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ABSTRACT

Context. Small dust grains are essential ingredients of star, disk and planet formation.
Aims. We present an Eulerian numerical approach to study small dust grain dynamics in the context of star and protoplanetary disk
formation. It is designed for finite volume codes. We use it to investigate dust dynamics during the protostellar collapse.
Methods. We present a method to solve the monofluid equations of gas and dust mixtures with several dust species in the diffusion
approximation implemented in the adaptive-mesh-refinement code RAMSES. It uses a finite volume second-order Godunov method
with a predictor-corrector MUSCL scheme to estimate the fluxes between the grid cells.
Results. We benchmark our method against six distinct tests, dustyadvect, dustydiffuse, dustyshock, dustywave, settling, and
dustycollapse. We show that the scheme is second-order accurate in space on uniform grids and intermediate between second- and
first-order on non-uniform grids. We apply our method on various dustycollapse simulations of 1 M� cores composed of gas and dust.
Conclusions. We developed an efficient approach to treat gas and dust dynamics in the diffusion regime on grid-based codes. The
canonical tests were successfully passed. In the context of protostellar collapse, we show that dust is less coupled to the gas in the
outer regions of the collapse where grains larger than '100 µm fall significantly faster than the gas.

Key words. ISM: kinematics and dynamics – hydrodynamics – stars: formation – protoplanetary disks – methods: numerical

1. Introduction

Dust grains are thought to represent on average only 1% of
the mass of the diffuse interstellar medium (ISM, Mathis et al.
1977; Weingartner & Draine 2001). Their typical size distribu-
tion is usually modeled as a power law (Mathis et al. 1977, here-
after MRN). However, recent works indicate that this is prob-
ably not the case in the dense parts of the ISM (Pagani et al.
2010; Compiègne et al. 2011; Harsono et al. 2018). In addi-
tion, a dynamical size sorting may operate in molecular clouds
(Hopkins & Lee 2016; Tricco et al. 2017) or during the proto-
stellar collapse (Bate & Lorén-Aguilar 2017). This sorting leads
to important variations in the dust-to-gas ratio, especially for
large dust grains.

The dust budget plays an essential role during the star and disk
formation processes. On the one hand, it regulates the thermal
budget of the medium through its blackbody emission, its absorp-
tion, and the photoelectric effect. On the other hand, the charge
on the grain surface controls, through their number, the ambipo-
lar, ohmic and hall resistivities during the protostellar collapse
(Marchand et al. 2016). Zhao et al. (2016) show that removing
grains smaller than ∼100 nm from the dust distribution enhances
the effects of ambipolar diffusion, triggering the formation of a
rotationally supported disk. As we need to know the dust con-
centration, a treatment of its dynamics is therefore essential to
improve our understanding of stellar, disk, and planet formation.

Bifluid models of strongly coupled dust and gas mixtures
are difficult to integrate numerically. For Lagrangian-based
methods they tend to produce spurious dust aggregates when the
grains are accumulated below the resolution length of the gas

(Ayliffe et al. 2012). They also require extremely high spatial
resolution in order to capture correctly the dephasing between
gas and dust, i.e., the dissipation of energy through the drag
(Laibe & Price 2012). Some efficient bifluid treatments were
developed to cope with these issues (e.g., semi implicit meth-
ods, Lorén-Aguilar & Bate 2014, 2015; Stoyanovskaya et al.
2017, 2018). As an alternative way to model correctly these
mixtures, Laibe & Price (2014a) proposed an algorithm for
smoothed particle hydrodynamic codes (SPH, Lucy 1977;
Gingold & Monaghan 1977) using a monofluid formalism. It has
been proven to be efficient in the so-called diffusion approxima-
tion valid for strongly coupled mixtures (Price & Laibe 2015).
More recently, Hutchison et al. (2018) improved this method
and adapted it to treat simultaneously several dust species.
Lin & Youdin (2017) and Chen & Lin (2018) have applied the
monofluid formalism on a cylindrical grid adapted to protoplan-
etary disk simulations with an Eulerian approach.

Adaptive mesh refinement (AMR, Berger & Oliger 1984)
codes are a complementary approach to SPH in astrophysical or
cosmological simulations. Commerçon et al. (2008) show in the
context of protostellar collapse that the two methods lead to con-
verged results, but AMR codes capture details more efficiently
thanks to the versatility of the refinement criteria. The adaptive
mesh is a high performance tool for star formation simulations
where a wide range of physical and dynamical scales are consid-
ered (e.g., Hennebelle 2018; Vaytet et al. 2018). In this paper, we
present a numerical Eulerian approach of dust dynamics in the
diffusion approximation on AMR grids and its implementation
in the RAMSES code (Teyssier 2002), as well as an application to
the first collapse (Larson 1969).
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The paper is organized as follows. In Sect. 2, we recall the
theory of gas and dust mixtures and the diffusion approxima-
tion. Then the dust diffusion algorithm implemented in RAMSES
is presented in Sect. 3 followed by the validation tests in Sect. 4.
The application on the dynamics of dust during the first collapse
in the spherical case is shown in Sect. 5. In Sect. 6, we present
our conclusions and perspectives. A companion paper, paper II
(Lebreuilly et al. in prep.), will discuss in detail the dust dynam-
ics during the first collapse with initial solid-body rotation and
turbulence, and with multiple grains species.

2. Gas and dust mixtures in the diffusion
approximation

2.1. Grain dynamics

First, we examine the fate of a single grain within a gas of density
ρg. Let us consider a grain of radius sgrain, mass mgrain, and intrin-
sic density ρgrain. It exchanges momentum with the surrounding
gas molecules through microscopic collisions. Macroscopically,
this leads to a drag force on the grain that writes

F = −
mgrain

ts,grain
∆v, (1)

where the stopping time of the grain ts,grain, is the typical time
required by the dust grain to adjust its dynamics to a change in
the gas velocity, and ∆v is the differential velocity between the
grain and the gas. In astrophysical regimes the mean free path of
the gas is much larger than the size of the grain. In this case the
grain stopping time is given by (Epstein 1924)

ts,grain ≡

√
πγ

8
ρgrain

ρg

sgrain

cs
, (2)

where cs and γ denote the sound speed and the adiabatic index
of the gas, respectively. This is a particular case of a linear drag
regime.

Large and dense grains are less coupled to the gas. If cs and
ρg increase, the coupling of the two phases becomes more impor-
tant as the collision rate between gas and dust particles increases.
We note that the opposite drag force applies on the gas particles
for momentum conservation.

2.2. The monofluid formalism

2.2.1. Gas and dust bifluids

A usual model for gas and dust mixtures consists of two flu-
ids interacting via the drag term (Saffman 1962). Due to the
momentum exchanges between grains and gas particles, col-
lective effects of the dust grains play an important role in the
mixture dynamics. A continuous fluid description of the dust is
more practical than treating the grains independently although
this description might be inappropriate for very large particles.
The dust fluid is characterized by a density ρd and an advec-
tion velocity vd. The dust density ρd must not be confused with
the intrinsic grain density ρgrain. This fluid is considered pres-
sureless and inviscid since the collisions with other grains are
much less frequent than with gas particles. Through the drag,
dust feels the forces exerted on the gas. The surrounding gas is
described, as usual, as a fluid with a density ρg and an advection
velocity vg.

The bifluid formulation of gas and dust mass and momentum
conservation writes

dgρg

dt
= − ρg(∇ · vg),

ddρd

dt
= − ρd(∇ · vd),

ρg
dgvg

dt
= − ∇Pg + ρgfg + ρgf + K∆v,

ρd
ddvd

dt
= ρdfd + ρdf − K∆v,

dgeg

dt
= −

Pg

ρg
∇ · vg +

K
ρg
∆v · ∆v, (3)

where ∆v ≡ vd − vg is the differential velocity between the two
fluids; f is the specific force acting on both gas and dust; and fg
and fd are the specific forces, drag and pressure force excluded,
affecting the gas or the dust, respectively. In the rest of the article,
we assume the hydrodynamical case where fg and fd are zero,
and f is either zero or the gravity force. The gas pressure Pg is
given by Pg = (γ − 1)ρgeg, eg being the gas specific internal
energy. The gas derivative dg

dt ≡
∂
∂t +

(
vg · ∇

)
differs from the dust

derivative dd
dt ≡

∂
∂t + (vd · ∇). We also define the stopping time as

ts ≡
√
πγ

8
ρgrain

ρ

sgrain

cs
=
ρg

ρ
ts,grain, (4)

and the drag coefficient K as

K ≡
ρdρg

ρts
· (5)

2.2.2. Two-phases mixture

Alternatively, it is possible to model the gas and dust mixture as
a single fluid made of two phases of total density ρ ≡ ρd + ρg
(Laibe & Price 2014a,b). It is moving at the mixture barycentric
velocity v:

v ≡
ρgvg + ρdvd

ρg + ρd
·

We also define the dust ratio

ε ≡
ρd

ρ
,

which must not be confused with the dust-to-gas ratio ρd
ρg

. Using
these new quantities, it is straightforward to write
vg = v − ε∆v,
vd = v + (1 − ε)∆v,
ρg = (1 − ε) ρ,
ρd = ερ.

After some developments, we write the conservation of mass and
momentum for the mixture and of the gas internal energy
dρ
dt

= − ρ(∇ · v),

dv
dt

= −
∇Pg

ρ
+ f −

1
ρ
∇ · (ε(1 − ε)ρ∆v ⊗ ∆v) ,

dε
dt

= −
1
ρ
∇ · (ε(1 − ε)ρ∆v) ,

d∆v
dt

=
∇Pg

(1 − ε)ρ
−
∆v
ts
− (∆v · ∇)v +

1
2
∇ ((2ε − 1)∆v · ∆v)

+ (1 − ε)∆v × (∇ × (1 − ε)∆v) − ε∆v × (∇ × ε∆v),
deg

dt
= −

Pg

ρ(1 − ε)
∇ · (v − ε∆v) + (ε∆v · ∇)eg + ε

∆v · ∆v
ts
· (6)
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Here only one Lagrangian derivative d
dt ≡

∂
∂t + (v · ∇) has to be

defined. This system must be closed by the gas equation of state.
We note the presence of the last terms in the differential velocity
equation that were omitted in previous studies.

At this point, the monofluid approach is a dual reformulation
of the dust and gas fluid Eqs. (3). However, it may be much more
convenient for numerical simulations since it requires only one
resolution scale (the mixture resolution) and it avoids the artifi-
cial trapping of dust particles (Laibe & Price 2014a).

2.2.3. Diffusion approximation

Laibe & Price (2014a) show that, for a strong drag regime, i.e.,
when the stopping time is short compared with the dynamical
timescale tdyn of the system, two simplifications can be made.

In the so-called diffusion approximation,
∣∣∣∣∣∣∆v2/v2

∣∣∣∣∣∣,∣∣∣∣∣∣∆v ⊗ ∆v/ v2
∣∣∣∣∣∣, ∣∣∣∣∣∣∆v × (∇ × (1 − ε)∆v)/ v2

∣∣∣∣∣∣ and∣∣∣∣∣∣∆v × (∇ × ε∆v)/ v2
∣∣∣∣∣∣ are second-order in St ≡

(
ts/tdyn

)
,

where St is the Stokes number1. System (6) reduces to

dρ
dt

= −ρ(∇ · v),

dv
dt

= −
∇Pg

ρ
+ f,

dε
dt

= −
1
ρ
∇ · (ρε(∆v − ε∆v)) ,

d∆v
dt

=
∇Pg

(1 − ε)ρ
−
∆v
ts
− (∆v · ∇)v,

deg

dt
= −

Pg

ρ(1 − ε)
∇ · v + (ε∆v · ∇) eg. (7)

The errors caused by the diffusion approximation are marginal
as long as St � 1. We note that the first-order term − Pg

ρ(1−ε)∇ ·

(ε∆v) in the energy equation also simplifies owing to energy
conservation, as explained by Price & Laibe (2015) in their
second footnote. Another approximation known as the termi-
nal velocity approximation (Youdin & Goodman 2005; Chiang
2008) can be made when St � 1. In this case

∣∣∣∣∣∣∣∣ d∆v
dt /

(
∆v
ts

)∣∣∣∣∣∣∣∣ and∣∣∣∣∣∣∣∣(∆v · ∇)v/
(
∆v
ts

)∣∣∣∣∣∣∣∣ are transitory terms, and are thus neglected. A
consequence of the terminal velocity approximation for linear
drag regimes is that the differential velocity depends directly on
the force balance

∆v = ts
∇Pg

(1 − ε)ρ
·

It should be noted that this expression can change if other
forces apply on the dust or the gas, e.g., the radiation or
the Lorentz forces. In the terminal velocity approximation, we
finally obtain

dρ
dt

= − ρ(∇ · v),

dv
dt

= −
∇Pg

ρ
+ f,

dε
dt

= −
1
ρ
∇ ·

(
εts∇Pg

)
,

deg

dt
= −

Pg

ρ(1 − ε)
∇ · v +

(
εts
∇Pg

(1 − ε)ρ
· ∇

)
eg.

1 ||.|| indicates the L2 norm of either a tensor or a vector.

The two first equations are identical to pure hydrodynamics
when only gas is involved. The third equation describes the evo-
lution of the dust ratio. Using a conservative formulation, it can
be expressed as an advection equation

∂ρε

∂t
+ ∇ ·

[
ρε

(
v +

ts∇Pg

ρ

)]
= 0. (8)

In this formulation, the equation is almost identical to mass
conservation but with a different advection velocity due to the
dephasing between the dust and the barycenter. The specific
internal energy equation is similar to pure hydrodynamics with
an additional term that accounts for the back-reaction of dust on
the gas.

2.2.4. (N + 1) phase mixtures

In the diffuse interstellar medium a grain size distribution com-
monly modeled as a power law (Mathis et al. 1977) is observed.
It is therefore more realistic to consider several dust species in
order to reproduce the observed dust size distribution.

In this perspective, the previous monofluid formalism has
been extended to (N + 1) phase mixtures with N distinct dust
species and a gas phase (Laibe & Price 2014c; Hutchison et al.
2018). They show that, in the diffusion approximation the
monofluid set of equations writes

dρ
dt

= − ρ(∇ · v),

dv
dt

= −
∇Pg

ρ
+ f,

dεk

dt
= −

1
ρ
∇ ·

(
εkTs,k∇Pg

)
, ∀k ∈ [1,N] ,

deg

dt
= −

Pg

ρ(1 − E)
∇ · v +

(
ETs

∇Pg

(1 − E)ρ
· ∇

)
eg, (9)

where εk is the dust ratio of the phase k and Ts,k is the effective
stopping time of the dust phase k defined as

Ts,k ≡
ts,k

1 − εk
−

N∑
l=1

εl

1 − εl
ts,l,

where ts,k is the individual stopping time of the phase k.
The

∑N
l=1

εl
1−εl

ts,l term accounts for the interaction between dust
species that is due to their cumulative back-reaction on the gas.
We also introduces the total dust ratio

E ≡

N∑
l=1

εl,

and the mean stopping time

Ts ≡
1
E

N∑
l=1

εlTs,l.

The gas and dust densities are simply given by

ρg ≡ (1 − E) ρ,
ρd,k ≡ εkρ.

WhenN = 1, Eqs. (9) reduce to the formulation for a single dust
phase.
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Combining the different equations with mass conservation
in the Lagrangian frame, co-moving with the barycenter leads
to the formulation of the system of equations in a conservative
form

∂ρ

∂t
+ ∇ ·

[
ρv

]
= 0,

∂ρv
∂t

+ ∇ ·
[
PgI + ρ(v ⊗ v)

]
= ρf,

∂ρd,k

∂t
+ ∇ ·

[
ρd,k

(
v +

Ts,k∇Pg

ρ

)]
= 0,

∂E
∂t

+ ∇ ·
[
(E + Pg)v

]
= ∇ ·

[
ETs

1 − E
∇Pg

ρ

Pg

γ − 1

]
, (10)

where ρd,k is the density of the dust phase k, E ≡ 1
2ρv2+ρ(1−E)eg

is the total energy of the mixture and I is the identity matrix.

3. Numerical methods

3.1. RAMSES

3.1.1. Basic features

Before we present our method, we recall the main features of
the RAMSES code (Teyssier 2002) in order to facilitate the under-
standing of our implementation of dust dynamics in the diffusion
approximation.
RAMSES is a finite volume Eulerian code that integrates the

equation of hydrodynamics in their conservative form on an
AMR grid (Berger & Oliger 1984). Among others applications,
it has been extended to magnetohydrodynamics (Teyssier et al.
2006; Fromang et al. 2006; Masson et al. 2012; Marchand et al.
2018), radiation hydrodynamics (Commerçon et al. 2011, 2014;
Rosdahl et al. 2013; Rosdahl & Teyssier 2015; González et al.
2015), and cosmic ray and anisotropic heat conduction
(Dubois & Commerçon 2016).

For simplicity, the hydrodynamical version of RAMSES is pre-
sented here. It solves the Euler equations of a pure gas in their
hyperbolic form

∂U

∂t
+ ∇ · F(U) = 0, (11)

the state U vector and flux F vector being

U ≡
(
ρg, ρgvg, Eg

)
,

F(U) ≡
(
ρgvg, ρgvg ⊗ vg + PgI, vg(Eg + Pg)

)
,

where Eg ≡
1
2ρgv2

g + ρgeg is the total energy of the gas.

3.1.2. Godunov scheme

Finite volume methods are based on the estimation of the aver-
age of U over the cells. For a 1D problem integrated over time
(for t ∈ [t1, t2]) and space (for x ∈ [x1, x2]), the previous system
writes∫ x2

x1

(U(t2) − U(t1)) dx +

∫ t2

t1
(F(x2) − F(x1)) dt = 0. (12)

Hence, the evolution of the state vector is constrained by the
fluxes at the interfaces of the cells. RAMSES uses a second-order
predictor-corrector Godunov method (Godunov 1959) to update
its value.

At the timestep n for a cell i, any physical quantity A is dis-
cretized as

A(x, t)→ An
i .

Cell interfaces are denoted with half integer subscripts, e.g, i +
1/2 is to the interface between the cell i and i + 1. Similarly,
half timesteps are also denoted with half integer superscripts,
e.g, n + 1/2.

For a cell of length ∆x and a timestep ∆t, the scheme writes

Un+1
i = Un

i −
(
Fn+1/2

i+1/2 − F
n+1/2
i−1/2

) ∆t
∆x

, (13)

where the discretized fluxes Fn+1/2
i±1/2 , which are the solutions

of the Riemann problem at the interfaces, are approximated
with a MUSCL predictor-corrector scheme (van Leer 1979) that
ensures the second-order accuracy in space and in time for the
Godunov method. We note that, in RAMSES ∆x = ∆y = ∆z.

3.1.3. AMR grid and adaptive timestep

The AMR grid enables an accurate description of the regions of
interest in the simulation box. Cells are tagged with a refinement
level ` with a value between `min for the coarsest cells and `max
for the finest. The length of a cell of level ` is

∆x` =
Lbox

2`
,

where Lbox is the size of the simulation box. For a uniform grid
with a unique level `, the effective resolution is simply 2`.
RAMSES uses an adaptive timestep to reduce the computation

time while maintaining a good accuracy for the refined cells.
When a level ` is updated with a timestep ∆t`, the level ` + 1 is
updated twice with two timesteps, ∆t1,`+1 and ∆t2,`+1, each veri-
fying the CourantFriedrichsLewy condition (Courant et al. 1928,
hereafter CFL). The two levels are synchronized with the follow-
ing condition

∆t` = ∆t1,`+1 + ∆t2,`+1.

The state vector is updated from fine to coarse levels. For a
cell of level `, three types of interfaces are possible

– The fine-to-coarse interfaces, when the neighbor cell is at
level ` − 1;

– the fine-fine interfaces, when the neighbor cell is also at level
`;

– the coarse-to-fine interfaces, when the neighbor cell is at
level ` + 1.

In RAMSES, the levels are updated from fine to coarse. During the
update of level ` + 1, the fluxes at the interface with level ` are
used to update the level ` + 1 and stored for the later update of
the level `. During the update of the level, the state vector of the
coarser levels is held constant. The fine-to-coarse and fine-fine
fluxes are computed during the update of the level `. The coarse
neighbor cells at level ` − 1 are virtually refined to compute the
flux at the boundaries with level `.

3.2. Dust diffusion scheme

3.2.1. Operator splitting

In the previous section, we explain how RAMSES solves the
equations of hydrodynamics in their conservative form. The
monofluid formalism in the diffusion approximation has the
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same structure for the mass, momentum and energy conserva-
tion equation. A total of N additional equations are required to
follow the evolution of the dust ratios. It is still possible to write
the system in a hyperbolic form, but we choose to decompose
the flux in two distinct terms. The system now writes

∂U

∂t
+ ∇ · FH(U) + ∇ · F∆(U) = 0. (14)

The new state vector U writes

U ≡
(
ρ, ρv, E, ρd,k

)
;

the flux FH is similar to the flux of pure hydrodynamics and is
given by

FH(U) ≡
(
ρv, ρv ⊗ v + PgI, v(E + Pg), ρd,kv

)
;

the flux F∆ accounts for dust diffusion and is given by

F∆(U) ≡
(
0, 0,

Pg

γ − 1
wg,b, ρd,kwk

)
,

where wk, the differential advection velocity between the dust
species k and the barycenter, is

wk ≡
Ts,k∇Pg

ρ
; (15)

and wg,b is the differential velocity between the gas and the
barycenter that writes

wg,b = −
ETs

1 − E
∇Pg

ρ
(16)

or

wg,b = −
∑

k

ρd,k

ρ −
∑

j ρd, j
wk. (17)

The classical second-order Godunov method presented above is
used to update the state vector. An operator splitting method
is performed to solve the system in two steps. In the so-called
hydrodynamical step, we only compute FH and update the state
vector accordingly. An important difference between this step
and the classical hydrodynamical version of RAMSES is that the
fluid density ρ is different from the gas density. As a conse-
quence, the pressure and the wave speeds must be computed
using ρg = ρ(1 − E) instead of ρ.

3.2.2. MUSCL scheme for dust diffusion/advection

The second step of the operator splitting consists in taking into
account the second flux vector F∆. For simplicity, we now focus
on the update of the dust density keeping in mind that the dust
density and energy updates are done simultaneously. In this per-
spective, the following equation is solved

∂ρ̃d,k

∂t
= −∇ ·

[
ρ̃d,kwk

]
, (18)

where ρ̃d,k refers to ρd,k after its advection as a passive scalar
at the velocity v. In the remainder of the section, we omit this
symbol and the k index. A MUSCL predictor-corrector scheme
is used to compute the dust diffusion fluxes F (ρd) ≡ ρdw. The
flux storage and the Godunov update are performed as they are
the hydrodynamical step.

Apart from the dust densities and the energy of the mixture,
the variables are constant during this step. In particular, the total
density ρ is constant.

Differential advection velocity. During the diffusion step,
we aim to compute the differential advection velocity wn

i, j,k. To
get its value, the pressure gradient is evaluated at the center of
the cell i, j, k of length ∆x. For example, its component in the
x-direction, is

∇xPg
n
i, j,k =

Pg
n
i+1, j,k − Pg

n
i−1, j,k

∆xi+1, j,k + ∆xi−1, j,k
, (19)

where ∆xi−1, j,k and ∆xi+1, j,k denote the distance in the x-direction
from the center of the cell to the center of the left and right neigh-
bor cells, respectively. They take into account the level of the
neighbor cell.

If the neighbor cell is coarser, we interpolate the pressure
at the fine level using a slope limiter to compute the gradient.
This method is similar to what is used in the hydrodynamical
solver of RAMSES, with a loss of one order of accuracy at level
interface. In certain conditions this method maintains a second-
order accuracy of the scheme in presence of AMR (see Sect. 4.4).
The case where the neighbor cell is at a finer level is never con-
sidered since fine-to-coarse fluxes are already computed during
the update of the finer level. Finally, the expression of the x-
component of wn

i, j,k is given by

wx
n
i, j,k =

Ts
n
i, j,k∇xPg

n
i, j,k

ρn
i, j,k

· (20)

Predictor step. During the predictor step, the dust density
is estimated at the left and right interfaces with a simple finite
difference method. It uses slope limiters to preserve the total
variation diminishing property of the scheme (TVD, Harten
1983). The centered value of the dust density is estimated at half
timesteps as

ρd
n+1/2
i, j,k = ρd

n
i, j,k −

∆t
2∆x

∑
σ=x,y,z

(
wσ

n
i, j,k∆σρd

n
i, j,k + ρd

n
i, j,k∆σwσ

n
i, j,k

)
, (21)

where ∆σρd
n
i, j,k and ∆σwσ

n
i, j,k are the TVD variations of ρd and wσ

in the direction σ. After the prediction of ρd
n+1/2
i, j,k , we interpolate

ρd and wσ at the interfaces.
Let us consider the interface in the x-direction. The left and

right interface values, denoted by the L and R subscripts, are
given by

ρLi, j,k = ρd
n+1/2
i, j,k −

∆xρd
n
i, j,k

2
·

ρRi, j,k = ρd
n+1/2
i, j,k +

∆xρd
n
i, j,k

2
,

wxLi, j,k = wx
n
i, j,k −

∆xwx
n
i, j,k

2
,

wxRi, j,k = wx
n
i, j,k +

∆xwx
n
i, j,k

2
· (22)

The bottom, top, back, and front states are estimated in a
similar way. We do not perform a predictor step in time for the
differential advection velocity because the current scheme is suf-
ficient to get the second-order convergence (see Sect. 4.4).

Corrective step. The correction operation consists in com-
puting the fluxes at the interface using the left and right predicted
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values, respectively. We consider the left interface of the cell
i, j, k in the x-direction. To avoid issues with the velocity discon-
tinuities at the interfaces (e.g., due to spurious pressure jumps,
Sharma et al. 2009), we impose a unique advection velocity

wn+1/2
i−1/2, j,k =

wL
n+1/2
i, j,k + wR

n+1/2
i−1, j,k

2
· (23)

This average does not appear to be critical for the second-order
accuracy of the scheme but leads to a better convergence and
is consistent with the upwind implementation in RAMSES. Our
scheme uses the upwind method (Courant et al. 1952) to esti-
mate the flux, sufficient to get the second-order accuracy in
space. It writes as

F
n+1/2

i−1/2, j,k = max
(
wn+1/2

i−1/2, j,kρd,L
n+1/2
i, j,k , 0

)
+ min

(
wn+1/2

i−1/2, j,kρd,R
n+1/2
i−1, j,k, 0

)
· (24)

We note that several other approximate Riemann solvers can
be used in our implementation as well, such as Lax–Wendroff
(Lax & Wendroff 1960) or Harten-Lax-van Leer (Harten et al.
1983, hereafter HLL). The fluxes in the other directions F n+1/2

i, j−1/2,k

and F n+1/2
i, j,k−1/2 are estimated in a similar way. The dust density is

finally updated according to

ρd
n+1
i, j,k = ρd

n
i, j,k −

∆t
∆x

(
F

n+1/2
i+1/2, j,k − F

n+1/2
i−1/2, j,k

)
−

∆t
∆x

(
F

n+1/2
i, j+1/2,k − F

n+1/2
i, j−1/2,k

)
−

∆t
∆x

(
F

n+1/2
i, j,k+1/2 − F

n+1/2
i, j,k−1/2

)
. (25)

Energy. Similarly and simultaneously with the dust diffu-
sion step, the energy is updated after the hydrodynamical step to
account for the energy component of F∆. It is computed using
the same scheme as the dust density with the velocity computed
with Eq. (17) and the internal energy instead of the dust density.
The fluxes are then added to the state vector similarly to Eq. (25)
with the total energy instead of the dust density.

3.3. Time-stepping

Since the dust diffusion step consists in solving an advec-
tion equation explicitly, the scheme stability is achieved if the
timestep ∆t verifies the split CFL condition

∆t < ∆tdust ≡ CCFL
∆x∑

σ=x,y,z

∣∣∣max(wσ,wg,bσ)
∣∣∣ , (26)

where CCFL < 1 is a safety factor. In addition, the hydrodynami-
cal step imposes another stability condition that writes

∆t < CCFL
∆x

|cs| +
∑
σ=x,y,z |νσ|

, (27)

where νσ is the mixture velocity in the direction σ. Dust diffu-
sion is stable without intervention on the timestep as long as

|cs| +
∑

σ=x,y,z

|νσ| >
∑

σ=x,y,z

∣∣∣max(wσ,wg,bσ)
∣∣∣. (28)

If the former condition is not verified, which is the case when the
pressure gradient is steep, dust diffusion constrains the timestep.
In this case, we impose the dust timestep instead of the hydrody-
namical one.

4. Validation tests

To benchmark the implementation of dust dynamics in RAMSES,
we run the canonical tests for gas and dust mixtures, dustydif-
fuse, dustyshock, dustywave and the settling test. We also test
this advection solver with the dustyadvect test.

4.1. Dustyadvect

The scheme convergence and behavior at discontinuities is
examined with 1D advection tests. In these dustyadvect tests,
the advection velocity wx is constant and the hydrodynamical
update deactivated. It consists in solving the following equation

∂ρd

∂t
= −wx

∂ρd

∂x
· (29)

Considering an initial condition ρd(x, 0) = f (x), f (x) having a
period of the size of the box L = 1, the analytic solution at time
t is simply given by ρd(x, t) = f (x−wxt). In the remainder of the
section, wx = 1.

At first, four dustyadvect tests are performed. We impose the
initial function f1, which writes ∀x ∈ [0, L]

f1 (x) =

{
0.1 if L

4 < x < 3L
4 ,

0.01 otherwise. (30)

In the first test, no predictor step is operated. Different slope lim-
iters are then used for the three other tests in the predictor step;
Minmod (Roe 1986), Van-Leer (van Leer 1974), and Superbee
(Roe 1986). Uniform grids of resolutions ranging from ` = 7
(128 cells) to ` = 13 (8192 cells) are considered. Extremely
small timesteps compared with the CFL condition ∆t = 8× 10−6

are imposed to ensure that the spatial error dominates.
Figure 1 shows the outcome of these tests after one period,

at t = 1. As expected, the quality of the results strongly depends
on the slope limiter. Without the predictor step (no slope limiter)
the solver is simply a first-order centered upwind scheme. In this
case a larger resolution is required to achieve the same accuracy
as in the three other tests. As expected, the Van-Leer and Super-
bee slope limiters give more accurate results than the Minmod
test but at the cost of a lack of symmetry. The Minmod slope
limiter was therefore chosen as a good compromise to achieve a
satisfying precision and to preserve symmetry.

Another series of dustyadvect tests are performed for dif-
ferent resolutions, using the Minmod slope limiter and without
a predictor step. A smooth initial Gaussian-like function f2 is
imposed to quantify the truncation error in space of the scheme
which writes, ∀x ∈ [0, L],

f2 (x) = 0.01 + 0.1 exp

−( x − L/2
L/4

)2 · (31)

We use a very small timestep ∆t = 10−8 to minimize the trun-
cation errors in time compared with spatial errors. The results are
compared at the same time t = 0.01 with the analytic solution
using the L2 norm

L2 =

√√∑Ncell
i=1

∣∣∣ρd
n
RESULTS,i − ρd

n
ANALYTIC,i

∣∣∣2
Ncell

· (32)

Figure 2 shows the evolution of the L2 norm with (blue
squares) and without (orange diamonds) a prediction step as a
function of the size of the cells for the Gaussian-like test. As
expected, without prediction, the scheme has only a first-order
accuracy in space, while it is a second-order scheme when the
full predictor-corrector scheme with slope limiters are used.
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Fig. 1. dustyadvect tests using the function f1 (Eq. (30)). Dust density after one on period various grids (` = 7 in blue, ` = 9 in orange, ` = 11 in
green, ` = 13 in red) as a function of the position compared with the analytic solution (black solid line). We present this test using four different
slope limiters. Top left: No predictor step. Top right: Minmod slope limiter. Bottom left: Van-Leer slope limiter. Bottom right: superbee slope
limiter.
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Fig. 2. dustyadvect tests with an initial condition given by the func-
tion f2 (Eq. (31)). L2 (Eq. (32)) norm as a function of the cell size for
the scheme using the Minmod slope limiter (blue squares) and with-
out predictor step (orange diamonds). The results are compared with a
first-order slope (dashed line) and a second-order slope (dotted line).

4.2. Dustydiffuse

When the hydrodynamical variables (pressure and dust ratio
excluded) remain constant, Eq. (8) behaves as a non-linear diffu-
sion equation. Pure dust diffusion tests can thus be performed. In
the dustydiffuse tests (Price & Laibe 2015), the hydrodynamical
step is deactivated and ts and cs are set constant as well. There-
fore, we only solve the following equation:

∂ρd

∂t
=
∂ρdwx

∂x
· (33)

An isothermal equation of state Pg = c2
s (1 − ε)ρ is considered.

The advection velocity is then given by

wx = −tsc2
s
∂ε

∂x
; (34)

ρ being constant, the equation can be written as the a non-linear
diffusion equation

∂ε

∂t
= tsc2

s
∂

∂x

(
ε
∂ε

∂x

)
· (35)

Equation (35) has a self similar solution known as the
Barenblatt-Pattle solution (Barenblatt 1952) that writes

ε(t, x,C) = (tsc2
s t)−1/3

(
C −

1
6

x2

(tsc2
s t)2/3

)
, (36)

where C is a constant depending on the initial conditions. We
consider the following initial profile

ε(t0, x) = ε0

1 − (
x
xc

)2 , (37)

which is consistent with Eq. (36) if

t0 =
C3

tsc2
s ε

3
0

,

C =

(
ε0xc
√

6

)2/3

·

We additionally set ρ = 1, ts = 0.1, ε0 = 0.1 and cs = 1 and
an AMR grid of `min = 4 and with `max = 10. The refinement
criterion, based on the dust density gradient, forbids a variation
of more than 5% between two cells.
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Fig. 3. Dustydiffuse tests. Dust ratio as a function of the position at
t = 1 (red), t = 5 (green), t = 10 (blue), t = 20 (purple) compared with
the exact solution (black solid lines).

Figure 3 shows a comparison between the outcome of the
tests and the analytic solutions at t = 1, t = 5, t = 10 and
t = 20. At each time the numerical results agree with the exact
solution to a precision of less then 1% in L2 norm. Even though
our scheme is fundamentally designed for advection, it is also
efficient at handling diffusion problems.

4.3. Dustyshock

Another canonical test for gas and dust mixtures consists of 1D
hydrodynamical shocks. For strongly coupled mixtures, these
so-called dustyshock tests are closely approximated by the same
analytic solution as the usual Sod test (Sod 1978), but with the
modified sound speed c̃s

c̃s = cs
√

1 − ε0,

ε0 being the initial dust ratio. The dust ratio ε remains almost
constant through the shock; however, pressure bumps must occur
where there is either a pressure or density gradient.

The same prescription as Laibe & Price (2014a) for the stop-
ping time is used. It writes

ts =
ε(1 − ε)ρ

K
,

where K is the drag coefficient defined previously. This prescrip-
tion is consistent with the expression of the stopping time pre-
sented before is convenient for tests since it allows us simply
parametrize the coupling between the gas and dust phase.

A dustyshock test is performed on an AMR grid with `min =
4 and `max = 13 with a high initial dust ratio. The grid is refined
with a criterion that forbids dust density variations of more than
5% between two neighbor cells. Two distinct regions, represent-
ing the left and right half of the box, are set with different initial
conditions given by(
ρ0, v0, Pg0, ε0

)
left

= (1, 0, 1, 0.5)(
ρ0, v0, Pg0, ε0

)
right

= (0.125, 0, 0.1, 0.5) .

Finally, a drag coefficient K = 1000 and an adiabatic index γ =
1.4 are imposed.

Figure 4 shows the gas and dust densities, the velocity, and
the gas pressure as a function of the position at t = 0.2. The Sod
solution with the modified sound speed is very well recovered.

4.4. Dustywave

The 1D dustywave test (Laibe & Price 2011) consists in follow-
ing the evolution of an isothermal sound wave in a gas and dust
mixture. Small periodic perturbations on the Eqs. (6) on the den-
sity, the dust ratio, the pressure, and the velocity are imposed

ρ = ρ0 + δρ0,

ε = ε0 + δε0,

Pg = Pg0 + δPg0,

νx = 0 + δνx0,

where the index 0 and the symbol δ indicate respectively the
initial uniform quantities and the perturbations. Laibe & Price
(2011) provide the analytic solution for this test. They find that
the sound waves propagate with the modified sound speed c̃s and
are damped because of the dust inertia. Large grains damp these
sound waves faster than small grains as they are more massive.

Three dustywave tests are performed using different drag
coefficients K = 50 (K50, strong back-reaction regime), K =
100 (K100) and K = 1000 (K1000,weak back-reaction regime).
The initial perturbations are in the form

δρ0 = ρ0δ sin
(
2π

x
L

)
,

δνx0 = ν0δ sin
(
2π

x
L

)
,

δPg0 = (1 − ε0) c2
s,0δρ0,

δε0 = 0,

where x is the position in the box, L is the box length, cs,0 is the
initial sound speed, and δ is a parameter that sets the amplitude
of the perturbation. The initial uniform state is set such as that

ρ0 = 2,
ε0 = 0.5,
ν0 = 1,
cs,0 = 1.

The adiabatic index of the gas is γ = 1.0000012 to simulate
an isothermal soundwave propagation. The initial perturbation
has a relative amplitude δ = 10−4. The simulation box has a
size L = 1.0 and the grid is taken as uniform with 64 cells. The
timestep ∆t = 10−4 is the same for the three tests and respects
the stability condition for the considered drag coefficients.

Figures 5 and 6 show the velocity νx and the perturbation
density δρ = ρ − ρ0 for both gas and dust at t = 4.5 for
these three tests. The amplitude of the damping increases with
a decreasing K and the results are increasingly less accurate as
the errors due to the diffusion approximation increase, consis-
tently with the theory (Laibe & Price 2011; Price & Laibe 2015).
Larger grains, i.e, with smaller K, have more inertia and allow
an efficient damping of the gas.

We perform dustywave tests on uniform grids with resolu-
tions ranging from ` = 5 to ` = 9, with a small timestep
∆t = 10−5 and for K = 50. We also perform runs on AMR grids

2 Taking exactly γ = 1 is not possible with RAMSES as the internal
energy is computed as Pg

γ−1 .
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Fig. 4. Dustyshock with ε = 0.5. Top left:
gas density as a function of position. Top
right: same but for dust. Bottom left: gas
pressure. Bottom right: gas and dust veloc-
ities. The AMR level (right axis) is repre-
sented with dotted blue lines. The analytic
solution is given by the black solid lines.
Red circles and blue crosses indicate gas
and dust numerical quantities, respectively.
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Fig. 5. dustywave test. Velocity of the gas (top) and dust (bottom) phase as a function of the position at t = 4.5 for the K50, K100 and K1000 tests
(from left to right) compared with the analytical solution (black lines) given by Laibe & Price (2011).

with coarse resolutions ranging from `min = 4 to `min = 8. For
these tests, the cells for x ∈ [0.25, 0.75] have a level of refine-
ment `max = `min+1. We test the order of our scheme and measure
the accuracy of numerical solution against a solution of reference
obtained at very high resolution (` = 11) in both time and space
(∆t = 10−6). We do not compare the results with the analytic
solution presented above as it not exact in the diffusion approx-
imation. Figure 7 shows the L2 errors obtained when increasing
the number of cells. The scheme is first-order in space with-
out correction and second-order when using the Minmod lim-
iter. In the presence of AMR, the scheme keeps a second-order

accuracy in space for low resolution but deteriorates at high res-
olutions. This is due to the estimate of the pressure gradient that
is first-order at a refined interface. At high resolution, the error is
smaller (almost two orders of magnitude) than the tests without
a predictor step.

4.5. Disk settling

The settling test, introduced by Price & Laibe (2015), is
designed to test the algorithm in realistic astrophysical condi-
tions. It simulates the local settling of dust grains in a disk in
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Fig. 6. dustywave test. Same as in Fig. 5 but for the density perturbations.

hydrostatic equilibrium. As in Price & Laibe (2015), we set an
analytic gravitational force

fgrav = −
GM?y

(y2 + r2)3/2 ,

where G is the gravitational constant, M? is the mass of the cen-
tral star, y is the altitude and r the cylindrical radius at which the
disk is simulated. The gas density at hydrostatic equilibrium for
|y| � r is

ρg = ρg,0e−
y2

2H2 ,

whereH is the local scale height of the disk, which is determined
by the ratioH/r = 0.05. We then assume an isothermal equation
of state where the imposed soundspeed cs is

cs = HΩk, (38)

Ωk being the Keplerian angular velocity at the radius r. Finally,
a uniform initial dust ratio ε0 is imposed.

In the terminal velocity approximation, the analytic solution
for the dust velocity is directly set by the pressure gradient that
compensates the gravitational force, hence

νd,y = wY = −StΩk
y

(1 + (y/r)2)3/2 , (39)

which is the limit at low Stokes number (St = Ωkts in this case)
of the expression given by Hutchison et al. (2018). As the gas
approximately remains in equilibrium, solving the settling prob-
lem consists in solving

∂ρd

∂t
+
∂ρdwy

∂y
= 0. (40)

Even though the density can, in principle, be determined using
the same method as the velocity, it relies on the hypothesis of
an infinite dust reservoir that is inconsistent with our choice of
boundaries. We choose to compare our results with a numer-
ical solution as in Hutchison et al. (2018). We use a similar
Crank-Nicholson scheme to get this solution, except that it
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Fig. 7. dustywave numerical convergence tests. L2 norm as a func-
tion of the minimum cell size for the scheme using the Min-
mod slope limiter (blue squares), without predictor step (orange
diamonds) and with AMR (green circles). The results are com-
pared with a first-order slope (dashed line) and a second-order slope
(dotted line).

only solves the dust density equation using the analytic dust
velocity.

We perform a 2D settling test at a disk orbiting around a
solar mass star at radius of 50 au. The simulation box has peri-
odic boundary conditions and L = 20 au, which is approximately
8H . As in Price & Laibe (2015) and Hutchison et al. (2018), the
initial mid-plane gas density ρg ≈ 6 × 10−13 g cm−3. We also set
an initial dust ratio of 4.99 × 10−3 of millimeter grains with an
intrinsic density of ρgrain = 3 g cm−3. The adiabatic index of the
gas is γ = 5/3.

A first test with a uniform grid at level ` = 8 is per-
formed. Figure 8 shows the dust ratio as a function of y. As can
be seen, the results are essentially similar to those obtained in
Price & Laibe (2015) and Hutchison et al. (2018).
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Fig. 8. settling test on a uniform grid at level ` = 8 with millimeter-
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4.6. Multigrain

4.6.1. Example 1: Dustydiffuse

To benchmark the implementation of the multiple dust species in
the code, ten dustydiffuse tests are performed on uniform grids
of ` = 7. They are operated with one dust phase and with this
same phase split withN ∈ [2, 10] (multigrain). All the dust bins
have the same intrinsic properties. As all the tests are equivalent,
it is expected that they give the same results. The parameters
used are the same as in Sect. 4.2.

Figure 9 shows the total dust density as a function of position
with N = 5 (top) and N = 1 (bottom) at t = 1, t = 5, t = 10,
and t = 20. The results agree for the multigrain simulation and
for the single phase simulation to machine precision.

2 4 6 8 10
N

2

4

6

t C
P

U
(s

)

∝
√
N

∝ N

Fig. 10. CPU time tCPU of the ten equivalent dustydiffuse tests as a
function of the number of species N .

Figure 10 shows the CPU time as a function of the number of
species N . We see that the multigrain simulations are not very
expensive. The CPU time agrees more with a square root scal-
ing with N than a linear one. As discussed by Hutchison et al.
(2018) with the multigrain algorithm in the PHANTOM code
(Price et al. 2017), the monofluid formalism is a highly compu-
tationally effective tool to treat multiple phases.

4.6.2. Example 2: Dustywave

In this section, we test the cumulative back-reaction of dust on
the gas and the interaction between dust species. To benchmark
our multigrain implementation in a strong back-reaction regime
we run a dustywave simulation with two dust species. The ini-
tial barycentric velocity is a sinusoidal perturbation of ampli-
tude 10−4, the other variables are not initially perturbed. We
numerically integrate the linearly perturbed equations of gas and
dust mixtures assuming solutions of the type A(t) exp(ikx) as in
Laibe & Price (2014c) to obtain our reference solution. The test
is performed with a uniform grid of ` = 9 and timesteps given by
the CFL condition. In this test, we consider two dust phases and
a total initial dust ratio of 0.5. The first bin has a drag coefficient
K = 50 and an initial dust ratio of 0.4, the second has a drag
coefficient K = 1000 and an initial dust ratio of 0.1. In this case,
we expect the first dust species to damp the gas efficiently.

Figure 11 shows the amplitude of the density perturbations
(gas and dust) and velocity (gas) compared with the reference
solution. Our results are in excellent agreement with the refer-
ence solution in terms of amplitude, period and damping rate.
As expected the damping of the gas is significant. This empha-
sizes the fundamental role of the cumulative back-reaction on
the dynamics of dust grains in presence of multiple species as
the second phase K = 1000 could not damp the gas as efficiently
(see Sect. 4.4).

4.6.3. Example 3: Disk settling

The disk settling test presented in Sect. 4.5 is nicely adapted to
test our multigrain solver in realistic conditions. Dust grains of
various sizes are present in protoplanetary disks and they expe-
rience different dynamical evolutions. To test the solver in these
conditions, a settling test with ten dust species is performed with
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Fig. 11. multigrain dustywave test. The three panels show the evolu-
tion of the maximum amplitude of the perturbation for the dust densi-
ties (top), the gas density (middle), and the gas velocity (bottom). The
K = 50 and K = 1000 dust phases are shown with blue and green cir-
cles respectively. The red circles represent the gas. The semi-analytic
solution is given by the dashed black line.

a resolution of ` = 8. As before, the intrinsic grain density is
3 g cm−3, but every species is characterized by a proper dust ratio
ε j and grain size sgrain, j. These quantities are determined using a
MRN-like distribution3, we use the same values for the mini-
mum and maximum grain size as in Hutchison et al. (2018). The
details of the size distribution are summarized in Table 1, which
also shows the stopping time of each species in the mid-plane of
the disk.

Figure 12 shows the dust ratio and velocity of every species
after ten orbits compared with the one-species solution, which
is a good approximation as long as the cumulative back-reaction

3 ε
(
sgrain

)
∝ s4−m

grain with m = 3.5.

Table 1. Dust distribution and stopping time at z = 0 for the multigrain
settling test.

j sgrain, j (cm) ε j ts (s) at z = 0

1 1.0 × 10−5 3.99 × 10−5 40
2 2.78 × 10−5 6.65 × 10−5 111
3 7.74 × 10−5 1.11 × 10−4 310
4 2.15 × 10−4 1.85 × 10−4 860
5 5.99 × 10−4 3.09 × 10−4 2396
6 1.67 × 10−3 5.15 × 10−4 6680
7 4.64 × 10−3 8.59 × 10−4 18 560
8 1.29 × 10−2 1.43 × 10−3 51 600
9 3.59 × 10−2 2.39 × 10−3 143 600
10 1.0 × 10−1 3.99 × 10−3 400 000

on the gas is small. Again, the solution is very well captured by
our solver.

Figure 13 shows the dust densities in the (xy)-plane. There is
no dispersion of the values in the x-direction, and the initial sym-
metry of the problem is conserved to machine precision which
originate from the Eulerian nature of the numerical scheme. As
in previous studies, we see that ten orbits are enough to effi-
ciently separate the dust phases. We note that an orbit at 50 au is
approximately 353 years which is a few hundred times smaller
than the free-fall timescale of a typical protostellar cloud of den-
sity ≈10−19 g cm−3 (Andre et al. 2000) which is approximately
105−106 years. An efficient settling is thus expected to happen
during the collapse of this cloud, especially for large grains, e.g.,
sgrain > 10−2 cm here, for which the typical settling timescale is
a few orbits.

As in Hutchison et al. (2018), we are interested in the effects
of the interaction between different dust species. Figure 14
shows a zoom of the vertical profile of ε1 as a function of y.
The behavior of this phase is similar to what was observed in
Hutchison et al. (2018). The dashed black line shows the one-
species solution. As we see, for this species, the discrepancies
between the one-species solution and the multigrain test are on
the order of magnitude of the variations of ε1 at the dust front,
which emphasizes the fundamental character equivalent stop-
ping time in multigrain simulations.

5. Dusty protostellar collapses

The final test of the algorithm verifies again that both gas and
dust are sensitive to gravity and the 3D implementation of the
solver.

5.1. Dustycollapse

To study the collapse of a dense core, 3D canonical test cases,
introduced by Boss & Bodenheimer (1979), but in the presence
of dust (dustycollapse) are performed to follow dust dynamics
during the formation of the first Larson core (Larson 1969). The
initial dense core, composed with gas and dust, has a mass M0, a
uniform density ρ0 and a dust ratio ε0. Its radius R0 is set by the
ratio between the thermal and gravitational energies α

α =
5
2

(1 − ε0)R0

GM0

kBTg

µmH
, (41)

where kB is the Boltzmann constant, µ is the mean molecular
weight, mH the hydrogen atomic mass, and Tg the initial gas
temperature.
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Fig. 12. multigrain settling test. Dust ratios and dust velocities (circles) of the ten phases of the settling test after ten orbits compared with the
numerical (dotted black lines) and analytic (black lines) one-species solution.

A barotropic equation of state is used to describe the
optically thick regime at which the evolution is adiabatic.
It writes

Pg

(1 − ε)ρ
= c2

s

1 +

(
(1 − ε)

ρ

ρad

)γ−1 , (42)

the evolution becoming adiabatic above the critical density ρad =
10−13 g cm−3 (Larson 1969). For the sake of simplicity, this crit-
ical density is taken constant in this paper. A dependency with
the dust ratio will be discussed in future works.

As in Tricco et al. (2017), we consider an unique grain den-
sity ρgrain = 3 g cm−3 which is a good approximation for a com-
bination of carbonaceous and silicate grains.

5.2. Setup

All the models are set with M0 = 1 M�, µ = 2.31, γ = 5/3, and
Tg = 10 K. AMR grids of `min = 5 and `max = 17 are considered.
With respect to the criterion given by Truelove et al. (1997) to
avoid artificial clumps, the grid is refined to impose at least 15
points per Jeans length. The region surrounding the core has a
density that is one hundred time lower than the initial core but
the same temperature.

The initial density and pressure gradients between the
core and the ambient medium are numerical artifacts. To
avoid unphysical variations of the dust ratio in these regions
and unnecessary constraints on the timestep, the differen-
tial advection velocity wk is set to zero outside the initial
core.

We consider the first hydrostatic core as the region where the
gas density is higher than 10−12.5 g cm−3.

5.3. Validity of the diffusion approximation

The diffusion approximation is valid as long as the stopping time
ts is shorter than the dynamical timescale which is, for gravita-
tional collapses, roughly the free-fall time

tff ≡

√
3π

32Gρ
·

With an initial dust ratio of 0.01 and a temperature of 10 K, the
Stokes number is

St ∼ 0.114
(

M0

1 M�

) (
ρgrain

3 g cm−3

) ( sgrain

0.05 cm

) (
α

0.5

)3/2
< 1. (43)

For a wide range of density and grain size the stopping time
is short compared to the dynamical timescale. Initially, the stop-
ping time is shorter than the free-fall timescale for grain sizes up
to '4 mm. However, as the Stokes number may vary, the validity
of the approximation needs to be discussed during the collapse
(see Sect. 5.5).

5.4. Free-fall timescale for strongly coupled mixtures

A core only composed with gas would collapse at the following
free-fall timescale

tff,g ≡

√
3π

32Gρg
·

For a perfectly coupled gas and dust mixture (ts � tff) it writes

tff =

√
3π

32Gρ
·

In the context of the Boss and Bodenheimer test, this timescale
indirectly depends on the initial dust ratio

tff =
π

5
√

5
GM0

(
αµmH

kbTg(1 − ε0)

)3/2

· (44)

Physically, this is due to the fact that two cores with the same ini-
tial α but different ε0 have different initial radius, hence free-fall
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Fig. 13. multigrain settling test. Dust
density for the species j = 2, 4, 6, 8, and
10 in the (xy)-plane at t = 0, 1, 5, and 10
orbits.

timescale. Indeed, R0 increases with ε0 so that the gas provides
the same thermal support against gravity.

To test this relation, non-rotating dustycollapse with vari-
ous dust ratios and the same α = 0.5 are performed. The con-
dition ts � tff is ensured by considering very small grains with
s = 10−7 cm. Figure 15 shows the ratio of the free-fall timescale
of a dusty cloud to that of a pure-gas cloud compared with the
analytical solution. We define the free-fall timescale as the time
at which the peak density reaches ρad. The scaling relation is very
well verified. As expected, the gas, and the dust, are sensitive to
gravity and fall at the mixture free-fall timescale.

5.5. Core properties

Non-rotating dustycollapse of α= 0.5 are performed
with an initial dust-to-gas ratio of 1% (corresponding to

ε ∼ 0.00990099). Single grain species of size 1 µm (Col1),
10 µm (Col10) and 100 µm (Col100) are considered. The
results are compared, when the gas maximum density reaches
10−11 g cm−3, with a fiducial collapse without any treatment of
dust (ColGAS).

Figure 16 shows the total mass of the first hydrostatic core
Mcore, the dust mass ratio Md/Mcore and its formation time tcore
as a function of the grain size (bottom x-axis) and the initial
Stokes number (top x-axis). The first core properties depend on
the amount of dust in the initial dense core. In the fiducial Col-
GAS test, the gas density is assimilated to the total density, as is
often the case in the literature. This results in a lower first-core
mass and a shorter formation time. We note that the barotropic
equation of state implicitly assumes a constant dust-to-gas ratio
of 1%, which is slightly inconsistent. Dust-to-gas ratios might
be even higher in core forming regions (Hopkins & Lee 2016;
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Fig. 14. multigrain settling test. Magnification of the dust front as a
function of y for the j = 1 dust species (brown circles) compared with
the one-species solution (dotted line). These dust grains are dragged by
the gas, which is itself submitted to the cumulative back-reaction of all
the other dust species through the gas, hence the difference is the one-
species solution.
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Fig. 15. Ratio of the free-fall timescale of the mixture to the free-fall
timescale of the gas. The red circle corresponds to the fiducial simu-
lation with gas only, and the blue circles correspond to gas and dust
mixtures for various dust ratios. The black solid line is the analytical
solution.

Tricco et al. 2017) which could lead to even more important dis-
crepancies. In terms of dynamics, small grains (s < 100 µm) do
not have a significant impact as they fall alongside the gas. How-
ever, the differential velocity between the gas and the dust is pro-
portional to the stopping time, hence large grains (s ≥ 100 µm)
tend to fall substantially faster than the gas. Their infall provokes
a slight acceleration of the first core formation as it changes
the balance between the gravity and the thermal support of the
gas. The mass of the core decreases as the grain size increases
because the gas has less time to be accreted during the collapse.
The settling of dust in the central regions of the core, however,
leads to an increase in Md/Mcore.

Figures 17 and 18 show the radial profiles for the Col10 and
Col100 tests, respectively, of the gas density, the dust ratio, the
gas and dust velocities, and the Stokes number. As can be seen,
the strong dust depletion in the outer regions of the collapse
provides the enrichment of the core. However, as the damping
is more efficient in the high density regions (see the veloci-
ties vg ≈ vd), the dust ratio increases at a slower rate in the
inner regions of the collapse, i.e, the first core. If the maximum
increase of dust ratio in the outer regions of the collapse is about
∼20% for the Col10 test, it goes up to ∼300% for the Col100 test.
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Fig. 16. Properties of the first Larson core when ρg ∼ 10−11 g cm−3 for
Col1, Col10, and Col100. The core mass, the dust mass ratio, and the
formation time are shown as a function of the grain size (blue circles).
The results are compared with the fiducial ColGAS simulation (dashed
red lines). The top x-axis shows the initial Stokes number in the core
St0.

We see in the Col100 case that the terminal velocity approxima-
tion probably leads to non-negligible errors as the Stokes number
is close to one in the outer regions of the collapse . More accurate
simulations using a future implementation of the full monofluid
formalism (Laibe & Price 2014a) should investigate these errors.

If initial solid-body rotation is considered, it is expected that
the large dust grains will settle in the mid-plane of the protoplan-
etary disk (Bate & Lorén-Aguilar 2017). Future works will take
this into account and the presence of multiple grain species as
well.

6. Conclusions and perspectives

We have presented an Eulerian approach to treat the dynamics
of small dust grains. It is efficient in the diffusion regime and
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Fig. 18. Same as Fig.17, but for the
Col100 test.

can be employed to treat multiple dust species simultaneously
and efficiently. After a summary of the theory, we presented
the numerical scheme that we implemented in the AMR code
RAMSES. It successfully passed the canonical validation tests for
advection schemes and dust dynamics solvers, i.e, dustyadvect,
dustydiffuse, dustyshock, dustywave, settling, and dustycol-
lapse. We show that our scheme has a second-order accuracy
in space on uniform grids and intermediate between first- and

second-order on AMR grids. The method also appears to effi-
ciently treat a non-linear diffusion problem. The dustyshock,
dustywave, settling and dustycollapse, show that the waves and
shock propagate at the correct velocity, and that the dust phase
feels the common forces between gas and dust, e.g., gravity. The
dustydiffuse test operated with a split dust phase shows that our
method is able to efficiently treat multiple dust species simulta-
neously as the computation time scales in

√
N. We emphasize
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the importance of the cumulative back-reaction on both the gas
and the dust with the multigrain dustywave tests. We show with
a multigrain settling test that our solver efficiently treats mul-
tiple phases in a realistic astrophyiscal environment. We also
observe the same interactions between the dust phases that were
uncovered in Hutchison et al. (2018).

The method is applied to study dust dynamics during
the formation of the first hydrostatic core. As found in
Bate & Lorén-Aguilar (2017), grains larger than s ' 100 µm
can fall substantially faster than the gas. Above this size, the
grains settle in the core, enriching its dust content and speed-
ing up the collapse. We showed that the core properties are not
affected very much by the dynamics of dust for small grains
(s < 100 µm). However, they depend on the presence of dust
itself as the thermal-to-gravitational energy ratio α depends on
both the gas and the dust density.

The scheme was presented, for simplicity, in the hydro-
dynamical case; however, it is implemented in the radiation
non-ideal MHD version of RAMSES. Realistic simulations of star
formation would require us to consider the impact of dust on
magnetic fields and radiative transfer coupling with the mixture.
In that perspective, later work will focus on taking into account
the impact of the variation of the dust ratio on the opacity and
the magnetic resistivities.

In the paper II we will discuss in more detail the grain
dynamics during the collapse of rotating clouds with multigrain
simulations.
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