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ABSTRACT

We present an implementation of the Hall term in the non-ideal magnetohydrodynamics equations into the adaptive-mesh-refinement
code RAMSES to study its impact on star formation. Recent works show that the Hall effect heavily influences the regulation of the
angular momentum in collapsing dense cores, strengthening or weakening the magnetic braking. Our method consists of a modification
of the two-dimensional constrained transport scheme. Our scheme shows convergence of second order in space and the frequency of
the propagation of whistler waves is accurate. We confirm previous results, namely that during the collapse, the Hall effect generates a
rotation of the fluid with a direction in the mid-plane that depends on the sign of the Hall resistivity, while counter-rotating envelopes
develop on each side of the mid-plane. However, we find that the predictability of our numerical results is severely limited. The angular
momentum is not conserved in any of our dense core-collapse simulations with the Hall effect: a large amount of angular momentum
is generated within the first Larson core, a few hundred years after its formation, without compensation by the surrounding gas. This
issue is not mentioned in previous studies and may be correlated to the formation of the accretion shock on the Larson core. We expect
that this numerical effect could be a serious issue in star formation simulations.

Key words. stars: formation – magnetohydrodynamics (MHD) – ISM: magnetic fields – methods: numerical

1. Introduction

Star formation originates in the collapse and fragmentation
of molecular clouds. These giant structures of the interstellar
medium harbor thousands of solar masses of gas, mostly hydro-
gen (∼74% by mass) and helium (∼25%). This fragmentation
leads to the creation of over-dense regions, the dense cores, that
dynamically decouple from the rest of the cloud. When a dense
core gravitationally collapses onto itself, the accumulation of
matter and the rise of the temperature form a star embryo, a
protostar.

Larson (1969) describes the early stages of the collapse of
dense cores. Initially, the collapse is isothermal as the gas-dust
mixture is transparent to its own blackbody radiation. When the
density reaches 10−13 g cm−3, this radiation is trapped and heats
up the gas, leading to the formation of an hydrostatic core called
the first Larson core. The core contracts adiabatically until the
temperature reaches 2000 K. At this moment, H2 molecules dis-
sociate in an endothermic reaction, thus creating a gap of energy
that allows a second collapse. Once all hydrogen is atomic,
the adiabatic contraction resumes in what is called the second
Larson core. While the second core is considered to be a pro-
tostar, the first Larson core remains a theoretical object not
confirmed by observations because of its short lifetime (few
thousands years at maximum). Nevertheless, serious candidates
have been revealed by recent observations (e.g., Pezzuto et al.
2012; Gerin et al. 2015).

The dynamics of the collapse is affected by magnetic fields
threading the dense cores. It has been well established that
they play a major role during the contraction of dense cores,

and they are considered as the best way to solve the angular
momentum problem. Observations show that the specific angu-
lar momentum of dense cores (∼1021 cm2 s−1) is three orders
of magnitude higher than those of young stars (∼1018 cm2 s−1;
Bodenheimer 1995). The magnetic field is able to transport the
angular momentum from the inner parts of the dense cores to
their envelop through the magnetic braking. In the last 20 yr,
there have been several studies investigating the impact of the
magnetic braking during protostellar collapse through numerical
simulations using the approximation of ideal magnetohydrody-
namics (MHD), in which the charged particles are perfectly
coupled with the neutral gas. However, the braking is so effi-
cient in removing the angular momentum that, at best, only
small rotationnally supported disks could be formed (Allen et al.
2003; Matsumoto & Tomisaka 2004; Galli et al. 2006; Price &
Bate 2007; Hennebelle & Teyssier 2008; Hennebelle & Fromang
2008; Commerçon et al. 2010; Masson et al. 2016). While the
conditions of their formation is still matter to debate, such disks
evolve in protoplanetary disks, environments of planet forma-
tion that have been widely observed (Murillo et al. 2013; ALMA
Partnership et al. 2015; Gerin et al. 2017; Fuente et al. 2017).
Additionally, the flux-freezing approximation of ideal MHD
causes a magnetic pile-up in the protostar, leading to values
of the magnetic flux up to three orders of magnitude higher
than those observed (Nakano 1984; Troland & Crutcher 2008;
Johns-Krull 2008).

Among the possible solutions to solve both the angular
momentum and the magnetic flux problem, non-ideal MHD is
considered to be the most efficient and robust. Non-ideal MHD
describes the resistance encountered by the charged particles
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into a not fully ionized fluid. The first studies accounted for the
Ohmic and ambipolar diffusion during the early stages of the col-
lapse (i.e., Machida et al. 2006; Duffin & Pudritz 2008; Mellon
& Li 2009; Kunz & Mouschovias 2010; Tomida et al. 2015;
Masson et al. 2016). They showed that these processes could
indeed temper the magnetic braking and regulate the magnetic
flux. The third non-ideal MHD process, the Hall effect, has been
included only recently in numerical simulations. Its resistivity
value indicates that its influence on the system can be similar in
strength to the ambipolar and Ohmic diffusion at densities rang-
ing from the isothermal stage to the end of the first Larson core
(Marchand et al. 2016; Wurster 2016). It is therefore necessary to
quantify its impact through numerical simulations. Recent stud-
ies have shown that the Hall effect does indeed play a major role
in the regulation of the angular momentum (Krasnopolsky et al.
2011; Tsukamoto et al. 2015, 2017; Wurster et al. 2016) and in the
formation of binary stars (Wurster et al. 2017).

Several astrophysical codes, both Eulerian and Lagrangean,
already include the Hall effect, through various numerical meth-
ods. The first star-formation simulations, including the Hall term
(Tsukamoto et al. 2015, 2017) as well as the most recent stud-
ies (Wurster et al. 2016, 2017, 2018) have been performed with
SPH codes. The protoplanetary disks shearing box simulations
by Lesur et al. (2014) uses the grid-based code PLUTO (Mignone
et al. 2007). The Hall effect is also implemented in the AMR
codes BASTRUS (Tóth et al. 2008) and ZEUS (Stone & Norman
1992; Krasnopolsky et al. 2010), as well as in the multimethods
code GIZMO (Hopkins 2015, 2017).

The aim of this paper is first to present an original implemen-
tation of the Hall effect in the adaptive-mesh-refinement (AMR)
code RAMSES and to apply it in protostellar collapse studies. The
paper is organized as follows. First, we briefly recall the basics of
the theory about the Hall effect in Sect. 2. Second, we detail our
numerical implementation in Sect. 3 and present validation tests
of our scheme in Sect. 4. Section 5 is devoted to the protostellar
collapse models in which we incorporate the Hall effect. Finally,
in Sect. 6 we give our conclusions.

2. Theory

2.1. Equations of non-ideal MHD

We write the complete set of non-ideal MHD equations in
conservative form with self-gravity as a source term:

∂ρ

∂t
+ ∇ · [ρu

]
= 0, (1)

∂ρu
∂t

+ ∇ ·
[
ρuu +

(
P +

B2

2

)
I − BB

]
= −ρ∇Φ, (2)

∂B
∂t
− ∇ × [u × B + ENIMHD] = 0, (3)

∂Etot

∂t
+∇ · [(Etot + Ptot) u − (u · B) B − ENIMHD × B]=−ρu · ∇Φ,

(4)

where ρ is the density, u the fluid velocity, P the thermal pres-
sure, B the magnetic field, and Φ the gravitational potential. Etot
and Ptot are the total energy and total pressure:

Etot = ρε +
1
2
ρu2 +

1
2

B2, (5)

Ptot = (γ − 1)ρε +
1
2

B2, (6)

where ε is the specific internal energy and γ the adiabatic index.
ENIMHD represents the electric field created by the three non-
ideal MHD effects, and reads (Nakano et al. 2002; Masson et al.
2012)

ENIMHD = −ηΩJ − ηH

||B|| (J × B) +
ηAD

||B||2 ((J × B) × B) , (7)

with ηΩ, ηH, and ηAD the Ohmic, Hall, and ambipolar resistivi-
ties, and J = ∇×B the electric current. The MHD equations have
been written in the Gaussian cgs-units convention, such that the
permeability constant µ0 = 1.

2.2. The Hall effect

We first performed a perturbation analysis to characterize the
Hall effect. We ignored all forces but the Lorentz force, as well as
the Ohmic and ambipolar diffusion terms. Let us consider a fluid
at rest in an equilibrium state, threaded by a uniform magnetic
field B = Bez. We introduced small perturbations δux, δuy, δBx,
δBy of the velocity and magnetic fields in the x- and y-directions,
propagating along the z-direction at the frequency ω. Each per-
turbation is therefore proportional to exp(iωt − ikz). Considering
only the Hall effect, the induction Eq. (3) reads

∂B
∂t

= ∇ ×
[
u × B − ηH

||B||J × B
]
. (8)

It is coupled with the momentum Eq. (2), with only the Lorentz
force that we write in its non-conservative form:

ρ
∂u
∂t

= J × B. (9)

We introduced the perturbations in Eqs. (8) and (9), and
cancel out the zeroth- and second-order terms:

ρiωδux = −ikBδBx, (10)
ρiωδuy = −ikBδBy, (11)

iωδBx = ikBδux + ηHk2δBy, (12)

iωδBy = ikBδuy − ηHk2δBx. (13)

The system of equations is linear and can be written in matrix
form:


ρiω 0 ikB 0
0 ρiω 0 ikB
−ikB 0 iω −ηHk2

0 −ikB ηHk2 iω





δux
δuy
δBx
δBy


= 0. (14)

A non-trivial solution is possible if the matrix determinant is
zero. We obtain

ω4 − ω2(2k2c2
A + η2

Hk4) + k4c4
A = 0, (15)

with cA = B√
ρ

the Alfvén speed. This equation can also be written
as

(ω2 − k2c2
A)2 − (ηHk2ω)2 = 0, then (16)

(ω2 − ηHk2ω − k2c2
A)(ω2 + ηHk2ω − k2c2

A) = 0. (17)

We only keep the positive solutions for ω, which yields the
following dispersion relation (Balbus & Terquem 2001):

ω = ±ηHk2

2
+

√(
ηHk2

2

)2

+ k2c2
A. (18)
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Contrarily to the ambipolar and the Ohmic diffusions, the Hall
effect is purely dispersive. Any perturbation creates two waves
whose frequencies ω are linked to their wavelength λ = 2π/k.
They are called whistler waves. They propagate the magnetic
field perturbations along the field lines at the whistler speed:

cw =
ω

k
= ±ηHk

2
+

√(
ηHk

2

)2

+ c2
A. (19)

One of these two waves is always faster than the Afvén speed,
and can theoretically travel at an unbound speed for very high
frequencies and very small wavelengths. In practice, it is phys-
ically limited by the ion cyclotron frequency (Srinivasan &
Shumlak 2011). From Eq. (19), we can define two regimes. If
ηHk

2 � cA, then the Hall effect is weak and cw ≈ cA. In this case,
the whistler waves behave as Alfvén waves. Otherwise, the Hall
effect plays a significant role in the magnetic field evolution. This
defines the Hall length lH =

ηH
cA

below which the Hall effect is
dominant. Note that by being purely dispersive, the Hall effect
does not directly impact the fluid energy or momentum. It only
modifies the topology of the magnetic field.

3. Numerical methods – implementation of the Hall
effect

We implemented the Hall effect in the Eulerian code RAMSES
(Teyssier 2002). Since the Hall effect is dispersive, the introduc-
tion of new waves in the system modifies the Riemann problem
that needs to be solved on each cell interface. For this reason we
have adapted the method of Lesur et al. (2014) implemented in
the PLUTO code (Mignone et al. 2007). This method is similar
to Tóth et al. (2008) and is based on a direct modification of the
Riemann solver. Therefore, we do not consider the Hall effect
as a source term, as it is the case for the ambipolar and Ohmic
diffusions in RAMSES (Masson et al. 2012).

3.1. The constrained transport in RAMSES

In RAMSES, the magnetic field is naturally defined at the center
of each orthogonal face, meaning that for the cell centered on
indexes (i, j, k) (for the x, y, and z directions), Bx, By, and Bz

are defined at (i − 1
2 , j, k), (i, j − 1

2 , k), and (i, j, k − 1
2 ), respec-

tively. The code uses the constrained transport (CT; Evans &
Hawley 1988) to solve both the induction equation of ideal MHD
(Teyssier et al. 2006; Fromang et al. 2006) and the ambipolar and
Ohmic diffusions (Masson et al. 2012). This method exploits the
Stokes theorem by using the value of the electromotive forces
(EMF) on cell edges to compute the magnetic flux through cell
interfaces. For instance, Fig. 1 shows which EMFs are used to
evolve the x-component of the magnetic field at the cell interface
(i − 1/2, j, k). The constrained transport update reads

Bn+1
x,i− 1

2 , j,k
− Bn

x,i− 1
2 , j,k

∆t
=

En+ 1
2

z,i− 1
2 , j+

1
2 ,k
− En+ 1

2

z,i− 1
2 , j− 1

2 ,k

∆y

−
En+ 1

2

y,i− 1
2 , j,k+ 1

2
− En+ 1

2

y,i− 1
2 , j,k− 1

2

∆z
. (20)

In RAMSES, since ∆x = ∆y = ∆z, we use only ∆x in the remain-
der of the manuscript. As RAMSES uses the MUSCL scheme
(van Leer 1976), a predictive step is first performed to compute
the flow variables from time-step n to n + 1/2. These predictions

Ez
i-1/2,j-1/2,k

Ez
i-1/2,j+1/2,k

Ez
i-1/2,j,k+1/2

Ez
i-1/2,j,k-1/2

Bx
i-1/2,j,k

(i+1/2,j-1/2,k-1/2) (i+1/2,j+1/2,k-1/2)

z

y
x

(i-1/2,j+1/2,k-1/2)

(i-3/2,j+1/2,k-1/2)

(i-3/2,j-1/2,k+1/2) (i-3/2,j+1/2,k+1/2)

(i-1/2,j-1/2,k+1/2)

(i+1/2,j-1/2,k+1/2)

(i-1/2,j+1/2,k+1/2)

(i-1/2,j-1/2,k-1/2)

Fig. 1. Visualization of the constrained transport (CT) method for the
calculation of the magnetic field Bx at cell interface (i − 1

2 , j, k).

are then used to obtain the fluxes (here the EMFs). In the case
of the CT, the EMFs are located at cell edges, at the intersection
of four different states. In RAMSES, a 2D Riemann solver is used
to deal with the discontinuity and compute the EMFs from these
states. We explicitly detail these steps in the description of our
implementation.

3.2. Principle of the implementation

The Hall induction equation can be rewritten

∂B
∂t

= −∇ × [(u + uH) × B], (21)

where uH ≡ −ηH
∇×B
||B|| is the Hall speed (not to be confused with

the whistler speed !), at which the Hall effect moves the field
lines. Our goal is to replace the fluid velocity u by the “effec-
tive” velocity u + uH in the 2D Riemann solver that computes
the EMFs on cell edges for the CT scheme.

The Hall effect is a dispersive term which induces the prop-
agation of waves at every wavelength. The Shannon–Nyquist
theorem (Shannon 1949) states that whistler waves with a
wavelength smaller than twice the local resolution cannot be
described and propagated. This defines the minimum resolved
whistler wavelength as λ = 2∆x, where ∆x is the size of the local
cell. Following Eq. (19), the associated whistler speed is

cw =
ηHπ

2∆x
+

√(
ηHπ

2∆x

)2
+ c2

A. (22)

Since RAMSES is an explicit code in time, this wave speed
needs to be accounted for in the computation of the character-
istic speeds. cw however scales as 1/∆x, which consequently
decreases the spatial order of the scheme by one. To get a con-
sistent implementation, an at least second-order scheme is hence
necessary, which is the case here with the MUSCL scheme.

3.3. The Hall speed

Since the CT scheme uses the EMFs on cell edges, the Hall speed
uH also needs to be computed on cell edges. We take the example
of the edge located at (i− 1

2 , j− 1
2 , k). The first step is to determine
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the predicted states of the flow variables on cell faces and edges
using a TVD slope. As part of the MUSCL scheme, the principle
is to use a linear function whose slope is determined by consid-
ering neighboring cells. The TVD method (Harten 1983) limits
this slope to prevent the generation of new, unwanted, extrema in
the system. For example, a well-known slope limiter is minmod.
For the variable U in the cell with index i, the minmod slope is
0 if Ui is a local extremum, and the lowest magnitude between
(Ui − Ui−1) and (Ui+1 − Ui) otherwise. For the magnetic field,
the predicted states are computed using the induction equation
without the Hall term, coupled with the Stokes theorem:

Bn+ 1
2

x,i− 1
2 , j,k
− Bn

x,i− 1
2 , j,k

∆t
=

En
z,i− 1

2 , j+
1
2 ,k
− En

z,i− 1
2 , j− 1

2 ,k

∆x

−
En
y,i− 1

2 , j,k+ 1
2
− En

y,i− 1
2 , j,k− 1

2

∆x
, (23)

Bn+ 1
2

y,i, j− 1
2 ,k
− Bn

y,i, j− 1
2 ,k

∆t
=

En
x,i, j− 1

2 ,k+ 1
2
− En

x,i, j− 1
2 ,k− 1

2

∆x

−
En

z,i+ 1
2 , j− 1

2 ,k
− En

z,i− 1
2 , j− 1

2 ,k

∆x
, (24)

Bn+ 1
2

z,i, j,k− 1
2
− Bn

z,i, j,k− 1
2

∆t
=

En
y,i+ 1

2 , j,k− 1
2
− En

y,i− 1
2 , j,k− 1

2

∆x

−
En

x,i, j+ 1
2 ,k− 1

2
− En

x,i, j− 1
2 ,k− 1

2

∆x
, (25)

where En = un × Bn is the electric field calculated on cell edges
using simple interpolation of un and Bn at these locations, for
example,

un
i− 1

2 , j− 1
2 ,k

=
1
4

(
un

i, j,k + un
i−1, j,k + un

i, j−1,k + un
i−1, j−1,k

)
, (26)

Bn
x,i− 1

2 , j− 1
2 ,k

=
1
2

(
Bn

x,i− 1
2 , j,k

+ Bn
x,i− 1

2 , j−1,k

)
, (27)

Bn
y,i− 1

2 , j− 1
2 ,k

=
1
2

(
Bn
y,i, j− 1

2 ,k
+ Bn

x,i−1, j− 1
2 ,k

)
. (28)

Only the perpendicular component of the magnetic field is
calculated on each face. We reconstruct the other two by inter-
polating the state at the cell center using the TVD slope. For
instance, obtaining By on the face located at (i − 1

2 , j, k) yields

Bn+ 1
2

y,i, j,k =
1
2

(
Bn+ 1

2

y,i, j− 1
2 ,k

+ Bn+ 1
2

y,i, j+ 1
2 ,k

)
, (29)

Bn+ 1
2

y,i− 1
2 , j,k

= Bn+ 1
2

y,i, j,k −
∆x(By)i, j,k

2
, (30)

where ∆x(By)i, j,k is the slope of By in the x-direction for cell
(i, j, k). As a result, two different magnetic fields are defined on
each face, computed independently using the flow variables of
the cells on each side of the interface. From here on, we have
used the LI and RI exponents (left and right interfaces) to indi-
cate the component coming from the lower index and higher
index cells respectively, for example,

Bn+ 1
2 ,LI

i− 1
2 , j,k

= Bn+ 1
2

i−1, j,k +
∆x(B)i−1, j,k

2
, (31)

Bn+ 1
2 ,RI

i− 1
2 , j,k

= Bn+ 1
2

i, j,k −
∆x(B)i, j,k

2
, (32)

z

y
x

B i-1/2,j,k+1

J i-1/2,j-1/2,k

pred

B i-1,j-1/2,k+1/2

B i-1,j-1/2,k-1/2

int

int

B i-1/2,j-1,k+1
pred

B i-1/2,j,k-1
pred

B i-1/2,j,k
predB i-1/2,j-1,k

pred

B i-1/2,j-1,k-1
pred

J

z
y

x

Fig. 2. Magnetic fields used to calculate J on edge (i − 1
2 , j − 1

2 , k). The
right picture represents the cell faces at (i − 1

2 ), as highlighted on the
12 cells block (i − 1 · · · i, j − 1 · · · j, k − 1 · · · k + 1) on the left (the front
right middle cell is cell (i, j, k)).

with the same logic for y- and z- directions. We note that in
each case, the component perpendicular to the face is naturally
defined and does not need to be interpolated with the slope.
This discontinuity of B is a problem here since the Hall speed
is proportional to the electric current J = ∇ × B. The jumps
at cell interfaces may be assimilated to perturbations with an
infinitely small wavelength that would propagate at an infinite
speed, which is of course unphysical. To tackle this problem, we
averaged B and consider that J is constant on cell faces and edges
(Tóth et al. 2008; Lesur et al. 2014), at the price of a greater
numerical diffusivity since we smoothed out discontinuities. We
note Bpred the averaged magnetic field, therefore calculated as

Bpred
i− 1

2 , j,k
=

Bn+ 1
2 ,LI

i− 1
2 , j,k

+ Bn+ 1
2 ,RI

i− 1
2 , j,k

2
. (33)

Next we interpolated J on cell edges. For this, we also need
the magnetic field at the two ends of the edges that we inter-
polated from Bpred. On the edge located at (i − 1

2 , j − 1
2 , k), this

yields

Bint
i− 1

2 , j− 1
2 ,k+ 1

2
=

Bpred
i− 1

2 , j−1,k
+ Bpred

i− 1
2 , j−1,k+1

+ Bpred
i− 1

2 , j,k+1
+ Bpred

i− 1
2 , j,k

4
,

(34)

Bint
i− 1

2 , j− 1
2 ,k− 1

2
=

Bpred
i− 1

2 , j−1,k−1
+ Bpred

i− 1
2 , j−1,k

+ Bpred
i− 1

2 , j,k
+ Bpred

i− 1
2 , j,k−1

4
.

(35)

Figure 2 depicts the magnetic fields used in the calculation of
J on edge (i − 1

2 , j − 1
2 , k). The faces represented are situated in

x = (i − 1
2 ) (see left picture).

We then computed J as ∇ × B

Jx,i− 1
2 , j− 1

2 ,k
=

Bpred
z,i− 1

2 , j,k
− Bpred

z,i− 1
2 , j−1,k

∆x

−
Bint
y,i− 1

2 , j− 1
2 ,k+ 1

2
− Bint

y,i− 1
2 , j− 1

2 ,k− 1
2

∆x
, (36)

Jy,i− 1
2 , j− 1

2 ,k
=

Bint
x,i− 1

2 , j− 1
2 ,k+ 1

2
− Bint

x,i− 1
2 , j− 1

2 ,k− 1
2

∆x
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i,j,ki-1,j,k

i,j-1,ki-1,j-1,k

By i-1,j-1/2,k By i,j-1/2,k

Bx i-1/2,j,k

Bx i-1/2,j-1,k

EzLB

EzLT EzRT

EzRB

Ezi-1/2,j-1/2,k
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Fig. 3. Scheme of a 2D Riemann problem in the z-direction. The blue
area represents the states at the corner for each cell at i − 1

2 , j − 1
2 , k.

−
Bpred

z,i, j− 1
2 ,k
− Bpred

z,i−1, j− 1
2 ,k

∆x
, (37)

Jz,i− 1
2 , j− 1

2 ,k
=

Bpred
y,i, j− 1

2 ,k
− Bpred

y,i−1, j− 1
2 ,k

∆x

−
Bpred

x,i− 1
2 , j,k
− Bpred

x,i− 1
2 , j−1,k

∆x
. (38)

The Hall resistivity ηH depends on the density ρ, the temper-
ature T , the cosmic-ray ionization rate ζ, and the magnetic field
amplitude B. These quantities are interpolated on cell edges from
the cell-centered predicted states. For each of these variables A,
we computed

Ai− 1
2 , j− 1

2 ,k
=

1
4

(
An+ 1

2
i, j,k + An+ 1

2
i−1, j,k + An+ 1

2
i−1, j−1,k + An+ 1

2
i, j−1,k

)
. (39)

Finally, the Hall speed is

uH,i− 1
2 , j− 1

2 ,k
= −ηH(ρ,T , ζ, B)

B
J, (40)

with every quantity calculated at (i − 1
2 , j − 1

2 , k).

3.4. Solving the Riemann problem

We then solved the 2D Riemann problem to obtain the value of
the total electromotive forces on cell edges. The notations are
defined in Fig. 3. The blue area represents the corner states of
the four cells at (i − 1

2 , j − 1
2 , k), as calculated in Eqs. (41)–(52),

and the red label is the emf computed in Eq. (53).
The flow variables were extrapolated on edges from the pre-

dicted states at cell centers using Eqs. (1)–(4) and the TVD
slopes. Similar to the magnetic field on cell faces, this process
yields four different states at each corner:

Un+ 1
2 ,LB

i− 1
2 , j− 1

2 ,k
= Un+ 1

2
i−1, j−1,k +

∆x(U)i−1, j−1,k

2
+

∆y(U)i−1, j−1,k

2
, (41)

Un+ 1
2 ,RB

i− 1
2 , j− 1

2 ,k
= Un+ 1

2
i, j−1,k −

∆x(U)i, j−1,k

2
+

∆y(U)i, j−1,k

2
, (42)

Un+ 1
2 ,LT

i− 1
2 , j− 1

2 ,k
= Un+ 1

2
i−1, j,k +

∆x(U)i−1, j,k

2
− ∆y(U)i−1, j,k

2
, (43)
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2 ,RT

i− 1
2 , j− 1

2 ,k
= Un+ 1

2
i, j,k −

∆x(U)i, j,k

2
− ∆y(U)i, j,k

2
, (44)

for any flow variable U, and the magnetic field is averaged on
the interfaces:
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2 ,B
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=
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(48)

We write these quantities BB
x , BT

x , BL
y , and BR

y . The EMFs
were then computed at each corner state, with the addition of
the Hall speed (40) (that is the same for the four states), so that
E = (u + uH) × B. On the (i − 1

2 , j − 1
2 , k) edge, we needed the

z-component:

En+ 1
2 ,LB

z = (un+ 1
2 ,LB

x + uH,x)BL
y − (un+ 1

2 ,LB
y + uH,y)BB

x , (49)

En+ 1
2 ,LT

z = (un+ 1
2 ,LT

x + uH,x)BL
y − (un+ 1

2 ,LT
y + uH,y)BT

x , (50)

En+ 1
2 ,RB

z = (un+ 1
2 ,RB

x + uH,x)BR
y − (un+ 1

2 ,RB
y + uH,y)BB

x , (51)

En+ 1
2 ,RT

z = (un+ 1
2 ,RT

x + uH,x)BR
y − (un+ 1

2 ,RT
y + uH,y)BT

x . (52)

The resulting EMF on the edge was obtained by solving the
Riemann problem at this discontinuity of four different states.
The Hall effect is dispersive and introduces two waves into the
system, for a total of 10:

– Two Alfvèn waves that propagate the perturbations of the
magnetic field, λ = u ± cA.

A37, page 5 of 16

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201832907&pdf_id=0


A&A 619, A37 (2018)

– Two fast magnetosonic waves, representing the correlation
between B and ρ by the coupling between Lorentz force and
thermal pressure,

λ = u ±
√

1
2 (c2

s + c2
A) + 1

2

√
(c2

s + c2
A) − 4c2

s c2
A,x

(with cA,x = Bx/
√
ρ the component of the Alfvèn speed

in the direction of propagation and cs =
√
γP/ρ the sound

speed).
– Two slow magneto sonic waves, representing the anti-

correlation between B and ρ by the coupling between
Lorentz force and thermal pressure,

λ = u ±
√

1
2 (c2

s + c2
A) − 1

2

√
(c2

s + c2
A) − 4c2

s c2
A,x.

– One contact discontinuity wave λ = u.
– Two dispersive whistler waves.

Given the high number of waves, we used approximate Riemann
solvers to compute the flux at cell faces and the EMF on cell
edges. Tóth et al. (2008) demonstrated that the Lax–Friedrich
Riemann solver is inconsistent with the Hall effect, because the
whistler speed scales as cw∼∆x−1. We chose to use the HLL
solver (Harten et al. 1983), which considers only the lowest and
highest (algebraic) wave speeds in each direction, and a constant
state is assumed between these waves. It is a satisfying compro-
mise between accuracy and numerical complexity, compared, for
instance, to the HLLD solver (Miyoshi & Kusano 2005) which
takes five wave speeds into account. In the case of a 2D Riemann
problem, the HLL solution for the EMF is (Londrillo & del
Zanna 2004)

En+ 1
2

z

=
S LS BEn+ 1

2 ,LB
z −S LS T En+ 1

2 ,LT
z − S RS BEn+ 1

2 ,RB
z + S RS T En+ 1

2 ,RT
z

(S R − S L)(S T − S B)

− S T S B

S T − S B
(BT

x − BB
x ) +

S RS L

S R − S L
(BR

y − BL
y ), (53)

where S L, S R, S B, and S T are the lowest and highest wave speeds
in the x- and y-directions. Once this work has been done for
every edge, the magnetic field is updated with the constrained
transport method, using Eq. (20).

3.5. The speed of whistler waves

In order to correctly propagate the perturbations caused by the
Hall effect, the whistler wave speed (22) needs to be taken
into account in the Courant Friedrichs Lewy (CFL) condition
(Courant et al. 1928). This condition ensures that information
does not travel further than one cell in one time-step, otherwise it
would be lost since information exchange happens between adja-
cent cells. At high resolution, we have roughly cw ≈ ηHπ

∆x , and the
corresponding time-step

∆tHall ≈ ∆x
cw
∝ ∆x2. (54)

The scaling of the time-step in ∆x2 induces a fast decrease of the
time-step as resolution increases, which is a limitation of cur-
rent numerical simulation codes. Techniques that allow a faster
integration such as Super Time-Stepping cannot be employed
for the Hall effect because a larger time-step would cut off the
high-frequency whistler waves.

At high resolutions, the fast whistler waves have the fastest
characteristic speeds of the Riemann problem. We then have

S L = ux − cw, S R = ux + cw, S B = uy − cw and S T = uy + cw. This
impacts the 2D Riemann problem (as described in the implemen-
tation (Sect. 3.4)), as well as the 1D Riemann problems that are
solved at cell interfaces during the prediction step of the MUSCL
scheme.

3.6. Summary

The different steps of the Hall resolution are in the following
order:

– Compute the predicted states of the flow variables
(Eqs. (23)–(28)).

– Interpolate B on cell faces and corners with Eqs. (29)–(35).
– Calculate the electric current J on edges with Eqs. (36)–(38).
– Calculate the Hall speed on edges with the averaged flow

variables and the interpolated J (Eqs. (39)–(40)).
– Extrapolate the flow variables on cell corners (Eqs. (41)–

(48)).
– Use the effective speed u + uH instead of u to compute the

EMFs at cell corners (Eqs. (49)–(52)).
– Solve the 2D Riemann problem by considering the whistler

waves in the calculation of S L, S R, S B, and S T , to get the
electric fields En+1/2 with Eq. (53).

– Update the flow variables with the constrained transport
scheme (20).

3.7. Comparison to other implementation

Our implementation of the Hall effect in RAMSES followed the
work of Lesur et al. (2014), who included it in the Eulerian
code PLUTO (Mignone et al. 2007). While both codes use the
CT algorithm, Lesur et al. (2014) use a 1D Riemann solver
to compute the EMF while we have included the Hall effect
into 2D Riemann solver, which, to the best of our knowledge,
has never been done before. Both codes use a second-order
scheme (Runge–Kutta for PLUTO), and share the same con-
vergence properties for the Hall effect. The approach is also
similar to the implementation of Tóth et al. (2008) for the
BASTRUS code (Tóth et al. 2006), although they implemented
the Hall effect using an explicit time integration within an
implicit code. Since implicit schemes are unconditionnally sta-
bles, they are not strictly bound to the whistler speed to choose
their time-step. This emancipation results in a faster code
because larger time-steps are allowed. Furthermore, without the
constraint of the whistler speed, the scheme order is increased
by one. The drawback of the BASTRUS code is a less pre-
cise scheme at small scales because the shortest whistler waves
cannot be correctly propagated.

The Hall effect has been implemented in the Eulerian code
ZeusTW (Stone & Norman 1992; Krasnopolsky et al. 2010)
according to Sano & Stone (2002). The term (∇ × B) × B is
evolved at tn+1/2 using a finite difference scheme to evaluate the
curls in an explicit way. The resulting Hall-EMF is then added
to the ideal EMF u × B into a modified constrained transport
method. The tests in Sano & Stone (2002) show that the disper-
sion relation of the Hall effect is verified, but we have not found
any information about the accuracy of the scheme.

Due to their nature, Lagrangean codes cannot use the
constrained transport method. In the SPH code PHANTOM
(Wurster et al. 2014; Price et al. 2017) as well as in Tsukamoto
et al. (2015, 2017), the three non-ideal MHD terms were imple-
mented as source terms. Testing them with the ambipolar dif-
fusion shows second-order convergence, but no information is
given for the Hall effect, nor the propagation of whistler waves
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at various resolution. They do, however, recover the theoret-
ical dispersion relation, and perform the shock-test described
in Sect. 4.2 with results fitting the expected profile within 3%
(Wurster et al. 2016).

4. Tests

In the following section, we describe how we tested our imple-
mentation of the Hall effect, especially the propagation of the
whistler waves. Except in the shock test, ENIMHD is always
reduced to the Hall effect.

4.1. Propagating whistler waves

4.1.1. Dispersion relation test

We tested the propagation of whistler waves with our scheme by
following the setup described in Kunz & Lesur (2013). First, we
aimed to retrieve the dispersion relation (18). In a cubic box of
length 1 cm with uniform density and pressure, we set a whistler
wave with a wave-number k, and study its propagation in the
x-direction and its oscillations. The initial MHD quantities are

ρ = 1 g cm−3, Bx = 0.1 G,

P = 1.5 × 10−5 dyne cm−2, By = 10−3 cos(2πkx) G,

γ =
5
3
, Bz = 0 G,

u = 0 cm s−1.

We imposed periodic boundary conditions, which requires k to
be an integer to ensure continuity. To retrieve the dispersion rela-
tion (18), we vary k and ηH, typically between 5 and 20 for k and
5 × 10−4 to 0.1 cm2 s−1 for ηH. We used a uniform resolution of
∆x = 1/128 cm and the moncen slope limiter. The question of
resolution and slope limiters are discussed in the next section.

Figure 4 shows the time evolution of uy and By in the case
k = 7 and ηH = 5 × 10−3 cm2 s−1, for a random cell in the com-
putational domain (here x = y = 32.5/128, z = 63.5/128). As
expected, two whistler waves propagate with different frequen-
cies. The fluid is set into motion at the same frequencies as the
magnetic field. Figure 5 shows the Fourier transform of the tem-
poral evolution of the magnetic field in the y-direction for the
same cell as Fig. 4. It contains two peaks corresponding to the
frequencies at which the waves propagate. These peaks are vis-
ible around ω ≈ 2 s−1 and ω ≈ 0.3 s−1. By varying the Hall
resistivity ηH and the wave-number k, we obtain a set of fre-
quencies. Figure 6 shows the frequencies, normalized by the Hall
frequency ωH =

c2
A
ηH

, plotted as a function of klH. The agreement
between our results and the theoretical dispersion relation is very
good (within 5% for most points, see blue points in Fig. 6).
However, we could not extract good approximations of the low
frequency waves at high klH because of the fast dissipation of
the signal (see Sect. 4.1.2). For a similar reason, the eigenfre-
quencies of klH < 1 waves are less precise because of their slow
oscillations.

4.1.2. Truncation errors and order of the scheme

Numerical schemes are based on the approximation of Taylor
series, which creates truncation errors. In the context of wave
propagations, they take the form of an artificial dissipation of
the signal. For a well-designed numerical scheme, this error
should decrease when the resolution increase. The damping of
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Fig. 4. Typical evolution of uy (in blue) and By (in red) through time
for a random cell in the box (here x = 48.5/128, y = 0.5/128, z =
63.5/128). k = 7 cm−1, ηH = 5 × 10−3 cm2 s−1.
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the signal clearly appears in Fig. 4 with the decrease of the wave
amplitudes.

The transverse magnetic field can then be estimated as

By(t) = f (t)e−at, (55)
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Fig. 7. Numerical damping rates as a function of resolution for different
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where f (t) is the periodic contribution and e−at the damping,
with a the damping coefficient in s−1. Ideally, this coefficient
needs to be as small as possible. To achieve this, we wanted to
make sure that our scheme is at the highest possible order in
space, meaning, at least second order in our implementation. We
were able to control the convergence of the calculation by chang-
ing the grid resolution, as well as the slope limiter as suggested
in Tóth et al. (2008) and Lesur et al. (2014). We use the same
setup as previously, with k = 5 cm−1, ηH = 0.005 cm2 s−1. We
also used the slope limitersminmod, moncen, and generalized
moncen (β = 1.5), for resolutions of ∆x = 1

32 ,
1

64 , and 1
128 cm.

The resulting damping rates a are plotted in Fig. 7. Similar to
Tóth et al. (2008) and Lesur et al. (2014), we find that the min-
mod limiter is only first order, while the moncen and generalized
moncen limiters show second-order accuracy.

A second-order scheme like MUSCL, combined with the
appropriate slope limiter, appears to be necessary to treat the
Hall effect. As already mentioned in Sect. 3.2, the characteris-
tic whistler speed scales as 1/∆x, which lowers the order of the
scheme by one. The test results show that without a TVD slope,
the numerical dissipation does not decrease with the resolution,
and the scheme is inconsistent.

Tóth et al. (2008) show that for a second-order slope limiter,
the numerical dissipation scales as ∂4U

∂x4 . It means that at a given
number of points per lH, the damping rate increases as k4. We
evaluated the damping rate for ηH = 0.005 cm2 s−1 at a fixed
resolution of ∆x = 1

128 cm and k = 5, 7, 8, 10, 20 cm−1. We
used the moncen slope limiter. Figure 8 shows the evolution of
the numerical damping rate as a function of the wave-number
k. We recovered the theoretical scaling in k4, which indicates
that smaller wavelengths are substantially more affected by the
numerical dissipation than the larger ones.

4.1.3. Grid refinement

Here we investigate the behavior of whistler waves on non-
regular grids, using the same plane-parallel setup of the previous
tests, while refining the grid on specific locations. We once more
took k = 5 cm−1 and ηH = 0.005 cm2 s−1 as the reference case,
with the moncen slope limiter. We typically used two or three
different levels of refinement, with the maximum resolution cen-
tered on x = 0 and gradually decreasing on each side. The
simulation box extends between x = −0.5 cm and x = +0.5 cm.
A refinement level ` corresponds to a resolution ∆x = 1/2` cm.
For the two-levels tests, the levels of resolution are ` = `min + 1
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Fig. 8. Numerical damping rates versus wave-number k. Solid line:
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Fig. 9. Damping coefficient of the whistler wave as a function of the
maximum (triangles) and minimum (squares) resolution of the grid.
Colors indicate the minimum resolution: purple for `min = 4, blue for
`min = 5, green for `min = 6, and red for `min = 7. The circle points rep-
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for −0.25 < x < 0.25, and ` = `min everywhere else. For three-
levels tests, we impose ` = `min +2 between −0.125 < x < 0.125,
` = `min + 1 in −0.25 < x < 0.25, and ` = `min in the rest of
the box. We chose `min = 5, 6 for the two-levels simulations and
`min = 4, 5, 6 for the three-levels. The whistler wave propagates
along the x-axis.

Figure 9 shows the damping rates of the whistler waves as a
function of the maximum (triangles) and minimum (squares) res-
olution for the five runs described above, and for regular grids
(circles) with minimum refinement levels from four to seven
(colors). The damping in regular grids follows the same ∆x2

scaling as in the previous test. However, non-regular grids pro-
duce a higher damping rate that does not always scale down with
the maximum resolution. Instead, the damping rate seems to be
only affected by the minimum resolution. While the AMR is an
efficient tool to capture small-scale phenomena at a relatively
low cost, it does not seem to be adapted for the propagation of
whistler waves, whose dissipation depends only on the coarser
resolution they cross.

4.2. Shock test

We then tested the Hall effect in a more physical situa-
tion. We considered a unidimensional isothermal shock in a
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Table 1. Initial and boundary flow variables for the shock test.

Variable Left state Right state

ρ (g cm−3) 1.7942 1.0
P (dyn cm−3) 0.017942 0.01
u (cm s−1) −0.9759 −1.751

−0.6561 0.0
0.0 0.0

B (G) 1.0 −1.0
1.74885 0.6

0.0 0.0

Hall-dominated regime in presence of the Ohmic and the
ambipolar diffusions, following the setup of Falle (2003) and
Wurster et al. (2016). The sound speed and x-magnetic field

are uniform, with cs =
√

P
ρ

= 0.1 cm s−1, Bx = 1 G, and we

used the resistivities ηΩ = 10−9, ηH = −2 × 10−2B, and ηAD =

3.5 × 10−3 B2

ρ
cm2 s−1. We considered a cubic box with a discon-

tinuity in the x-direction, and characterized by the left and right
states presented in Table 1.

Initially, the left state spans x ∈ [0; 0.3] while the region
x ∈ [0.3; 1] is in the right state. We put the discontinuity at x =
0.3 to let the fluid oscillate in the low density region. The bound-
aries are periodic in the y- and z-directions, and are fixed with
the left and right states in the x-direction. The box has a 1 cm
size. We used the AMR in order to gain computation time while
keeping a good precision in the sensitive zones. The minimum
resolution is 1/64 cm (level `min = 6 of AMR), and we refine the
grid to keep the magnetic field variation lower than 5% in one
cell, up to a resolution of 1/256 cm (level eight of AMR). We let
the system evolve until the initial discontinuity converges toward
a steady-state profile of the shock. The analytical calculation of
the theoretical profile is detailed in Appendix A.

Figure 10 displays both the numerical steady-state profiles
and the analytical solution. The agreement is very good with a
difference lower than 1% at shock interface. The larger errors in
outer regions are oscillations due to the low resolution and the
fixed boundary conditions, which happen even without the Hall
effect.

5. Collapse of a dense core

In this section, we describe our simulations of dense core
collapse with the Hall effect as a practical test of our implemen-
tation. Simulations are presented in Sects. 5.2 and 5.3, following
elements of Hall effect theory in this context in Sect. 5.1.

5.1. Hall effect in star formation: theory

Assuming axisymmetry and accounting only for the Hall effect,
the azimuthal component of Eq. (8) reads

∂Bθ
∂t

= −
[
∇ ×

(
ηH

||B|| (∇ × B) × B
)]

θ

= − ηH

B

[
∂

∂z

[
Bz

(
∂Br

∂z
− ∂Bz

∂r

)
− Bθ

r
∂(rBθ)
∂r

]

+
∂

∂r

[
Bθ
∂Bθ
∂z

+ Br
∂Br

∂z
+ Br

∂Bz

∂r

]]
. (56)

This expression shows that Hall effect generates a toroidal mag-
netic field Bθ, provided that its radial and vertical components Br
and Bz are not uniform.

During the collapse of a magnetized dense core, the pinch-
ing of the field lines creates an accumulation of matter known as
the “pseudo-disk” (Galli & Shu 1993), with a density typically
higher than 10−15 g cm−3. It is perpendicular to the large-scale
magnetic fields and is located where the pinching is the strongest,
at the neck of the “hourglass” formed by the field lines. The
large spatial variations of the magnetic field at this location
generates a strong toroidal electric current in the mid-plane of
the pseudo-disk. uH being directly proportional to J, the field
lines are then twisted in the plane of the pseudo-disk. If the
core is initially rotating, the fluid also twists the lines. The
Hall effect therefore strengthens or weakens the toroidal mag-
netic field generated by the rotation, depending on the sign of
−ηHJθ. The consequence is a stronger or weaker magnetic brak-
ing, resulting in a slower or faster rotation speed of the fluid
(see, e.g., Tsukamoto et al. 2015). If the core is not rotating ini-
tially, the Hall effect still generates a toroidal magnetic field,
which induces the rotation of the fluid, in the same way that
the magnetic braking slows the rotation via the magnetic ten-
sion. In either case, the fluid is accelerated in the direction
of −uH.

5.2. Setup

The objective is to test our implementation with a simple core-
collapse simulation, and study the role of the Hall effect. We
used the standard Boss & Bodenheimer (1979) initial conditions
with a non-rotating uniform sphere of gas. The sphere radius is
3712 au and its density ρ0 = 4.15 × 10−18 g cm−3 for a total
mass of 1.5 M�. The thermal over gravitational energy ratio is
α = 0.25 with a uniform temperature T = 10 K. The external
medium is 100 times less dense. The magnetic field is uniform
at B = 90.3 µG in the whole box along the z-direction, which is
equivalent to a mass-to-flux ratio of µ = 7. We solved the com-
plete set of Eqs. (1)–(4) without considering the ambipolar and
the Ohmic diffusions. The Hall resistivity is set at a fixed value
of ηH = 1020 cm2 s−1. The length of the simulation box is four
times the sphere radius and we use the generalized moncen slope
limiter with a 1.5 coefficient. This setup is now refereed as our
“reference case”. To mimic the evolution of temperature during
the collapse up to the first Larson core, we used the following
barotropic equation of state:

T = 10

1 +

(
ρ

10−13 g cm−3

) 5
3
 . (57)

The initial grid is refined at AMR level 5 (323) and we
imposed at least eight points per Jeans length to satisfy the
Truelove et al. (1997) condition of at least four points per Jeans
length. The maximum resolution is ∆x = 2 au at the end of
the simulation. The “formation of the first core” is the time tC
at which the maximum density reaches 10−13 g cm−3. Finally,
we refer to a structure rotationally supported against gravity as
“disk”. We used the criteria of Joos et al. (2012):

– density criterion: ρ > 3.8 × 10−15 g cm−3,
– rotationally supported: uθ > 2ur, with uθ and ur the

azimuthal and radial velocities, respectively,
– hydrostatic equilibrium within the disk: uθ > 2uz,
– not within the first core: ρu2/2 > 2Ptherm, with Ptherm the

thermal pressure.
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Fig. 10. Comparison between the analytical solution of the standing shock (solid black line) and the numerical result (red squares). The AMR level
is represented as the dashed black line (right axis). From top to bottom panels: ρ and ux, uy and uz, By and Bz.

5.3. Results

A differential rotation of the cloud starts about an axis in the
same direction as the initial magnetic field, with an increased

amplitude over time. Figure 11 shows maps on the plane x = 0
of the ratio of the toroidal magnetic field over the total magnetic
field amplitude Bθ/B and of the azimutal velocity uθ, 0.230 kyr
after the formation of the first core. The twisting of the field
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Fig. 11. Toroidal magnetic field Bθ (top panel) and azimuthal velocity
uθ (bottom panel) on the plane x = 0, 0.230 kyr after the formation of
the first core.

lines is the strongest 200 au above and below the mid-plane. A
large quantity of angular momentum is created in the disk while
the whistler waves transport its negative counter-part along the
field lines. This negative angular momentum is transferred to
the regions above and below the disk, thus setting a backward
rotation that is visible in blue colors in the bottom panel. The
momentum of the core and disk are therefore compensated by
the counter-rotation of an hourglass-shaped envelope of 1000 au
in height and diameter. With a similar setup, Krasnopolsky et al.
(2011) and Li et al. (2011) obtain the same qualitative results,
with counter-rotating regions in the envelope.

We then compared the azimuthal velocity uθ of the fluid to
the azimuthal Hall speed and to the Keplerian velocity. The Hall
speed is defined accordingly in Sect. 3.2:

uH = ηH
J
‖B‖ . (58)

Using the second Newton law, the Keplerian velocity was calcu-
lated as

uKepler(r) =


r



∑

i=1,ncells
ri,r

Gmi

‖ri − r‖3 (ri − r)


r



1
2

(59)

for each cell in our discretized system (assuming the center of
mass is at the origin).

Figure 12 shows the radial profile of the three velocities
0.500 and 0.800 kyr after the first core formation. Figure 13
is a zoom-out of Fig. 12 without the Keplerian velocity. All
radial profiles are azimuthally averaged. In the inner regions,
the fluid rotation speed is equal to the Keplerian velocity and
larger than the Hall speed. Eventually, the centrifugal force
overcomes gravity, which results in a positive radial velocity of
the fluid and the formation of a ring-shaped core, as shown in
Fig. 14. All the velocities drop outside the Larson core, beyond
30 au, and the fluid is roughly rotating at the Hall velocity, as
seen in Fig. 13. The two values do not perfectly match but differ
by less than 50%. In the absence of every other forces but the
Lorentz force, the two velocities should correspond, but in our
case, the presence of gravity and thermal pressure prevent a
perfect match. The coupling is effective up to r ≈ 160 au, down
to a density of ρ ≈ 10−14 g cm−3. As explained in Sect. 5.1,
the region we could define as the pseudo-disk is rotating at the
Hall velocity. Around 30 au at t = tc + 0.500 kyr and 40 au
at t = tc + 0.800 kyr, the azimuthal Hall velocity changes sign
in a small interval. This component of uH is proportional to
Jθ = ∂Br

∂z − ∂Bz
∂r . While Bz decreases with r, there is a small

interval at the outer edge of the core, before the accretion shock,
in which its decrease is much lower. As a result, ∂Bz

∂r is lower
(in negative value) while ∂Br

∂z keeps an approximately constant
value, causing a temporary change of sign.

The Hall effect redistributes the angular momentum within
the envelope, and we know to address the case of magnetic flux.
Figure 15 shows the magnetic field amplitude as a function of
the density for each cell in the box for this simulation and its
counter-part without the Hall effect (i.e., ideal MHD), when both
simulations reach a maximum density of ρ = 5 × 10−12 g cm−3.
The magnetic field in ideal MHD is roughly 0.5 G at the center,
while it is bounded to 3 × 10−2 G with the Hall effect. On the
contrary, the magnetic field amplitudes are very similar at densi-
ties below 10−15–10−14 g cm−3, confirming that the Hall effect
becomes relevant above these densities. Masson et al. (2016)
found a comparable “plateau” using the ambipolar diffusion,
which also redistributes the magnetic flux and yields a similar
profile for the magnetic field. Both non-ideal MHD effects then
act to regulate the magnetic flux.

5.4. The issue of angular momentum conservation

5.4.1. Presentation of the problem

Here we introduce some notations that are useful to the remain-
der of the discussion. We note L the angular momentum vector

L =
∑

i=1, ncell

miri × ui, (60)

where mi, ri, and ui represent the mass, the position vector, and
the velocity vector of cell i. The system being nearly axisym-
metric, the main component of this vector is Lz (i.e., the initial
magnetic field direction), that can also be calculated as

Lz =
∑

i=1, ncell

mirc,iuθ,i, (61)

with rc the cylindrical radius and uθ the azimuthal velocity.
We define the “positive” and “negative” momenta L+

z and L−z
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as follows:

L+
z =

∑

i,vθ,i>0

mirc,iuθ,i, (62)

L−z =
∑

i,vθ,i<0

mirc,iuθ,i. (63)

We therefore have L+
z + L−z = Lz � ‖L‖.

In our setup, there is initially no angular momentum in the
system. L+

z thus represents the “positive” rotation created by
the Hall effect, balanced by the “negative” rotation L−z , and the
numerical solution should verify ‖L+

z ‖ ≈ ‖L−z ‖. Usually, Lz does
not exactly equal zero because of truncation errors, but this is
not an issue if Lz remains small (typically, compared with L+

z
and L−z ).

In Fig. 16, we have plotted the evolution of L+
z , L−z , and Lz

during the simulation after the formation of the first Larson core.
In the remainder of the manuscript, this reference case is plotted
in red. From t = tc + 0.230 kyr, the positive momentum skyrock-
ets and almost doubles its value by t = tc + 1.300 kyr, while the
negative momentum increases by less than 10%. The total angu-
lar momentum Lz then increases as well and reaches 2/3 of the
value of L−z . The angular momentum is therefore not conserved
in the simulation box.
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Fig. 13. As Fig. 12, at larger radius and without the Keplerian velocity.
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Krasnopolsky et al. (2011) also encounter a non-conservation
of angular momentum in their simulation with a similar setup.
They attribute this phenomenon to torsional Alfvén waves leav-
ing the simulation box. It is however not the case here since
the boundary conditions are periodic. The blue curve of Fig. 16
represents the angular momentum of the disk and the core,
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respectively. The red solid line shows the total angular momentum Lz,
and the blue lines, the angular momentum of the core+disk region.

which we define as the gas with density ρ > 10−13 g cm−3. The
disk+core angular momentum shows the same time evolution as
the excess of angular momentum created in the simulation box,
with Lz ≈ 0.85Lcore+disk. This strongly suggests that the problem
takes its origin in the central region, and we have calculated that
whistler waves do not have time to travel from the center to the
outskirt of the box. The same issue arises for different boundary
conditions, box sizes, and slope limiters (see Appendix B).

5.4.2. Whistler waves on discretized space

We investigated the role of the spatial resolution in this prob-
lem. In the previous run, the refinement criterion ensures at
least 8 cells per local Jeans length (λJ/∆x > 8). We ran another
simulation with a doubled Jeans length resolution criterion
(λJ/∆x > 16). Figure 17 shows the comparison between the
angular momenta in absolute value for the two runs (top panel)
as well as their temporal variation (bottom panel). While the
most resolved simulation shows momenta larger by 50% (prob-
ably because the Hall effect can act at smaller scales during the
isothermal stage of the collapse), the increase of angular momen-
tum is lower by roughly 50% in the most resolved case. The local
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Fig. 17. Top panel: angular momentum evolution of the two simulations
with different refinement criteria (red: λJ/∆x > 8, blue: λJ/∆x > 16).
The solid curves represent L+

z and dashed curves represent L−z . Bottom
panel: temporal variation of the positive angular momentum in solid
lines, and evolution of the maximum density in dotted lines.

maximum of the angular momentum variation, for the lower res-
olution case at t = tC + 0.400 kyr, corresponds to the time at
which the core expands due to the centrifugal force, as seen in the
evolution of maximum density in dotted line. This “bouncing”
also happens at a smaller scale for the λJ/∆x > 16 simulation at
t = tc + 0.300 kyr, but is tempered by the lower excess of angu-
lar momentum and the additional gravitational force (due to the
higher density).

We observed the same behavior when we limit the maxi-
mum resolution. In the following set of simulations, we use the
16 points per Jeans length criterion, but we did not allow the
code to refine above a given level. Figure 18 represents the angu-
lar momentum evolution for maximum levels from 10 (∆x = 16
au) to 15 (∆x = 0.5 au). The increase of the angular momentum
starts at the same time after the formation of the first Larson core
for every simulation. The local maximum is lower and happens
sooner as the resolution increases. This trend might be explained
by the increase of the angular momentum starting in the most
refined cells. With a lower resolution, cells are larger, and there-
fore hold more mass for the same density. Thus, the gas they
harbor takes more time to be set in rotation due to inertia, and
once it reaches the critical rotation speed at which the centrifugal
force dominates gravity, there is more mass in rotation at a larger
effective distance from the center of the simulation (because flow
variables are computed at the cell centers), meaning a larger
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angular momentum. Nonetheless, a higher resolution seems to
temper the increase.

The dissipation of whistler waves on a discretized space
could be at stake. As a consequence of the AMR method, short
and fast whistler waves generated in high resolution regions
could simply be dissipated at refinement level interfaces due to
a lack of resolution (the Shannon theorem). To test this hypoth-
esis, we ran the same simulation with a uniform grid of 2563

(level eight of refinement, or a resoluton of 64 au). The aim is
purely the numerical study since such a low resolution cannot
provide meaningful physical results, and a better uniform reso-
lution would be prohibitively expensive. Figure 19 displays the
angular momentum of this simulation compared to the reference
case. The increase of angular momentum occurs at a greater
intensity, and at an earlier time after the formation of the first
core1. We thus conclude that the “Shannon dissipation” does not
play a significant role in the problem. As for now, we yet have to
determine the origin of this issue.

5.4.3. Effect of the Hall resistivity magnitude

We repeated the experiment with various Hall resistivities, from
ηH = 1018 cm2 s−1 to ηH = 1021 cm2 s−1, which are relevant val-
ues in this context (Marchand et al. 2016). Table 2 shows the
formation time of the first Larson core for the four cases, and
the ideal MHD case for comparison. Unsurprisingly, a higher
Hall resistivity induces a faster rotation speed, which delays
the collapse because of the increasing centrifugal force. Below
1019 cm2 s−1, the induced rotation is weak and barely contributes
to the centrifugal support in the isothermal stage. Figure 20 dis-
plays the total angular momentum evolution for all the cases.
A higher resistivity leads to an earlier and a steeper increase
of the angular momentum, and the ideal case shows perfect
conservation.

5.4.4. Effect of the Ohmic and ambipolar diffusions

We now aim to include ambipolar and Ohmic diffusions with the
Hall term to see whether the other two non-ideal MHD effects,

1 This is a later absolute time, but the first core formation time is
difficult to evaluate at this low resolution.
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Table 2. Larson core formation time for different Hall resistivities.

ηH (cm2 s−1) tc (kyr)

0 (ideal case) 33.550
1018 33.130
1019 33.146
1020 33.287
1021 34.352
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Fig. 20. Evolution of the angular momentum from the first Larson core
formation for various Hall resistivities.

can change the angular momentum increase. For the imple-
mentation of the ambipolar and Ohmic diffusions in RAMSES,
we refer the reader to Masson et al. (2012). Figure 21 shows
the evolution of the angular momentum for ηΩ = ηH = ηAD =
1020 cm2 s−1. The divergence occurs ∼400 yr after the first
Larson core formation, which is a short 100 yr delay compared
with the reference case, and with a sharper initial increase. While
the ambipolar and Ohmic diffusions influence the dynamics of
the collapse, their respective electric fields, EAD ‖ (J × B) × B
and EΩ ‖ J, are both perpendicular to the Hall electric field
EH ‖ J × B, so they do not counter-act the twisting of the field
lines induced by the Hall effect. However, the ambipolar and
Ohmic diffusions also dissipate and redistribute the magnetic
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Fig. 21. Angular momentum evolution in the reference case (red curves)
and with the three non-ideal MHD effects (blue curves).

field, effectively weakening the Hall effect in the core, which
could be at the origin of the short delay. Nonetheless, our tests
show that unless the Hall resistivity is several orders of magni-
tudes lower than the ambipolar and Ohmic resistivities, the two
later effects do not naturally damp the short whistler waves faster
than the numerical scheme.

6. Conclusions

We have implemented the Hall effect in the AMR code RAMSES
to study its impact on star formation and circumstellar disks.
The method relies on the modification of the 2D HLL Riemann
solver, at the heart of the constrained transport scheme. Our
scheme shows a second-order convergence in space and the
whistler waves are propagated at the correct frequencies. How-
ever, the truncation errors lead to a strong numerical dissipation
of short whistler waves, as the fourth power of the wave num-
ber, and the AMR method seems inefficient to reduce this
dissipation.

During the collapse of a dense core, the Hall effect generates
the rotation of the fluid, and thus plays a significant role in the
regulation of the angular momentum. While the gas in the mid-
plane is set into rotation (in a direction that depends on the sign
of ηH and the direction of the magnetic field), counter-rotating
envelopes develop on each side of the mid-plane by conservation
of the angular momentum. This behavior has been observed in
previous studies and was therefore expected.

Roughly 300 yr after the first Larson core formation, the
angular momentum increases rapidly in the simulation box,
meaning that it is no longer conserved. We show that con-
trarily to the interpretation of Krasnopolsky et al. (2011) of a
similar phenomenon, this problem is not related to our bound-
ary conditions. It emerges for every one of our simulations
including the Hall effect. Since this divergence begins shortly
after the formation of the first Larson core, it may be corre-
lated to the development of the accretion shock, with only few
cells describing the sharp transition. However, to date, we have
no clear-cut answer concerning the origin of this problem and
various leads will be explored in a further work.

Nonetheless, angular momentum conservation is a key issue
in numerical simulations exploring the formation of protostel-
lar disks. There is however no mention of this specific problem
in previous studies, most of them using different numerical
methods. In order to unambiguously assess the validity of disk

formation in such simulations, this issue must at the very least
be discussed in detail. A future work will feature additional tests
to continue investigating this problem.
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Appendix A: Analytical solution of the
steady-state shock

In this section, we calculate the analytical profile of the shock
presented in Sect. 4.2. We first cancel all derivatives except ∂

∂x in
Eqs. (1)–(4). This yields

dρux

dx
= 0, (A.1)

d
dx

(
uxBy − uyBx
uxBz − uzBx

)

=
d
dx



[
ηΩ + ηAD

(
1 − B2

z
B2

)]
dBy
dx +

[
ηH

Bx
B + ηAD

ByBz

B2

]
dBz
dx[

−ηH
Bx
B + ηAD

ByBz

B2

] dBy
dx +

[
ηΩ + ηAD

(
1 − B2

y

B2

)]
dBz
dx

 ,

(A.2)

d((ρux)ux + ρc2
s + B2/2)

dx
= 0, (A.3)

d((ρux)uy − BxBy)
dx

= 0, (A.4)

d((ρux)uz − BxBz)
dx

= 0, (A.5)

dBx

dx
= 0. (A.6)

Equation (A.6) is needed to satisfy the divergence-free con-
dition. Integrating Eq. (A.2) gives two coupled differential
equations in By and Bz. Isolating the derivatives yields

∂By
dx

=
M1R22 − M2R12

R11R22 − R21R12
, (A.7)

∂Bz

dx
=

M2R11 − M1R21

R11R22 − R21R12
, (A.8)

with

M =

(
uxBy − uyBx − uy,0Bx + ux,0By,0
uxBz − uzBx − uz,0Bx + ux,0Bz,0

)
(A.9)

and

R =


ηΩ + ηAD(1 − B2

z
B2 ) ηH

Bx
B + ηADByBz

−ηH
Bx
B + ηADByBz ηΩ + ηAD(1 − B2

y

B2 )

 . (A.10)

Eqs. (A.7) and (A.8) are integrated using a Runge–Kutta
scheme. We then used the constant quantities Q = ρux (Eq. A.1)
and K = Qux +

Q
ux

c2
s + B2

2 (Eq. A.3) to compute the density and
velocity profiles.

ux =
1

2Q

K − B2

2
−

√(
K − B2

2

)2

− 4Q2c2
s

 , (A.11)

uy = uy,0 +
Bx(By − By,0)

Q
, (A.12)

uz = uz,0 +
Bx(Bz − Bz,0)

Q
, (A.13)

ρ =
Q
ux
. (A.14)

Appendix B: Angular momentum issue for
different numerical parameters

In this section, we present the evolution of angular momentum
for three variations of the numerical parameters compared to the
reference case (moncen and periodic). The angular momentum is
displayed in Fig. B.1, with the reference case in red. In all cases,
the divergence stars 300 yr after the formation of the first Larson
core and is roughly the same.

With the minmod slope limiter (blue curves), the angular
momentum evolution is roughly the same. In this case, the order
of the scheme is first order instead of second, which indicates
that the truncation errors do not play a significant role in this
problem.

Outflow boundary conditions (green curves) show a larger
initial difference between L+

z and L−z because a fraction of the gas
leaves the simulation box. The angular momentum divergence
still presents the same evolution as in other cases.

The purple curves represent a larger box (with a length
of 8 times the dense core radius instead of 4). Both angular
momentum components have a higher value due to the larger
amount of available mass in the box. The divergence starts again
300 yr after tC with a comparable increase. These last two cases
show that the divergence does not seem related to boundary
conditions.
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Fig. B.1. Positive L+
z (solid lines) and negative L−z (dashed lines) angu-

lar momentum evolution after the formation of the first Larson core
for several variations of the reference case. Red curves: reference case
(generalized moncen slope limiter and periodic boundary conditions),
green curves: outflow boundary conditions, blue curves: minmod slope
limiter, purple curves: simulation box twice as large. The value of the
angular momentum has been divided by two for the latter to improve the
readability of the graph.
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