ca ii H&K, Si ii λ6355, and Ca ii IR lines.
A closer scrutiny shows that the variability especially affects the
bluer edge of the features, leading to an overall effect on the line
velocities. This is as expected from the correlations of q2 and the
minima of P-Cygni profile shown in Fig. 3.

The vector α3 shown in Fig. 5, has an impact of 0.05 mag
on the average spectrum M0. Like the first component q1, q3
is correlated with the stretch (cf. Fig. 4), but the corresponding
vector α3 is less structured than α1 in the optical band. However,
the expected correlations with the spectral features are consistent
with the behavior of q3 (cf. Fig. 3). Moreover, the most promi-
nent features affect the extreme UV part of the spectrum as well
as the Ca ii H&K and Ca ii IR regions. For the latter, brighter
SNe Ia exhibit a stronger trough in the higher velocity part of
the blends, which could link this vector to the presence of high-
velocity calcium structure in ejectas.

In summary, the analysis of the SED components at maxi-
mum light confirms that the stretch has the dominant effect on
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Fig. 5. Impact of each component on the average spectrum. Top panel,
top: average spectrum M0 and the predicted effect of a variation of
q1 by ±1σ. Bottom: corresponding α1 vector. Middle panel, top: aver-
age spectrum M0 and the predicted effect of a variation of q2 by ±1σ.
Bottom: corresponding α2 vector. Bottom panel, top: average spectrum
M0 and the predicted effect of a variation of q2 by ±1σ. Bottom: corre-
sponding α2 vector.

magnitudes as expected, but one also has to take into account
other variabilities which are difficult to detect in photomet-
ric bands since they are linked to localized features such as
velocities.

The γ(λ) curve is shown in Fig. 6 and is consistent with a dust
extinction curve. This shows that three eigenvectors provide a
sufficient description of the intrinsic variability from the purpose
of deriving a color law. The fit of γ(λ) to a Cardelli et al. (1989)
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Fig. 6. Extinction curve fit result. Top panel: empirical average extinc-
tion curve, γ(λ), compared to the best fit by a Cardelli et al. (1989) law,
which gives an RV = 2.6. The shaded blue area represent a ±0.5 range
on RV , in order to illustrate the typical range of value that are mea-
sured for SN Ia in the literature. The black dot on this curve indicates
the wavelength used on the lower panel graph. Lower panel: residuals
after correction for the intrinsic behavior at 4012 Å as a function of Aλ0 .
Each dot corresponds to a single SN Ia. The γ4012 Å slope between M
and Aλ0 is indicated by the red continuous line. Dashed represent the
Cardelli et al. (1989) law for RV = 2.6. The shaded blue area represent
a ±0.5 range on RV , in order to illustrate the typical range of value that
are measured for SN Ia in the literature.

law gives a value of RV = 2.6 . The Cardelli et al. (1989) law
fit coincides remarkably well with γ(λ), except in the UV, where
it differs slightly. The RV value is mainly driven by the reddest
SNe Ia. Indeed, as can be seen in the lower panel of Fig. 6, three
SNe Ia have the dominant contribution on the final value of RV
and removing any of these from the sample would significantly
alter the result, hence the rather large value of the uncertainty.

We made the choice of fitting an average extinction curve for
the whole sample, but there are indications from observations
that extinction curves exhibit some diversity (Amanullah et al.
2015). Moreover, any such extinction variation, or intrinsic color
variation (e.g. Foley & Kasen 2011; Polin et al. 2019), that the
model at maximum is unable to capture goes into the dispersion
matrix. However, in order to keep the model simple, we keep an
average value of RV and we leave RV variation analysis for the
future.

Figure 7 presents the set of spectra before any correction and
the residuals resulting from the difference between the observed
spectrum and Eq. (5). In the top panel, the effect of extinction is
clearly visible for spectra before any correction. After correction,
the residuals between the models and data are mainly shifted in
magnitude with respect to one another and no effect on color
appears to remain. This is the signature expected for a mostly
gray residual offset.

The amplitude of the correction made by the three factors
q1, q2, q3, and the extinction curve, given by the wRMS as a
function of wavelength, is presented in the lower panel of Fig. 7.
Before any correction, the dispersion in the B-band is around
0.4 mag, as expected. Spectra before any correction exhibit both
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localized structure coming from intrinsic variabilities and a
slowly increasing dispersion in the bluer part of the spectrum,
which is the signature of extinction. Once spectra are corrected
by the three factors q1, q2, q3, and the extinction curve, the
wRMS of the residuals drops to a floor of 0.1 mag. However,
localized structures remain, concentrated in UV, Ca ii H&K,
Si ii λ6355, O i λ7773, and Ca ii IR regions. The amplitude of
the baseline is compatible with the value of the gray intrin-
sic dispersion added in cosmological fits for nearby supernovae
(Betoule et al. 2014). The fact that a part of the residual is gray
is also visible in the dispersion matrix as can be seen in Fig. 8.
Indeed, the high correlation across all wavelengths is consis-
tent with gray fluctuation. However, some effects observed in
the dispersion matrix are not due to the gray effect, but to the
unmodeled variabilities not captured by SUGAR in certain spec-
tral zones, which explains some features observed in the disper-
sion matrix and in the Fig. 7.

3.4. Time interpolation using Gaussian process

Now, we want to extend our model from maximum light to the
full spectral time series. Spectra from the SNfactory are taken at
different epochs in the development of each SN Ia. The treatment
of these observations taken at different times is an important step
to handle before constructing the full SED model. In order to
work with a fixed time grid, it is necessary to use a method of
interpolation. One solution is to use Gaussian processes, as was
done for SNe Ia in works like Kim et al. (2013), Fakhouri et al.
(2015), and Saunders et al. (2018). A complete review of Gaus-
sian processes can be found in Rasmussen & Williams (2006).
The Gaussian process implementation presented here is based
on this review. However, we have developed a specific imple-
mentation in order to take into account wavelength dependencies
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Fig. 8. Square root of the diagonal of the dispersion matrix D (top)
and the correlation matrix corresponding to the dispersion matrix D
(bottom). The shading represents the degree of correlation, as given by
the Pearson correlation coefficient, ρ.

and to accelerate computation of the interpolation. These are
described below.

A Gaussian process is a generalization of the Gaussian prob-
ability distribution, and is a non-parametric way to interpo-
late data. The main assumption of Gaussian processes is that
observed data are the realization of Gaussian random fields that
are characterized by an average function and a correlation func-
tion. Therefore, the distribution of SNe Ia magnitude m at a given
phase t and a given wavelength λ follows this relation:

m (t, λ) ∼ N (m0 (t, λ) ,Kλ) , (17)

where m0 (t, λ) is the average function of the SNe Ia SED, and Kλ

corresponds to the correlation matrix (commonly called the ker-
nel) that describes time correlations between different epochs. In
the absence of an explosion model that would yield the analyti-
cal form of Kλ, we choose a squared exponential kernel, to which
the measurements and calibration uncertainties are added:

Kλ

(
ti, t j

)
= φ2

λ exp

−1
2

(
ti − t j

lλ

)2 + σ2
gray δ

′
i j, (18)

where φ2
λ represent the spectral variance around the average

function for the wavelength λ, lλ corresponds to the temporal
correlation length for the wavelength λ, ti and t j correspond to
the phase of observation i j, and σgray is the gray error taken to
be 0.03 mag. All wavelengths are treated independently of each
other, that is the interpolation is performed on yλn, the nth SN Ia
light curve for each wavelength λ from which the average func-
tion has been subtracted. For a given set of global hyperparam-
eters (φλ, lλ), the interpolation y′λn and the covariance matrix of
uncertainties on the interpolation, cov

(
y′λn

)
, are given by:

y′λn = Kλn(t′, t)T
(
Kλn(t, t) + σ2

λI
)−1

yλn (19)

cov
(
y′λn

)
= Kλn(t′, t′) −Kλn(t′, t)T

(
Kλn(t, t) + σ2

λI
)−1

Kλn(t′, t),
(20)

where the vector σ2
λ is the error on the magnitude for the wave-

length λ and for all observed phases. t′ is the new time grid and
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t the observed phases of the SN Ia. Gaussian processes assume
that the observed data are distributed around an average func-
tion. This function is a necessary input, because in a region with
no data points, the Gaussian process interpolation converges to
this average function (after ∼3 temporal correlation lengths). The
calculation of this average function is performed as follows. The
training spectra are binned according to phase from maximum
light in B-band, ranging from −12 to +48 days. Each phase bin
spans two days and contains at least three spectra. The weighted
average spectrum is computed for each phase bin and given
as a first approximation of the average function. However, due
to some lower signal-to-noise spectra, this version of the aver-
age function is not smooth. A Savitsky–Gollay filter is used to
smooth the average function, which is then used for the Gaussian
process interpolation.

What remains is to determine the pair of hyperparameters
θλ = (φλ, lλ) that represent, respectively, the amplitude of the
fluctuation around the average function and the temporal corre-
lation length. To estimate the hyperparameters for each wave-
length, we maximize the product of all individual likelihoods:

Lλ =
∏

n

1

2π
N
2

1

|Kλn(t, t) + σ2
λI| 12

× exp
(
−

1
2
yT
λn

(
Kλn(t, t) + σ2

λI
)−1

yλn

)
. (21)

This differs from previous work for two main reasons: the
wavelength dependence of the hyperparameters, and their esti-
mation using all the SNe Ia. These two new features are justified
mainly by SNe Ia physics and computation time. Since SNe Ia
are standardizable candles, we treat them as realizations of the
same Gaussian random field, that is we assume that they share
the same set of hyperparameters. In this case, we can use all
available SNe Ia to estimate these hyperparameters. The wave-
length dependence of the hyperparameters is due to as exam-
ple dust extinction, intrinsic variability, the second maximum
in infrared, etc. It follows that the standard deviation around
the average function and the temporal correlation length should
vary across wavelength. Moreover, the wavelength dependence
allows us to be very efficient in terms of computation time.
Indeed, it sped up matrix inversion from the classical O(N3

λ×N3
t )

to O(Nλ × N3
t ), where Nλ is the number of bin in wavelength

(197 here), and Nt the number of observed phases (∼14 in aver-
age). On a Mac Book Pro with a 2.9 GHz Intel Core i5 processor
and 8 GB of RAM, finding all hyperparameters (2 × 197), and
computing the interpolation, and the pull distribution of residu-
als took under 6 min.

Results of hyperparameter adjustment in terms of wave-
length are shown in Fig. 9. First, it can be seen that the structure
of hyperparameters as a function of wavelength is not random.
Indeed, for the parameter φλ, its value varies from 0.3 mag to
more than 0.6 mag: this number is difficult to interpret directly
because it is the amplitude around an average value at all phases
of the data. Nevertheless, the increase in the ultraviolet and blue
wavelengths can be explained by the dispersion caused by dust
extinction of the host-galaxies and a larger intrinsic dispersion in
this wavelength range (Maguire et al. 2012; Nordin et al. 2018).
There are also structures in the peaks of this intrinsic dispersion
that correspond to the regions of Ca ii H&K, Si ii λ6355, and
Ca ii IR lines. The correlation length, lλ, has structure in the sili-
con and calcium regions and remains globally stable with no fea-
tures between 6000 Å and 8000 Å (average value of seven days).
Once the hyperparameters have been estimated, the interpola-
tions for each SN Ia are performed onto a new phase grid. The
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Fig. 9. Results of the Gaussian process interpolation. From top to bot-
tom: amplitude of the kernel, correlation length and standard deviation
of the pull distribution in terms of wavelength. The gray areas represent
the presence of the absorption line that were used in our original factor
analysis.

phase grid chosen covers a range between −12 and +48 days
around maximum brightness in B-band, divided into three day
bins. Finally, to check if both the predictions (interpolation) and
associated errors are in agreement with what is expected from a
Gaussian process, we compute the pull distribution of the resid-
uals. Because we assume that our data are realizations of a Gaus-
sian random fields, the pull distribution should follow a centered
unit normal distribution. For each wavelength we fit a Gaussian
to the pull distribution and calculate its standard deviation. The
results are shown in the bottom of Fig. 9. The pull standard devi-
ation is on average lower than 1 with an average value of 0.8.
These interpolation results are used to establish the SED model
that is described in the following sections.

4. The SUGAR model

4.1. The model

The SUGAR model assumes that SED variation at any epoch
may be described by spectral features measured at maximum.
The SUGAR SED model is based on a linear combination of
factors derived in Sect. 3.2.3 and an extinction curve taken as
a Cardelli et al. (1989) law derived in Sect. 3.3. To model the
SUGAR SED, we propose a model similar to the one we con-
structed for maximum light. This SUGAR model is based on
the three factors for each SN Ia i, combined into the vector
xi ≡ {hi,1, hi,2, hi,3}, which in the model is the true value of the
measured factor qi = {qi,1, qi,2, qi,3}, and are related to the intrin-
sic magnitude by:

Mi(t, λ) = M0(t, λ) +

j=3∑
j=1

hi, jα j(t, λ) + AV,i f (λ,RV ) + ∆Mgray i,

(22)

where M0(t, λ) is the magnitude of the average spectral time
series, α j(t, λ) is the intrinsic variation related to the factor hi, j; as
discussed in Sect. 3.2.3, the numbers of factors is set to three. As
at maximum, hi, j represents the true value of the measured fac-
tor qi, j derived in Sect. 3.2. AV,i is the extinction in the V-band
and f (λ,RV ) is the Cardelli et al. (1989) law where RV is the
extinction ratio that is derived in Sect. 3.3. Finally, the term
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∆Mgray i is a gray and time independent term comparable to the
parameter X0 of SALT2, which allows us to work independently
of the distance. Indeed, the effect of the distance on magnitude
is equivalent to an additive constant independent of wavelength.
Moreover, the parameter ∆Mgray i also contains the average of
the spectral time series residuals with the SUGAR model. The
addition of ∆Mgray i differs from what was done when determin-
ing the extinction curve in Sect. 3.3 and this choice is discussed
in Sect. 6.1. We model the SED at the same wavelengths and
epochs where the Gaussian process interpolation is done. For
notational efficiency we rewrite Eq. (22) as:

Mi = Ahi, where (23)
A = (M0, f (RV ) , 1,α1,α2,α3) , (24)

hT
i =

(
1, AV,i,∆Mgray i, hi,1, hi,2, hi,3

)
. (25)

The unknown parameters of the SUGAR model are therefore
the average spectrum M0(t, λ), the intrinsic coefficients α j(t, λ),
and the gray offset ∆Mgray i. Each SN Ia is parametrized during
the training by the qi, j determined in Sect. 3.2.3 and AV,i derived
in Sect. 3.3. The average spectral time series M0(t, λ), the intrin-
sic coefficients α j(t, λ), and the gray offset ∆Mgray i are deter-
mined in the same way as the modeled described at maximum
light in the Sect. 3.3. The main differences with Sect. 3.3 are that
the model now depends explicitly on the phases of observation,
the extinction curve is fixed at the maximum light value (same
RV ), and the model is trained on the Gaussian process interpola-
tion of spectra derived in Sect. 3.4 instead of measured spectra.
The procedure is described below.

4.2. Fitting the SUGAR model

We use an orthogonal distance regression method to estimate
the parameters of the SUGAR model. This is a version of the
method described in Sect. 3.3, modified to include the Gaussian
process interpolation, the known extinction parameters, and the
gray offset. To estimate the SUGAR parameters, we minimize
the following χ2:

χ2 =
∑

i

(
Mgp

i − Ahi

)T
WMi

(
Mgp

i − Ahi

)
+

(
qi − xi

)T Wqi

(
qi − xi

)
, (26)

where the vector Mgp
i are the Gaussian process interpolations of

the observed spectra (Sect. 3.4) which is in the following vector
format:

Mgp
i =

(
y′

3340 Å i
· · · y′λ i · · · y

′

8580 Å i

)
, (27)

where y′λ i is the light curve at wavelength λ interpolated
by Gaussian processes onto new time phase as described in
Sect. 3.4. As in Sect. 3.3, the uncertainties affecting the xi are
propagated through the weight matrix Wxi . The hi plays a role
analogous to the qi of Sect. 3.2 and are estimated like the other
free parameters of the model. Finally, the matrix WMi is the
weight matrix of the SN Ia i and follows this matrix format:

WMi =



cov
(
y′

3340 Å i

)
0

. . .

cov
(
y′λ i

)
. . .

0 cov
(
y′

8580 Å i

)



−1

, (28)

where cov
(
y′λ i

)
is the covariance of interpolation uncertainties

from the Gaussian process interpolations determined in Sect. 3.4.
The interpolation is done only in terms of the phase relative to
B-band maximum, this makes the weight matrix block diagonal
for each SN Ia. In this analysis, we do not add any covariance in
terms of wavelength coming from the calibration uncertainties,
for reasons of computation time and because they are expected
to be small. These block diagonal matrices allowed us to accel-
erate the minimization algorithm. To estimate the 16 653 free
parameters of the SUGAR model, it took just less than 1 h on a
Mac Book Pro with a 2.9 GHz Intel Core i5 processor and 8 GB
of RAM, thanks to sparse linear algebra. We note that while the
covariance terms were neglected, the uncertainty at each wave-
length was taken into account during the training of the Gaussian
processes (these are the blocks cov

(
y′λ i

)
). The unknown param-

eters of the model (the matrix A and vectors hi) are computed
by minimizing Eq. (26) using an expectation and minimiza-
tion algorithm. This algorithm, described in Appendix C, avoids
degeneracies between parameters.

4.3. The SUGAR components

The SUGAR model is described by a set of spectral time series
components (M0, α1, α2, α3) at three day intervals. The SED of
a given SN Ia is then obtained by a linear combination of those
components employing the (q1, q2, q3) factors describing the
supernova. For illustrative purposes, we present a spectral time
series in six day intervals as well as their integration in synthetic
top-hat filter system comprised of five bands with the fol-
lowing wavelength ranges: Û [3300.0−3978.0] Å; B̂ [3978.0−
4795.3] Å; V̂ [4795.3−5780.6] Å; R̂ [5780.6−6968.3] Å;
Î [6968.3−8400.0] Å. The diacritic hat serves as a reminder
that these are not standard Johnson-Cousins filters. The effect
of the vectors α j on the average spectrum M0, on the average
light curves (obtained by integration of M0 in the Û, B̂, V̂ ,
R̂, Î bands) and on the average colors Û − B̂, B̂ − V̂ , V̂ − R̂,
R̂ − Î is presented in Figs. 10 and 11 for α1, Figs. 12 and 13 for
α2, and Figs. 14 and 15 for α3. The upper and lower contours
correspond to a variation of ±1σ of the associated q j parameter.
The α j(t = 0) components obtained when training the color
law with only data at maximum or with the full time series are
almost identical: all conclusions from Sect. 3.3.3 remain valid
and we focus here on the temporal behavior.

Of the three factors, q1 has the strongest impact: this can
be seen from the time series presented in Fig. 10 and on the
broad band light curves presented in Fig. 11. This is associated
with a stretch effect, visible in Û, B̂, and V̂ bands as an enlarge-
ment of the variation band as we move away from maximum.
Between −12 days and +30 days, the q1 factor has a strong influ-
ence on spectroscopic details. The brightest SNe Ia exhibit shal-
lower troughs in their spectral features: this is especially visible
for Si ii λ4131, Si ii λ5972, and Ca ii IR, but also valid for most
of the lines. This effect is more pronounced for SNe Ia at earlier
phases, and fades over time. After +30 days, the factor q1 is less
sensitive to localized features, and shows a relative enhancement
of the optical B̂ to R̂ bands with respect to Û and Î. Interestingly,
between +12 days and +24 days, the brightest SNe Ia are bluer
than at maximum or at later phases. This is true in absolute value,
but also relative to the average SN Ia. This shows that the SNe Ia
color space is driven by a variable intrinsic component in addi-
tion to reddening by dust. This intrinsic color variation is linked
with the position of the second peak in Î, which appears later for
brighter SNe Ia.
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Fig. 10. Average spectral time series and the effect of a variation of q1
by ±1σ. Each phase is separated by a constant magnitude offset.

As at maximum, the effect of the q2 factor for the whole time
series (Fig. 12) is mainly localized around specific spectral fea-
tures, with little impact on broad band light curves (Fig. 13), with
the exception of Î-band. This factor associates higher line veloc-
ities around maximum with deeper absorption troughs, strongly
visible before maximum and up to +18 days in the Ca ii H&K
region and at all phases in the Ca ii IR region. The net effect
described by q2 is that higher velocities are associated with
slightly dimmer SNe Ia. At later phases velocity effects are still
observable and at all phases after −6 days, high-velocity SNe Ia
have localized differences in the 4700 − 5100 Å spectral region.
In addition, they are bluer in V̂ , R̂, and Î after maximum, with a
maximal effect on the Î-band at around +12 days. A slight stretch
effect is visible in Û, and B̂, and also results in a later phase for
the second maximum in Î for the brightest SNe Ia in B̂, as was
mentioned for q1. The shape of variations of the light curve in
Î are very different for each factor, indicating that this band can
help reconstruct the q2 factor when using photometric data only.
Furthermore, while the q2 factor has a small impact on the vari-
ations of individual light curves, it has a sizable influence on
colors, especially R̂ − Î, Û − B̂, and after +25 days, on B̂ − V̂ .
In addition to the Î-band, the different color variation pattern in
B̂ − V̂ at late phases offers a way of disentangling the q1 and q2
factors when dealing with photometric data.

As seen in Fig. 14, the influence of q3 is minimal around
maximum light, similar to the results from Sect. 3.3. It grows
at other phases and appears as a stretch effect on the light
curves presented in Fig. 15. Unlike q1, the stretch described
by q3 shows little correlation with the magnitude at maximum.
While q3 has a larger impact on the light curves than q2, the
reverse is true for individual colors. At late phases, q3 exhibits
a brighter-redder correlation that might be employed to distin-
guish this vector from q1 when using photometric data only.
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Fig. 11. Average light curves and color evolution with phase in synthetic
bands, and the predicted effect of a variation of q1 by ±1σ.

The influence of q3 on spectral structures is mainly visible in
calcium regions, although variations can also be observed in
other regions. Around Ca ii IR, between −6 days and maximum,
brighter SNe Ia exhibit a deeper absorption trough at high cal-
cium velocity. This high-velocity calcium feature is visible for
all q3 values at −12 days, but fades faster for dimmer SNe Ia.
Meanwhile the lower velocity counterpart is only visible in q3
for the dimmest supernovae at −12 days and appears later for
brighter SN Ia.

5. SUGAR performance

5.1. Fitting spectra with SUGAR

The measurement of spectral indicators is very sensitive to the
signal-to-noise ratio of the spectrum, and at high redshift, mea-
suring the indicators in the observer’s reference frame is not pos-
sible. However, once the model has been trained, the parameters
q1, q2, q3, AV , and ∆Mgray for a given SN Ia can be directly esti-
mated from its spectral time series. Estimating the parameters q1,
q2, q3, AV , and ∆Mgray is done directly on spectra by minimizing
the following χ2

i :

χ2
i =

(
M′

i − A′xi
)T WM′

i

(
M′

i − A′xi
)
, (29)

where M′
i is the vector containing the entire spectral time series

of SN Ia i, ordered in the same way as for the SUGAR training:

M′
i =

(
y3340 Å i · · · yλ i · · · y8580 Å i

)
. (30)

where yλ i corresponds to the light curve at wavelength λ for the
observed phases. The model is projected onto observation phases
using cubic spline interpolation. For notation efficiency, it is thus
ordered as:

A′ =
(
M′

0, 1, f (λ,RV ) ,α1′ ,α2′ ,α3′
)
. (31)

The vector xi contains the parameters that describe the SN Ia i
according to the SUGAR model:

xT
i =

(
1,∆Mgray i, AV i, qi,1, qi,2, qi,3

)
. (32)
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Fig. 12. Average spectral time series and the effect of a variation of q2
by ±1σ. Each phase is separated by a constant magnitude offset.
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Fig. 13. Average light curves and color evolution with phase in synthetic
bands, and the predicted effect of a variation of q2 by ±1σ.

Finally, WM′
i
is the weight matrix that comes from the M′

i errors.
Estimating xi amounts to minimizing the χ2

i with respect to xi,
giving the solution:

xi =
(
A′T WM′

i
A′

)−1 (
A′T WM′

i
M′

i

)
(33)

Therefore the covariance on the xi is given by:

cov (xi) =
(
A′T WM′

i
A′

)−1
. (34)
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Fig. 14. Average spectral time series and the effect of a variation of q3
by ±1σ. Each phase is separated by a constant magnitude offset.
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Fig. 15. Average light curves and color evolution with phase in synthetic
bands, and the predicted effect of a variation of q3 by ±1σ.

The term xi is computed for the 105 SNe Ia that were used to
train SUGAR. The values obtained are compared with the fac-
tors and AV measured at maximum light in Fig. 16. Both quan-
tities are highly correlated. However, this correlation decreases
with decreasing order of the factor index. This is because the
factor uncertainties increase with index due to the noise being
greater for higher-order components. The increase in noise
therefore reduces the correlation. The extinction term is quite
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Fig. 16. Factors estimated directly from the spectral indicators, as a
function of the factors estimated only from the SUGAR model and
the AV estimated at maximum as a function of those estimated with
SUGAR. The red lines represent the equation x = y.

compatible between its maximum estimate and its estimation
with SUGAR.

The term xi is also computed for the 58 SNe Ia kept for vali-
dation. The distribution of the xi parameters from the validation
sample is compared to the xi parameters from the training in
Fig. 17. From this, one can see that the training and validation
samples are compatible, as it is confirmed in following sections.

5.2. Comparison with SALT2

5.2.1. Difference between SUGAR and SALT2 models

Throughout this article, we use the SALT2 model as a bench-
mark to evaluate the properties of the SUGAR model, because
it has become a reference for cosmological analyses. SALT2
describes the SED of SNe Ia in the following functional form
(Guy et al. 2007):

F(t, λ) = X0[F0(t, λ) + X1F1(t, λ)] exp[C CL(λ)] , (35)

where the observed flux F depends on the individual SN Ia
parameters (X0, X1,C) and on the model average flux F0 (defined
up to a multiplicative factor), the model flux variation F1, and an
empirical color law CL. In the regime where X1F1 is small with
respect to F0, this model, once expressed in magnitudes, can be
identified with the SUGAR model: (F0, F1,CL) and (X1,C) take
the roles of (M0, α1, f (RV )), and (q1, AV ), respectively. ∆Mgray is
the equivalent of a linear combination of (log X0, X1,C).

Although the major differences between the models come
from the inclusion of two additional intrinsic components in
SUGAR, its color law, and the data on which they were trained,
there are many other differing characteristics, which are sum-
marized Table 1. The inclusion of two additional intrinsic
components is enabled by the level of detail available in our
spectrophotometric time series. We therefore expect the SUGAR
model to provide a more faithful representation of the spectral
details than SALT2. Though analogous in spirit, X1 and q1 are
derived employing a quite different paradigm: F1 comes from a
PCA analysis performed in flux space, while the αi are trained in
magnitude space and driven to reproduce the prominent spectral
indicators. A direct generalization of the SALT2 approach with
more components is presented in Saunders et al. (2018). While
the empirical SALT2 CL function models the average color vari-
ation, our color curve was shown to be accurately described by a
Cardelli et al. (1989) extinction law. The SALT2 color param-
eter c thus mixes information about reddening by interstellar
media (described by AV ) with intrinsic SNe Ia properties that
were not directly matched with one of the qi parameters. These
differences in the treatment of colors would manifest in long-
range spectral variation (because the extinction curve is smooth).
In regions where the phase coverage is sufficient, the different
phase interpolation methods used are not expected to contribute
significantly to differences between models. Otherwise, and for
early phases in particular, we expect the differences to be driven
by the training samples rather than interpolation technique.

The wavelength and phase coverage of SUGAR are restricted
compared to SALT2. This is directly related to the training
data: SUGAR is trained on low redshift spectrophotometric time
series, while SALT2 is trained on a wide redshift range of pho-
tometric data, employing a handful of spectra to help refine the
SED details. As SALT2 uses low and high redshift data it offers
a better coverage of the UV domain. It also has a larger phase
coverage thanks to the rolling cadence strategy, while SNfac-
tory SNe Ia have to be specifically targeted. While SALT2 could
be easily trained with SNfactory data added to their sample, the
reverse is not true: major adaptation would be needed to allow
SUGAR to incorporate photometric data in its training. How-
ever, this does not prevent fitting photometric light curves with
SUGAR in the same way as with SALT2, provided they fall
within the phase and spectral coverage of SUGAR. In contrast,
SALT2 was not designed to fit spectrophotometric data.

5.2.2. Spectral residuals

The SUGAR model is designed to improve the spectral descrip-
tion of SNe Ia by adding components beyond stretch and color.
While the ideal model would perfectly match the data, the
level of mismatch can be quantified by the residuals, that is
the difference between the left and right term of Eq. (22). The
improvement with respect to SALT2 is then studied by com-
paring the data to the spectral reconstruction predicted by both
models. One example of these comparisons is presented Fig. 18,
which shows the spectra and residuals for SN-training-4. For this
supernova, SUGAR gives a better description than SALT2. The
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Table 1. Main differences between the SALT2.4 model and the SUGAR model.

Model properties SALT2 SUGAR

Rest frame wavelength coverage 2000–9200 Å 3254–8649 Å
Rest frame phase coverage −20 to +50 days −12 to +48 days
Training data Spectroscopy and photometry Spectrophotometric time series
Redshift range Low and hight redshift Low redshift
Interpolation Cubic spline Gaussian process with squared exponential kernel
Intrinsic properties from Weighted PCA like on SED EM-FA on spectral features
Number of intrinsic component 1 3
Color Color law (third order polynomial) Cardelli et al. (1989) law
Error on the model Yes No

improvement is especially clear in the UV after +17 days and in
the infrared at any phase, and particularly in the O i λ7773 and
Ca ii IR regions. This is not surprising insofar as SALT2 is essen-
tially trained to reproduce the bluer part of the spectrum. The
SUGAR description is also better in the regions around lines,
even if this description is not totally satisfactory in some areas:
Ca ii H&K, Si ii λ6355, and the bluer part of the spectrum at late
phases. In the B-band, the reconstruction of the spectral details
is quite similar between SUGAR and SALT2, although SUGAR
seems to follow more faithfully the spectral details, as can be
seen in the Mg ii area.

SN-training-4 is only one example among the 105 SNe Ia
on which SUGAR was trained. To have a statistical description
of the precision of the models, we derive the dispersion of the
residuals obtained for all SNe Ia as a function of wavelength and

phase. In Fig. 19, we present the wRMS of this dispersion: for
each wavelength, we compute the wRMS across all phases and
weight it by the spectral variance. To show how the accuracy
of the model evolves when going from a classic Tripp (1998)
relation (when only q1 and AV are included) to the full model,
the wRMS for SUGAR is computed three times with progres-
sive inclusion of q1, q2, and q3. We compute the residual dis-
persion for both the training and the validation sample. What
was observed for SN-training-4 is confirmed in this statistical
analysis across all SNe Ia: at any wavelength, SUGAR gives a
better description than SALT2. The strongest improvement is in
the IR, but is also significant in the UV. All the spectral details
are significantly improved, such as the Ca ii H&K, Si ii λ6355,
the O i λ7773, and the Ca ii IR. The best performance of the
SUGAR model is obtained in the region around 6500 Å, where
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the dispersion gets as low as 0.05 mag. It should be kept in mind
that the spectral dispersion includes noise variance that may be
high in some spectra and is therefore not representative of the
dispersion expected in photometry after integration over broad
band filters. The phase evolution of the wRMS is presented in
Fig. 20: the dispersion in each phase bin is calculated across all
wavelengths. This includes wavelengths for which SALT2 is not
adapted: this explains relatively high values of wRMS for this
model compared to SUGAR.

The successive inclusion of q1, q2, and q3 can help us under-
stand the origin of SUGAR’s improvement over SALT2. As the
training samples for both models are different, one may wonder
what SALT2 would have given if trained on SNfactory data. This
situation can be studied when including only q1: SUGAR|q1 is
slightly worse than SALT2 between Si ii λ4131 and Si ii λ6355
features, and between Si ii λ6355 and O i λ7773. These regions
cover the wavelength range where SALT2 was trained and opti-
mized, while SUGAR|q1 is only the by-product of the three com-
ponent model and is not by itself optimal for a single component.
Earlier phase are more difficult to reproduce in both models: this
could be an effect of higher variability beyond stretch at those
phases. For later phases, SUGAR|q1 does not exhibit the same
increase in wRMS as SALT2. This is also an effect of the lack
of coverage for IR wavelength for SALT2. One could therefore
expect SALT2 to behave at least as well as SUGAR|q1 in UV and
IR when trained on SNfactory data. As expected, the inclusion
of additional components improves the accuracy of SUGAR: q2
improves the description of the spectral features because it is cor-
related with (Ca ii H&K, Si ii λ6355, and Ca ii IR) while one has
to wait for the inclusion of q3 to reach the full SUGAR precision.

The improvement brought by SUGAR is thus enabled by
two factors: the spectral coverage and the spectral resolution that
allows the inclusion of the new components, q2, which improves
the color description, and q3, which helps reduce the dispersion
away from maximum light. Moreover, the improvement added
by q2 and q3 are also seen in the validation sample, which con-
firms that these components are not due to overtraining.

5.2.3. Relation between SALT2 and SUGAR parameters

In Sect. 3.2 we presented the correlations between the SALT2
parameters and the first five factors found using factor analysis.

After training the full SUGAR model and reconstructing the
parameters of individual supernovae as described in Sect. 5.1,
we can study the correlations between the SALT2 parameters
(X0, X1, C) and the SUGAR parameters (∆Mgray, q1, q2, q3, AV ).
The direct comparison of X0 and ∆Mgray is irrelevant due to the
different prescription for lifting the degeneracies of both models.
We recognize ∆Mgray as the Hubble diagram residuals, a quantity
that we can also compute from SALT2 parameters (and denote
as ∆µcorr). The results of this comparison between SALT2 and
SUGAR parameters are presented in Fig. 21. The lessons from
the correlations of SALT2 parameters and the original factors
still hold: X1 is strongly correlated with q1 and q3; q2 has no
significant correlation with any of SALT2 parameters, except
with ∆µ . The small correlation of q2 and q3 with ∆µ shows
that the inclusion of this factor can help improve the standard-
ization. The SALT2 color C is strongly correlated with AV , as
would be expected since the purpose of these two parameters is
to take into account the reddening of SNe Ia. Contrary to the
results from Sect. 3.2 with the factors alone, C now exhibits a
4.5σ correlation with q3. This correlation might come from the
slight fluctuation in color with respect to phase visible in Fig. 15
and the inclusion of the validation sample. The slight correla-
tion of C and ∆Mgray comes from the correlation of ∆Mgray and
AV . Indeed, ∆Mgray and AV were determined separately during
the training, without fixing potential degeneracy between them.
This explains why they are correlated. Finally, ∆µ has a strong
correlation with ∆Mgray. This indicates that the inclusion of the
additional factors in SUGAR is unable to catch the major source
of magnitude variability of SNe Ia, even if it provides a much
improved description of spectral details.

6. Discussion

6.1. Gray dispersion and dispersion matrix fitting

For the model at maximum light, we did not fit a gray term but
did include a dispersion matrix while estimating the extinction
curve. However, for the full spectral time series, we fit for a
gray offset and used the extinction curve determined at maxi-
mum light. One might wonder why we did not do a simultaneous
fit of the full spectral time series, the gray offset and the extinc-
tion curve. Our decision was motivated by the following logic.
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Fig. 19. wRMS of the residuals as a function of the wavelength for the full SUGAR model (blue line), for the SUGAR model only corrected by
q1 and AV (blue dashed dotted line), for the SUGAR model only correct by q1, q2 and AV (blue dashed lines), and for the SALT2 model (red line).
Top: training data. Bottom: validation data.

In order to perform a simultaneous fit, one important thing
is to have a good estimate of the dispersion matrix, which is
essential for the estimation of the extinction curve, as discussed
in Scolnic et al. (2014). In addition, this matrix would have the
advantage of taking into account temporal correlations of resid-
uals, in addition to the color correlations of the residuals, which
would improve the model developed at maximum light.

However, from a numerical point of view, this would break
the sparse algebra approximations that significantly speed up the
training. Indeed, the sparse algebra (due to Eq. (28)) makes it
possible to improve speed efficiency of minimization of Eq. (26)
from O

(
(NλNtNparam)3

)
to O

(
Nλ × (NtNparam)3

)
, where Nλ is the

number of wavelength bin, Nt the number of bin in terms of time,
and Nparam is the number of parameters to fit for a given wave-
length and epoch. In SUGAR training, Nλ ∼ 190, Nt ∼ 30, and
Nparam = 5 (average spectrum + three factors + extinction curve),
consequently, not doing sparse algebra significatively slow down
the speed of the training algorithm by O

(
N2
λ

)
.

Moreover, there would be problems with numerical stabil-
ity for the estimation of the dispersion matrix due to its size; in
the case of the simultaneous fit: it would be ∼20 000 × 20 000.
Indeed, it would be necessary to make sure that the dispersion
matrix is positive definite, which would involve doing a Singu-
lar Value Decomposition that would again slow down the speed

of the training algorithm. In addition, it is evident that the gray
offset is degenerate with the dispersion matrix because the dis-
persion matrix can fully capture a gray dispersion. Therefore we
deliberately did not include it explicitly in the fit of the extinction
curve within SUGAR in Sect. 3.3. There is however a degen-
eracy between Aλ0 and the gray offset, and part of the latter is
captured by this parameter. The SUGAR model presented here
is already a significant improvement over the SALT2 model and
provides insights into understanding SN Ia variability.

6.2. Test of adding an additional component

In the Sect. 3.2, we discussed the number of factors needed to
describe the final SUGAR SED, and we concluded that this can-
not be determined only from the factor description of spectral
features at maximum light. Indeed, even if they are strongly
related, the main goal is to know the number of components
needed to describe the full SED and not the number of compo-
nents needed to describe the spectral features space at maximum
light. One way to check if the choice of three factors used here
is optimal is to retrain the SUGAR model with more than three
components and observe how the spectral residuals evolve with
this change.

In the following, we ran the training of SUGAR twice, each
time adding an additional component, that is we reproduced
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Fig. 20. wRMS of the residuals as a function of phase for the full SUGAR model (blue line), for the SUGAR model only corrected by q1 and
AV (blue dashed dotted line), for the SUGAR model only correct by q1, q2 and AV (blue dashed lines), and for the SALT2 model (red line). Top:
training data. Bottom: validation data.

Sec. 4.2 with q1 − q4 and q1 − q5 components. In both cases
the value of RV = 2.6 found with three factors is fixed in order
to focus only on intrinsic parameters. In Fig. 22 we compare
the spectral residuals of the SUGAR model to those of SUGAR
trained with the additional factors.

As expected, the addition of the two new components from
factor analysis does not improve the description of SNe Ia
as significantly as the addition of q2 or q3. The factor q4
slightly improves the description within the Ca ii H&K area
(0.05 mag) and the Si ii λ6355 (0.03 mag), but does not improve
the SED outside these areas. The factor q5 does not significantly
improve the description of the SED. This is confirmation that our
choice of using three factors provides a good description of the
SED.

7. Conclusion

In this paper we have presented a new spectra-temporal empir-
ical model of SNe Ia, named SUGAR. This model significantly
improves the spectral description of SNe Ia compared to the cur-
rent state of the art by going beyond the classical stretch and
color parametrization.

In Sect. 2, we presented the SNfactory spectrophotometric
dataset that was used to train the model. In Sect. 3, we presented

the intermediary data that were used to train the full SUGAR
model. In a first step, we selected a set of 13 spectral indicators
near maximum light in B-band that are composed of pseudo-
equivalent widths and minima of P-Cygni profiles. Those spec-
tral indicators were chosen to describe the intrinsic part of the
SUGAR model because they are easy to define and are inde-
pendent of host-galaxy dust extinction. Then, we defined a new
basis where the 13 spectral indicators are uncorrelated. For this
we developed a factor analysis algorithm that is more robust in
the presence of errors than PCA algorithms. Three factors seems
to be effective enough to describe the spectral indicators space at
maximum light. The first factor describes the coherent variation
of the pseudo-equivalent widths, mainly of the silicon and cal-
cium lines. Like those lines, this factor is strongly correlated with
stretch. The second factor is mainly correlated with the veloci-
ties and shows a very weak link with pseudo-equivalent widths,
except for the Ca ii H&K and S ii W. The third factor shows a
slight correlation with the stretch parameter. Once the factors
have been defined, we established a model of SED at maximum
light based on these three first factors from spectral features,
using the same underlying method as in Chotard et al. (2011).
This allows us to separate the intrinsic behavior from color vari-
ation due to dust. Finally, we find that the color curve obtained
is compatible with a Cardelli et al. (1989) extinction curve with
RV of 2.6. We then developed an interpolation method using
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Fig. 21. SALT2 parameters estimated in photometry as a function of the SUGAR parameters estimated in spectroscopy (on training and validation
sample). The color code estimates the correlation between the parameters SALT2 and SUGAR.

4000 5000 6000 7000 8000

wavelength [Å]
0.00

0.05

0.10

0.15

0.20

wR
M

S 
(m

ag
)

SUGAR model ( Mgray +q1 + q2 + q3 + AV)
SUGAR model + q4
SUGAR model + q4 + q5
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Gaussian process in order to train the SUGAR model on a uni-
form and fixed time grid. The correlation length obtained varies
between 5 and 12 days depending on spectral regions, which jus-
tifies the use of a 3-day time step for the grid. The uncertainty
from the Gaussian processes is generally underestimated by a
factor of 1.3 and more investigation is needed to understand why
this occurs.

The training process for the SUGAR model is described in
Sect. 4, and an interpretation of each new component is pro-
vided. Both factors q1 and q3 resemble a stretch effect, but q3
has less impact around maximum light and in color space than
q1. The effects of q2 are strongest in the areas of spectral features,

and mainly evident in the infrared as compared to broad band
photometry.

After calculating the model, we showed that, instead of
going through the calculation of spectral indicators, we can work
directly with the spectral time series to recover the three factors
and extinction parameter. By studying model residuals as a func-
tion of wavelength, it is shown that SUGAR improves the spec-
tral description 0.1–0.4 mag with respect to SALT2. This is valid
for both training and validation data sets, which confirms that
there was no overtraining resulting from the addition of q2 and
q3. This shows that three parameters, defined at a given phase
(i.e. maximum light) have predictive power at other phases.
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Performance of the SUGAR model makes it an excellent can-
didate for use with surveys such as ZTF, LSST or WFIRST, and
offers an alternative way of going beyond stretch and color to
measure distance with SNIa.
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Appendix A: Spectral-indicator measurements

As the spectral indicators are a key ingredient of our statisti-
cal analysis, we need a robust and automatic algorithm to derive
them from the rest-frame spectra and estimate the associated
statistical and systematic uncertainties. The main issue to be
addressed is the automatic detection of feature boundaries –
usually local extrema – as they shift both along the phase and
from one supernova to another. Sometimes, the extremum itself
cannot be uniquely defined, for example, when there is a mix
of several local extrema at the same position or no significant
extremum such as in the blue edge of the O i λ7773 feature. The
photon noise also limit the accuracy when determining the wave-
length of the maximum, and may induce a systematic shift due
to the nonlinear process involved in finding an extremum. In this
section, we give a brief overview of the general and automatic
method developed and implemented by Chotard (2011) to mea-
sure these spectral indicators and evaluate their corresponding
uncertainties. This method shares some similarities with previ-
ous analyses (Folatelli 2004; Garavini et al. 2007; Nordin et al.
2011; Blondin et al. 2011; Silverman et al. 2012): it is based on
extrema searches in a fixed spectral domain after smoothing the
data. Improving on previous studies, our smoothing procedure is
based on an optimal determination of the regularization param-
eters, and more noteworthy, we developed a thorough determi-
nation of the uncertainties based on a Monte Carlo procedure
taking as input the variance of our signal.

A.1. Method

Most of the spectral indicators presented here are defined by
the position in wavelength and flux of at least one local mini-
mum or maximum, that is, peaks or troughs of the SN Ia spec-
tral features. In order to compute a precise estimate of these
local extrema, a Savitsky–Golay (Savitzky & Golay 1964, SG)
smoothing is applied to the original spectra before the rebin-
ning at 1500 km s−1 described in Sect. 2. Since the SG optimal
window depends both on the underlying spectral shape and on
the S/N ratio, which varies across wavelength, an independent
smoothing is applied to each of the nine spectral zones of inter-
est defined in Table A.1.

Each extremum is then selected on the smoothed spectrum
as the local extremum inside a given wavelength range, which
can be found in Tables A.2 and A.3 for the equivalent widths
and the feature velocities respectively. These wavelength ranges
have been trained on a set of ∼50 SNe Ia within a phase range
of ±5 days around B-band maximum light so that they match the
observed diversity of our spectra. The positions in wavelength
and flux of these extrema are then used in the spectral-indicator
measurements, either directly, for example, for the velocities, or
indirectly, for instance, for the equivalent widths through the def-
inition of their pseudo-continuum.

A.2. Optimal smoothing

The purpose of smoothing, also known as regularization, is to
transform the original noisy data in order to get closer on aver-
age to the unknown original spectrum, based on some regular-
ity hypothesis. A parameter describing how smooth the final
function is has to be introduced, and has to be estimated, either
based on physical consideration or deduced from the data them-
selves. Here we follow the latter approach and describe an opti-
mal way of setting the smoothing parameter given a class of
transformations.

Table A.1. Independently smoothed spectral regions, with minimal and
maximal boudaries λmin and λmax (in Å).

λmin–λmax Elements

3450–4070 Ca ii H&K
3850–4150 Si ii λ4131;Co ii
4000–4610 Mg ii triplet
4350–5350 Fe ii blend
5060–5700 S iiW
5500–6050 Si ii λ5972
5800–6400 Si ii λ6355
5500–6400 Si ii λ5972;6355
6500–8800 O i triplet;Ca ii IR

Table A.2. Definition of the wavelength regions (in Å) where the
extrema are expected to be found.

Indicators λb
min–λb

max λr
min–λr

max

Ca ii H&K 3504–3687 3830–3990
Si ii λ4131 3830–3990 4030–4150
Mg ii 4030–4150 4450–4650
Fe λ4800 4450–4650 5050–5285
S iiW 5050–5285 5500–5681
Si ii λ5972 5550–5681 5850–6015
Si ii λ6355 5850–6015 6250–6365
O i λ7773 7100–7270 7720–8000
Ca ii IR 7720–8000 8300–8800

Notes. The b and r exponents respectively represent the left (blue) and
right (red) peak.

Table A.3. Wavelength regions (in Å) used to compute the feature
velocities, together with their rest-frame wavelengths, λ0.

Velocity λmin–λmax λ0

v(Si ii λ4131) 3963–4034 4131
v(S iiW λ5454) 5200–5350 5454
v(S iiW λ5640) 5351–5550 5640
v(Si ii λ6355) 6000–6210 6355

A.2.1. Formalism

Smoothing a noisy spectrum Y consists of the determination of
the smoothed spectrum Y ′, which is a function of the initial flux
Y ′ = f (Y). Y ′ is an estimator of the noise-free and unknown
original flux, convolved by the instrumental resolution: Ŷ . It is
related to the observed flux by:

Y = Ŷ + N , (A.1)

where N is a realization of the spectral noise vector. The good-
ness of the smoothing being represented by the error function,

‖Y ′ − Ŷ‖ =̂ (Y ′ − Ŷ)T W(Y ′ − Ŷ) , (A.2)

where W is the inverse of the noise covariance matrix, this
requires minimization of a quantity which depends both on the
noise properties and the signal shape. As the true spectrum, Ŷ , is
unknown, we need to build an estimator of ‖Y ′ − Ŷ‖ which is
independent of Ŷ . For a linear regularization, one can write:

Y ′ = f (Y) = BpY , (A.3)
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where Bp is a smoothing matrix which only depends on the cho-
sen smoothing technique and a smoothing parameter p. Intro-
ducing Eqs. (A.1) and (A.3) into (A.2), one can show that:

‖Y ′ − Ŷ‖ = (Y ′ − Y + N)T W(Y ′ − Y + N) (A.4)

= ‖Y ′ − Y‖ + 2NT W(Bp − I)(Ŷ + N) + NT WN. (A.5)

An estimator of the error function, ε, that has to be minimized
can be constructed by noticing that

E
[
‖Y ′ − Ŷ‖

]
= E

[
‖Y ′ − Y‖

]
+ 2 Tr (Bp) − n, (A.6)

where E is the mathematical expectation value, Tr is the Trace
operator, and n is the rank of the vector Y . As we have only one
realization of Y , this translates to:

ε = ‖Y ′ − Y‖ + 2 Tr (Bp) − n, (A.7)

which is the quantity that is minimized with respect to p.
Given a class of linear smoothing methods Bp, we have thus

defined a procedure to find the value of p for which the smoothed
spectrum best reproduces the original unknown one given an
observed spectrum. This method is not exempt from possible
overtraining, however this is mitigated by restricting the opti-
mization to a single parameter. This was tested with Monte Carlo
simulations.

A.2.2. B matrix estimation

Among all possibilities, we chose a Savitzky–Golay regulariza-
tion (Savitzky & Golay 1964, SG) as it allows the reduction of
the high frequency noise, while keeping the original shape of the
feature. This method relies on fitting a k-order polynomial func-
tion for each point i in a fixed window size p (with p > k + 1)
centered on the current point and is designed to preserve the
locus of maxima for even values of k. Each observed data point
is replaced by its fit value, and the window then moves to the
next data point until the spectrum is completely smoothed. As
we have fixed the degree of the polynomial function to k = 2,
the only parameter that has to be optimized is the window size,
p. This transformation is linear, and the optimal window size
p and corresponding smoothing matrix Bp are found by min-
imizing Eq. (A.7). The value of p is estimated individually for
each spectral region of a given spectrum, and the spectral indica-
tor measurements are performed on the corresponding smoothed
spectrum, as indicated above.

A.3. Uncertainties

The uncertainty on a given spectral-indicator measurement
arises from the statistical noise of the data and the induced
uncertainties on the measurement method parameters. In our
approach, these two uncertainties are independently measured
using the smoothed spectrum as a reference: the SG window
size is typically large enough so that the residual noise can be
neglected in the simulations.

A random noise matching the statistical properties of the
observed data is then added in order to generate a mock spec-
trum, and the spectral indicators are measured on this new
spectrum as if it were the observed one. After one thousand gen-
erations, we are able to derive the statistical fluctuations of the
obtained values, which we quote as the statistical uncertainty.
This is computed as the standard deviation from the value mea-
sured on the real spectrum, thus taking into account a potential

bias. This bias typically corresponds to 10–20% of the total error
budget.

In order to save computation time, the initial SG window size
p is determined once and for all using the original spectrum. It is
then kept constant when measuring spectral indicators on all the
simulated spectra. However, the noise affecting the initial spec-
trum induces an uncertainty in the smoothing parameter. This
has been studied on a reduced set of simulations for which the
optimal p was derived for each realization of the noise, and the
corresponding uncertainty was found to range from 15% to 20%
depending on the spectral zone. We then propagate this uncer-
tainty by computing the spectral-indicator values on the origi-
nal spectrum for several values of p in this 15−20% range. The
standard deviation of the resulting spectral-indicator value dis-
tribution gives an estimate of the systematic error introduced by
the arbitrariness of the smoothing method, which is found to be
∼20% of the total error on average. These two uncertainties are
quadratically added together to derive the final uncertainty for
a given spectral indicator. This estimate takes into account the
statistical noise of the spectrum, as well as the induced scat-
ter in wavelength and flux of the extrema. Our measurement
errors thus include all nonlinear effects due to limited signal
to noise and can be trusted for subsequent statistical analysis.
More details could be found in Chotard (2011) and Nordin et al.
(2011).

A.4. Performances

A.4.1. Failure rate

When one of the extrema defining a spectral indicator lies on
a flat and/or noisy section of the spectrum, its measurement
has a chance of failure. In that case, the measurement is auto-
matically rejected and a visual scan using control plots is per-
formed to confirm the actual lack of an extremum. The rejection
of the “bad” measurements is performed using a 3σ clipping
in the measured-uncertainty space: if the uncertainty made on a
given measurement is larger than m + 3 × std, where m and std
are the average and standard deviation of this spectral-indicator
uncertainty distribution (for the whole sample), the correspond-
ing measurement is rejected. Considering all the spectral indi-
cators measured on the 113 input spectra in a range of phase
of ±2.5 days around maximum light and presented in this paper,
the global failure rate of the measurement procedure is less than
10−3 for the automatic selections mentioned above. If it does
happen, the spectral indicators are set to the average value and
assigned an infinite error.

A.4.2. Quoted uncertainties

A simple test has been performed to confirm the robustness of
the method. In our selected sample, 18 SNe Ia have two or more
spectra taken in the same night in a phase interval of ±5 days
around maximum light. We then computed the distribution of
the pull,

δI
σδI

=
I1 − I2√
σ2

I1
+ σ2

I2

, (A.8)

for all the spectral indicators I (feature velocity and absorption
ratio) measured on each spectrum of a same night (for a same
supernova). This distribution is centered around −0.01 with a
dispersion of 1.06 which indicates that our estimation of the
uncertainty is valid up to a possible underestimation of the error
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by 6%. This number is small enough so that we can trust our
uncertainty estimation for the main analysis.

Appendix B: Expectation-maximization factor
analysis

Dimensionality reduction in the presence of noisy data is often
an overlooked problem. However, standard methods like PCA
tend to fail at capturing the intrinsic variability of the data and
the principal components align with the direction of the noise
when the latter becomes important. Factor analysis on the other
hand is a statistical method designed to model the covariance
structure of high dimensional data using a small number of latent
variables. It estimates both the natural variability of the sample
and the noise arising from the measurements, under the assump-
tion that the statistics are the same for all data records. Our case
is slightly different: on one hand, the noise statistics are different
for each measurement, but on the other hand, their variance is
already known. We thus adapted the expectation-minimization
algorithm presented in Ghahramani & Hinton (1997) to accom-
modate for the specifics of our problem. The resulting method is
also known as probabilistic PCA. The formalism is the follow-
ing: xi is a vector of rank l representing the measurement i. It is
linked to the factor qi, vector of rank k ≤ l and the noise ηi by:

xi = x0 + Λqi + ηi, (B.1)

where x0 is a central value which can be further neglected with-
out loss of generality (x0 = 0), qi is assumed to follow a normal
distribution of unit variance, and ηi follows a multivariate nor-
mal distrubution of variance Ψi. In our case, Ψi is diagonal, a
property that can be used to speed-up computations. Λ is the
matrix containing the k explicative vectors that we need to deter-
mine. While Λ is not uniquely defined, ΛΛT is and represents
the intrinsic covariance of the data, that is, the one we would
observe in the absence of noise. The eigenvectors of ΛΛT thus
correspond to the k first eigenvectors that PCA would have found
in the absence of noise.

To find Λ, instead of directly maximizing the likelihood
of observing xi, the expectation-maximization algorithm intro-
duces the latent variable qi and then maximizes the expected
likelihood over qi. The joint probability of xi and qi is the fol-
lowing multivariate normal distribution:

P
([

xi
qi

])
= N

([
0
0

]
,

[
ΛΛT +Ψi Λ

ΛT I

])
. (B.2)

The block-diagonal elements of the covariance matrix rep-
resent, respectively, the covariances of xi and qi, and the non
block-diagonal elements represent the covariance arising from
the relation (B.1). Expectation-maximization is an iterative pro-
cedure which ensures that the likelihood increases at each iter-
ation and it has been shown that the convergence is faster than
using a gradient method (Dempster et al. 1977). Each iteration
proceeds in two steps. The first step, called the E-step, consists
of calculating the expectation of the conditional first and second
moments of qi for a given Λ:
E-step:

qi=̂E
[
q|xi

]
= ΛT (Ψi + ΛΛT )−1xi (B.3)

E
[
q qT |xi

]
= I − ΛT (Ψi + ΛΛT )−1Λ + qi qT

i . (B.4)

Once these two quantities are computed, the second step, or M-
step, consists of estimating the Λmatrix by maximizing the like-

lihood expectation, which provides the condition:

N∑
i=0

Ψ−1
i Λ E

[
q qT |xi

]
=

N∑
i=0

Ψ−1
i xiqT

i . (B.5)

In the case whereΨi is diagonal, one can independently calculate
each row of Λ, noted Λ j, according to the relation
M-step:

Λ j =

 N∑
i=0

x j
i

ψ
j j
i

qT
i

  N∑
i=0

1

ψ
j j
i

E[q qT |xi]

−1

, (B.6)

After the last iteration, the internal degeneracies of the descrip-
tion are lifted with the transformation of Λ into an orthogonal Λ′

matrix which satisfies the condition:

Λ′Λ′
T

= ΛΛT . (B.7)

The columns of Λ′ are aligned with the eigenvectors of ΛΛT and
the square of their norm are the respective eigenvalues.

Appendix C: Orthogonal distance regression

C.1. Expectation and maximization steps

Similarly to the factor analysis, hi and A are estimated itera-
tively. The first step consists of minimizing the χ2 with respect
to hi, which amounts to solving the equation:

∂χ2

∂hi
= 0 (C.1)

and consequently gives:
E-step:

hi =
(
AT WMi A + Wxi

)−1 (
AT WMi Mi + Wxi xi

)
. (C.2)

Once the E-step is performed we can estimate the matrix A
by

∂χ2

∂A
= 0, (C.3)

which gives:
M-step:

Ã =

 N∑
i=0

hihT
i ⊗WMi

−1  N∑
i=0

WMi MihT
i

 , (C.4)

where Ã is the vector that contains all columns of A put end-to-
end and the ⊗ operator is the Kronecker product. The estimation
of the A matrix and the orthogonal projections hi is done by
reiterating the E-step and M-step until χ2 convergences.

C.2. Fixing the degeneracies

The free parameters of Eqs. (5) and (22) that we find through
orthogonal distance regression contain degenerate degrees of
freedom. These must be fixed in order to present an unique an
interpretable solution.

A46, page 23 of 24



A&A 636, A46 (2020)

C.2.1. Degeneracies of the extinction fit

The term describing the extinction, Aλ0,iγ(λ), is not directly con-
strained by external observations. As a consequence, Eq. (5) is
invariant under several transformations. The first one is

Anew
λ0,i = Aλ0,i +

∑
j

h j
i c j, (C.5)

α
j new
λ = α

j
λ − γλ c j. (C.6)

We must therefore fix the c j. A natural choice is to impose
that the Aλ0,i are decorrelated with the h j

i . Indeed, any correlation
would imply that the extinction term contains information linked
to the intrinsic properties described by h j

i . Thus after each E-step,
we imposed a correlation of zero between the Aλ0,i and the h j

i ,
which amounts to applying the transformations (C.5) and (C.6)
taking for the c j

c =
[
cov

(
h̃
)]−1

cov
(
h̃,Aλ0

)
, (C.7)

where h̃ is the vector that contains the hi, cov
(
h̃
)

is the covari-

ance matrix of the h̃, cov
(
h̃,Aλ0

)
is the vector that contains the

covariances between the h j
i and the Aλ0,i. The second degeneracy

to be fixed is the scale of γλ: only the product Aλ0,iγλ plays a role,
and we then impose after each iteration

γλ0 = 1 (C.8)

by rescaling accordingly Aλ0,i and γλ.
Finally, we need a prescription for the mean value of Aλ0,i:

we choose it to be centered at zero. This corresponds to the fol-
lowing transformation

Anew
λ0,i = Aλ0,i −

1
N

∑
i

Aλ0,i , (C.9)

Mnew
λ,0 = Mλ,0 +

γλ
N

∑
i

Aλ0,i. (C.10)

which leaves the χ2 invariant and amounts to placing the average
spectrum at the average extinction.

C.2.2. Degeneracies of the global fit

The estimation of the grey parameter, ∆Mgrey i, is affected by
different degeneracies which can be fixed after the E or M iter-
ations. We choose to fixe them after each E-step. The first one
arises from the invariance of Eq. (22) under the transformation:

∆Mnew
grey i = ∆Mgrey i +

∑
j

h j
i c j, (C.11)

α
j new
t,λ = α

j
t,λ − c j. (C.12)

We must therefore fix the c j. Similarly to the prescription made
for the extinction fit, a natural choice is to impose that the
∆Mgrey i and the h j

i are uncorrelated. Indeed, the interpretation is
made easier with α j containing all the information driven by h j

i ,
including its global impact on magnitudes. We thus impose after

each E-step that the correlation between the ∆Mgrey i and the h j
i

is zero. This is obtained by applying the tranformations (C.11)
and (C.12) taking for the c j:

c =
[
cov

(
h̃
)]−1

cov
(
h̃,∆Mgrey

)
, (C.13)

where h̃i is the vector that contains the h j
i , cov

(
h̃
)

is the
observed covariance matrix computed on the set of h̃i vectors
and cov

(
h̃,∆Mgrey

)
is the vector that contains the covariances

between h j
i and ∆Mgrey i. Finally, by convention, the ∆Mgrey i are

centered on zeros at each step. This is obtained by the following
transformation, which leaves the χ2 invariant:

∆Mnew
grey i = ∆Mgrey i −

1
N

∑
i

∆Mgrey i , (C.14)

Mnew
t,λ,0 = Mt,λ,0 +

1
N

∑
i

∆Mgrey i. (C.15)

Appendix D: Matrix dispersion estimation

Once the minimum of the χ2 defined in Eq. (9) is reached, the
dispersion matrix is estimated. For this purpose, we use the same
method as in Chotard et al. (2011) and which is described in
detail in Chotard (2011). The approach is to calculate D from
the observed dispersion of residuals and to subtract the average
dispersion due to uncertainties:

D =
1
N

∑
i

(
δMiδMT

i − Ci

)
(D.1)

where δMi are the residuals of the model once the minimum of
the χ2 is reached and is defined for a given wavelength as:

δMλ,i = Mλ,i − Mλ,0 −
∑

j

q j
iα

j
λ − Aλ0,i γλ (D.2)

and Ci is the covariance matrix that accounts for the total propa-
gation of residuals error and is defined as:

Ci =


. . . 0

σ2
λi

0
. . .

 +
(
σ2

cal + σ2
z

) 
1 · · · 1
...

. . .
...

1 · · · 1

 + αcov
(
qi
)
αT

(D.3)

where α is the matrix that contains the intrinsic vectors and is
defined as:

α =
(
α1,α2,α3, . . .

)
(D.4)

In order to ensure that the matrix D is positive definite, the
negative eigenvalues of the matrix are set to zero. Once the
matrix D has been calculated, we add it in the expression of the
Eq. (9) in order to recalculate the spectral distribution in energy
and we iterate the calculations of D and the computation of the
SED, until reaching the maximum of the restricted maximum
likelihood (Guy et al. 2010).
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