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More surface detail with
One-Two-Pixel Matching

Ewelina Rupnik, Marc Pierrot Deseilligny

Abstract—Photogrammetrically derived Digital Surface Mod-
els have been widely adopted in geoscientific applications such as
mapping and change detection across volcanic surfaces, glaciers,
areas of seismic activity, forests, river landforms etc. Resolution of
the reconstructed surface is crucial as more accurate information
enables more profound understanding of the phenomena. With
this objective in mind, the research presented here proposes a
new matching cost function that produces surfaces of enhanced
resolution with respect to the gold standard: the window-based
semi-global matching technique. We evaluate the algorithm on
different image datasets spanning various acquisition geometries,
radiometric qualities and ground sample distance sizes. In par-
ticular, results on Earth satellites (SPOT-7, Pléiades), extraterres-
trial (Chang’E3 moon landing), aerial and terrestrial acquisitions
are shown. The implementation of the method is available in
MicMac – the free open-source software for photogrammetry.

I. INTRODUCTION

Digital surface model (DSM or photogrammetric DSM) gen-
eration using dense image matching is an accepted technique
across the geoscience communities. Next to other competitive
techniques such as LiDAR or radar, image-based reconstruction
produces denser 3D information, it is cost-effective and richer
as it includes photometric observations that allow, for example,
3D change detection or classification. Photogrammetric DSMs
in geoscience applications can be generated from terrestrial
images, unmanned aerial vehicle (UAV) acquisitions or high-
resolution optical satellite imaging.

a) Terrestrial and UAV applications: Modelling of sur-
face roughness parameters [1]; mapping volcanic surfaces
[2]; and measuring glaciers’ microrelief progression [3] are
some of many examples of terrestrial applications carried
out with consumer grade cameras and little expert knowl-
edge. UAV-based surveys are increasingly presented as an
alternative to terrestrial surveys due to their larger reach,
their ease of deployment and reduced operational cost. With
respect to resolution, UAV surveys are a compromise between
high-resolution close-range and moderate-resolution satellite
imaging. The success of the UAV technology is reflected
in numerous publications which show that UAV-collected
imagery can: enable modelling of forest canopy height [4];
determine the rate and extent of landslide movements [5];
quantify coastal erosion [6], [7] and deposition processes [8] in
aeolian research; map ultrafine (i.e. centimetric) tectonic faults
in tectonic research [9]; or be employed in repeated surveys
of the ice-sheet masses in glaciology [10].

b) Earth satellite and extraterrestrial applications: With
the available optical satellite data provided by modern (e.g.
Pléiades 1A/B, SPOT-satellites, QuickBird, WorldView 2/3/4,
CubeSat) or older satellites (e.g. CartoSat, ASTER), we can

capture the Earth’s surface at ground sampling distances
(GSD) in the range of 0.3 metres to some metres, yielding
DSMs of a similar resolution [11]. Coupled with daily revisit
times, satellite images are a suitable tool for mapping the
surface evolution. To take a few state-of-the-art examples,
satellite images are used to: identify patterns and rates of sand
dune migrations [12]; quantify seismic surface displacement
[13], [14]; estimate timber volume in a densely forested area
[15]; study the time-varying coastal shelf [16]; employ multi-
temporal DSMs for elevation change studies across glaciers,
volcanoes and river landforms [17]; or map other planets’
topographies [18].

In all of the mentioned applications, the resolution of
the surface plays a significant role because it improves the
observability of the phenomena. Following the principle that
one can more easily spot a small change if one can see
more detail, an image matching algorithm that furnishes better
resolution surfaces allows possible change detection at finer
detail. Put simply, techniques that enable finer resolution could
allow earlier change detection. The research presented in this
publication addresses fine resolution surface reconstruction by
proposing a novel image matching technique.

A. Related work
a) Generalities: Photogrammetrically derived DSMs are

typically found by solving an energy function with global,
semi-global matching (SGM) or local methods.

Classically, local methods calculate the best correspon-
dences in three steps: (i) calculate matching cost, (ii) aggregate
cost over a support domain, and (iii) select the depth by
the Winner-Takes-All [19] or the belief propagation [20], [21]
schemes. The local character of the methods makes them
computationally efficient, often at the expense of lower 3D
precision and completeness.

Whether through a global or SGM approach, the best
correspondences are found by minimizing a cost function
that is the sum of the data and the regularity term. Global
methods minimize the energy defined over all pixels in a
MRF graph with techniques such as α-expansion moves [22],
[23] or message passing [24]. Alternatively, definition over a
continuous space and sub-pixelar reconstruction precision is
possible with variational methods [25]. Such minimization is
NP-hard, and does not allow for concave regularity terms. The
first poses memory issues for large scale reconstructions, while
the latter inhibits faithful reconstruction at discontinuities (e.g.
buildings).

The SGM methods are solved with multi-directional dy-
namic programming techniques, impose no constraint on the
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regularity term and the optimization is resolved along indepen-
dent lines of pixels [26], [27]. Therefore, the computational
times remain reasonable as the image size grows. Since cost
function is cumulative along a number of directions, the found
optimal solution is close to the global solution.

b) Matching cost calculation: Independent of the algo-
rithm, many different measures exist that describe the simi-
larity (i.e. photo-consistency) between pixel correspondences.
The very first and most straightforward measure compares
the pixel intensity values [28], [29]. However, pixel intensity
difference are unreliable for matching in real-world conditions
(i.e. non-Lambertian surfaces or, radiometric differences due to
illumination change) and in the presence of non-textured zones
or repetitive patterns. In practice, photo-consistency measures,
e.g. zero-mean normalized cross-correlation (NCC), Census,
Rank [30], Mutual Information [31], are defined over a support
domain (square windows ordinarily of 3x3, 5x5, etc. size)
[32]. Including more context within the per-pixel matching
is advantageous because it increases the uniqueness and the
robustness of the matched points, as well as attenuates the
noise caused by the low signal-to-noise ratio of the sensor.
Note, however, that (i) it interpolates the image signal within
the support and possibly misses the surface fine structures, as
well as (ii) a pixel-wise cost aggregated over a support window
assumes constant disparity within the aggregated neighbour-
hood. The latter results in smoothness artefacts or mismatches
if it happens to overlap a discontinuity, e.g. a building’s edge.
Furthermore, if the support window is chosen to be a square
region, it takes for granted that the square shape in one view
will project to an exact square in another view. Therefore,
this technique neglects the perspective transformations the
shape undergoes once projected to 3D and subsequently back-
projected to another view (the so-called window foreshortening
problem).

Numerous approaches have been proposed to overcome
the above shortcomings. To mitigate the mismatches
at discontinuities, adaptive support windows avoiding
discontinuities [33], adaptive windows minimising a cost,
or intensity gradient cost aggregation [27] were proposed.
Sweeping-planes [34], 3D slanted windows [20], or a fusion
of slanted and adaptive windows (i.e. elongated windows
with different orientations) [35] were adopted to account for
different surface slopes. Initialisation of the surface planes
is carried out by analysing the sparse reconstruction [34],
dense reconstruction computed with square windows [33] or
by random assignment [20]. Each option carries some risk
of missing the correct surface slope or providing incomplete
initialisation. For instance, sparse reconstruction can initialize
only in places where 3D points exist, hence omits poorly
textured areas; classical dense reconstruction may fail to
provide good initial surfaces at discontinuities and slopes;
and random selection gives no guarantee of assigning the
suitable plane slope to either of the pixels belonging to a
region underlying that plane.

B. Contributions

In this work we aim to develop enhanced precision depth
reconstruction free from fronto-parallel artefacts and with
good performance at surface discontinuities. To realise this
goal we:

– formulate a new matching cost defined over a single pixel,
– adopt a second pixel to add context and allow for slope

testing with minimum information (a slope is defined by
two points in 3D space and it is tested with exactly two
pixels),

– embed the image dense matching in a semi-global match-
ing framework which favours slope coherence in the
neighbourhood of a point and ensures surface continuity
in poorly textured areas.

To increase the robustness of the reconstruction, the matching
cost is defined in a multi-view constraint.

II. METHODS

A. One-Two-Pixel cost function

With the objective of excelling the spatial resolution of re-
constructed depths, we propose a reformulated energy function
(1):

C(D) =

N∑
p=1

CI(p, dp)+∑
q=Np

CC(dp,dq) +
∑
q=Np

CT (dp,dq)

(1)

where CI is the single-pixel term, CC is the two-pixel
term, CT is the smoothing term, N is the number of all
pixels, dp is a disparity at position p and dq is the disparity at
position q belonging to the Np neighbourhood of p. C(D) is
the minimum cost of assigning the optimal depths D across
all pixels. The minimum solution is found in the following
three steps: cost assignment (see Alg. 1), cost aggregation
(see Alg. 2) and the optimal depth selection. The described
methods are implemented in MicMac – the free open-source
software for photogrammetry [36].

a) Two-pixel data term: CC encodes the dissimilarity of
a two-pixel window across multiple views (NbV ), see Eq. (2).
Ideally, the advantages of the minimum window are twofold:
(i) it is more apt to reconstruct fine 3D scene structure than the
usual square correlation window, and (ii) it is less susceptible
to noisy data than as if only the single pixel term was used.

Employing the CC is equivalent to iterating over dq and
verifying the coherency of a given slope with the image data,
the final cost of a slope assignment being an accumulation
of the dissimilarities calculated independently for each stereo
pair. Speaking in terms of the cost structure, the CC costs
can be associated with arcs (in analogy to CT ), rather than
with nodes as is the case of CI (see Alg. 2 and Fig. 1).
Note that the two-pixel term should not be confused with
the smoothness term. The latter applies ”blind” penalization,
without considering the pixel intensity values.
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For a depth assignment dp, the CC cost will depend on
the differences of normalised intensity ratios at position p
and q. The choice of ratios was made to guarantee a robust
comparison in the presence of additive and multiplicative
illumination changes across the views. The role of PdsC is
to control the relative influence of the CC term in the cost
function. In all of our tests, it was also set to 1.0.

CC(dp, dq) = PdsC ·
1

NbV − 1
·
NbV∑
v=1

∣∣∣∣∣I
v
dp

I0dp

−
Ivdq

I0dq

∣∣∣∣∣ (2)

b) Single-pixel data term: CI is the cost of assigning a
particular depth to the position p. It is implemented as a truly
one-pixel measure and conveys the dissimilarity of two pixels
in multiple views (NbV ), see Eq. (3). To match the dynamic
range of the two-pixel term, it is expressed as a mean of all
(1− intensity ratios) between the master I0 and the secondary
Iv . The δv parameter is added to model the view-dependent
radiometric differences that may disturb the cumulative cost
(this is unlike in the CC expression where the effect of the
radiometry change is fully modelled by the difference of
ratios). The value of the parameter is a function of intensity
ratios between the master image and a secondary image. It can
be pixel-dependent – if non-constant radiometric corrections
across the images are necessary (e.g. specular reflections) – or
take a global value per image pair (i.e. master and secondary
image couple; see Alg. 1 where δv is computed on a pixel
basis). When a pixel-dependent case is chosen, the ratios shall
be first smoothed by simple averaging or by 2D polynomial
function fit.
PdsI is a weighting factor and it plays the same role as

PdsC . In all of our tests, we set the value to 1.0.
c) Regularizing term: The standard regularization func-

tion present in MicMac library has been adopted and it is not
discussed hereafter (see [26] and [37] for more details on the
subject).

CI(p, dp) = PdsI ·
1

NbV − 1
·
NbV∑
v=1

[
1−

Ivdp

δv · I0dp

]
(3)

III. RESULTS

A. Datasets
a) Aerial acquistion – Vaihingen dataset: A set of four

aerial images acquired with the UltraCam-X camera at 0.2m
GSD is used in this experiment. The images are part of the
EuroSDR Matching benchmark [38]. The camera calibration
and orientation parameters were also furnished with the bench-
mark. The available ground truth (GT) data is a surface that is a
median of several DSMs furnished by all of the participants of
the benchmark. As a result, many surface details are discarded
and the GT is considered unsuitable to evaluate the One-Two-
Pixel matching algorithm. The evaluation was carried out on
an alternative GT (cf. Section III-B) over an area of ≈ 5km x
3km (cf. Fig. 7a and Fig. 8a).

Figure 1: Top: One-Two-Pixel cost structure corresponding to
a stereo pair. In grey is the surface to be inferred from the
matching. CI

p,dp and CI
q,dq are the costs of taking disparity

dp at p and dq at q , respectively. CC
dp,dp is the cost of

assigning a given slope. Bottom: A stereo pair that feeds the
cost structure. The cost structure is illustrated on a stereo
pair in epipolar geometry, however, the implemented algorithm
is not constrained by the number of views and, by default,
operates in the original image geometry.

b) Satellite acquisition I – Pléiades dataset: This scene
was acquired by a tri-stereo pair from the Pléiades 1B satellite.
It is entirely covered by sand dunes of varying patterns, situ-
ated in northern Chile. As a preliminary processing step, the
satellite orientation parameters were refined in a RPC-bundle
adjustment using methods described in [39]. The evaluation
was carried out on an alternative GT (cf. Section III-B) over
an area of ≈ 7.5km x 5.5km (cf. Fig. 7b and Fig. 8b).

c) Satellite acquisition II – Spot-7 dataset: A Spot-7 tri-
stereo pair is used in this experiment. The scene represents a
rural zone with rich vegetation and varying altitudes. Refined
satellite orientation parameters in the form of a replacement
grid were furnished with the dataset. Evaluation is carried out
within a ≈ 2km x 2km region (cf. Fig. 7c and Fig. 9) on a
GT described in Section III-B.

d) Extra-terrestrial acquisition – Chang’E 3 dataset:
In late 2013, the People’s Republic of China launched a lunar
surface exploration mission known as Chang’E 3. To calculate
the explorer’s trajectory (cf. Fig. 2), over 150 conic images
acquired at landing were downloaded1 and post-processed
using Structure-from-Motion methods in MicMac. The images
were available in a heavily compressed jpeg format.

Reference data in the form of a 1.5m orthophoto and a 30m
resolution DSM produced from the Lunar Reconnaissance

1http://moon.bao.ac.cn/
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Algorithm 1 Cost assignment

V Im[v].ImOrth(X,Y ) - intensity in image v at position
(X,Y ); all images are orthorectified to the geometry of the
master

ratio(int, int) - calculate ratios
norm(int) - normalise to [-127,127]
δ - radiometric calibration
SurfOpt - optimiser

. Assignment
for Z = Zmin;Z < Zmax;Z + + do

for X = 0;X < Sz.x;X + + do
for Y = 0;Y < Sz.y;Y + + do

V0 = V Im[0].ImOrth(X,Y )
CI = 0
for v = 0; v < NbV ; v + + do

Vk = V Im[v].ImOrth(X,Y )
V al = ratio(V0, Vk)
V al = norm(V al)
r.push back(V al)

V cor
k = δvVk
V alcor = ratio(V0, V

cor
k )

CI+ = Abs(V alcor)
end for

. Communicate the vector of ratios and the data term to
the optimiser

SurfOpt(X,Y, Z) = r
SurfOpt(X,Y, Z) = CI

end for
end for

end for

Orbiter Camera2 (LROC) images served to geo-reference
the images. The provided reference data is of much lower
resolution then the produced DSMs (i.e. 0.25m). Because of
this, an alternative GT was created and is detailed in the
following Section III-B.

e) Terrestrial acquisition: The last dataset is a sequence
of 5 images taken with a long focal length DSLR camera (i.e.,
f = 105mm), see Fig. IV. It does not undergo quantitative
evaluation but is shown to demonstrate the performance of the
One-Two-Pixel matching on large discontinuities (cf. Figs. 12
and 13).

B. Ground truth creation

Due to the lack of GT availability, we adopted a strategy
where full resolution images serve to establish the GT surfaces,
and are compared against surfaces calculated using lower
resolution images. Following this concept, the GTs of the
Vaihingen / Pléiades / Spot-7 datasets are denoted with the Z1

2http://lroc.sese.asu.edu

Figure 2: Chang’E 3 explorer moon landing trajectory. (A)
≈ 150 images acquired before the landing. (B) Close-up of
the end trajectory, the highlighted sets of images correspond
to images used in the processing. The surface calculated with
the 4th quadruplet is compared against a surface produced by
a fusion of all the quadruplets.

postfix corresponding to zoom 1, or the full resolution images.
Analogously, the Z2 postfix signifies zoom 2, or half the full
resolution images. In other words, the matching GSDs are as
follows: GSDV aihingen

Z1 = 0.2m, GSDV aihingen
Z2 = 0.4m,

GSDPleiades
Z1 = 0.5m, GSDPleiades

Z2 = 1.0m, GSDSpot−7
Z1 =

1.5m, and GSDSpot−7
Z2 = 3.0m. As there is no obvious choice

as to which reconstruction method to employ to create the
GT, two sets of GTs are adopted: a GT calculated with cross-
correlation similarity measure (CORRZ1) and a GT obtained
with the One-Two-Pixel measure (12PixZ1).

Because the Chang’E 3 dataset features a large number
of images of varying scales, we have chosen to calculate
the GT based on the images obtained with larger scales (i.e.
those takes closer to the planet surface). Using this GT, we
then evaluate surfaces obtained from images taken at higher
altitudes. Nonetheless, the footprints of the images closer to
the surface are smaller, and consequently, cover a smaller
area than the surface under evaluation. To match the surface
extent and further enhance the quality of the GT, we perform
surface reconstruction from multiple sets of quadruplets, and
subsequently fuse them in 3D as presented in [11]. In Fig. 2,
the evaluated image set (i.e., 4th quadruplet) is highlighted in
red, while the gray-green-blue sets (i.e., 1st–3rd q.) are used
to produce the GT. All surfaces were re-sampled to a 0.25m
grid which corresponded to the mean GSD of 4th quadruplet.
See also Fig. 10 (G)-(H) for the output GT surface and the
LROC orthophoto, respectively.
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Algorithm 2 Cost aggregation

for each direction + do . forward
for each direction - do . backward

for X = 0;X < Sz.x;X + + do
for Y = 0;Y < Sz.y;Y + + do

for DZ = Zmin;DZ < Zmax;DZ + + do

Cost = CostOfDZ(DZ) . get the value of concave cost function at DZ
rk = SurfOpt.rOfk(k) . recover the vectors of ratios
rk+1 = SurfOpt.rOfk(k + 1)

. calculate the two-pixel cost and add to cost
Cost+ = TwoPixCost(rk, rk+1)

. communicate the two-pixel cost to the optimiser
SurfOpt.UpdateCostOneArc(rk+1, Dir, Cost)

end for
end for

end for
end for

end for

C. Evaluation strategy

The results are interpreted in terms of accuracy measures
suited to (i) normal distribution observations (i.e., mean,
median, standard deviation) calculated on DSMs’ signed dif-
ferences ∆h, as well as (ii) non-normal errors, insensitive
to outliers and calculated on absolute differences |∆h| (i.e.
Normalised Mean Absolute Deviation (NMAD) and sample
quantiles) [40]. Sample quantiles enable us to infer the per-
centage of errors that fall within a specified interval. The
statistics are presented in Tab. I and Fig. 4.

Additionally, theoretical histograms and histograms of ∆h
are plotted in Fig. 5. In Fig. 6 height profiles are drawn, and in
Figs. 7, 8, 9, 10, qualitative results in the form of gray-shaded
DSMs are given.

D. Discussion

a) Aerial acquistion – Vaihingen dataset: Where the
CORRZ1 was considered the GT, all ∆h manifest a system-
atic shift of the DSM and a strongly non-normal distribution
(compare the mean with the median and the σ and NMAD
in Tab. Ia). Further evidence of the non-normality of the
distribution is the mismatch between the theoretical histogram
and the histogram calculated on the data, as is shown in
Fig. 5a. The ≈ 2m standard deviations are probably due to
the fact that the CORRZ2 DSM is incapable of discerning
the small vegetation rows which make up a lot of the area
of interest. Furthermore, note the fidelity with which the
12PixZ2 and 1PixZ2 reconstruct at discontinuities, and in
flat, non-textured zones (cf. Figs. 6a, 7a and 8a).

According to the sample quantiles, there is a tendency for
DSMs compared to 12PixZ1 (cf. dashed lines in Fig. 4)
to perform better than those compared to CORRZ1. The
three best sample quantiles corresponding to the size of the

GSD are 76%, 71%, and 68% for 12PixZ1 − 12PixZ2,
12PixZ1− 1PixZ2 and CORRZ1−CORRZ2, respectively.
In other words, 76%, 71%, and 68% of errors will be found
within the interval of 〈0, GSD〉.

b) Satellite acquisition I – Pléiades dataset: The
dataset’s quantitative error metrics and the qualitative inter-
pretation of the results are incoherent. The lowest mean and
median scores are observed for 12PixZ1− 1PixZ2, followed
by CORRZ1−CORRZ2 and CORRZ1−12PixZ2. However,
the standard deviations and NMAD follow the inverse order:
the performance of 12PixZ1 − 12PixZ2 precedes that of
CORRZ1 − CORRZ2 (cf. Fig. Ib). This could be partially
explained by the increased level of noise observed in the
images. While 12Pix and CORR can attenuate the noise due
to their support regions and the cost function smoothing term,
the 1Pix has only the latter. However, this does not necessarily
mean that more detailed surfaces are reconstructed with either
– observe the surface details reconstructed with 12Pix and
1Pix yet invisible to CORR in Figs. 6b, 7b and 8b. This
puts in question the chosen GT and the error metric used.

The spread between the NMADs and the standard devia-
tions signals, as previously, a non-normal error distribution.

c) Satellite acquisition II – Spot-7 dataset: The speci-
ficity of the images is the changing illumination across the
triplet pair (cf. Fig. 3 for image intensity ratios). To demon-
strate the efficacy of the radiometric calibration proposed in
the algorithm, the 12PixZ2 DSM is calculated twice: with and
without the calibration. Calibration using a global value per
image pair turned sufficient to model the illumination effect.
Note in Tab. Ic the significant improvement in accuracy with
the correction applied.

The ∆h in all cases match the normal distribution errors
relatively well (cf. Fig. 5c; except the non-calibrated result).
The 12PixZ2 performs best of all (cf. Tab. Ic) and obtains the
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lowest NMAD and σ measures, while its mean and medium
scores are placed ex aequo with CORRZ2. All surfaces but
the CORRZ2 exhibit a systematic shift when compared to the
CORRZ1 GT.

According to the sample quantile curves, when the
CORRZ1 is considered GT, 85% of CORRZ2, 76% of
1PixZ2 and 78% of 12PixZ2 DSMs’ errors lay within the
〈0, GSD〉 interval. When the 12PixZ1 was used, the pro-
portions of DSMs’ errors are: 84% for CORRZ2, 87% for
1PixZ2, and 89% for 12PixZ2 DSMs.

d) Extra-terrestrial acquisition – Chang’E 3 dataset:
1Pix DSM comprises a systematic error revealed by the
mean and median measures, while in contrast CORR and
12Pix DSMs reveal correspondingly insignificant or no bias
(cf. Tab. Id). This behaviour can be explained by the fact
that 1Pix cost function, defined on a single pixel, becomes
too ambiguous to find the correct surface. On the other
hand, CORR and 12Pix cost functions include more context
therefore remain close to the true surface. Until now, this
behaviour has not been observed, nonetheless, the quality of
the images in other datasets was incomparably better and free
from compression artefacts. Notice the different character of
noise here and in Satellite acquisition I, having per pixel
structure and arranged in blocks, respectively.

40% of the CORR DSM, 56% of the 1Pix DSM and 73%
of the 12Pix DSM errors lay within the interval of 〈0, GSD〉
(cf. Fig. 4). The long tails of the theoretical histogram distri-
bution in 12Pix and 1Pix DSMs suggest that some outliers
are present in the data (cf. Fig. 5d). Irrespective of that, the
12Pix DSM is the unquestionable winner among other results
for this dataset. The height profiles drawn over craters and on
flat ground in Fig. 6d and the DSMs shown in Fig. 10 confirm
the high fidelity of 12Pix DSM.

The evaluation is carried out within a region of interest
marked in blue in Fig. 10.

e) Terrestrial acquisition: Finally, in Fig. 13 several
areas of interest of the reconstructed statue are shown. The
evaluation metrics are (i) performance on slopes and (ii) the
level of surface detail. The results are: the CORR surfaces
are smoother than the 1Pix and 12Pix; the 1Pix produces
artefacts at large slopes; the 12Pix performs best in terms of
the level of detail and at discontinuities. In particular, note the
following points of interest:

• in Fig. 13a, the band over the forehead and the cheek
close to the ear;

• in Fig. 13b, the repetitive pyramid pattern and upper left
image corner for directional matching artefacts;

• in Fig. 13c, the cords of the guitar as well as the level of
noise on the flat area; and

• in Fig. 13d, the separation of fingers, as well as the parts
of the guitar.

IV. CONCLUSION

We have presented a new matching cost function that is
embedded in a semi-global matching framework. The method
was tested on 5 different datasets (1 aerial, 2 satellite, 1 extra-
terrestrial and 1 terrestrial dataset), 4 of which were evaluated

qualitatively and quantitatively. The quantitative assessment is
twofold: based on comparing DSMs’ reconstructions calcu-
lated with different similarity measures (i.e. cross-correlation,
one-pixel and one-two-pixel); and by comparing to reference
surfaces of higher resolution. During evaluation, normal and
non-normal error distribution metrics are taken into account, as
well as histograms, surface profiles and gray shaded surfaces.

The normal surface metrics do not reveal a clear winner
among all methods and suggest their inappropriateness for our
experiments. The distribution-free error metrics (i.e., NMAD
and sample quantiles) unanimously point to our method as the
better performer. In all experiments the 12Pix sample quantile
curves report the best measurement accuracies.

Similarly, the visual assessment of the surface quality
indicates that both the 12Pix and the 1Pix DSMs convey
more detail than the correlation-based DSMs. The 12Pix
and 1Pix exhibit similar performance except in two cases:
when considerable flaws in image quality are present and for
large slopes. In these two cases, the 12Pix similarity measure
outperforms the 1Pix.
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Figure 3: SPOT-7 dataset. Ratios of intensities between the
master image and two secondary images. The images are
ortho-rectified to the geometry of the master image. If the
ratios had similar values, the radiometric correction would be
superfluous.
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Table I: Mean, median and standard deviation scores calculated on DSMs signed differences, |∆h|. Three GT DSMs are
present in the table: CORRZ1 computed with cross-correlation, 12PixZ1 with One-Two-Pixel measures and GT computed
as a fusion of multiple quadriplets. The values in read are mean NMAD scores computed on all available GTs. The values
are expressed in meters.

(a) Vahingen dataset

Method mean median NMAD σ

CORRZ1 − CORRZ2 -0.08 -0.02 0.34 /0.38 2.32

12PixZ1 − CORRZ2 0.08 0.0 0.42 /0.38 2.24

CORRZ1 − 1PixZ2 -0.15 0.0 0.54 /0.42 2.75

12PixZ1 − 1PixZ2 0.0 0.0 0.30 /0.42 0.68

CORRZ1 − 12PixZ2 -0.19 -0.02 0.49 /0.38 2.71

12PixZ1 − 12PixZ2 -0.03 -0.02 0.27 /0.38 0.60

(b) Pléiades dataset

Method mean median NMAD σ

CORRZ1 − CORRZ2 -0.14 -0.06 1.06 /1.23 1.76

12PixZ1 − CORRZ2 0.19 0.13 1.39 /1.23 1.96

CORRZ1 − 1PixZ2 -0.43 -0.28 2.91 /2.30 2.91

12PixZ1 − 1PixZ2 -0.10 0.0 1.68 /2.30 1.65

CORRZ1 − 12PixZ2 -0.52 -0.36 1.66 /1.23 2.22

12PixZ1 − 12PixZ2 -0.19 -0.17 0.79 /1.23 1.00

(c) SPOT-7 dataset

Method mean median NMAD σ

CORRZ1 − CORRZ2 0.06 0.0 1.44 /1.50 2.21

12PixZ1 − CORRZ2 -0.08 -0.04 1.55 /1.50 2.16

CORRZ1 − 1PixZ2 0.22 0.0 2.05 /1.77 2.84

12PixZ1 − 1PixZ2 0.08 0.0 1.48 /1.77 1.87

CORRZ1 − 12Pixnocal
Z2 -0.15 0.0 3.91 /3.81 4.03

12PixZ1 − 12Pixnocal
Z2 -0.29 0.0 3.73 /3.81 3.75

CORRZ1 − 12PixZ2 0.21 0.07 1.85 /1.57 2.65

12PixZ1 − 12PixZ2 0.07 0.0 1.30 /1.57 1.73

(d) Chang’E 3 dataset

Method mean median NMAD σ

GT − CORR 0.04 0.04 0.47 0.49

GT −OnePix 0.19 0.15 0.29 0.34

GT −OneTwoPix 0.02 0.00 0.12 0.24

Figure 4: Sample quantiles calculted on: A. Vahingen, B. Pleiades, C. Spot-7, D. Chang’E 3 datasets. The gray zone indicates
|∆h| values that are ≤ GSD (of the lower resolution images). The × markers correspond to sample quantiles for respective
GSD values, i.e., they signal the percent of all ∆h for which 〈0 ≥ |∆h| ≤ GSD〉.
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(a) Vahingen dataset

(b) Pléiades dataset

(c) SPOT-7 dataset (d) Chang’E 3 dataset

Figure 5: ∆h histograms calculated for all datasets and Ground Truths (i.e., CORRZ1, 12PixZ1 and GT ). Superimposed
curves are theoretical histograms calculated from non-robust error metrics.
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(a) Vahingen dataset

(b) Pléiades dataset

(c) SPOT-7 dataset

Figure 7: Close-ups on selected DSM areas. The columns starting from left: the image, grayshaded DSMs computed with
CORR, 1Pix and 12Pix, respectively.
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(a) Vahingen dataset.

(b) Pléiades dataset.

Figure 8: Grayshaded representation of surfaces reconstructed with different methods and at different resolutions. A. CORRZ2,
B. 1PixZ2, C. 12PixZ2, D. CORRZ1, E. 12PixZ1.
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Figure 9: Spot-7 dataset. Grayshaded representation of surfaces reconstructed with different methods and at different resolutions.
A. CORRZ2, B. 12PixnoRadCal

Z2 , C. 1PixZ2, D. 12PixZ2, E. CORRZ1, F. 12PixZ1.

Figure 10: Chang’E 3 dataset. Surfaces reconstructed with (A) COR, (C) 1Pix, (E) 12Pix similarity measures, as well as
(G) the GT surface. The surface differences ∆h for (B) GT − COR, (D) GT − 1Pix, (F) GT − 12Pix. (H) is the LROC
orthophoto and in blue is the region of interest.

Figure 11: Terrestrial dataset. A sequence of 5 images used to generate the surface in Figs. 12 and 13.
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Figure 12: Terrestrial dataset. Left: the master image; right: the DSM and in blue the regions of interest.
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(a)

(b)

(c)

(d)

Figure 13: Terrestrial dataset. Close-ups on selected DSM areas. The DSMs were computed with CORR (left column), 1Pix
(middle column) and 12Pix (right column) similarity measures.



15

REFERENCES

[1] F. Bretar, M. Arab-Sedze, J. Champion, M. Pierrot-Deseilligny,
E. Heggy, and S. Jacquemoud, “An advanced photogrammetric method
to measure surface roughness: Application to volcanic terrains in the
piton de la fournaise, reunion island,” Remote Sensing of Environment,
vol. 135, pp. 1–11, 2013.

[2] S. Kolzenburg, M. Favalli, A. Fornaciai, I. Isola, A. Harris, L. Nan-
nipieri, and D. Giordano, “Rapid updating and improvement of airborne
lidar dems through ground-based sfm 3-d modeling of volcanic features,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 54, no. 11,
pp. 6687–6699, 2016.
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