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CROWDING AND QUEUING AT EXITS AND BOTTLENECKS

FISCHER MICHAEL, JANKOWIAK GASPARD, AND WOLFRAM MARIE-THERESE

Abstract. Experiments with pedestrians revealed that the geometry of the domain,
as well as the incentive of pedestrians to reach a target as fast as possible have a
strong influence on the overall dynamics. In this paper we propose and validate differ-
ent mathematical models on the micro- and macroscopic level to study the influence
of both effects. We calibrate the models with experimental data and compare the re-
sults on the micro- as well as macroscopic level. Our numerical simulations reproduce
qualitative experimental features on both levels and indicate how geometry and mo-
tivation level influence the observed pedestrian density. Furthermore, we discuss the
dynamics of solutions for different modeling approaches and comment on the analysis
of the respective equations.

1. Introduction

In this paper we develop and analyze mathematical models for crowding and queuing at ex-
its and bottlenecks, which are motivated by experiments conducted at the Forschungszen-
trum Jülich and the University of Wuppertal, see [3]. In these experiments student groups
of different size were asked to exit through a door as fast as possible. In each run the
geometry of the domain, ranging from a narrow corridor to an open space, as well as the
motivation level, by giving more or less motivating instructions, were varied. The authors
observed that

• The narrower the corridor, the more people people lined up. This led to a significantly
lower pedestrian density in front of the exit.

• A higher motivation level led to an increase of the observed densities. However its
impact on the density was smaller than changing the shape of the domain.

Adrian et al. [3] supported their results by a statistical analysis of the observed data as well
as computational experiments using a force based model. We follow a different modeling
approach in this paper, proposing and analyzing a cellular automaton (CA) model which
is motivated by the aforementioned experiments. We see that these minimalistic mathe-
matical models reproduce the observed behavior on the microscopic as well as macroscopic
level very well.

There is a rich literature on mathematical models for pedestrian dynamics. Ranging from
microscopic agent or cellular automaton based approaches to the macroscopic description
using partial differential equations. The social force model, see [16], is the most prominent
individual based model. Here pedestrians are characterized by their position and velocity,
which change due to interactions with others and their environment. More recently, the
corresponding damped formulation, see [3], has been considered in the literature. In cellu-
lar automata (CA), another much used approach, individuals move with given rates from
one discrete cell to another. One advantage of CA approaches is that the formal passage
from the microscopic to the macroscopic level is rather straight-forward based on a Taylor
expansion of the respective transition rates. This can for example be done systematically
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using tools from symbolic computation, see [21]. CA approaches have been used success-
fully to describe lane formation, as for example in [29], or evacuation situations, such as
in [20]. The dynamics of the respective macroscopic models was investigated in various
situations such as uni- and bidirectional flows or cross sections, see for example [6, 7].
Macroscopic models for pedestrian dynamics are usually based on conservation laws,
in which the average velocity of the crowd is reduced due to interactions with others,
see [30, 35]. In general it is assumed that the average speed changes with the average
pedestrian density, a relation known as the fundamental diagram. In this context, finite
volume effects, which ensure that the maximum pedestrian density does not exceed a cer-
tain physical bound, play an important role. These effects result in nonlinear diffusivities,
which saturate as the pedestrian density reaches the maximum density, and cross-diffusion
in case of multiple species, see for example [6]. One of the most prominent macroscopic
models is the Hughes model, see [12, 17]. It consists of a nonlinear conservation law for the
pedestrian density which is coupled to the eikonal equation to determine the shortest path
to a target (weighted by the pedestrian density). We refer to the textbooks by Cristiani
et al., see [11] and Maury and Favre, see [27], for a more detailed overview on pedestrian
dynamics.

Many PDE models for pedestrian dynamics can be interpreted as formal gradient flows
with respect to the Wasserstein distance. In this context, entropy methods have been used
successfully to analyze the dynamics of such equations. For example, the boundedness by
entropy principle ensures the global in time existence of weak solutions for large classes of
nonlinear partial differential equation systems, see [19]. These methods have been proven
to be useful also in the case of nonlinear boundary conditions. For example Burger and
Pietschmann [7] proved existence of stationary solutions to a nonlinear PDE with nonlin-
ear inflow and outflow conditions, modeling unidirectional flows in corridors, using entropy
techniques. The respective time dependent result was subsequentially presented in [14].

The calibration of microscopic pedestrian models is of particular interest in the engineer-
ing community. Different calibration techniques have been used for the social force model,
see [18, 28] and CA approaches, see [33, 34]. A large number of datasets are publicly avail-
able - for example the database containing data for a multitude of experimental setups
at the Forschungszentrum in Jülich, or data collected in a Dutch railway stations over
the course of one year, see [10]. However, many mathematical questions concerning the
calibration of macroscopic and mean-field models from individual trajectories are still open.

In this paper we develop and analyze mathematical models to describe queuing individuals
at exits and bottlenecks. Our main contributions are as follows:

• Develop microscopic and macroscopic models to describe pedestrian groups with differ-
ent motivation levels and analyze their dynamics for various geometries.

• Calibrate and validate the microscopic model with experimental data in various situa-
tions.

• Compare the dynamics across scales using computational experiments.
• Present computational results, which reproduce the experimentally observed character-

istic behavior.

This paper is organized as follows. We discuss the experimental setup and the proposed
CA approach in Section 2. In Section 3 we present the details of the corresponding CA
implementation and use experimental data to calibrate it. Section 4 focuses on the de-
scription on the macroscopic level by analyzing the solutions to the corresponding formally
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derived PDE. We conclude by discussing alternative modeling approaches in Section 5 and
summaries our findings in Section 6.

2. The experimental setup and the microscopic model

2.1. The experimental setup. We start by discussing the experiments, which serve
as the motivation for the proposed microscopic model, see [3]. These experiments were
conducted at the University of Wuppertal, Germany. The respective data is available
online, see [1].
The conducted experiments were designed to obtain a better understanding how social cues
and the geometry of the domain influence individual behavior. For this purpose runs with
five different corridor widths, varying from 1.2 to 5.6m, were conducted over the course of
several days. For each corridor a group of students was instructed to reach a target. These
runs were then repeated with varying instructions, for example suggesting that queuing
is known to be more efficient or suggesting to go as fast as possible. The instructions
were given to vary the motivation level and see their effect on the crowd dynamics. The
number of students in the different runs (which corresponded to the different corridor
width) varied from 20 to 75. The trajectory of each individual was recorded and used to
compute the average density with the software package JuPedSim, available at [2]. The
post-processed data showed that the average pedestrian density becomes particularly high
in a 0.8 times 0.8 meter area, 0.5 meters in front of the exit, highlighted in Figure 1a.
Within this area average densities up to 10 p/m2 (pedestrians per square meter) were
observed. The densities varied significantly for the different runs - they were much lower
for corridor-like domains and increased with the motivation level. Further details on the
experimental setup can be found in [3].

(a) Sketch of experimental setup at the
University of Wuppertal, showing the dif-
ferent corridor width, the exit ΓE and the
measurement area.

(b) Computational domain with adapted
width to ensure a consistent discretiza-
tion of the exit.

Figure 1. Comparison of the experimental setup and the computational
domain.

2.2. The cellular automaton approach. In the following we introduce a cellular au-
tomaton approach to describe the dynamics of agents queuing in front of the bottleneck.
The dynamics of agents is determined by transition rates, which depend on the individual
motivation level and the distance to the target.
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We split the domain into squared cells with side length ∆x = 0.3m which corresponds to
a maximum packing density of 11.11 p/m2. Cell-sizes of 0.09m2 have a comparable area
as ellipses with semi-axes a = 0.23m and b = 0.12m - a reference measure for pedestrians
commonly used in agent based simulations, see [15]. The cellular automaton is imple-
mented on a Moore neighborhood, see Figure 2a. Agents are allowed to move into the
eight neighboring sites. Their transition rates depend on the availability of a site – a site
can only be occupied by a single agent at a time – the potential φ, which corresponds
to the minimal distance to the exit, as well as the individual motivation level. The po-
sitions of all agents are updated simultaneously, a so-called parallel update. In doing so,
we calculate the transition rates for every agent and resolve possible conflicts. In case of
a conflict the respective probabilities of the two agents wanting to move into the site are
re-weighted, and one of them is selected. This solution has been proposed by [8, 20] and
is illustrated in Figure 2b.
Particular care has to be taken when modeling the exit. Consider a Markov-process, in
which a single agent is located at distance ∆x to the exit, see Figure 3a. We see that the
exit can stretch over two or three cells, both cases have different exit probabilities and
influence the exit rate. Figure 3b illustrates the different exit rates for the two situations
in case of a single agent. We observe that the exit rate is higher if the exit is discretized
using two cells. To ensure a consistent discretization of the exit for all corridor widths,
we choose a discretization using three cells for all corridors. Therefore, we changed the
respective corridor widths in the presented computational experiments to 0.9m, 3.3m and
5.7m, as illustrated in Figure 1. Furthermore, we extended the corridor to 9.6m to ensure
sufficient space for all agents in case of larger groups. Note that in the actual experiments
individuals were waiting behind the corridor entrance.

(a) Moore neighborhood; the potential φ
corresponds to the distance to the exit.

(b) Conflict: Agent 1 wins with probability
p̃1 = p1/(p1 + p2), agent 2 with probability
1 − p1.

Figure 2. Cellular automaton: transition rules.

Transition-rates and the master equation. The transition rates are based on the following
assumptions, which are motivated by the previously detailed experiments:

• Individuals want to reach a target as fast as possible.
• They can only move into a neighboring site if it is not occupied.
• The higher the motivation level, the larger the transition rate.

Let ρ = ρ(x, y, t) denote the probability of finding an individual at site (x, y) at time t and
µ correspond to the motivation level. We state only one transition rate in the following,
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(a) Two vs. three cells.
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(b) Two vs. three: comparison of the exit rate as a function
of time.

Figure 3. Discretization of the exit. In the case of an even number of
cells, a central positioned agent will leave the corridor faster than in the
case of three cells.

since all other rates have the same structure with the obvious modifications.
The transition-rate T of an agent located at position (x, y) to move to the right, that is
to (x+ ∆x, y) is given by

T (x,y)→(x+∆x,y) := T +0(x, y)

= (1− ρ(x+ ∆x, y, t))
1

8(3− µ)
exp (β(φ(x, y)− φ(x+ ∆x, y))) .

(1)

Here the factor (1 − ρ(x + ∆x, y, t)) ensures that the target site is not occupied, the
prefactor 1

8 is a scaling constant such that
∑
i T i = 1 + O((∆x)2) holds. The prefactor

(3 − µ) changes the transition rate depending on the motivation level µ ∈ (−∞, 3). It
also ensures that it is very unlikely that individuals step back as β increases. The rates
increase in direction where the potential φ decreases. Hence individuals are more likely to
move towards the exit.
Then the probability that (x, y) is occupied at time t+∆t, is given by the so-called master
equation

ρ(x, y, t+ ∆t) =ρ(t, x, y)− ρ(x, y, t)
∑

(i,j)∈I

T ij(x, y)

+
∑

(i,j)∈I

ρ(x+ i∆x, y + j∆x, t)T ij(x+ i∆x, y + j∆x),
(2)

where the set I := {−1, 0,+1}2 \ {(0, 0)} corresponds to the Moore neighborhood of the
respective sites.
We recall that agents can leave the domain from all three fields in front of the exit. In a
possible conflict situation, that is two or three agents located in the exit cells want to leave
simultaneously, the conflict situation is resolved and the winner exists with probability pex.

Remark 2.1. The choice of a Moore neighborhood instead of a Neumann neighborhood (as
in [29, 37]), is based on the experimental observations (individuals make diagonal moves
to get closer to the target). Note that the choice of the neighborhood does not change the
structure of the limiting partial differential equation.

Remark 2.2. With the proposed scaling, a motivated agent, which corresponds to µ = 1,
jumps every second time-step since T 00 = 1 −

∑
i,j∈I T ij(x, y) = 2−µ

3−µ . Note that the
motivation µ has a direct influence on the desired maximum velocity vmax.
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3. Validation and calibration of the CA model

3.1. Implementation of the CA approach. We start by briefly discussing the imple-
mentation of the CA, which will be used for the calibration in the subsequent section. A
CA simulation returns the average exit time (that is the time when the last agent leaves
the corridor) depending on the number of agents n, the corridor-width w ∈ {0.9, 3.3, 5.7},
the motivation µ, the length of a time-step ∆t and the parameter β. Each CA simula-
tion is initialized with a random uniform distribution of agents. For given parameters the
returned average exit time T̄ and maximum observed density is estimated by averaging
over 5000 CA simulations. Note that we calculate this density in the area highlighted in
Figure 1a.
We check the consistency of the estimated average exit time by varying the number of
MC simulations. We observe that the distribution of the exit time converges to a uni-
modal curve, see Figure 4c. Similar results are obtained across a large range of parameter
combinations.

(a) Distribution
of n = 40 agents
at time t = 0 and
t = 16∆t.

(b) The simulated
density.
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(c) Densities of exit times when increasing the
number of MC runs.

Figure 4. Solutions of the CA approach.

3.2. Calibration. In this Section we discuss a possible calibration of the developed CA
approach using the experimental data available, see [1]. We wish to identify the parameter
scaling parameter β, the timestep ∆t and the exit rate pex. In doing so we make the
following assumptions:

• The outflow rate pex does not depend on the motivation level and the corridor width.
• There is a one-to-one relation between the parameter β and the time step ∆t.

We start by considering the dynamics of a single agent in the corridor. These dynamics,
although not including any interactions, give first insights and provide reference values for
the calibration. Velocities of pedestrians are often assumed to be Gaussian distributed.
Different values for the mean and variance can be found in the literature, see for exam-
ple [13, 36]. We set the desired maximum velocity of a single agent to vmax = 1.2ms , as
for example in [13]. Hence a single motivated agent, having motivation level µ = 1, needs
approximately 8 seconds to travel the 9.6m long corridor.
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Let N̄ denote the average number of time steps to the exit. We will see in the following
that there is a one to one relationship between the scaling parameter β and the exit time,
which allows us to estimate the time step ∆t.
Figure 5a illustrates the dynamics of this single agent for different values of β – we see that
the larger β, the straighter the path to the exit. We observe that the average number of
time steps N̄ to the exit of an agent starting at the same position converges as β increases,
see Figure 5b. The observed relation between the exit time and the value of β in Figure 5b

β=1 β=4 β=8

(a) Trajectories for different β - increasing β
reduces the randomness of the walk.

5 10 15
β

80

100

120

140

timesteps

(b) N̄ for different values of β. The dots mark
experimental data, the curve is that of the re-
lation (3).

Figure 5. Influence of the scaling parameter β on individual dynamics.

can be estimated by a function of the form

N̄(β, pex = 1.1) = 63.528 +
244.082

β1.38148
,(3)

which was computed using a least square-approach for a + b
βc . The functional relation

captures the asymptotic behavior correctly (converging to the minimum number of steps
going straight to the exit) and the sharp increase for small β.
This asymptotic relation allows us to estimate the time steps ∆t for a given value of β
in case of a single agent. Since a motivated agent moves on average every second step,
it needs approximately 64 steps to exit the corridor, which corresponds to 32 vertical
fields. A somehow similar approach was proposed in [37], where the position of agents was
updated according to the individual velocity.
We will now estimate the missing two parameters β and pex using three different data sets,
see Table 1. We restrict ourselves to these three datasets, since the number of individuals
in each run is similar and their initial distribution is close to uniform, fitting the initial
conditions of the CA simulations best. For each run we use the respective modified corridor
width w, to ensure a consistent discretization of the exit and the number of agents n as
detailed in Table 1.
Reference values: We use the experimental data to obtain reference values for β and pex.
For pex we use all data sets available, that is a total number of 980 trajectories recorded
for corridors of different widths and consider the respective exit times. This gives a first
approximation pex = 1.1ps , which we use as a reference value for the calibration later on.
A similar value for pex was reported in [15]. We will allow for estimates within a 50%
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Run µ = 1 µ0

01, n = 1 8s
02, n = 63, w = 1.2m 53s 64s
03, n = 67, w = 3.4m 60s 68s
04, n = 57, w = 5.6m 55s 57s

Table 1. exit times for different runs and different motivations from [3].
Run 01 is used to set the desired maximum velocity vmax.

deviation from that value. Furthermore we restrict β to [0.5, 10] (motivated by the obser-
vations in Figure 5a).

The calibration is then based on minimizing the difference between the observed exit time
and the computed average exit time T̄ . We define the the average exit time

T̄ = T̄ (β, pex,∆t, µ, n, w) : [0,∞)× R+ × R+ × (−∞, 1]× N× {0.9, 3.3, 5.7} → R+ ,

that is the time needed for the last agent to leave the domain, for n individuals in a
corridor of width w and parameters β, pex, ∆t and µ. The calibration is then based on
minimizing the functional

T =
(

(T̄ (β, pex, 63,∆t, 0.9)− 53)2 + (T̄ (β, pex, 67,∆t, 3.3)− 60)2

+ (T̄ (β, pex, 57,∆t, 5.7)− 55)2
)0.5

,
(4)

using the data stated in Table 1. The functional T is not differentiable, hence we used
derivative free methods to find a minimum. We first used a parallel Nelder-Mead, which
did not converge. We believe that this is caused by the stochasticity of the problem (since
we average over 5000 MC runs to compute the average exit time) as well as the form of
the functional itself. Similar problems were reported in [32]. Systematic computational
experiments show that the parameter β has a small influence on the exit time. In narrow
corridors, increasing the value of β does not improve the exit time, since the geometry
restricts the range of jumps. In wider corridors, β plays a more important role. However,
we have seen that the exit time for a single agent converges as β increases. Therefore we
can not expect a unique single optimal value. Furthermore we believe that the parameter
β has a smaller influence the more agents are in the corridor.
Finally, we estimate the two parameters β and pex using a discrete search in the range
[0.5, 10] × [0.55, 1.65]. In doing so we see that the outflow parameter pex can be clearly
estimated for a fixed value of β, see Figure 6b. However, the parameter β is much more
difficult to determine, as Figure 6a shows. Using the three data sets stated in Table 1 we
obtain the best fit using

(βmin, pmin
ex ) ' (3.84, 1.15) ,(5)

which leads to a deviation of 1.04 seconds in Equation (4). With a similar approach we
then estimate the parameter µ0 ' −1.22 for less motivated agents according to Table 1.
This results in a speed of 0.57ms .

3.3. Microscopic simulations. We conclude this section by presenting calibrated CA
simulations, that are consistent with the experimental data. We observe that wider corri-
dors lead to a higher maximum density in front of the exit for different motivation levels,
see Figure 7b. Note that this also the case when changing the outflow rate pex. Higher
motivation levels µ lead to higher densities in front of the exit as can be seen in Figure 8b.
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(a) The average exit time for a discrete set of
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(b) T̄ as a function of pex for a fixed value of
β.

Figure 6. Average exit time as a function of β and pex, or pex only.

A similar behavior was observed in the experimental results as well as the computational
experiments discussed in [3, 15].
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(a) Experimental results, reproduced with
permission from [3].
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(b) Microscopic simulations for the densities
for n = 60 and µ = 1.

Figure 7. Impact of the corridor width on the maximum density. The
CA approach yields comparable results for high density regimes and low
motivation level.

Remark 3.1. Note that we observe similar results if we replace the exponential function
in (1) by max(0, φ(x, y)−φ(x+∆x, y)). However this function does not satisfy the necessary
regularity to at least formally derive the corresponding macroscopic PDE model.

4. The macroscopic model

In this section we derived and study the corresponding macroscopic PDE model, in par-
ticular existence of solutions as well as different options to calculate the path to the exit.
The corresponding macroscopic PDE can be formally derived from the cellular automaton
approach discussed in Section 2.2. Here we use a Taylor expansion to develop the tran-
sition rates and functions in x ±∆x and y ±∆x. This rather tedious calculation can be
done in a systematic manner using a similar approach as discussed in [21].
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(a) Experimental results (with permission
from [15])

μ=1
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max. dens.

(b) Maximum agent density using the CA model with
n = 60.

Figure 8. Impact of the motivation level on the maximum pedestrian
density: experimental (left) vs. microscopic simulations (right).

4.1. The PDE and its analysis. We recall that ρ = ρ(x, y, t) denotes the density of
pedestrians at position (x, y) and time t and φ = φ(x, y) is the potential leading towards the
exit ΓE . Let Ω ⊂ R2 denote the domain, ΓW the walls and ΓE the exit with ΓW ∪ΓE = ∂Ω
and ΓW ∩ ΓE = ∅.
Then the pedestrian density ρ = ρ(x, y, t) satisfies a nonlinear Fokker-Planck equation for
all (x, y) ∈ Ω:

∂tρ(x, y, t) = αµ div (∇ρ(x, y, t) + 2βρ(x, y, t)(1− ρ(x, y, t))∇φ(x, y))(6a)
ρ(x, y, 0) = ρ0(x, y).(6b)

The parameter αµ := 1
8(2−µ) depends on the motivation µ, while β corresponds to the

ratio between drift and diffusion. The function ρ0 = ρ0(x, y) is the initial distribution of
agents. Equation (6) is supplemented with the following boundary conditions

j · n = 0, on ΓW ,

j · n = pexρ, on ΓE ,
(6c)

where j = ∇ρ + 2βρ(1 − ρ)∇φ and n is the unit outer normal vector. We recall that the
parameter pex is the outflow rate at the exit ΓE .

Remark 4.1. Note that the motivation parameter µ enters the PDE via αµ only. It
corresponds to a rescaling in time, accelerating or decelerating the dynamics.

First we discuss existence and uniqueness of solutions to (6). Stationary solutions of a
similar model were recently investigated by Burger and Pietschmann, see [7]. The existence
of the respective transient solutions was then shown in [14]. It is guaranteed under the
following assumptions:
(A1) Let Ω ⊂ R2 with boundary ∂Ω in C2.
(A2) Let pex be in [0, 1].
(A3) Let φ be in H1(Ω).

Note that assumption (A1) is not satisfied in the case of a corridor. However, as pointed
out in [7], this condition could be relaxed to Lipschitz boundaries with some technical
effort.
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Theorem 1. (Existence of weak solutions) Let assumptions (A1)-(A3) be satisfied. Let
S = {ρ ∈ L2(Ω) : 0 ≤ ρ ≤ 1} and the initial datum ρ0 : Ω→ So be a measurable function
such that E(ρ0) <∞, where entropy E is defined by

E(ρ) =

∫
Ω

[ρ log ρ+ (1− ρ) log(1− ρ) + 2βρφ] dx .(7)

Then there exists a weak solution to system (6) in the sense of∫ T

0

[
〈∂tρ, ϕ〉H−1,H1ds −

αµ

∫
Ω

((2βρ(1− ρ)∇φ+∇ρ))∇ϕdx+ pex

∫
ΓE

ρϕds
]
dt = 0,

(8)

for test functions ϕ ∈ H1(Ω). Furthermore

∂tρ ∈ L2(0, T ;H(Ω)−1),

ρ ∈ L2(0, T ;H1(Ω)).

The existence proof is based on the formulation of the equation in entropy variables, that
is

∂tρ(x, t) = div(m(ρ)∇u(x, t)),(9)

where m(ρ) = ρ(1 − ρ) is the mobility function and u = δE
δρ = (log ρ − log(1 − ρ) + 2βφ)

the so-called entropy variable. Note that the proof is a straightforward adaptation of the
one presented in [14], hence we omit its details in the following.

4.2. Moving towards the exit. In the following we discuss different possibilities to
compute the potential φ.

The eikonal equation. The shortest path to a target, such as the exit ΓE can be computed
by solving the eikonal equation

‖∇φE(x, y)‖2 = 1, for (x, y) in Ω,

φE(x, y) = 0, on (x, y) in ΓE .
(10)

Solutions to (10) are in general bounded and continuous, but not differentiable, see [5].
However, in case of the considered corridor geometry we have the following improved
regularity result.

Theorem 2. (Regularity of φE) Let Ω ⊂ R2 be a rectangular domain and ΓE ⊂ ∂Ω be a
line segment in one of the four edges. Then there exists a solution φE ∈ H1(Ω) to (10).

The proof can be found in the Appendix and is based on [5], Proposition 2.13.

The Laplace equation. Alternatively we consider an idea proposed by Piccoli and Tosin
in [30]. Let φL = φ(x, y) denote the solution of the Laplace equation on Ω ⊂ R2:

∆φL(x, y) = 0, for (x, y) in Ω,

φL(x, y) = d(x, y), for (x, y) on ∂Ω,
(11)

where d = d(x, y) corresponds to the Euclidean distance of the boundary points to the
exit ΓE . Note that in this case of the corridor the function d is not differentiable at the
corners but Lipschitz continuous. Hence standard methods for elliptic equations yield the
following regularity result.

Theorem 3. (Regularity of φL) Let d ∈ C(∂Ω) defined as above, Ω ⊂ R2 be bounded.
Then there exists a unique solution φL ∈ H1(Ω) to (11).
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The proof can be found in [22], Section 5.
In the following we discuss the similarities and difference of the potentials φE and φL. In
case of a 1D corridor with a single exit, that is a line with a single exit on one of the two
endpoints, the potentials are identical. However in the case of two exits at the respective
endpoints, the Laplace equation gives φL(x) = 0, a solution that is not sensible.
Figures 9 and 10 illustrate the differences between φL and φE in 2D. Note that we choose
homogeneous Neumann boundary conditions at the obstacle walls when solving the Laplace
equation (11). We observe good agreement in case of convex obstacles, see Figure 9. In
case of non-convex obstacles, such as the U-shaped obstacle in Figure 10, individuals would
first get trapped inside the U using the Laplace equation. Solving the eikonal equation (10)
is in general computationally more expensive than the Laplace equation (11). However,
these costs are negligible since the potential is stationary and computed once only.

(a) Eikonal equation. (b) Laplace equation (with Neumann bc at the
obstacle).

Figure 9. Comparison of the potentials φE and φL for a convex obstacle.

4.3. Characteristic calculus. We now consider the corresponding inviscid macroscopic
model, which can be derived using a different scaling limit from the CA approach. We
focus on the one dimensional case only as we can calculate solutions explicitly. A similar
problem (with different boundary conditions) was partially analyzed in [12].

(a) Eikonal equation. (b) Laplace equation (with Neumann bc at the
obstacle).

Figure 10. Comparison of the potentials φE and φL for a non-convex obstacle.
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The inviscid PDE reduces to a scalar conservation law, posed on R+ of the form

(12) ∂tρ+ ∂xj(ρ) = 0 ,

where the flux function is j(ρ) = −ρ(1−ρ). Note that this flux corresponds to the potential
φ(x) = x, hence individuals move to the left. We consider the initial condition

ρ(x, 0) = ρ0 χ[0,L] ,

for some positive L, where χ denotes the characteristic function. At the origin, we wish
to enforce a similar outflow condition as in the viscid case and set j(0, t) = pex ρ, t > 0.
This is equivalent to the Dirichlet boundary condition ρ(0, t) = 1− pex for all times t > 0,
where we recall that 0 < pex ≤ 1. This is an ill-posed problem in general [26], and the
boundary condition must be relaxed.
Away from discontinuities, the speed of characteristics is given by

j′(ρ) = −(1− 2ρ) .

We see that they either point in- or outside of the domain, depending on the magnitude of
ρ. Recall that for a shock located at s(t), the Rankine-Hugoniot condition reads Jj′(ρ)K =
ṡ(t)JρK, where JfK = f− − f+, with f±(x) = f(x ± 0). For our choice for ρ0, there is an
initial shock at xr = L, which is moving (left) at a speed of

ẋr = −(1− ρ0) .

The larger the initial pedestrian density, the slower the shock moves or the people get
closer to the exit. One can easily check that such a profile satisfies the so-called Lax
entropy condition, since

−1 = j′(0) ≤ ẋr ≤ j′(ρ0) ,

is it therefore admissible.
Next we discuss the behavior of solutions at the exit x = 0. The proper way to enforce
the Dirichlet boundary condition is derived in [24, 23], and reads as follows:

(13) ρ+(0) ∈ E [1− pex] :=

{
[0, pex] ∪ {1− pex} if pex < 1

2 ,[
0, 1

2

]
if pex ≥ 1

2 .

Depending on the slope of the characteristics as well as the value of the outflow rate pex,
we observe three different cases, which are detailed below and illustrated in Figure 11.

• A constant profile for ρ0 ≤ pex <
1
2 or ρ0 ≤ 1

2 ≤ pex. In this case the characteristics
have a negative slope and ρ0 is an admissible boundary value. The function ρ vanishes
when the shock originating at x = L reaches the origin at time t = L

1−ρ0 . The situation
is similar in the case 1

2 < ρ0 = 1− pex, for which characteristics are going inwards but
where ρ0 ∈ E [1− pex]. This case is illustrated on the lower right in Figure 11.

• A shock originating at x = 0 for pex < 1
2 and pex < ρ0 < 1 − pex. In this case ρ0 /∈

E [1 − pex], but 1 − pex ∈ E [1 − pex] which we therefore set as a boundary value. This
causes a shock at the origin, which travels to the right with speed

ẋl =
−pex (1− pex) + ρ0 (1− ρ0)

1− pex − ρ0
,

until it collides with the back-shock. The collision time and position, t = t∗1 and x = x∗1
respectively, can be calculated from x∗1 = ẋlt

∗
1 = L+ ẋrt

∗
1. We obtain

t∗1 =
L

1− pex
, and x∗1 =

(
1− 1− ρ0

1− pex

)
L .
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Figure 11. Left: Bifurcation diagram detailing the behavior of the so-
lution to (12)-(13). The behavior along the interface lines is identical as
in the bottom right corner. Right: exit time corresponding to L = 1.

The resulting shock will then move to the left again, with speed −pex and reaches the
origin at time t = ρ0 L

pex(1−pex) . This situation is shown in the center left part of Figure 11.

• A rarefaction wave originating at x = 0 for ρ0 > 1
2 or ρ0 > 1 − pex. In this case a

rarefaction wave will connect the value at the boundary, that is ρ̄ = 1
2 ∨ 1− pex , with

the state ρ0. The rarefaction wave is of the form ρ(x, t) = x+t
2t . More precisely we have

for any x > 0:

(14) ρ(x, t) =


ρ̄ if xt ≤ (2ρ̄− 1) ,
x+t
2t if (2ρ̄− 1) < x

t < (2ρ0 − 1) ,

ρ0 if xt ≥ (2ρ0 − 1) .

Note that for 1−pex > 1
2 , the constant value ρ̄ = 1−pex is transported into the domain

at speed 2ρ̄− 1. The crest the rarefaction wave travels at speed 2ρ0− 1 until it hits the
back-shock at time t∗2 = L

ρ0
, for x∗2 =

(
2ρ0−1
ρ0

)
L. This results at a new shock, which

originates at position xs and with velocity ẋs = −(1 − ρ(xs)). From (14) we also have
ρ(xs) = xs+t

2t . Solving the resulting equation with initial condition xs(t∗2) = x∗2 yields

xs(t) = 2
√
Lρ0

√
t− t .

If 1− pex < 1
2 , this new shock reaches 0 at time t∗3 = 4ρ0L. Otherwise, the back-shock

will meet the constant state 1−pex at time t∗4 = Lρ0
(1−pex)2 , for x

∗
4 = L(1−2pex)ρ0

(1−pex)2 , resulting
in a single constant state ρ(x, t∗4) = (1 − pex)χ[0,x∗

4 ]. This constant profile then moves
with speed −pex, and reaches the origin at time t = ρ0 L

pex(1−pex) , see upper right corner
of Figure 11.

Figure 11 illustrates how the exit time changes with the initial pedestrian density and the
outflow rate. We see that for an outflow rate pex & 1

2 , the initial density ρ0 has a much
stronger influence on the exit time compared to the value of pex. The situation is somehow
reversed for small pex.



CROWDING AND QUEUING 15

4.4. Numerical results. We conclude by presenting computational results on the macro-
scopic level. All simulations were performed using the finite element library Netgen/-
NgSolve.
We consider a rectangular domain with a single exit as shown in Figure 1a and discretize
it using a triangular mesh of maximum size h = 0.1. The potential φ is calculated in a
preliminary step, by either solving the eikonal equation (10) or the Laplace equation (11).
We use a fast sweeping scheme for the eikonal equation, as it can be generalized to trian-
gular meshes, see [31]. The discretization of the nonlinear Fokker-Planck equation (6) is
based on a 4th order Runge-Kutta method in time and a hybrid discontinuous Galerkin
method in space, see [25].
We choose a constant initial datum ρ0, taken such that

∫
Ω
ρ0dx = n

ρs
. We recall that

ρs corresponds to the typical pedestrian density ρs = 11.11 p
m2 and n to the number of

individuals. The simulation parameters are set to

β = 3.84, pex = 1.15, ∆t = 10−5, and αµ = 1.6× 10−4.

We calculate the densities in the rectangular area highlighted in Figure 1b. The macro-
scopic simulations confirm the microscopic results. Again higher densities for wider corri-
dors are observed, see Figure 12a.

0.9m

3.3m

5.7m

0 5 10 15 20 25
t6.0

6.2

6.4

6.6

6.8

7.0

7.2
p/m²

(a) For n = 60, the effect of higher densities
for wider corridors also occur on a macro-
scopic scale.

5. Alternative modeling approaches

We have seen that the proposed CA approach proposed in Section 2.2 reproduces some
features of the observed dynamics on the microscopic as well as on the macroscopic level.
In the following, we discuss possible alternatives and generalizations, which we expect to
result in even more realistic results.

5.1. Density dependent cost. Hughes [17] proposed that the cost of moving should be
proportional to the local pedestrian density. In particular, moving through regions of high
density is more expensive and therefore less preferential. This corresponds to a density
dependent (hence time dependent) right-hand side in (10). In particular, Hughes proposed
a coupling via

‖∇φ(x, y, t)‖ =
1

1− ρ(x, y, t)
, for (x, y) in Ω

φ(x, y) = 0, for (x, y) in ΓE .

(15)
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We see that the right hand side, which corresponds to the cost of moving, becomes un-
bounded as ρ approaches the scaled maximum density 1. Such density dependent cost
should lead to more realistic dynamics. However the analysis of the coupled problem (6)-
(15) is open. Solutions to (15) have a much lower regularity required in Theorem 2. We
expect that this leads to similar analytic challenges as reported in [12].

5.2. Alternative ways to model motivation. In the following, we discuss different
possibilities to include the influence of the motivation level on the dynamics. First by
modifying the transition rates and second by changing the transition mechanism, allowing
for shoving.

Alternative transition rates. In the transition rate (1), the motivation relates to the prob-
ability of jumping. It is therefore directly correlated to the agent’s velocity. However,
one could assume that the motivation increases the probability to move along the shortest
path. This could be modeled by transition rates of the form

T +0(x, y) = (1− ρ(x+ ∆x, y, t))
1

8
exp(µβ(φ(x, y)− φ(x+ ∆x, y))).(16)

Then the corresponding macroscopic model reads

∂tρ(x, y, t) =
1

8
div (∇ρ(x, y, t) + 2µβρ(x, y, t)(1− ρ(x, y, t))∇φ(x, y)) .(17)

We see that the motivation level µ enters only in the convective term. Hence higher
motivation is directly correlated to a higher average velocity of the crowd.

Pushing and shoving. In the previously proposed model, the transition rates depended on
the availability of a site and the motivation level. Another possibility to include the latter
is by allowing individuals to push. Different pushing mechanisms have been proposed
in the literature. However, not all of them can be transposed to bounded domains. In
particular, it is not clear how to adapt boundary conditions in case of global pushing, as
considered in [4]. In contrast, local pushing mechanisms, can be translated one-to-one on
bounded domains, see [38]. We sketch the rough idea in 1D: with a given probability,
agents can move to a neighboring occupied cell, by pushing the neighbor one cell further,
provided that it is free. Otherwise, such a move is forbidden. This mechanism is illustrated
in Figure 13.

Figure 13. Local pushing in a cellular automaton. Top: shoving is
possible since the cell on the third column in free. Bottom: shoving is
forbidden since the third column is occupied.

Superscripts ±1 denote jumps to the right and left, respectively. For example

T +(x) = exp(β(φ(x)− φ(x+ ∆x))).
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Then the master equation is given by
ρ(x, t+ ∆t)− ρ(x, t) =− ρ(x)T +(x) ((1− ρ(x+ ∆x)) + γµρ(x+ ∆x)(1− ρ(x+ 2∆x)))

− ρ(x)T −(x) ((1− ρ(x−∆x)) + γµρ(x−∆x)(1− ρ(x− 2∆x)))

+ ρ(x+ ∆x)T −(x+ ∆x)(1− ρ(x))

+ γµρ(x+ ∆x)ρ(x+ 2∆x)T −(x+ 2∆x)(1− ρ(x))

+ ρ(x−∆x)T +(x−∆x)(1− ρ(x))

+ γµρ(x−∆x)ρ(x− 2∆x)T +(x− 2∆x)(1− ρ(x)) ,

(18)

in which we omit x and t for the sake of readability. Here γµ = γ(µ) ∈ [0, 1] denotes an
increasing function and corresponds to the probability of an agent pushing. Note that we
obtain the original master equation (2) for γµ = 0. Using a formal Taylor expansion we
derive the limiting mean-field PDE:

∂tρ(x, y, t) = αµ div
(
(1 + 4γµρ)∇ρ+ 2βρ(1− ρ)(1 + 2γµρ)∇φ

)
ρ(0, x) = ρ0(x, y).

(19)

This equation has again a formal gradient flow structure with respect to the Wasserstein
metric. In particular, a possible choice of mobility and entropy are m(ρ) = ρ(1 − ρ)(1 +
2γµρ) and

E(ρ) =

∫
Ω

[4γ + 1

2γ + 1
(1− ρ) log(1− ρ)

+ ρ log ρ+
2γρ+ 1

2γ + 1
log(2γρ+ 1) + 2βρφ

]
dx ,

(20)

respectively. We observe that the local pushing increases the mobility and adds a positive
term to the entropy. Hence we expect a faster equilibration speed compared to the model
of Section 4.1. Again, we recover the original PDE model by setting γmu = 0. Existence
of global in time solutions to (19) should follow using similar arguments as for the original
PDE model.

6. Conclusion

In this paper we discussed micro- and macroscopic models for crowding and queuing at
exits and bottlenecks, which were motivated by experiments conducted at the University
in Wuppertal. These experiments indicated that the geometry, ranging from corridors to
open rooms, as well as the motivation level, such as a higher incentive to get to the exit
due to rewards, changes the overall dynamics significantly.
We propose a cellular automaton approach, in which the individual transition rates in-
crease with the motivation level, and derive the corresponding continuum description using
a formal Taylor expansion. We use experimental data to calibrate the model and to un-
derstand the influence of parameters and geometry on the overall dynamics. Both the
micro- and the macroscopic description reproduce the experimental behavior correctly. In
particular we observe that corridors lead to lower densities and that the geometry has
a stronger effect than the motivation level. We plan to investigate the analysis of the
coupled Hughes type models as well as the dynamics in case of pushing in more detail in
the future.
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7. Appendix

Proof 1 of Theorem 2. We start by a recalling a standard existence and regularity result
from the literature, see [5] and [9]. Solutions to the eikonal equation (10) in R2 \ ΓE are
given by the distance function

d(x,ΓE) = inf
b∈ΓE

|x− b|.

Hence we discuss the regularity of d in the following only. can therefore transfer our
considerations to the distance function d. We define the set

M(x) = arg min
b∈ΓE

d(x,ΓE).

If ΓE is a straight, bounded line, theM is nonempty and consists of a single point for every
x ∈ R2. Since |(· − b)| is uniformly differentiable in b, and b 7→ Dx|x− b| is continuous, we
can deduce that the set Y

Y (x) := {Dx|x− b| : b ∈M(x)}

is a singleton too. We now can apply Proposition 2.13 in [5] which states that d is
differentiable at x if and only if Y (x) is a singleton. Thus d is differentiable for R2 \ ΓE ,
to be more precisely, we have d ∈ C1(R2 \ ΓE) ∩ C(R2).
Next we restrict d to the corridor Ω ⊂ R2 (being an open and bounded subset of Ω).
Hence, φE ∈ C(Ω̄)∩C1(Ω). Since the L2-norm of the first derivative of φE is bounded by
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the equation (10) itself, we can deduce that φE ∈ H1(Ω) since

‖φE‖H1(Ω) =

∫
Ω

φ2
Edx+

∫
Ω

(DφE)2dx ≤ |Ω|(maxφE + 1).
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