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We review the numerical techniques for ideal and non-ideal magneto-hydrodynamics

(MHD) used in the context of star formation simulations. We outline the specific

challenges offered by modeling star forming environments, which are dominated by

supersonic and super-Alfvénic turbulence in a radiative, self-gravitating fluid. These

conditions are rather unique in physics and engineering and pose particularly severe

restrictions on the robustness and accuracy of numerical codes. One striking aspect

is the formation of collapsing fluid elements leading to the formation of singularities

that represent point-like objects, namely the proto-stars. Although a few studies

have attempted to resolve the formation of the first and second Larson’s cores,

resolution limitations force us to use sink particle techniques, with sub-grid models

to compute the accretion rates of mass, momentum and energy, as well as their

ejection rate due to radiation and jets from the proto-stars. We discuss the most

popular discretisation techniques used in the community, namely smoothed particle

hydrodynamics, finite difference and finite volume methods, stressing the importance to

maintain a divergence-free magnetic field. We discuss how to estimate the truncation

error of a given numerical scheme, and its importance in setting the magnitude of

the numerical diffusion. This can have a strong impact on the outcome of these MHD

simulations, where both viscosity and resistivity are implemented at the grid scale. We

then present various numerical techniques to model non-ideal MHD effects, such as

Ohmic and ambipolar diffusion, as well as the Hall effect. These important physical

ingredients are posing strong challenges in term of resolution and time stepping. For the

latter, several strategies are discussed to overcome the limitations due to prohibitively

small time steps. An important aspect of star formation simulations is the radiation field.

We discuss the current state-of-the-art, with a variety of techniques offering pros and

cons in different conditions. Finally, we present more advanced strategies to mitigate

the adverse effect of finite numerical resolution, which are very popular in the context

of supersonic, self-gravitating fluids, namely adaptive mesh refinement, moving meshes,

Smoothed Particle Hydrodynamics and high-order methods. Advances in these three

directions are likely to trigger immense progress in the future of our field. We then illustrate

the different aspects of this review by presenting recent results on supersonic MHD

turbulence and magnetized collapse calculations.

Keywords: star formation, numerical techniques, MHD: ideal, MHD: non-ideal, astrophysical fluid dynamics,

radiation fields, sink particles
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1. INTRODUCTION

Star formation is one of the main unsolved problems in
astrophysics. Although our view of this fundamental process,
at the nexus of galaxy formation, planetary science and stellar
evolution, has considerably changed over the past decades,
thanks to new observations and theoretical progress, many dark
corners remain to be explored. One of the reasons why the true
origin of stars still eludes us is the highly non-linear nature of the
governing equations, describing self-gravitating, compressible,
magnetized dust, and gas fluids interacting with radiation. In this
review, we present these main governing equations, focusing on
ideal magneto-hydrodynamics, radiation hydrodynamics, non-
ideal effects and sink particle techniques. We describe the most
popular discretisation schemes, focusing on possible sources of
errors and their consequences on clouding our conclusions. We
finally give a short description of the landscape in term of star
formation simulations, with different set-up strategies addressing
particular scales in this fundamentally multi-scale problem.

Star formation is believed to be the consequence of the
collapse of mildly supersonic or transonic to subsonic molecular
cores emerging out of supersonic turbulent flows in the
interstellar medium (Mac Low and Klessen, 2004; McKee and
Ostriker, 2007). The source of turbulence is probably to be
found on large scales, as a consequence of large galactic shearing
or colliding flows, but also on small scales, because of various
sources of stellar feedback (McKee, 1989; Federrath et al., 2017).
In this context, gravitational or thermal instabilities lead to
the formation of dense gas clumps that undergo a more or
less violent gravitational collapse, leading to the formation of
a proto-star surrounded by a proto-stellar disk. Describing
these processes using only simple analytical methods is almost
impossible. Moreover, the traditional engineering methods in
Computational Fluid Dynamics (CFD) are usually not robust
enough to sustain highly supersonic and super-Alfvénic flows.
Self-gravity, magnetic fields and radiation fields, taken together,
define a very unique system of equations that has no equivalent
in the industry. This has led astrophysicists to develop their own
methods, largely inspired by traditional methods designed in the
applied mathematics community, but significantly adapted to
the specific problem at hand. In this context, Smoothed Particle
Hydrodynamics (SPH) and Adaptive Mesh Refinement (AMR)
techniques turned out to be particularly suitable to the problem
of star formation. Both techniques have their own pros and cons,
and comparing the two allows us to assess the robustness of
our numerical results. New techniques have also been developed,
that are specific to star formation, such as sink particles, a
commonly adopted recipe to replace an otherwise collapsing fluid
element by a collision-less particle, saving computational times
and increasing the realism of the simulation.

In this review, we pay attention to the description of
the equations, without necessarily discussing their physical
foundations, such as the ideal MHD limit or the non-
ideal diffusion processes. We describe the various numerical
techniques, from low-order schemes to modern high-order
methods, as well as from non-zero divergence schemes to exact
divergence-free methods, etc. We refer to the corresponding

literature, including all references that are relevant to the
historical description of the discipline and that give a fair
snapshot of the present state of the field.We apologize in advance
for not having included all possible references on the topic.

2. IDEAL MHD: NUMERICAL TECHNIQUES

Developing new computational methods for solving the ideal
MHD equations has generated a lot of interest within the
applied mathematics and computational physics communities.
Quite naturally, because of their success in solving the Euler
equations, grid-based methods with flux upwinding, also known
as Godunov’s method, were applied to the MHD equations in the
framework of finite-volume discretisation. In parallel, Smoothed
Particle Hydrodynamics (SPH) generated a lot of interest in the
astrophysics community because of its strict Galilean invariance.
Both methods, however, quickly ran into difficulties trying to
maintain the divergence-free property of the MHD equations.

2.1. The Ideal MHD Equations
Before we review the various improvements of MHD numerical
solvers over the past decades, we briefly recall the ideal MHD
equations, shown here in conservative form. We have first the
mass conservation equation,

∂ρ

∂t
+ ∇ · (ρv) = 0, (1)

where ρ is the mass density and v is the fluid velocity vector. We
also have the momentum conservation equation

∂

∂t
(ρv)+ ∇ ·

(

ρv⊗ v+ PtotI−
1

4π
B⊗ B

)

= ρg, (2)

where B is the magnetic field vector and Ptot is the total
pressure, defined as the sum of the thermal pressure and the
magnetic pressure

Ptot = P + 1

8π
B2. (3)

Note that we work here in cgs units, hence the presence of the 4π
term in these equations. We have also included the gravitational
acceleration vector g as a source term on the right-hand side of
the momentum conservation equation. Finally, we have the total
energy conservation equation

∂Etot

∂t
+ ∇ ·

(

(Etot + Ptot) v−
1

4π
B(B · v)

)

= ρg · v, (4)

where the total fluid energy is the sum of the kinetic energy, the
internal energy and magnetic energy

Etot =
1

2
ρv2 + e+ 1

8π
B2. (5)

In order to close the system, we need the fluid equation of state,
usually given be the ideal gas equation of state

P = (γ − 1)e, (6)
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and the induction equation for the evolution of the magnetic field

∂B

∂t
= −∇ × E with E = −v× B, (7)

where we have introduced the electric field E (also known as the
electromotive force, emf). We need to add to these equations the
most important property of the magnetic field, namely

∇ · B = 0, (8)

also known as the solenoidal constraint or the divergence-
free condition. Since we consider now in this section ideal
MHD conditions, we have no dissipation terms in the induction
equation, as well as in the fluid equations.

2.2. Some Important Mathematical
Properties
The fluid equations appear to be in conservative form, which
naturally calls for a finite volume representation, which will
ensure exact conservation of mass, momentum and total energy,
by construction, owing to the divergence theorem

∫

V
∇ · FdV =

∫

S
F · ndS, (9)

where the vector F can be the flux of mass, momentum or energy.
Designing a numerical scheme boils down to computing the
flux through the surface of the volume elements. On the other
hand, the induction equation naturally calls for a finite surface
representation, owing to the Stoke’s theorem

∂

∂t

∫

S
B · ndS =

∫

S
∇ × E · ndS =

∫

L
E · dl. (10)

Similarly, the divergence-free condition, written in integral
form as

∫

V
∇ · BdV =

∫

S
B · ndS, (11)

also calls for defining the magnetic field as a surface averaged
quantity. This naturalness argument, together with the fact that
the divergence-free condition can be maintained to machine
precision accuracy, has led to the design of the constrained
transport scheme (Evans and Hawley, 1988). This very popular
method for grid-based techniques comes however with a price:
the flow variables are not all co-located at cell centers, like
volume-weighted fluid variables, but also at face centers, for the
magnetic field components, and at edge centers for the electric
field components.

A very important mathematical property of the magnetic
field that emerges from the divergence-free condition is that
the normal component of the field should be continuous across
cell faces. The x-component of the field, for example, can be
discontinuous in the y and z-directions, but has to vary smoothly
in the x-direction. This property also naturally holds in the
constrained transport method. It can be written as

∫

S
[B · n] dS = 0, (12)

where the operator [A] = A+−A− denotes the jump of a quantity
A across the surface element.

2.3. Preserving the Divergence-Free
Condition
Historically, one of the first ideal MHD, general purpose
codes, is ZEUS-2D developed specifically for astrophysics
by Stone et al. (1992b). It is a finite-difference code using
constrained transport and artificial viscosity to handle shocks,
The continuity and divergence-free conditions are therefore
satisfied by construction, but since artificial viscosity is used to
handle shocks, instabilities can occur in fast rarefaction waves
(Falle, 2002).

The other popular strategy for grid-based methods is to
maintain all MHD variables as volume-averaged quantities,
allowing for discontinuities across all cell faces. In the late 90s, a
series of papers presented finite-volume MHD codes with proper
upwinding of numerical fluxes using Riemann solvers (Dai and
Woodward, 1994; Ryu et al., 1995; Tóth, 1996; Balsara, 1998; Lee
and Deane, 2009). These methods are very powerful, because
they are strictly conservative and because they satisfy the so-
called entropy condition, meaning the entropy can only increase,
a key property to maintain the stability of the numerical solution.
These finite-volume codes all considered the magnetic field as
a volume-averaged, piecewise-constant, cell-centered quantity,
which violates the continuity condition of the normal component
of the field. The resulting schemes are therefore not necessarily
divergence-free anymore. In order to maintain the divergence
as small as possible, an additional step is required that modifies
the magnetic field components and decreases or nullifies the
divergence: this operation is called divergence cleaning. In a
seminal paper, Tóth (2000) has compared various schemes and
showed that they all passed with mixed success a variety of MHD
test problems. We will now review these grid-based methods that
are using divergence cleaning.

The first method we discuss here is the projection scheme,
introduced by Brackbill and Barnes (1980). The idea is tomeasure
the spurious divergence after the main update of the MHD
variables, and solve for a Poisson equation defined as

1φ = ∇ · B∗. (13)

where φ is a scalar potential. The new magnetic field is then
corrected as

Bn+1 = B∗ − ∇φ, (14)

so that by construction the divergence is now zero. This method
works very well in many applications. It suffers however from
two main issues: first, it is quite expensive as it requires to
solve for a Poisson equation. Another consequence is that the
correction is non-local: very localized divergence errors can
be instantaneously transported across the grid to enforce the
solenoidality condition. Second, the correction process modifies
the magnetic field, without modifying the total energy. As a
consequence, the resulting temperature can be modified, and the
entropy condition might be violated. An easy fix is to remove
the magnetic energy before the correction step and add the new
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magnetic energy after the correction, but the resulting scheme is
not conservative anymore.

The second popular method is the so-called 8-waves
formulation or Powell’s method (Powell et al., 1999). The idea
is to write more general ideal MHD equations allowing for the
presence of magnetic monopoles. This results in the following
non-conservative form

∂

∂t
(ρv)+∇ ·

(

ρv⊗ v+ PtotI−
1

4π
B⊗ B

)

= − (∇ · B)B+ ρg, (15)

∂Etot

∂t
+∇ ·

(

(Etot + Ptot) v−
1

4π
B(B · v)

)

= − (∇ · B)B · v+ ρg · v,

(16)
∂B

∂t
−∇ × (v× B) = − (∇ · B) v. (17)

This method proved very useful and robust for many
applications. It is still widely used in astrophysics nowadays.
The success of the method originates from the property that the
spurious ∇ ·B is advected away with the flow, using the so-called
eighth MHD wave, so that divergence errors do not accumulate.
There are however two problems: First, in stagnation points1, the
divergence errors will accumulate because the flow trajectories
are converging. Second, the scheme is not strictly conservative.
Shock waves lead to solutions that do not converge to the correct
conservation laws anymore.

A very elegant solution to the first problem was proposed
in Dedner et al. (2002) using the so-called hyperbolic-parabolic
divergence cleaning technique, also known as a Generalized
Lagrange Multiplier (GLM) formulation of the ideal MHD
equations, in short, Dedner’s scheme. The idea is to add a
ninth wave to the previous Powell’s modified MHD equations,
introducing the cleaning field ψ that satisfies

∂ψ

∂t
+ v · ∇ψ + c2h∇ · B = −ψ

τ
, (18)

and is used as a source term in the induction equation.

∂B

∂t
− ∇ × (v× B) = −∇ψ . (19)

In the first equation, ch is the divergence wave speed and τ
is the divergence damping time scale. The latter is chosen
equal to (or larger than) the fast magnetosonic wave speed,
while the former is usually equal to (or larger than) the fast
magnetosonic cell crossing time. At first sight, this new nine
waves scheme can be seen as a combination of advection and
damping of divergence errors, thus a clever combination of
the projection method and the Powell’s scheme. As shown
recently by Derigs et al. (2017), it is in fact much more than
that: this new divergence field ψ allows to restore the entropy

1Stagnation points are regions where the flow is brought to rest in the frame of the
system under study.More generally, even if the velocity does not vanish, stagnation
points are regions in the flow where the streamlines are converging and the flow
becomes compressive.

condition, as this field can be interpreted as a divergence
cleaning energy which stores temporarily the magnetic energy
lost during the damping step. It is also conservative in a
general sense, but still violates the Rankine-Hugoniot shock
relations locally.

In parallel, accurate and stable MHD solvers have been the
topics of many studies in the SPH framework. Probably because
of its strict Galilean invariance, early SPH MHD solvers were
quite oscillatory (see e.g., Dolag et al., 1999). Truncation errors
associated to the non-zero divergence cannot be damped by
numerical diffusion as they are advected away, as in the case
of grid-based codes. Many regularization techniques have been
proposed to provide stable SPH solvers for the ideal MHD
equations: using the vector potential (e.g., Kotarba et al., 2009)
or using artificial diffusivity (Price and Monaghan, 2005; Dolag
and Stasyszyn, 2009). Interestingly, the work of Price and
Monaghan (2005) was based on exploring various divergence
cleaning methods used in grid-based codes for SPH. The authors
concluded that this works in most cases, but in difficult cases,
such as supersonic turbulent flows, this can lead to spurious
effects, such as the violation of the entropy condition or wrong
shock relations. More worrysome, these authors noticed that
divergence cleaning can lead to an increase of the local magnetic
energy, a price to pay to redistribute the truncation errors in
the divergence. This results in spurious dynamo effects. Recently,
however, Tricco and Price (2012) revisited the Dedner’s scheme
for SPH and found a formulation that guarantees that divergence
cleaning leads to a decrease of the magnetic energy and an
increase of the entropy, in the spirit of Derigs et al. (2017) for
grid-based codes.

In light of these rather complex developments of divergence
cleaning methods, the constrained transport (CT) approach we
have introduced already seems quite appealing. Note however
that this approach requires to have well defined cell-interfaces,
which is not necessarily the case for SPH or the recently
developed moving-mesh AREPO code (Springel, 2010). The CT
scheme, introduced for astrophysical fluid flows by Evans and
Hawley (1988) and used in the ZEUS-2D code (Stone et al.,
1992b), features the nice property that the divergence of the
magnetic field, defined in integral form as the net magnetic flux
across the 6 faces of each cell, will always remain constant, So if
it is initially zero, it will remain equal to zero within numerical
round-off errors. This however requires to define the electric
field on the cell edges, and this is the main difficulty of this
approach (see Figure 1). Indeed, in the Godunov methodology,
fluxes, defined at cell faces, are computed as the solution to
the Riemann problem of the two neighboring cells meeting at
their common cell interface. For the electric field, defined at
cell edges, 4 neighboring cells meet and in order to properly
upwind the electric field, we need to solve a two-dimensional
Riemann problem, a rather daunting task (see Teyssier et al., 2006,
for a discussion). Several solutions have been found to design
2D MHD Riemann solvers (Londrillo and del Zanna, 2004;
Balsara et al., 2014), and this has been the main characteristic of
several simulations codes with proper upwinding of both fluxes
and electric fields, using the CT scheme within the Godunov
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FIGURE 1 | Schematic showing the geometry of a Cartesian cell in the

Constrained Transport approach. The finite volume cell is shown as a gray

cube. It is labeled i, j, k. The magnetic field components are defined

perpendicular to the faces of the cube. The are shown in red, only in the

rightermost face in all three directions. The electric field components are

defined on the cell edges. They are shown in blue and only in one face for sake

of simplicity.

methodology (Londrillo and del Zanna, 2004; Fromang et al.,
2006; Stone et al., 2008; Li et al., 2012; Mocz et al., 2014a).

2.4. Minimizing Numerical Errors: Higher
Order vs. Mesh Refinement
When performing self-gravitating magnetized fluid simulations,
it is of primary importance to quantify and understand numerical
errors. These errors are often called truncation errors because
they arise as leading order terms in the Taylor expansion of
the adopted discrete numerical method. Usually, this Taylor
expansion leads to the so-called modified equation, which
encodes how the original ideal MHD equations have been
transformed into a new set of equations with additional terms
coming from the truncation errors. For first-order schemes, these
terms are identical to a diffusion process, and are therefore
called numerical viscosity or numerical diffusivity. In SPH,
quite often, these terms are added explicitly to the equations
as artificial viscosity and artificial diffusivity, while for grid-
based Godunov solvers, these terms are only implicitly present,
through this Taylor expansion of the discrete scheme. In both
cases, however, these diffusion processes control how shock
heating and magnetic reconnection proceed in the solution.
They play a fundamental role in preserving the entropy
condition, and in regulating the flow close to the grid scale.
Unfortunately, many complex MHD processes, such as the small
scale dynamo (Brandenburg and Subramanian, 2005) or the
magneto-rotational instability (Balbus andHawley, 1991) depend
crucially on the so-called Prandtl number (Fromang et al., 2007;
Federrath et al., 2014a), which is the ratio of the real magnetic
diffusivity to the viscosity. In most case, this ratio is always close

to 1 if one uses the numerical Prandtl number (Fromang et al.,
2007; Federrath et al., 2011b), while in nature, it can vary widely.
It is therefore crucial to adopt in some cases explicit viscosity
and diffusivity coefficients and model the flow including these
non-ideal processes (Fromang et al., 2007; Federrath, 2016).

As explained in the next section, in order to model these
non-ideal effects, it is crucial to control and minimize the
numerical diffusion as much as possible. There are two possible
strategies to achieve this: refine the grid or increase the order
of accuracy of the method. The first approach leads to the
so-called Adaptive Mesh Refinement method, a very popular
and successful technique in the context of star and galaxy
formation. Popular AMR codes are available to the star formation
community, such as RAMSES (Teyssier, 2002; Fromang et al.,
2006), ORION (Klein, 1999; Krumholz et al., 2007b), ENZO
(Bryan et al., 2014), or FLASH (Fryxell et al., 2000). Other codes,
that used to be only unigrid, now propose an adapted grid or an
adaptive grid extension, such as PLUTO (Mignone et al., 2007)
and ATHENA (Stone et al., 2008). In all these codes, cells are
adaptively refined according to various refinement criteria. In the
context of star formation, the most popular approach is to always
resolve the local Jeans length with 4 cells or more, the so-called
Truelove criterion (Truelove et al., 1997)

If λJ =
cs√
4πGρ

< 41xℓ then refine to level ℓ+ 1. (20)

This corresponds to a level-dependent density threshold that
triggers new refinements. SPHmethods are Lagrangian in nature,
so they cannot refine as much as grid-based codes. Usually,
much more SPH particles are needed in the initial conditions to
reach a certain target Jeans mass, corresponding to the maximum
resolution level of the corresponding AMR simulation. Particle
splitting is an interesting alternative to classical SPH but is still
under development (Kitsionas and Whitworth, 2002; Chiaki and
Yoshida, 2015), the difficulty being to handle sharp transitions in
particle mass and its interaction with the smoothing kernel. Note
that if similar resolution requirements are met, AMR and SPH
methods largely agree on the quantitative predictions on how
the collapse proceeds (Commerçon et al., 2008). For magnetized
flows, the Jeans length-based refinement strategy has to be more
conservative, of the order of 30 cells per Jeans length, in order
to capture properly the magnetic field amplification in collapsing
cores (Sur et al., 2010; Federrath et al., 2011c; Turk et al., 2012).

A difficulty arises when one uses AMR for Constrained
Transport. In this case, it is mandatory to be able to interpolate
the magnetic field from the coarser level to the finer level and
still satisfy the divergence-free condition. For this, divergence
preserving interpolation schemes have been developed (Balsara,
2001; Tóth and Roe, 2002) and play an important role in the
viability of the CT approach in the context of AMR.

To reduce truncation errors, the other option is to use higher
order schemes. The solution inside each cell is not piecewise
constant as in the traditional first-order Godunov method, but
it is reconstructed using high-order polynomials of degree p as

ρ(x) =
∑

i=0,p

αiψi(x). (21)
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The ψi(x) are usually an orthonormal basis of polynomials of
degree at most p. The coefficients αi are computed using two
different philosophies. The first option, the WENO approach
computes the coefficients αi at each time step using neighboring
cells. The higher the polynomial degree, the more neighbors
must be included in the stencil of the method (Jiang and
Wu, 1999; Boscheri and Dumbser, 2014). The second option,
the Discontinuous Galerkin (DG) approach, considers that the
αi are new variables, defined for each MHD variables, and
updated using a projection of the ideal MHD equation onto
the polynomial basis (Li and Xu, 2012; Mocz et al., 2014b;
Klingenberg et al., 2017; Guillet et al., 2018). In the WENO
case, one needs to access neighboring but possibly distant cells
to compute the αi, while in the DG case, one needs to store
permanently the αi and solve for their evolution at each time step.
Note that other high-order methods are also being developed that
do not strictly correspond to neither WENO nor DG (Felker and
Stone, 2018).

In the context of high-order methods, the divergence free
condition is particularly challenging. One can either implement
high-order version of one of the above mentioned divergence
cleaning techniques (Derigs et al., 2016), or one can try to
preserve the divergence-free constraint within the method. The
second approach could be seen as a generalization of the CT
scheme to higher order. The key ingredients are: 1- the use of
a divergence-free polynomial basis for the magnetic field (Li and
Shu, 2005; Guillet et al., 2018), 2- enforcing the continuity of the
normal field across cells boundaries (Li and Xu, 2012). Although
some very promising solutions have been found recently, this is
still a very active field of research. Interestingly, the traditional
CT scheme with face-centered magnetic field variables can
be re-interpreted as a DG scheme where each magnetic field
component is piecewise-linear and continuous in the normal
direction and piecewise constant in the transverse direction, so
that two cell-centered coefficients are required (instead of one)
for each field component.

3. NON-IDEAL MHD: NUMERICAL
TECHNIQUES

3.1. Equations and Basic Concepts
Star formation takes place in molecular clouds, which are made
of a mixture of dust and gas, implying dust and gas collisions,
and both constituents are far from being fully ionized. In the
previous section, we presented the work done in the ideal
MHD framework, which do not appear to be well suited to the
ionization state in collapsing cores, in particular at the onset
of disk formation. Recent works have emphasized the imperfect
coupling of the dust and gas mixture with the magnetic fields
at the transition between the envelop and the disk in collapsing
cores (see the review by Wurster and Li, 2018 for the work
done in the context of protostellar disk formation) and a lot of
effort has been devoted over the past 10 years to include the
so called non-ideal effects: the ambipolar diffusion, the Ohmic
diffusion, and the Hall effect. The ambipolar diffusion is the
common name to describe the interaction between neutrals and

charged particles. It can be seen as a friction term, it enables the
neutral field to respond to the magnetic forces, via collisions with
charged particles. The Ohmic diffusion results from the collision
of electrons with the neutrals. Last, the Hall effect is due to the
drift between the positively and negatively charged species. As
shown in Marchand et al. (2016) and Tsukamoto et al. (2015a),
all these three terms can be dominant over the others at different
scales within the envelop of collapsing dense cores. For a classical
dust size distribution (Mathis et al., 1977), Marchand et al. (2016)
find that amipolar diffusion and the Hall effect dominate at
densities < 1012 cm−3 and that Ohmic diffusion is the stronger
resistive effect at higher densities.

The exact scale and density at which these resistive effects
become dominant over the other dynamical processes depend
on the chemistry, the ionization intensity and the dust grain
size distribution (Zhao et al., 2016, 2018a; Zhao et al., 2018b;
Dzyurkevich et al., 2017). Hennebelle et al. (2016) have shown
that ambipolar diffusion regulates the flow dynamics over the
other dynamical processes (induction, rotation and free-fall) at
scale of a few 10s AU, which sets the initial size of protostellar
disks. In addition, Masson et al. (2016) have shown that scales of
a few 10s AU exhibit magnetic Reynolds numbers less than unity
(see also Tomida et al., 2013; Tomida et al., 2015; Vaytet et al.,
2018 for studies including the Ohmic diffusion). Recently, Koga
et al. (2019) performed a similar analysis considering the Hall
effect only and found coherent results as for ambipolar diffusion.

Before we describe the numerical implementation for the
three aforementioned resistive effects, let us recall the main
equations and define the necessary quantities. Ideally, the system
should account for the different behavior of the neutrals, as well
as negatively and positively charged particles. Among them the
different constituents that participate to the ionization balance,
we have neutral (molecule, atoms, dust grains), ions (molecular
and atomic), electrons, and charged dust grains. The latter can be
positively or negatively charged, and can hold multiple charges
(Draine and Sutin, 1987). Most current works follow a one-fluid
approximation to describe the evolution of this complex mixture,
where the Ohm’s law accounts for the non-ideal effects with some
assumptions. In the following, we focus on the work done in the
single and two-fluid approximations. We review briefly the work
done toward a multi-fluid treatment of the charged and neutral
particles in section 3.6.

In the low ionization limit, each kind of charged particle is
scarce, so that the pressure terms, the gravity, and the inertia
term can be neglected in their momentum evolution equation in
comparison to the Lorentz force and the frictional force exerted
by the neutrals. The generalized Ohm’s law reads

ENIMHD = v× B− η�J−
ηH

||B|| J× B+ ηAD

||B||2 J× B× B, (22)

where J = ∇ × B is the current, η�, ηH, and ηAD are the
Ohmic, Hall, and ambipolar resistivities, respectively (in units of
cm2 s−1), and v is the velocity of the neutrals. The notation ||B||
represents the norm of the magnetic field vector B. The electric
field is then replaced in Equation (7). It is worth noticing that all
the resistive terms lead to parabolic partial differential equations
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to discretise. We note that only the Ohmic term can lead to
reconnection here. It can be rewritten as a Laplacian operator
η�1J, whereas the two others cannot. The ambipolar diffusion
and the Hall effect can be assimilated to drift velocities of the
magnetic fields with respect to the neutral speed v. The total
energy equation has to be modified accordingly, to account for
the heating resulting from the friction terms, i.e., the ambipolar
diffusion and the Ohmic diffusion

∂Etot

∂t
+∇ ·

(

(Etot + Ptot) v−
1

4π
B(B · v)

)

= ρg · v+ η�||J||2 + ηAD
||J× B||2
||B||2 .

(23)

We refer readers to Shu et al. (1987), Nakano et al. (2002),
and Balbus (2009) for more details on the derivation of the
generalized Ohm’s law in the one-fluid approximation. In the
context of star formation, where a huge dynamical range has to
be considered, the estimate of the resistivities is challenging. It
requires to know the ionization state of the gas and dust mixture.
The coupled chemistry of gas and dust has to be considered,
which involves a huge variety of physical processes: gas phase
and gas-dust chemistry, cosmic ray ionization, UV radiation,
(in-)elastic collisions, grain growth. This domain remains the
subject of intense research works that we do not detail in
this review. We refer readers to section 4.0.1 in the review by
Wurster and Li (2018) for a scan of the works that tackle the
resistivity calculations.

Ambipolar diffusion and Ohmic diffusion were the first to
be considered in star formation applications. Indeed, these two
terms do not introduce new MHD waves in the system (they do
not change the spectral properties of the hyberpoblic system), so
that they do not require heavy modifications of the MHD solver.
The induction equation integration is most of the time splitted
in two steps: first the ideal MHD and second the resistive terms.
If an energy equation is considered, the heating terms due to
resistive effect in Equation (23) are integrated as source terms in
most numerical implementations.

3.2. Ohmic Diffusion
The Ohmic diffusion is perhaps the simplest resistive term
to introduce because of its diffusive nature, similar to the
introduction of artificial viscosity and artificial resistivity to
prevent any numerical artifact due to numerical diffusion.
Assuming a constant resistivity, the Ohmic term can be rewritten
as a Laplacian (which preserves the solenoidal constraint),
leading to the following stability condition

1t� = 1x2

η�
. (24)

It corresponds to the stability condition required in numerical
schemes integrating parabolic equations such as the heat
equation with an explicit scheme.

Numerous implementations for the Ohmic diffusion have
been developed in the past 10 years, in all different kind of codes.
Masson et al. (2012) present a fully explicit implementation
in the AMR code RAMSES, where they update the emf to

account for the resistive terms and then use the CT scheme
as for ideal MHD. Because of the restrictive stability condition
for the resistive term which can be smaller that the MHD
one, some authors considered schemes that enable to relax
the time step constraint. For SPH, Bonafede et al. (2011)
implemented Ohmic diffusion with a constant resistivity in
GADGET following the method used for artificial dissipation
(e.g., Price and Monaghan, 2005; Dolag and Stasyszyn, 2009).
Tomida et al. (2013) implemented an explicit scheme in a nested-
grid code following the implementation of Matsumoto (2011) in
the AMR code SFUMATO. They adopt the Super-Time-Stepping
(STS) algorithm proposed by Alexiades et al. (1996) to accelerate
the integration of the diffusion term and to relax the stringent
explicit CFL condition. The STS consists in a discretisation as
a classical explicit scheme, which does not require to satisfy
the stability in every step but after a series of integration cycles
which are made of NSTS sub-timesteps 1tSTS which are based
on Chebyshev polynomials to guarantee the stability conditions
over the super-timestep 1ttot = ∑NSTS

1 1tSTS. We also note
the work of Mignone et al. (2007) and O’Sullivan and Downes
(2006) where Ohmic diffusion is also integrated using the STS
technique. Similarly, Tsukamoto et al. (2013) proposes a SPH
discretisation of Ohmic dissipation using STS. Wurster et al.
(2016) and Price et al. (2017) (in the PHANTOM code) use
similar implementations on different SPH codes. Last, Marinacci
et al. (2018) propose two implementations in AREPO: one
using Powell divergence cleaning and another using CT. Both
implementations can be integrated using an explicit or implicit
scheme. Almost all the implementations mentioned so far for
the Ohm diffusion are combined with ambipolar diffusion
(see below).

Apart from resistive MHD, the STS technique is becoming
increasingly popular in the computational astrophysics
community to accelerate parabolic timestepping advancements
in the context of radiation hydrodynamics with the FLD
(Commerçon et al., 2011) and anisotropic diffusion (Meyer et al.,
2012; Vaidya et al., 2017).

3.3. Ambipolar Diffusion
Ambipolar diffusion is not as straightforward to include since the
associated term in the induction equation can not be rewritten
as a Laplacian (Brandenburg and Zweibel, 1994). For the diffuse
ISM, the drift between ions and neutrals is the effect of the
ambipolar diffusion, that can be written as a friction force

Fin = ρiρnγAD(v− vi), (25)

where ρi (resp. vi) and ρn (v) are the mass density (resp. velocity)
of ions and neutrals, and γAD is the collisional coupling constant,
with γAD ∼ 3× 1013 cm3 s−1 g−1 in ISM mixture (Draine et al.,
1983). In the one-fluid and strong coupling limit, the inertia of
ions is neglected, as well as the pressure and gravitational forces
(the ionization degree is very low). As a consequence, the Lorentz
force equals the drag force so that the ion drift velocity is

vd ≡ vi − v = 1

ρiρnγAD
(∇ × B)× B. (26)
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The induction equation thus reads

∂B

∂t
= ∇×[vi×B] = ∇×

[

v× B+ 1

ρiρnγAD
(∇ × B)× B× B

]

.

(27)
From Equation (22), we have ηAD = ||B||2/ρiρnγAD. In the
dense ISM, the heavy charged particles are ions and charged
dust grains, and the expression of the resistivity is more complex
(Marchand et al., 2016). In the two-fluid approximation, the ion
inertia is not neglected and the system of equation accounts for
both the ions and the neutrals momenta equation.

The first implementation of ambipolar diffusion in a grid
code was presented in Black and Scott (1982) using a two-fluid
approximation. They integrated the induction equation using the
ion velocity and treated the collision between neutrals and ions
as a friction force in the momenta equations. Mac Low et al.
(1995) present a first 3D implementation of one-fluid ambipolar
diffusion in the ZEUS code using a fully explicit scheme as well
as CT. They propose to subcycle the magnetic fields evolution
in the case when ambipolar diffusion timestep is much shorter
than the dynamical one. The first SPH implementation can be
found in Hosking and Whitworth (2004), where they used a
two-fluid approximation, but their scheme did not preserve the
solenoidal constraint. Duffin and Pudritz (2008) present a one-
fluid implementation in the FLASH code using Powell’s method
(Powell et al., 1999). Masson et al. (2012) also implemented
a one-fluid scheme for ambipolar diffusion in RAMSES with
the same philosophy as for the Ohmic diffusion. A similar
implementation using CT, operator splitting, and STS in the
ATHENA code can be found in Bai and Stone (2011) and Chen
and Ostriker (2014). Last, Wurster et al. (2014) propose a one-
fluid implementation for SPH codes, which they implemented
with success in PHANTOM.

Other one-fluid implementations in the strong coupling
approximation can be found in Padoan et al. (2000) in a 3D
explicit, finite difference grid code, Choi et al. (2009) in the
MHD TVD code using a flux-interpolated CT scheme (Ryu
et al., 1998; Balsara and Spicer, 1999), Christie et al. (2017) in
the ENZO’s Dedner MHD solver. Oishi and Mac Low (2006)
and Li et al. (2006) present two simultaneous but independent
implementations in the ZEUS code of a two-fluid solver in the
heavy ion approximation.

For star formation applications, most of these methods are
usually second-order accurate and at best second-order accurate
in time (with a few exceptions though e.g., Meyer et al., 2014).
Clearly, further work needs to be done to improve the accuracy
of resistive MHD solvers. Alongside, multi-fluid approaches are
also needed to account for more detailed physics (see section 3.6).

3.4. Hall Effect
The last resistive effect that has been implemented in star
formation models is becoming increasingly popular. The Hall
effect originates from the drift between ions and electrons, or,
more generally the positively and negatively charged particles.
The derivation of the generalized Ohm law (22) is not as
straightforward as in the case of ambipolar diffusion only. We
shall consider the momentum equations of ions and electrons,

accounting for the Lorentz force as well as collisions between
ions, electrons, and neutrals. If we restrict the resistive effects to
the Hall effect only, the induction equation reads

∂B

∂t
= ∇×

[

v× B− ηH

||B|| J× B

]

= ∇×
[

(v+ vH)× B
]

, (28)

where we introduce the “Hall speed” vH = ηH
||B|| J. Contrary to the

two previous resistive terms, the Hall effect introduces new waves
in the MHD systems: the whistler waves. The dispersion relation
for whistler waves reads (Balbus and Terquem, 2001)

ω = ±ηHk
2

2
+
√

(

ηHk2

2

)2

+ k2c2A. (29)

The whistler waves are dispersive, the phase speed cw = ω/k
depends on the wavenumber k and tends to infinity as the
wavenumber tends to infinity. Since any discrete formulation
cannot extend to infinity, a numerical solver cannot follow
the whistler waves with very high frequencies. In practice, the
whistler wave speed is chosen to be the one at the grid scale

cw =
∣

∣

∣

ηHπ

21x

∣

∣

∣
+
√

(ηHπ

21x

)2
+ c2A. (30)

The time step is then constrained as

1t ≤ 1x

cw
≈ 1x2

ηH
. (31)

The first way to implement the Hall effect is to use an operator
split method, similarly to the Ohm and ambipolar diffusion. A
pioneer implementation is presented in Sano and Stone (2002) in
a second-order Godunov finite-difference code (Miyama et al.,
1999), in the local shearing box framework. They use the CT
method to update the induction equation with emf computed
with the Hall term. The method has been implemented in 3D
in ZEUS in Krasnopolsky et al. (2011). Falle (2003) presents
an implicit scheme for multi-fluid MHD which alleviates the
stringent time step conditions, where the time step goes to zero as
the strength of the Hall effect increases. O’Sullivan and Downes
(2006) designed a Hall Diffusion Scheme (HDS) in an explicit
3D code for multi-fluid MHD. They split the Hall diffusion in
two parts, where the first part uses the STS time integration
up to a critical value of the Hall resistivity (i.e., to satisfy the
stability condition), and the second part, the HDS, diffuses the
excess Hall resistivity with a different discretisation scheme. The
balance between the ambipolar diffusion and the Hall resistivity
determines the excess Hall resistivity. The HDS integrates the
induction equation for the excess Hall using a dimensional
splitting which is explicit for the first dimension, i.e., the x
component Bn+1

x of the magnetic fields is given by Bny and Bnz at

time n, explicit-implicit for the second dimension, Bn+1
y is given

by Bn+1
x and Bnz , and finally implicit for third dimension, Bn+1

z is
given by Bn+1

x and Bn+1
y . Both STS and HDS can be subcycled to

reach the time step limit given by the hyperbolic system. TheHDS
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scheme has been also implemented in ATHENA by Bai (2014)
using CT.

An alternative for finite volume methods is to include the Hall
effect into the conservative integration scheme. Tóth et al. (2008)
proposed a first implementation in the AMR code BATSRUS
(Tóth et al., 2006). It uses block-adaptive grids with both
explicit and implicit time discretisation, and various methods
to control numerical errors in ∇ · B (8-waves scheme with
diffusion, projection scheme). They achieve spatial second-order
convergence by using symmetric slope limiters (likemonotonized
central) instead of asymmetric limiters (like minmod). In
addition, they show that the first-order Lax-Friedrich Riemann
solver is inconsistent for the Hall MHD equations. This comes
from the fact that the whistler wave speed is proportional to
the grid spacing, which makes a one order loss in space in the
truncation errors of the scheme. The same applies for MUSCL
schemes and asymmetric slope limiters which are only first-order
accurate. Lesur et al. (2014) built upon Tóth et al. (2008) a
Hall MHD solver in PLUTO for protoplanetary disc evolution
studies. They implement a HLL solver to estimate the flux and
then update the magnetic fields using CT. When written in a
conservative form, the Hall induction equation reads

∂B

∂t
− ∇ ·

[

vB− Bv− ηH

||B|| (JB− BJ)

]

= 0. (32)

The current J = ∇ × B involves spatial derivatives of the
magnetic fields, so that the flux depends on the conserved
quantities, and on its derivative. This leads to a ill-defined
Riemann problem. Lesur et al. (2014) solved this issue by
assuming that J is an external parameter, which is computed at
the cell interfaces using the predicted states. The left and right
fluxes take this unique value as an input, with the predicted
B. The Godunov fluxes are then computed using a whistler-
modifiedHLL solver, which accounts for the whistler waves speed
(30) in the characteristics speeds.

Last, Marchand et al. (2018) recently extended the Lesur et al.
(2014) implementation to the CT scheme of RAMSES, which uses
2D Riemann solver to integrate the induction equation. They
designed a 2D whistler-modified HLL solver to estimate the emf
on cell border, assuming a uniform current in the 2D Riemann
solver, again computed from the predicted states.

In SPH codes, the Hall effect has been implemented and used
with success for star formation applications in Wurster et al.
(2016), Tsukamoto et al. (2017), and Price et al. (2017). The
standard method is based on an operator splitting and either a
full explicit or a STS scheme based on the implementation for
ambipolar diffusion (Wurster et al., 2014).

To date, only (Krasnopolsky et al., 2011; Wurster et al.,
2016; Tsukamoto et al., 2017; Marchand et al., 2018) applied
their methods for protostellar collapse. While the SPH methods
seem to lead to a relatively accurate conservation of the angular
momentum, the grid-based methods using CT are suffering from
severe non-conservation of the angular momentum. The origin
of this non-conservation is unclear. Krasnopolsky et al. (2011)
invoked Alfvén waves going out of the simulation volume, while
Marchand et al. (2018) did not find evidence of this. Instead, they

propose that the non-conservation takes place after the accretion
shock formation. Shocks indeed generate strong gradients and
thus large Hall velocities. Further investigation is clearly needed
to cope with this fundamental issue.

3.5. Full Resistive Implementation
Currently, a handful of 3D codes benefit of a full implementation
of the three resistive terms: PLUTO (Lesur et al., 2014), ATHENA
(Bai, 2014), RAMSES (Masson et al., 2012;Marchand et al., 2018),
the SPH code by Tsukamoto et al. (2017), PHANTOM (Price
et al., 2017), ZeusTW (Li et al., 2011), and GIZMO (Hopkins,
2017). A very recent full implementation for solar physics can
be found in González-Morales et al. (2018) in the MANCHA3D
grid code. It combines STS for ambipolar and ohmic diffusion,
and HDS for the Hall effect.

Currently, the ATHENA, PLUTO, RAMSES, and ZeusTW
implementations rely on CT algorithms for the resistive MHD
equations integration. All other works use divergence cleaning
algorithms. Given the variety of the methods developed in the
literature, a quantitative comparison (in standard tests as well
as in star formation applications) of all these implementations
would be welcome in the coming years.

Last but not least, it is not clear which non-ideal process
dominates over the others. The physical conditions in star-
forming regions are so wide that there is room for regions where
all three effects dominate. In addition, every effect needs to
be tested and quantified before any conclusions on the relative
importance of each of these effects (see the review by Wurster
and Li, 2018).

3.6. Multifluid Approach
Multifluid approaches are designed to describe multiphase or
multifluid flows. In the context of star formation, different
fluids or phases are at stack: neutrals, ions, electrons, and dust
grains. A few attempts have been made to describe all or a
part of these components using multi-fluid approach. In this
section, we consider only the approaches which do account for
N momentum equations, where N is the number of phases or
fluids. For instance, a popular two-fluid framework considers
ions and neutrals and describes the friction between these two
fluids, i.e., the ambipolar diffusion. Toth (1994) presented a first
2D implementation of two-fluid ions and neutrals dynamics,
which is based on a flux-corrected transport finite difference
method. Inoue and Inutsuka (2008) propose an unconditionally
stable numerical method to solve the coupling between two
fluids ions-neutrals (frictional forces/heatings, ionization, and
recombination, Draine, 1986) for an ISM gas subject to the
thermal instability. They split time integration as follows: 1/ the
ideal hydrodynamical part for neutrals, 2/ the ideal MHD part for
ions. The first part is integrated using a second-order Godunov
scheme. The ideal MHD part is solved in two steps, similarly to
what is done for one-fluid ideal MHD solvers, i.e., Stone et al.
(1992b): the magnetic pressure terms are solved using a second-
order Godunov method, and the magnetic tension term and the
induction equation are solved using the method of characteristics
for Alfvèn waves with the CT algorithm. Tilley and Balsara
(2008) present a semi-implicit method for two-fluid ion-neutral
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ambipolar drift in the RIEMANN code (Balsara, 2001, 2004).
Their scheme is second-order accurate in space and time and uses
a mixed implicit-explicit formulation to deal with strong friction
regimes. Pinto et al. (2008) consider a system composed of three
fluids: positively-charged particles, negatively-charged particles,
and neutrals. The charged particles include ions, electrons, as well
as charged dust grains, depending on the main charge carrier.
The self-consistent set of equations they designed remains to be
implemented in 3D codes.

Last but not least, a complete multi-fluid approach should
include dust grains dynamics on top of the neutrals, ions,
and electrons. Falle (2003) presented a scheme for multi-fluid
hydrodynamics in the limit of small mass densities of the charged
particles, i.e., where the inertia of the charged particles are
neglected. This is a similar to the heavy ion approximation but
for neutrals, ions, electrons, and dust grains of various sizes. The
HD equations are first integrated for the neutrals using a second-
order Godunov scheme, and then the induction equation and the
charged species velocities are updated using an implicit scheme.
This scheme captures the three non-ideal effects and can deal
with regime where the Hall effect dominates.We note that similar
approaches were introduced in Ciolek and Roberge (2002) and
O’Sullivan and Downes (2006).

The most complete work on multi-fluid designed for star
formation was presented in Kunz and Mouschovias (2009).
They considered a six-fluid set of equations (neutrals, electrons,
molecular and atomic ions, positively charged, negatively
charged, and neutral grains) and implemented it in a 2D version
of the radiation-MHD ZEUS-MP code (Hayes et al., 2006). They
modified theMHD solver to account for non-ideal effects (Ohmic
dissipation and ambipolar diffusion). The abundances of the
6 species are calculated using a reduced chemical-equilibrium
network. They applied their methods to protostellar collapse in
Kunz and Mouschovias (2010). Unfortunately, the CPU cost of
such a complete set of physics is prohibitive for 3D models, and
no work has taken over since this first application.

3.7. What Is Next? Dust and Gas Mixture
Dynamics
Currently, numerous studies report on the effect of non-ideal
MHD in the star formation process. The wide majority of these
works use the single-fluid approximation, assuming furthermore
that the dust grains are perfectly coupled to the gas via collisions.
Nevertheless, dust grains are observed to cover a wide range of
sizes, from nanometer to micrometer in the ISM (Mathis et al.,
1977) and even millimeter in protostellar disks environments
(Chiang et al., 2012). Generally, it assumes that dust grains of
different sizes coexist and follow a power-law dust distribution.
Grains react to changes in the gas velocity via a drag force. For a
given dust grain of massmg, the force is

Fdrag = −mg

ts
(vg − v), (33)

where vg is the dust grain velocity, v the gas velocity, and ts
the stopping time, i.e., the characteristic decay timescale for the
dust grain velocity relative to the gas. In star forming regions,

the mean free path of the gas molecules is larger than the dust
particles radius and the stopping time depends linearly on the
dust grain size ts ∼ s (Epstein, 1924). The Stokes number St ≡
ts/tdyn characterizes the coupling of the dust grain relative to the
gas, where well coupled dust grains follow St < 1. tdyn represents
a characteristic dynamical time, e.g., the eddy turbulent crossing
time for molecular clouds or the orbital time for prostostellar
discs. The Stokes number thus depends on the dust grain size so
that part of the dust grains of a given dust size distribution will be
coupled to the gas and the other part will be decoupled.

Several implementations of dust and gas mixtures have been
developed in the literature to deal with the various Stokes regime.
For St > 1, the bi-fluid formalism seems to be the most adapted
(e.g., Bai and Stone, 2010; Laibe and Price, 2012; Meheut et al.,
2012; Lorén-Aguilar and Bate, 2014; Booth et al., 2015). However,
bi-fluid algorithms encounter sever limitations in the strong drag
regime (small stopping time) (Laibe and Price, 2012), where
prohibitive spatial and time discretisations may be required. In
recent years, Laibe and Price (2014a) proposed a monofluid
formalism for the dust and gas mixture which is well adapted
to regimes with St ≤ 1. This monofluid formalism has been
implemented with success in SPH and grid-based codes in the
past 5 years (Laibe and Price, 2014b; Lebreuilly et al., 2019).
Last, Price and Laibe (2015), Lin and Youdin (2017) present
methods for simulating the dynamics of small grains with only
one additional equation on the dust concentration on top of
the Euler equations. These last methods have been recently
implemented with success in PHANTOM (Price et al., 2017),
as well as in PLUTO (Chen and Lin, 2018) and in RAMSES
(Lebreuilly et al., 2019).

Recent works have emphasized the possible decoupling of
micrometer dust grains in molecular clouds (Hopkins and
Lee, 2016; Tricco et al., 2017) as well as of millimeter grains
in collapsing dense cores (Bate and Lorén-Aguilar, 2017, see
Figure 2). This decoupling is at the origin of a dynamical sorting
which changes the dust size distribution. Other mechanisms
may also affect the size distribution: coagulation, fragmentation,
sublimation, etc. Further work should investigate the relative
importance of each of these processes on the dust size
distribution. In addition, the shape of the dust size distribution
plays a critical role in the calculations of the resistivity as
well as of the opacity. We can anticipate that coupled dust
and gas dynamics will consider the evolution of the dust size
distribution, coupled to non-ideal MHD and RHD algorithms.
Last but not least, all current works on this field only account
for the hydrodynamical (the pressure gradient) and gravitational
forces. Adding the dynamics of charged dust grains is the natural
next step.

4. RADIATIVE TRANSFER: NUMERICAL
TECHNIQUES

4.1. A Poor’s Man Approach: The
Polytropic Equation of State
Radiative transfer plays a fundamental role in star formation and
cannot be ignored, even for a review on magnetic fields. The
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FIGURE 2 | SPH calculations of dust dynamics during the collapse of a 1 M⊙ dense core. The left column shows the gas column density (edge-on view) and from left

to right, the three other columns show the dust column density for dust grain sizes of 10 µm, 100 µm, and 1 mm. Large dust grains decouple from the gas and settle

in the mid-plane faster into a large dusty disc with larger dust-to-gas ratio than in the envelop. Figure adapted from Bate and Lorén-Aguilar (2017) with permission

from the authors.

importance of radiation fields is 2-fold. First, when the molecular
cores collapse and reach a high enough density, the dust opacity
becomes large enough to absorb the cooling radiation and the
gas becomes optically thick. The traditional value for the dust
opacity is

κdust ≃ 0.1 cm2/g at T ≃ 10K. (34)

Requiring that the Jeans length of the gas becomes optically thick
to infrared radiation leads to

ρκdustλJ > 1 or ρ > ρcrit =
G

πκ2dustc
2
s
≃ 10−14 g/cm3. (35)

Many MHD simulations use this critical density to define a
polytropic equation of state of the form

T(ρ) = 10K

(

1+
(

ρ

ρcrit

)2/3
)

, (36)

to capture the transition from an optically thin, isothermal
gas at low density to an optically thick, adiabatic gas at high
density. Although this simplified approach is very useful for
many already expensive simulations of collapse of turbulent
clouds, this does not model properly the physics of radiative
transfer (e.g., Commerçon et al., 2010). More importantly, once
protostars have formed, higher energy radiation will emerge from
the accretion shocks on the surface of the protostars, or from

the main sequence stars after they ignited nuclear reactions.
This high energy radiation in the optical or UV bands will then
interact with the parent cloud, providing radiation feedback and
influence the formation of the next generation of stars (Krumholz
et al., 2007a; Myers et al., 2013). In conclusion, radiation plays a
central role during the formation and the evolution of the first
Larson core (see section 5), but later on acts as a self-regulating
mechanism for star formation.

4.2. Ray Tracing and Long Characteristic
Methods
The radiative transfer equation written in full generality using the
radiation specific intensity Iν(x,n, t)

1

c

∂

∂t
Iν + n · ∇Iν = jν − ανIν . (37)

where jν is the emission coefficient and αν is the absorption
coefficient. Note that the radiative transfer equation is written
here in the laboratory frame. The absorption and emission
coefficients are however defined in the comoving frame. Properly
introducing the relativistic corrections to the radiative transfer
equation and its various moments is a very important aspect of
the problem we will only briefly touch upon in this review.

The most natural numerical technique to solve the radiative
transfer equation is ray-tracing. The idea is to shoot a discrete set
of light rays from a point source, solving the previous equation
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along the path of the light ray using the curvilinear coordinate
s defined as ds = cdt. The equation of radiative transfer can be
written as a Lagrangian time derivative following the trajectory of
the photons as

d

ds
Iν = jν − ανIν . (38)

The light ray is discretised along its path, matching the
underlying gas distribution, whether it is a grid or a set of SPH
particles. The difficulty is then to choose the appropriate number
of rays, so that the angular distribution of the radiation field is
properly sampled, but also so that enough light rays intersect the
gas elements. In Abel and Wandelt (2002), an adaptive method
was proposed, that splits ormerges light rays adaptively, using the
Healpix tessellation to sample the sphere. This method was first
developed for the ENZO code (Wise and Abel, 2011) and used
with success to describe photo-ionization regions at the Epoch of
Reionization (Wise et al., 2012), as well as in turbulent molecular
clouds (Shima et al., 2017). A similar scheme based on theMonte-
Carlo approach has been developed for SPH in Altay et al. (2008)
and Pawlik and Schaye (2008).

A similar approach is provided by the long characteristics
method. This method can describe light rays emanating from a
single point source like the ray-tracing method, but also diffuse
radiation by adopting for each direction a set of parallel rays
whose spacing matches the local grid resolution. This method
has been implemented in the FLASH AMR code by Rijkhorst
et al. (2006), with however an important addition we will discuss
later. Diffuse radiation using long characteristics was included
later by Buntemeyer et al. (2016) in the FLASH code, with
an emphasis of describing both the optically thin and optically
thick regimes. These methods exploit the particular property of
the AMR implementations of FLASH and ENZO, namely large
rectangular patches of various sizes and resolution. The long
characteristic method has been developed for the graded octree
AMR code RAMSES only recently by Frostholm et al. (2018).

4.3. Monte Carlo and Short Characteristic
Methods
Although long characteristics offer the advantage of solving
the exact attenuation along light rays, an especially accurate
approach for point sources, they are tricky to parallelise
because light rays propagate over multiple MPI domains. An
alternative technique is the short characteristics method, for
which light rays as short as the hydrodynamics cell size are
considered. The radiation intensity from neighboring light rays is
interpolated between neighboring cells, avoiding the use of long
characteristics. Rijkhorst et al. (2006) use an hybrid long- and
short-characteristics method in the FLASH code to overcome the
difficulty to parallelise the long characteristics method. The short
characteristic method also offers better scaling properties. The
short characteristics method has also been used in the ATHENA
code to solve the stationary radiative transfer equation by Davis
et al. (2012) and in the C2-ray code for ionization problems
(Mellema et al., 2006).

A third method which shares with the two previous ones
the property of being accurate and able to capture complex

radiation geometry is the Monte Carlo method. The Monte
Carlo approach samples the radiation field with photon packets
carrying information such as angle of propagation and frequency.
This is as close as one can be from true photons propagating
in the fluid and allows for complex scattering processes to
be included in the models (Ercolano et al., 2003; Altay et al.,
2008; Harries, 2011; Roth and Kasen, 2015). The method can be
however quite expensive, as large particle numbers are required
to avoid that the Poisson noise dominates the computed signal.
In the diffusion limit, the mean free path becomes much smaller
than the length scale of the system and the number of interactions
becomes prohibitively large: It scales as the square of the optical
depth (Nayakshin et al., 2009). It has also been mostly developed
for stationary problems but many codes able to deal with non-
stationary problems are now emerging (Nayakshin et al., 2009;
Harries, 2011; Lomax and Whitworth, 2016).

4.4. Two Moments Methods
The common aspect in these three methods is that they can
be quite expensive. This is probably not true for the short
characteristics method, although the number of angular domains
adopted plays a role in the final accuracy of the solution,
and affects the cost. An alternative approach, called moment-
based radiative transfer, can potentially solve this cost problem
by integrating the radiative transfer equation over the angles.
We obtain the radiation energy and the radiation momentum
equation as

∂

∂t
Eν + ∇ · Fν = 4π jν − ανcEν , (39)

1

c

∂

∂t
Fν + c∇ · Pν = −ανFν , (40)

where Eν is the radiation energy, Fν is the radiation flux and
P = DEν is the radiation pressure tensor and D is the Eddington
tensor. For slowly varying spectral absorption and emission
coefficients, for which one has

ν
∂αν

∂ν
≪ αν and ν

∂ jν

∂ν
≪ jν , (41)

one can write relativistic correction to first order in (v/c) as

αν(n) = α0ν − (n · v/c)α0ν , (42)

jν(n) = j0ν + 2(n · v/c)j0ν , (43)

where superscript 0 refers to quantities measured in the
comoving frame (see Mihalas and Klein, 1982; Mihalas and
Mihalas, 1984; Krumholz et al., 2007b, for a detailed discussion).
Injecting this in the radiative transfer equation and taking the
moments over the angles leads to new terms accounting for the
relativistic corrections

∂

∂t
Eν + ∇ · Fν = 4π j0ν − α0νcEν + α0νFν ·

v

c
, (44)

1

c

∂

∂t
Fν + c∇ · Pν = −α0νFν + α0νP v+ 4π j0ν

v

c
. (45)
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Since Eν and Fν are still expressed in the laboratory frame but
α0ν and j0ν are expressed in the comoving frame, these equations
are often called mixed frame radiation moments equations. We
can also Lorentz-transform the radiation moments from the
laboratory frame to the comoving frame, which gives, to first
order in (v/c)

E0ν = Eν −
2

c
Fν ·

v

c
, (46)

F0ν = Fν − Eνv− P v. (47)

Injecting these relations only in the right-hand side of the
moments equations and neglecting all (v/c) terms gives the
simpler form

∂

∂t
Eν + ∇ · Fν =

(

4π j0ν − α0νcE0ν
)

− α0νF0ν ·
v

c
, (48)

1

c

∂

∂t
Fν + c∇ · Pν = −α0νF0ν +

(

4π j0ν − α0νcE0ν
) v

c
, (49)

where all right-hand side terms are now expressed in the
comoving frame. In practice, after the radiation transport step,
encoded in the left-hand side, one then converts the laboratory
frame radiation variables into the comoving frame and solve
the thermo-chemistry encoded in the right-hand side in the
comoving frame. Local thermodynamical equilibrium conditions
can then be reached in the comoving frame, eventually reaching
the diffusion limit (see below). At the end of the thermo-
chemistry step, one finally converts back the radiation variables
into the laboratory frame before entering the next transport step
(see Rosdahl and Teyssier, 2015, for a detailed implementation).

These equations are quite handy because of their simplicity:
We have no angular dependence anymore. There is a catch
however, since everything depends on the Eddington tensor,
for which we have no equation at this order of the moment’s
hierarchy. At this point, two different strategies have been
explored in the star formation literature: (1) compute an accurate
Eddington tensor by solving exactly the stationary radiative
transfer equation using one of the methods presented above
(short or long characteristics, ray-tracing or Monte Carlo), (2)
compute an approximate form of the Eddington tensor based on
a particular closure of the moment’s hierarchy.

The first approach is often referred to a the Variable
Eddington Tensor (VET) method. In Gnedin and Abel (2001),
the authors developed a moment-based solver coupled to a
cosmological hydrodynamics code, calledOptically ThinVariable
Eddington Tensor or OTVET. A similar technique has also
been implemented for the SPH code GADGET (Petkova and
Springel, 2011). The idea is to solve the stationary radiative
transfer equation in the full domain assuming an optically thin
medium, so that the problem boils down to a collection of 1/r2

sources combined together. This can be achieved efficiently using
any gravity solver. Once the corresponding Eddington tensor
is computed, the moments equations are solved using a finite
difference scheme. In Jiang et al. (2012), on the other hand,
the authors developed a moment-based solver for the ATHENA
MHD code, using VET together with the short characteristic

method of Davis et al. (2012) to compute the Eddington tensor.
Obviously, this leads to significantly more accurate results in
optically thicker environments. An intermediate solution has
been implemented in the TreeCol code (Clark et al., 2012), for
which a gravity tree code is used to collect column densities
between particles.

The second approach relies on simple but approximatemodels
for the Eddington tensor. The simplest one, called M0, assumes
the Eddington tensor is isotropic, with

M0 closure : D = 1

3
I, (50)

as it is the case for example in the diffusion limit (see below). A
slightly more elaborate model is called the M1 closure (Dubroca
and Feugeas, 1999; Ripoll et al., 2001). It assumes that the
radiation intensity can be fitted by a Lorentz-boosted Planckian
distribution, in other words an ellipse in angular space. The
parameters of this distribution are determined by matching the
radiation energy and the radiation flux. This leads to

M1 closure : D = 1− χ
2

I+ 3χ − 1

2
n⊗ n. (51)

This closure captures the optically thick regime, but also optically
thin conditions, in case there is one dominant source of radiation.
Indeed, in this case, one gets the free-streaming regime for
radiation with D ≃ n ⊗ n. The unit vector n and the parameter
χ are determined using the radiation energy and the radiation
flux as

n = Fν

|Fν |
, χ(f ) = 3+ 4f 2

5+ 2
√

4− 3f 2
, f = |Fν |

cEν
(52)

A particularly interesting property of the M1 model is that
it leads to a system of hyperbolic conservation laws, that can
be numerically integrated using Godunov schemes. The M1
model has also some major caveats, such as radiation shocks, in
case multiple strong sources are present, or incorrect radiation
geometry, in case of sharp shadows. This model was introduced
for the first time in astrophysics by González et al. (2007) in the
HERACLES code. It was then adapted to cosmic reionization by
Aubert and Teyssier (2008) in the ATON code, and ported to
GPU into the RAMSES-CUDATON code (Aubert and Teyssier,
2010), used now routinely for simulations of the Epoch of
Reionization (EoR) (e.g., Ocvirk et al., 2016). Later on, the M1
method has been ported to the AMR code RAMSES, leading
to the design of the RAMSES-RT solver (Rosdahl et al., 2013;
Rosdahl and Teyssier, 2015). The M1 method has also been
ported to ATHENA by Skinner and Ostriker (2013) and recently
to AREPO by Kannan et al. (2018), the latter based on a new
higher-order implementation of the M1 closure.

4.5. Flux-Limited Diffusion Methods
A definitive advantage of moment-based radiative transfer
methods is the possibility to model both optically thin and
optically thick regimes. For optically thick conditions, the
radiation field follows the diffusion limit of the radiative transfer
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equation. In that limit, the radiation field in the comoving frame
is quasi-isotropic, so that D ≃ 1

3 I and the radiation flux can be
approximated by

F0ν ≃ − c

3α0ν
∇E0ν . (53)

Since now the flux in the comoving frame is a direct function of
the energy density in the comoving frame, we do not need the
radiation flux equation anymore and we are left with only the
radiation energy equation. The Lorentz transform can be written
to leading order as

Eν ≃ E0ν (54)

Fν ≃ − c

3α0ν
∇E0ν +

4

3
E0νv. (55)

Injecting these into the radiation energy equation leads to a fully
covariant formulation in the diffusion limit

∂

∂t
E0ν + ∇ ·

(

4

3
E0νv

)

− ∇ ·
(

c

3α0ν
∇E0ν

)

=
(

4π j0ν − α0νcE0ν
)

+ 1

3
∇E0ν · v, (56)

which can be written in the familiar form

∂

∂t
E0ν+∇·

(

E0νv
)

+ 1

3
E0ν∇·v = ∇·

(

c

3α0ν
∇E0ν

)

+
(

4π j0ν − α0νcE0ν
)

.

(57)
This is the radiation energy equation in the diffusion limit using
only comoving radiation variables. If one wants to extend this
equation outside its validity range (high optical depth), then one
can use Flux Limited Diffusion (FLD), for which the flux function
is modified as

F0ν ≃ − cλ(R)

α0ν
∇E0ν and R =

∣

∣∇E0ν
∣

∣

α0νE
0
ν

, (58)

where λ(R) is the flux limiter, a function that has to connect the
diffusion limit with λ ≃ 1/3 for R ≃ 0 to the free-streaming
regime where λ ≃ 1/R for R → +∞. A possible form for the
flux limiter has been proposed by Minerbo (1978) and reads

λ = 2

3+
√
9+ 12R2

for 0 ≤ R ≤ 3

2
, (59)

λ = 1

1+ R+
√
1+ 2R2

for
3

2
≤ R ≤ +∞. (60)

while the Levermore (1984) flux limiter reads

λ = 1

R

(

cothR− 1

R

)

(61)

Historically, FLD has been the first method implemented in
radiation hydrodynamics codes. Here again, the ZEUS 2D code
was a precursor (Stone et al., 1992a). For AMR, the ORION
code was developed specifically for FLD in collapsing star
forming core by Krumholz et al. (2007b), using the mixed frame
formulation outlined above or in Mihalas and Klein (1982). A

version of the RAMSES code with FLD was developed later
by Commerçon et al. (2011), with a particular emphasis on
adaptive time stepping together with implicit time integration
described in Commercon et al. (2014). Because of its simplicity,
FLD has been used for many detailed studies of gravitational
collapse with the effect of radiation included. The current
frontier for FLD is probably the multigroup treatment of
radiation, allowing for more accurate models of the full spectral
energy distribution (Shestakov and Offner, 2008; Zhang et al.,
2013; González et al., 2015). In the context of multifrequency
radiative transfer, hybrid solutions have also been proposed, with
ray-tracing techniques dedicated to the high-energy radiation
field, and FLD for the infrared, dust-absorbed radiation field
(Kuiper et al., 2010b; Klassen et al., 2014).

FLD has also been developed for SPH by Whitehouse and
Bate (2004), Whitehouse et al. (2005), and Mayer et al. (2007),
where most of the difference with the many grid-based versions
lies in the radiation energy gradient that uses the SPH kernel. A
simplified version based on a local estimate of the column density
has also been proposed by Stamatellos et al. (2007) which avoids
entirely the need for an implicit radiation solver. Thismethod can
be considered as an intermediate solution between the polytropic
equation of state that we introduced at the beginning of this
section and FLD. The main caveat here is the complete lack
of any proper transport mechanism for radiation. In a similar
spirit, Dale et al. (2007) also developed an approximate method
for ionizing radiation, with Stromgren sphere iteratively grown
around each star to locate photo-ionized, photo-heated gas.

5. SECOND COLLAPSE

From first principles, the ultimate goal of star formation is the
formation of the protostar itself. The major difficulty sits in the
huge dynamical range in physical and temporal scales that have
to be described: protostars with radii of about 1 R⊙ form within
dense cores of sizes ≃ 0.1 pc. So there are two ways to deal
with protostars in star formation. The first one is to try to follow
the collapse down to the stellar scales with the best numerical
model accounting for the complex physical processes at stack
combined with a very high numerical resolution at a cost of very
short horizon of predictability. The second is the opposite: the
physics and numerical resolutions are degraded, but the models
are integrated over longer dynamical timescales to study the
impact of protostellar feedback on the ISM dynamics. In the next
three sections, we review the work that has been done using these
two approaches, as well as attempts to account for protostellar
evolution in large-scale models.

5.1. Historical Work and 1D Studies
Contemporary numerical star formation studies started in the
late 60s with the outstanding pioneering work of Larson
(1969) who first computed numerically the collapse of a dense
core down to the formation of the protostar. He used a
1D spherically symmetric model, accounting for coupled gas
dynamics and radiative transfer in a modified Eulerian scheme.
Larson identified two distinct stages during the protostellar
collapse, called the first and the second collapse. Each of these
two stages are followed by the formation of a hydrostatic object,
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commonly referred to as the first and second Larson cores in post
(Larson, 1969) studies. Larson’s work established an empirical
evolutionary sequence as follows. Dense cores first collapse
isothermally because dust thermal emission is very efficient at
radiating away the gas compression energy (dust and gas are
thermally coupled within dense cores, see for instance Galli et al.,
2002). The first collapse stops at densities of the order of ≃
10−13 g cm−3 at which dust grains become opaque to their own
radiation so that the gas begins to heat up quasi-adiabatically.
This is the formation of the first Larson core. The first collapse
lasts roughly a free-fall time. The first core accretes matter and
its temperature increases up about 2000K where H2 dissociation
starts. This endothermic reaction enables the gas to behave as a
fluid with an effective polytropic index smaller than the critical
value 4/3 for collapse. The second collapse thus starts at typical
densities of ≃ 10−8 g cm−3 until stellar densities are reached
within ≃ 100 yr to form the second core, i.e., the protostar. The
typical properties of first Larson cores at the start of the second
collapse are a size ≃ 10 AU, a mass ≃ 0.01 M⊙, and a lifetime
≃ 1000 yr. We note that first Larson cores are predicted by
theoretical and numerical studies, but there is no observational
confirmation of such objects even though a few sources are
considered as good candidates (Tsitali et al., 2013; Gerin et al.,
2015; Maureira et al., 2017).

Since Larson’s work numerous 1D calculations using spherical
symmetry have been conducted. We note the work in the
80s by Stahler et al. (1980) and Winkler and Newman (1980)
in which Larson predictions were confirmed to establish the
current empirical evolution sequence of collapsing low-mass
dense cores. This evolutionary picture is still currently the
commonly admitted scenario for low-mass star formation. For
massive star formation, recent work indicates that first cores
may not have time to form because of the large accretion rates
(Bhandare et al., 2018). Note that in the reminder of the section
dedicated to second collapse, we mention only the work which
is consistent with the Larson evolutionary picture, i.e., where
the gas thermal and chemical budgets are taken into account,
and we do not mention the work that has been done using an
isothermal approximation.

Modern studies began with the calculations performed in
Masunaga and Inutsuka (2000) who incorporated a more
accurate radiation transport scheme as well as a realistic gas
equation of state which accounts for H2 dissociation. Masunaga
and Inutsuka (2000) integrated theirmodels throughout the Class
0 and Class I phases up to an age of 1.3 × 105 yr. Nowadays,
1D models are still used either as a first step toward describing
more accurately the physics of the protostellar collapse, e.g., with
multigroup radiative transfer (Vaytet et al., 2013, 2014) or with a
view to provide quantitative predictions for the first and second
Larson core properties (Vaytet and Haugbølle, 2017; Bhandare
et al., 2018). These models are not pushed in time as far as the
ones by Masunaga and Inutsuka (2000).

5.2. From 1D to 3D
Pioneered studies acknowledged up front that 1D spherical
models were limited because the effect of rotation, turbulence,
and magnetic fields cannot be taken into account. Three decades

after Larson work, the first 3D numerical simulation able to
describe the formation of the protostar was performed by Bate
(1998) using SPH. The model accounted for initial rotation,
but magnetic fields were neglected and radiative transfer was
crudely mimicked by a piecewise polytropic equation of state. It
is worth to notice at this point that grid-based codes took some
time to reproduce (Bate, 1998) results for almost one decade.
SPH is indeed naturally well-suited to collapse problems thanks
to its Lagrangian nature while innovative techniques, such as
AMR and nested grids, were not mature enough to capture the
entire dynamical range and to cover eight orders of magnitude in
physical length given the computer capabilities at that time. As
mentioned in the section 2, ideal MHD was introduced early in
protostellar collapse models using grid-based codes (e.g., Dorfi,
1982; Phillips and Monaghan, 1985). The first calculations of
second collapse incorporating magnetic fields were thus done
on a grid-based code by Tomisaka (2002) using a nested grid
with cylindrical coordinates assuming axisymmetry (Tomisaka
and Bregman, 1993). Tomisaka (2002) code solved the ideal
MHD equations using a second-order “monotonic scheme” (van
Leer, 1977; Winkler and Norman, 1986), a constrained transport
scheme for the induction equation (Evans and Hawley, 1988), as
well as an angular momentum preserving scheme. To capture
the huge range in spatial scales, Tomisaka (2002) used up to
16 levels of refinement. He found that two different types of
outflows were launched at the first and second cores scales.
He suggested that the second core outflow corresponds to the
optical jets observed in young stellar objects (YSOs), while the
first core outflow corresponds to the molecular bipolar outflow.
The first full 3D MHD models were presented in Machida et al.
(2006) using nested grid with Cartesian coordinates and 21
levels of refinement. They compared the results obtained with
resistive (Ohmic diffusion) and ideal MHD. They confirmed the
results of Tomisaka (2002) even with non-ideal MHD included.
After Machida et al. (2006) work, the numerical challenge of
forming a protostar in 3D with MHD was faced, but the
horizon of predictability remained very short since they had
to stop their calculations 20 days after the protostar formation
because of extremely small timesteps resulting from the high
velocity of the jet propagating from the finest level. Banerjee
and Pudritz (2006) also performed 3D collapse calculations
down to stellar scales, using ideal MHD as well as molecular
cooling, and they confirmed the results of Tomisaka (2002) and
Machida et al. (2006).

All the multidimensional studies we mentioned so far
were done assuming a piecewise polytropic equation of state
to mimic the thermal behavior of the gas throughout the
evolutionary sequence. Such barotropic equation of states are
parameterized using the results of 1D spherical symmetry
simulations previously mentioned, so that they cannot account
for multidimensional effects such as the optical depth drop in
the vertical direction that allows efficient cooling of the nascent
protostellar disks and thus leads to incorrect results for the
fragmentation (e.g., Boss et al., 2000; Commerçon et al., 2010;
Tomida et al., 2010). The next level of complexity is to add a
more accurate model for the thermal balance of the gas and
dust mixture, i.e., to model radiative transfer (see section 4). The
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addition of a more accurate model for radiation transport can
be crudely resumed to an additional heating/cooling term in the
gas internal energy equation due tomatter/radiation interactions.
For the models which are restricted to the first collapse and first
core formation, i.e., for temperatures less than ≃ 2000 K, the
addition is conceptually straightforward for the gas evolution
equations. An usual ideal gas equation of state can be used,
with the only modification on the adiabatic index γ which
varies with the temperature. At low temperature (T . 150 K),
the H2 molecule behaves like a monoatomic gas (γ = 5/3)
because only the vibrational degrees of freedom are excited. At
higher temperature, the rotational degrees start to be excited
and the adiabatic index decreases to γ = 7/5. Accounting
for this non-constant adiabatic index is important regarding
the fragmentation properties (Commerçon et al., 2010) and the
first core properties (Tomida et al., 2010; Lee and Hennebelle,
2018b). The driver of the second collapse is the endothermic
dissociation of the H2 molecule, which modifies considerably
the gas equation of state. Currently, there are two ways to
integrate non-ideal EOS in second collapse calculations. The
first one is to compute on-the-fly the thermodynamic quantities
from equilibrium chemical abundances and to use an ideal
gas equation of state, including the effects of dissociation and
ionization, to compute the gas pressure and the internal energy
(Black and Bodenheimer, 1975). Most of the second-collapse
including RHD are done with this approximation (Masunaga and
Inutsuka, 2000; Whitehouse and Bate, 2006; Stamatellos et al.,
2007; Forgan et al., 2009; Tomida et al., 2013; Bhandare et al.,
2018). The second one consists in using tabulated EOS table
coming from detailed studies to account for non-ideal effects
(e.g., ionization by pressure, interaction between particles) which
are important at high density/pressure (Saumon et al., 1995).
Saumon et al. (1995) EOS is used in the work by Vaytet et al.
(2013), Vaytet et al. (2014), Vaytet and Haugbølle (2017), and
Vaytet et al. (2018), and also in the SPH public code PHANTOM
(Price et al., 2017). We note that these developments imply that
the dependency of the specific heat capacity as a function of
the physical conditions has to be taken into account. Caution
should thus be taken within the radiation solvers which are
often integrated using implicit schemes. The most common
and simple way to deal with it is to compute a heat capacity-
like factor, C̃V ≡ e/T where e is the gas internal energy
density, which is kept constant in the radiation solve. Readers
can refer to Tomida et al. (2013) for a detailed implementation.
Unfortunately, details on the numerical implementations are
usually not reported in the literature. The first full 3D RHD
calculations of the second collapse of an initial 1 M⊙ dense core
were performed by Whitehouse and Bate (2006) using the FLD
approximation in a SPH code, followed by Stamatellos et al.
(2007) who used a local radiative cooling approximation and
SPH. Bate (2010) extended the work of Whitehouse and Bate
(2006) beyond the formation of the stellar core for about 50 yr,
using 3 × 106 equal-mass SPH particles to satisfy the Bate and
Burkert (1997) mass resolution criterion throughout the entire
collapse. Interestingly, there is to date no 3D RHD calculations of
the second collapse, i.e., without magnetic field, performed with
a grid-based code.

Last but not least, it has been demonstrated in Commerçon
et al. (2010) that the interplay between magnetic fields and
radiative transfer is of primary importance for the thermal
budget of the collapsing gas and of the first and second core
accretion shocks (Commerçon et al., 2011a; Vaytet et al., 2012;
Vaytet et al., 2013, 2018). The infall velocity is indeed greatly
modified in the presence of magnetic fields which tends to
focus the collapsing gas on a smaller area compared to the
case without magnetic fields (Commerçon et al., 2011b; Myers
et al., 2013). Themagnetic brakingmechanism transports angular
momentum from the inner parts of the collapsing cloud to the
envelop. As a consequence, the infall velocity increases along
with the incident kinetic energy, which then modifies the thermal
budget through the accretion shocks. The next step in the
increasing complexity is to perform full 3D RMHD calculations.
The first SPH RMHD calculations of protostellar core formation
were performed in Bate et al. (2014), extending their previous
work to idealMHD. Tomida et al. (2013) and Tomida et al. (2015)
performed the first 3D full RMHD calculations using a grid-based
code, extending the work of Machida et al. (2006) to account
for radiative transfer with the FLD approximation, as well as
the Ohmic dissipation and the ambipolar diffusion. They used a
finite-volume nested-grid code with standard MUSCL predictor-
corrector scheme to achieve second-order accuracy.More details
on Tomida et al. (2015) implementation for non-ideal MHD
are given in section 3. For the implicit radiation update, they
used a linear system solver with a combination of the BiCGStab
solver and the incomplete LU decomposition preconditionner.
Tomida et al. (2013) used a nested-grid constructed to ensure
that the Jeans length is always resolved by at least 16 cells, with
typical spatial resolution at the maximum level of refinement
of 1x ≃ 6.6 × 10−5 AU (23 levels). When this resolution
condition cannot be satisfied, they stopped the calculations. This
is particularly the case when discs form and grow with time
to spread over different level of refinements. As a consequence,
they cannot follow the second collapse in their model with
ambipolar diffusion since a large disc is formed. More flexible
refinement techniques, such as AMR or SPH are thus required to
continue the calculations with a reasonable numerical resolution.
Currently, the state-of-the-art includes 3D RMHD calculations
with resistive effects, done with both SPH (Tsukamoto et al.,
2015b; Wurster et al., 2018) and AMR (Vaytet et al., 2018). The
typical resolution in SPH calculations currently achievable with
limited CPU resources is of 3× 106 equal-mass particles per M⊙.
In AMR, Vaytet et al. (2018) used a coarse grid of 643 with 21
additional levels of refinement, and a refinement criterion of 32
points per Jeans length. While the SPH calculations are able to
integrate the three non-ideal effects (Wurster et al., 2018) down to
stellar scales, there is no AMR work describing the Hall effect in
second collapse calculations (Vaytet et al., 2018 accounts for the
ambipolar diffusion and the Ohmic diffusion). The calculations
by Wurster et al. (2018) were integrated 17 yr after the stellar
core formation, while Vaytet et al. (2018) could only integrate
for 24 days. Beside the major achievement which represents the
formation of a protostar on a computer, we must admit that these
kind of studies are not yet capable to give long term predictability.
In addition, the CPU time required to integrate full 3D RMHD

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 16 July 2019 | Volume 6 | Article 51

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Teyssier and Commerçon Numerical Methods in Star Formation

models is relatively big. Clearly, second collapse study cannot be
done on a frame covering a large parameter space. In addition,
even at the first core scale, the integration timestep becomes
so short in the adiabatic fragments that long time evolution
calculations becomes prohibitive. In that view, the sink particles
are a good alternative to reach a long horizon of predictability
and to cover a wide parameter space.

6. SINK PARTICLES

Sink particles are Lagrangian particles, and can accrete matter
as well as angular momentum in order to ensure mass and
angular momentum conservation. Sink particles should not be
confounded with sink cells which are usually introduced in grid-
based codes which use a spherical grid to deal with the singularity
in the center (e.g., Boss and Black, 1982; Kuiper et al., 2010a; Li
et al., 2011). The differences between sink particles and sink cells
are discussed in section 6.4. Sink particles are often erroneously
referred as protostars or stars in the literature whereas the
resolution at which they are introduced is generally much larger
than the stellar scales, typically 1−10AU for collapse calculations,
and a few 100 AU for cluster formation and ISM evolution
calculations. Multiple systems (small clusters, binaries), as well
as systems made of a disk around a star can thus be encompassed
within a single sink particle depending on the resolution.

6.1. Standard Implementations
Sink particles were introduced in star formation calculations
by Bate et al. (1995) to enable long time integration to study
the fragmentation of collapsing clouds. Sink particles were
introduced to mimic the second collapse and the protostars
at scales that could not be reached in numerical simulations.
They are treated as accreting non-collisional point masses and
enable one to follow the evolution through the main accretion
phase, with a view to compare with observations of clusters
in which most of the gas has been accreted. Their original
implementation was done in a SPH code, with three main parts
in the algorithm: (i) sink particle creation, (ii) sink particle
accretion, (iii) boundary conditions for sink particles. A SPH
gaseous particle is tagged for sink particle creation if its density
exceeds a specific density threshold (defined by the user) and
satisfied a number of tests. First, the smoothing length of the
SPH particle that is a candidate for sink particle creation has
to be less than half the accretion radius racc of the sink particle.
This ensures that the sink particle is formed from at least Nneigh.
racc is defined before the calculations start and remains fixed. Its
value is chosen by the user depending on the required level of
resolution. It sets the smallest scale that can be resolved in the
calculations. The knowledge of the flow within racc is lost and the
gas is assumed to collapse beyond this scale to form protostars.
Then, a series of tests is performed on the system composed of
the particle and its neighbors to decide if it should create a sink
particle. The tests ensure that the gas particles would continue to
collapse if the sink particle was not created. First, the ratios α and
β of the thermal energy and rotational energy to the gravitational

energy must satisfy

α ≤ 1/2;α + β ≤ 1. (62)

Additionally, the total energy must be negative, and finally, the
system must be contracting (∇ · Ev < 0). If all the tests are
passed, a sink particle is formed from the system at the center
of mass. Initially, the sink particle has thus a mass of ∼ Nneigh
times the standard SPH particle mass. Afterwards, sink particles
interact only with the gas particles via gravity. The sink particle
is allowed to accrete mass at each integration timestep if a gas
particle enters racc and passes several criteria: the particle must
be the most bound to the sink particle (and not to another
more distant but more massive sink particle), and the particle
must have a moderate specific angular momentum. When a gas
particle is accreted, its mass and linear momentum are added
to the sink particle, as well as the angular momentum which
modifies the spin of the sink particle. The sink particle is moved
to the center of mass of the sink and the accreted gas particle.
Sink particles also contribute to the computation of the total
gravitational potential in the same way as standard gaseous
particles. Bate et al. (1995) pointed out that the introduction of
sink particles in SPH calculations may affect the gas outside the
accretion radius, in particular because there is a discontinuity
in the number of particles across the accretion radius. They
proposed different types of boundary conditions to account for
missing neighbors. Note that the use of boundary conditions
in modern sink particles implementation is not used anymore
thanks to the improvements that have been made, in particular
in the case of optically thick flows (e.g., Hubber et al., 2013).

Sink particles were introduced in Eulerian calculations for star
formation purposes by Krumholz et al. (2004) in the AMR code
ORION. They introduce a Jeans length criterion for sink creation,
based on the resolution study of Truelove et al. (1997). A sink
is created within a cell at the maximum level of refinement if
the density ρ exceeds the maximum Jeans density ρJ that can
be resolved

ρJ < J2
πc2s

G1x2min

, (63)

where J < 0.25 is the Jeans length resolution criterion, cs the gas
sound speed, and 1xmin the minimum cell size. The initial mass
of the sink is msink = (ρ − ρJ)1x3min. In Krumholz et al. (2004),
no additional checks are performed to validate the sink creation.
Their algorithm is coupled to a sink merging scheme based on
a friends-of-friends (FOF) algorithm to handle situations where
a block of contiguous cells create sink particles in a single time
step. The FOF is performed after each time step to group all
the sink particles (old and new), with a linking length equal
to racc. All the groups of sink particles found by the FOF are
then merged and replaced by a single particle at the center of
mass of the group. All the merged sink particles quantities (mass,
momentum, angular momentum) are also added conservatively
to the new sink particle. Krumholz et al. (2004) sink accretion
scheme was designed to handle situations where the flow onto
the sink particle is subsonic (which is analogous to the case
where boundary conditions have to be introduced in standard
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SPH implementation). They set the accretion rate using an
approximate formula from Bondi-Hoyle accretion which handles
also the regime where the flow is supersonic. The accretion rate
is estimated using average properties in the region within racc.
An important point in Krumholz et al. (2004) implementation is
the description of the accretion zone. The mass accreted by the
sink particle comes from all the cells in this accretion zone. Based
on their experiments, Krumholz et al. (2004) use a value of racc =
41x. In the case where the Bondi-Hoyle radius is smaller than the
accretion zone, it is incorrect to estimate the accretion rate from
all the cells in the entire accretion zone. Krumholz et al. (2004)
thus use an accretion kernel where each cell within racc is assigned
a weight from a Gaussian-like function. The kernel is used to
compute the average quantities to determine the mass accretion
rate. The mass to be accreted is redistributed within the accretion
zone onto virtual cloud particles (each cell in the accretion zone
is divided into 83 cloud particles). Additional checks can be then
performed to avoid to accrete gas that has for instance too much
angularmomentum to be gravitationally bound.When a parcel of
gas is accreted, it also transfers its linear and angular momentum
to the sink. An absolute mass cap is also used to limit to 25%
the amount of mass accreted from a unique cell in a single time
step. After accretion, the position of the sink particle is changed
in two steps according to its momentum after gas accretion and
through gravity. First the momentum is updated to account for
the gravitational interaction with the gas. The total force on a
sink particle is computed by a direct summation over all the cells
in the computational domain, except the ones in the accretion
zone. This method remains practicable as long as the number of
sink particles created remains limited. For the accretion zone, the
interaction is computed between the sink and the cloud particles
created during the accretion step. A Plummer law is used to
soften the gravitational interaction at short distance, i.e., Fgrav ∼
1/(r2 + ǫ2) where ǫ = 21xmin is the softening length. Second,
the acceleration due to particle-particle interaction is added to
the sink particle momentum using a Bulirsch-Stoer algorithm
with adaptive time step and error control. Note that the stability
of the temporal discretisation scheme required that the sink
particle velocity satisfies a CFL-like condition (vsink1t < C1x,
with C < 1).

Sink particles algorithms have been complemented in the
past 10 years to improve their versatility, in particular in
the transition between the sub- and super-sonic regimes.
All newer implementations have been built upon these two
pioneering works.

6.2. Contemporary Implementations
In all current implementations, the sink creation and accretion
are the most sensitive algorithms. Of course, the sink particles
can be introduced in the initial conditions. Otherwise, they are
created after the creation checks.

Each of the commonly used codes in star formation has its
own implementation of sink particles. For the grid-based codes,
we note the work of Wang et al. (2010) in the ENZO code, which
is very similar to Krumholz et al. (2004) but with a different
merging scheme which involves a maximum mass sink mass for
merging. Federrath et al. (2010) presented an implementation in

the AMR code FLASH, where the creation checks were similar to
the ones by Bate et al. (1995) for SPH with two additional checks:
the cell tagged for sink creation should be at the maximum
level of refinement, and it should sit in a local gravitational
potential minimum. They also account for magnetic energy in
the energy budget done in the check algorithm. The checks
are performed on a spherical region of radius racc around the
cell candidate for sink creation. Their scheme for accretion is
also different from the previous grid-based works. If a cell i
within racc exceeds the density threshold ρres for sink creation,
the mass increment 1M = (ρi − ρres)1x3i is considered for
accretion onto the sink particle. The mass increment has to be
gravitationally bound to the sink, and in the case of overlapping
sink particles, it is accreted to the most gravitationally bound
sink particle, the latter being moved to the center of mass of
the particle-gas configuration before the accretion step. They also
improve the treatment of the gas-sink gravitational interaction.
Similarly to Krumholz et al. (2004), the sink-sink interaction
is done by direct summation over all the sink particles. The
gravitational acceleration of the sink due to the gas is estimated
from the gravitational potential of the gas which is handled by
the Poisson solver of FLASH to handle the gas-gas interaction.
The acceleration is interpolated using a first-order cloud-in-cell
method for each sink particle. Last, the acceleration of the gas
due to the sink is done by a direct summation. Each sink particle
contributes to the acceleration of each cell in the computational
domain. The direct summations for the sink-sink and sink-gas
interactions requires a gravitational softening. Federrath et al.
(2010) use a cubic spline softening similar to what is used in
SPH, which is less aggressive within the softening length than a
simple Plummer profile. Federrath et al. (2011a) updated their
first implementation to ensure exact momentum conservation
using a direct summation between all cells and sink particles for
the gas-sink interaction as well.

In addition, Federrath et al. (2010) performed a quantitative
comparison between their implementation and the one by Bate
et al. (1995) by comparing the results of two star formation
calculations performed with FLASH and with a SPH code. They
find a good quantitative agreement which was quite encouraging
given the fundamental differences between SPH and AMR
sink implementations.

Hubber et al. (2013) presented an improved algorithm for
the sink particles in SPH, which can handle situations where
sinks are introduced after the gas has become adiabatic. They
propose a different combination of creation criteria which are
based on the studies we just mentioned: (i) density threshold,
(ii) no overlapping with another sink accretion volume, (iii) the
gaseous particle flagged for sink creation sits in a minimum of
gravitational potential (on a volume defined by its neighbors),
(iv) the gaseous particle is outside the Hill sphere of fragments
harboring another already formed sink.

Last, Bleuler and Teyssier (2014) presented an innovative sink
creation scheme based on a clump finder algorithm used on-the-
fly in the RAMSES code. The clump finder is performed in a
first step to identify peaks and their associated regions. Second,
the peaks are considered for sink creation. A virial theorem
type analysis is performed on the clumps, accounting for surface
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pressure as well as tidal forces. The virial check is passed if
the second derivative of the moment of inertia in the center
of mass frame is negative. Then a collapse check is performed,
which corresponds to the contraction check of Krumholz et al.
(2004) and Federrath et al. (2010), but adapted according to
the virial analysis. Last, the final check is a proximity check.
We also note that Bleuler and Teyssier (2014) offer also the
possibility to use the alternative sink creation and accretion
schemes reported in the literature. They provided an excellent
review of the different creation checks, accretion, sink merging
and trajectories schemes. In particular, they tested different
schemes to perform sink accretion: Bondi-Hoyle accretion, flux
accretion, and density threshold accretion. They show that all
methods give good results for spherical Bondi accretion (i.e.,
when the flow is supersonic). In the subsonic regime, only the
Bondi formula gives a correct accretion rate. They recommend
to automatically adapt the accretion scheme depending on the
surrounding flow properties.

A number of other sink particle implementations have been
reported in the literature that we cannot detail in this review.
We give in the following a non-exhaustive list, restricted to
the field of star formation. In SPH, sink particles have been
implemented in the codes GADGET (Jappsen et al., 2005),
DRAGON (Goodwin et al., 2004), and SEREN (Hubber et al.,
2011). For grid-based codes, sink particle are used in the uniform
grid code ATHENA by Gong and Ostriker (2013), in RAMSES
by Padoan and Nordlund (2011), and in the ORION2 code by
Lee et al. (2014). Last, Greif et al. (2011) also proposed a sink
particle algorithm within the AREPO moving-mesh code. Their
implementation is very similar to the one used in SPH codes. We
also note that sink particle merging is now widely used in most of
the implementations.

Twenty years after their introduction, sink particles remain a
sensible subject in the community. It is commonly accepted that
an accreting sink particle should have a minimal impact on the
collapsing gas around it. The easiest way to deal with it is to
create the sink particle during the (quasi-) isothermal phases of
the collapse (either the first or the second collapse), when the
gas velocity is supersonic. The perturbation created by the sink
particles on the gas dynamics cannot propagate since the CFL
timestep is limited by the supersonic motions. An example of
bad behaviors observed in protostellar collapse SPH calculations
using sink particles introduced in the vicinity of the first cores
can be found in appendix D of Commerçon et al. (2008). When
a barotropic law is used to mimic the gas thermal budget, a
simple method used to introduce sink particles in the vicinity
of hydrostatic object can be found in Price and Bate (2008).
They artificially change the gas equation of state to isothermal
at an arbitrary density (e.g., 10−11 g cm−3) and set the density
threshold for sink creation to a value of more than two orders of
magnitudes larger.

6.3. Sink Particles and Magnetic Fields
In the previous section, we did not discuss the sink particle
algorithms in the presence of magnetic fields. We try to describe
here some attempts done to provide a good description of MHD
flows for sink creation and accretion. Sink particles can of course

be introduced in MHD calculations, but the implementation is
not as straightforward as in the hydrodynamical case. While it
is relatively easy to accrete gas and momentum, magnetic flux
accretion cannot bypass the solenoidal constraint ∇ · EB = 0.

Price and Bate (2008) and Wang et al. (2010) performed star
formation calculations in turbulent and magnetized clouds, but
do not account for any contribution of the magnetic fields in
their sink algorithms. Federrath et al. (2010) have introduced
the magnetic energy in their negative total energy check for
sink creation, but not in the accretion scheme. Lee et al. (2014)
have extended the work of Krumholz et al. (2004) to deal with
magnetized flows. For sink creation, they follow the work of
Myers et al. (2013) who derived a magnetic Truelove criterion.
They derive simple steady state accretion rates as a function of
the plasma beta β and the Mach numberM.

In all implementations, gas is accreted by the sink particles
but not magnetic flux. It stays the gas in the surrounding of the
sink particles, and magnetic flux accumulates as collapse goes on.
While at scales of a few 10-100s AU this flux accumulation is
not problematic (Federrath and Klessen, 2012; Li et al., 2018),
it eventually leads to a magnetic explosion and magnetic flux
redistribution in the surrounding of the sink (Zhao et al., 2011)
due to the development of an interchange instability (Spruit and
Taam, 1990; Spruit et al., 1995; Li and McKee, 1996), which is
also observed in high resolution models without sink particles
and ideal MHD (Li et al., 2014; Masson et al., 2016). In addition,
since density stays roughly constant while magnetic intensity
increases in the sink accretion zone, the Alfvén speed increases
significantly, leading to non-physical accretion rates, as well
as short integration time steps. Lee et al. (2014) proposes to
cap the accretion rate at a maximum value corresponding to a
constant Alfvén speed after mass accretion. This trick tempers
the accumulation of magnetic flux as well.

In the recent years, resistive MHD calculations have shown
that all non-ideal effects leads to a decrease of the magnetic flux at
the first core scale.Magnetic fields decouple from the gas and dust
mixture dynamics. The magnetic flux does not accumulate at the
first core border, but rather at a larger distance which corresponds
to the radius at which non-ideal effects start to dominate
(Hennebelle et al., 2016; Masson et al., 2016). Matter is accreted
but leaves its associated magnetic flux outside the decoupling
region. Adding sink particles in restive MHD calculations with
resolution capable of resolving the decoupling region has not yet
been investigated in detail (Machida et al., 2009;Matsumoto et al.,
2017; Tomida et al., 2017), but one can foresee that introducing a
sink within the decoupling region should prevent magnetic flux
accumulation. It is expected that non-ideal MHD can alleviate
the conditions of interchange instability, but is then necessary
to resolve the decoupling scale, i.e., the disk. To date, the most
detailed study of sink particles introduction inMHD calculations
can be found in Machida et al. (2014).

6.4. Sink Particles vs. Sink Cells
A fundamental difference between sink cells and sink particles is
that sink cells are fixed in position and have physical boundaries.
There are pros and cons for the two methods, which we briefly
summarize in the following.
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First, the sink cell can be considered as a boundary in codes
using a spherical grid. In collapse calculations, a sink cell is most
often introduced as a passive boundary with zero gradients, or
also called outflow (Yorke et al., 2002; Kuiper et al., 2010a; Li
et al., 2011). The mass flux across the boundary is added to
the central point mass of the sink cell and used to compute
the gravitational acceleration. The sink cell enables one to make
more detailed models for the magnetic field configuration at
the boundary, as for instance in star-disk interaction studies
(e.g., Mellon and Li, 2008; Takasao et al., 2018). In principle, this
is a quite powerful numerical set-up to overstep the issue of time
integration after the second core formation. The current state-of-
the-art is not yet mature to design such numerical studies, but
this should certainly be the purpose of future works.

On the other hand, a major inconvenience of sink cells
resides in their fixed position in time, which forces the center
of mass to be equal to the geometrical center of the disk. As a
consequence, the development of non-axisymmetric azimuthal
low wave-number modes may be artificially damped, which alters
the development of eccentric gravitational instabilities (Adams
et al., 1989; Shu et al., 1990). This effect can be particularly
problematic in the case of young stellar objects with disks of mass
comparable to the stellar mass, Mdisk/Mstar > 1/3 (Krumholz
et al., 2007a; Kuiper et al., 2011; Sigalotti et al., 2018).

Last, the use of “outflow” boundary conditions for the mass
accretion on the sink cell is very different from the algorithms
we just presented for the sink particles. Machida et al. (2014)
have shown that applying similar criteria for the sink accretion
than the ones employed in studies with a sink cell (Li et al.,
2011) may lead to very different results, i.e., no disk formation,
compared to the same calculations done with a classical sink
particle algorithm, i.e., formation of a disk.

7. SUB-GRID MODELS FOR SINK
PARTICLES

Beyond the practical advantage of saving computational time,
the sink particle has been shown to be very useful in
works where (proto-)stellar feedback is considered. Similar to
cosmological and galactic evolution studies, the sub-grid models
can be associated to the sink particle evolution. We distinguish
two types of sub-grid physics, depending on the feedback
origin: radiative (luminosity, accretion shock, ionization), and
dynamical (jets/outflow, winds). In any case, the source terms
introduced by sub-grid physics are treated using operator
splitting schemes.

7.1. Radiative Feedback
The first class of sub-grid models were designed to account
for the radiative feedback of the nascent protostars. The
radiative feedback term includes the accretion, the internal,
and the ionization luminosities. When integrating over discrete
timesteps, the luminosity is an energy or radiative flux input.
Radiative feedback was introduced early in 2D models (e.g.,
Bodenheimer et al., 1990). They used a 2D axisymmetric
hydrodynamical code (Rozyczka, 1985), which was primarily

designed for stellar winds. Bodenheimer et al. (1990) used
the gray FLD approximation for the radiation transport.
They combined the evolution of their central zone, or sink
cell, with a pre-main sequence evolution model based on
Maclaurin spheroids in hydrostatic equilibrium. They computed
the structure of the protostar according to the central (ρ,T)
path tracks reported by Winkler and Newman (1980) from 1D
spherical calculations. The protostar mass M⋆ and equatorial
radius R⋆ were then used to compute the accretion luminosity
Lacc = 0.5GM⋆Ṁ/R⋆, where Ṁ is the mass flux crossing the
inner boundary. Bodenheimer et al. (1990) further assumed that
the radiative energy input L1t was only due to the accretion
luminosity and that all the infall kinetic energy was converted
into radiation at the stellar core accretion shock. They found that
most of the energy that went for heating in the envelope comes
from this protostellar luminosity. Yorke and Bodenheimer (1999)
and Yorke et al. (2002) used a more sophisticated protostellar
evolution model which accounts for the intrinsic luminosity
of the protostar Lint. They realized that the central luminosity
evolution sets the thermal budget within the envelop, but could
not resolve the innermost regions of the star-disk system.
They designed a protostellar accretion luminosity model which
accounts for the luminosity coming fromKeplerianmotion of the
disk being converted into heat and radiated away at the disk-core
boundary layer following (Adams and Shu, 1986)

Ltot = Lint +
3GM⋆Ṁ

4R⋆
, (64)

where they assume that a fourth of the total potential energy
of the accreted material is released into heat within the disk,
the remaining being radiated away within the unresolved inner
disk region and at the accretion shock. In addition, Yorke
and Bodenheimer (1999) and Yorke et al. (2002) followed
radiation transport using a frequency dependent ray-tracing
algorithm (with 64 frequency bins). In particular, Yorke et al.
(2002) demonstrated the importance to handle the protostellar
irradiation using a frequency dependent irradiation scheme in
the context of massive star formation. The flashlight effect,
i.e., radiation escapes in the vertical direction and the radiative
acceleration is reduced within the disk to allow accretion,
is enhanced compared to a simple gray model. In addition,
Krumholz et al. (2005) showed how protostellar outflows
allow radiation to escape in the outflow cavities to allow a
continued accretion onto the central massive stars. These results
have been further confirmed by 3D dynamical simulations
of Krumholz et al. (2007a), Kuiper et al. (2011, 2016), and
Rosen et al. (2016).

Currently, most 3D numerical RHD calculations include
stellar radiative feedback sub-grid models attached to sink
particles/cells evolution. Most of the implementations account
for both the internal and the accretion luminosities, with some
modulation factors on the amount of potential energy radiated
away and on the efficiency of the mass transfer for the sink
accretion radius to the protostar. The simpler sub-grid models
use a gray FLD model for the radiation transport where the
protostellar luminosity is simply a source term in the radiative
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energy equation (Krumholz et al., 2007a; Offner et al., 2009;
Stamatellos et al., 2011; Fontani et al., 2018; Jones and Bate, 2018).
Frequency dependent protostellar irradiation modules have been
developed using ray-tracing to compute the radiation fields,
combined with moment models for radiation hydrodynamics
(Kuiper et al., 2010a; Wise and Abel, 2011; Klassen et al., 2014;
Ramsey and Dullemond, 2015; Buntemeyer et al., 2016; Rosen
et al., 2017). These frequency dependent modules have been used
primarily in the context of massive star formation (Klassen et al.,
2016; Rosen et al., 2016).

Last, we note the developments made to capture ionizing
radiation feedback from massive stars: Dale et al. (2007) used
a Strömgren volume method in SPH, Peters et al. (2010) ray
tracing in the FLASH code, Kuiper and Hosokawa (2018) an
hybrid ray-tracing and FLD irradiation module in the PLUTO
code, Geen et al. (2015) the M1 moment method in the RAMSES
code, and Harries (2015) Monte Carlo radiative transfer in the
AMR code TORUS. These schemes are applied first in isolated
collapse calculations (Kuiper and Hosokawa, 2018) and, mostly,
in cluster formation studies (Dale and Bonnell, 2011; Peters et al.,
2011; Dale et al., 2012; Geen et al., 2015, 2018; Ali et al., 2018).

7.2. Dynamical Feedback
The most advanced MHD collapse calculations have shown
that outflows and jets naturally develop at different scales
during the collapse (Tomisaka, 2002; Banerjee and Pudritz,
2006; Machida et al., 2006; Hennebelle and Fromang, 2008;
Ciardi and Hennebelle, 2010; Commerçon et al., 2010; Tomida
et al., 2010; Price et al., 2012). In addition, outflows and jets
are commonly observed in YSO’s (it is for instance a selection
criterion for Class 0 sources, Andre et al., 1993) and they
are considered as possible sources of turbulence driving in
star forming clouds and participate in the regulation of the
star formation rate (Matzner, 2007; Nakamura and Li, 2007;
Krumholz, 2014; Federrath, 2015). Outflows and jets launching
scales are nevertheless not captured in most studies because it
requires a very high numerical resolution to reach sub-AU scales.
Besides, studies neglecting magnetic fields cannot generate MHD
winds driven centrifugally or by toroidal magnetic pressure.
Consequently, very few numerical calculations have been able
to launch self-consistently MHD outflows (e.g., Hennebelle
et al., 2011). Sub-grid models have thus been developed to
account for outflows/jets in numerical works with unresolved
launching scales and missing physics, similarly to what has
just been presented for the radiative feedback. The numerical
implementation are based on analytical works dedicated to
MHD wind launching (Blandford and Payne, 1982; Pelletier
and Pudritz, 1992; Shu et al., 1994; Ferreira, 1997; Matzner and
McKee, 1999).

The first works on sub-grid models have been reported
in Li and Nakamura (2006) and Nakamura and Li (2007)
who employed ideal MHD and self-gravity. They attached a
protostellar outflow model on sink particles following (Matzner
and McKee, 2000) because they were unable to describe the self-
consistent launch of outflows with the crude resolution they use
(1283 for a≈ 2 pc box). Each star injects in the ambient medium
a momentum that is proportional to the stellar mass M⋆ with a

two-component outflow model. The volume of injection is given
by the sink accretion volume (which they refer to as “supercell”).
A fraction η of the total outflow momentum is put in a conical
collimated jet component to facilitate the transport of energy and
momentum at large distances. The rest of the momentum is put
into a spherical component around the protostar. The direction
of the jet is given by the orientation of the magnetic field in
the central cell, and they assume an opening angle of 30◦ about
this direction.

Most of the implementation of outflows and jets have a
similar construction, with flavors depending on the sink particle
algorithm. Wang et al. (2010) implemented in the MHD ENZO
code a simplified version for protostellar outflows where they
only account for the collimated jet component. They adopt a
continuous momentum injection 1P = P⋆1M where P⋆ is
a proportionality constant which depends on the stellar mass
∼ M

1/2
⋆ ). If the momentum injection occurs in a cell with a

too low density, they take 10% of 1M out of the sink particle
and redistribute it evenly between the injection cells in order
to avoid too large outflow speeds (and too small integration
timestep). Along the same line, Cunningham et al. (2011),
Hansen et al. (2012) extended the work of Krumholz et al. (2005)
and Krumholz et al. (2007a) and presented for the first time a
combined sub-grid model which includes protostellar outflows
(Matzner and McKee, 1999) and protostellar radiative heating
(Offner et al., 2009), ignoring magnetic fields though. Their
sub-grid model accounts for pre-main sequence evolution as in
Offner et al. (2009) and the calculated protostellar radius is used
in the outflow and radiative heating models. They parameterized
their outflow model with dimensionless parameters which, for
instance, sets the fraction of mass accreted by the protostar or
launched in the outflow, and the ejection velocity as a function of
the Kepler speed at the surface. Contrary to the case of radiative
heating where energy is put within the accretion volume, they
inject outflows at a distance comprised between 41x and 81x
from the sink particle, and used angular dependency from
Matzner and McKee (1999). We note that they not only inject
momentum, but also mass and thermal energy. They set the
wind temperature to 104 K, which is appropriate for an ionized
wind. Using the same tool, Myers et al. (2014) added magnetic
field in their simulations with ORION, but because of the low
resolution they used (> 20 AU), they where not able to launch
self-consistent outflows and used the sub-grid model we just
mentioned. The outflows they produce may form strong shocks
at very high temperature, higher than the dust sublimation
temperature so that the dust opacity drops. Their radiative
transfer scheme, primarily designed for dust thermal emission
does not allow the gas to cool efficiently. They thus needed to
add a line cooling function for the thermal budget of the gas.

Federrath et al. (2014b) implemented a sub-grid-scale outflow
model upon the sink particles algorithm they implemented
in FLASH (Federrath et al., 2010) for MHD collapse. Their
model combines different features of the Li and Nakamura
(2006), Nakamura and Li (2007), and Cunningham et al. (2011)
implementations. They used a normalized velocity profile for
momentum injection, which reproduces the two components
outflow/jet with opening angles of 30◦ and 5◦, respectively.
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FIGURE 3 | Volume rendering from collapsing 1 M⊙ dense cores at the protostellar core scale. The left panel shows the results of an ideal MHD 3D simulations, and

the right panel the comparison with non-ideal MHD including ambipolar diffusion and Ohmic diffusion. The color lines indicate the 3D magnetic field lines, and the

color coding the magnetic field amplitude. Figure reproduced from Vaytet et al. (2018) with permission of A&A.

They also improved the algorithm for the outflow orientation
by recording the angular momentum transfer from the accreted
gas to the sink particle. Their algorithm also conserves mass
and momentum exactly in the sink accretion step. Murray et al.
(2018) proposed a similar implementation in RAMSES. They
follow (Offner et al., 2009; Cunningham et al., 2011; Federrath
et al., 2014b; Myers et al., 2014) for the outflow injection as well
as the protostellar evolution. Outflows are there injected within
a conical volume about the spin axis of the sink particle in a
radial extent comprised between 4 and 8 cells (at the highest
refinement level) away from the sink particle. Federrath et al.
(2014b) performed a parameter study on the number of cells for
the radial outflow direction and found that convergence on the
maximum outflow velocity requires 16 cells per outflow radius.
Convergence on the mass, linear and angular momentum of the
outflow is achieved though with 8 cells.

All these protostellar outflow sub-grid models are currently
widely used in the community for astrophysical applications on
the star formation rate/efficiency (e.g., Federrath, 2015; Kuiper
et al., 2016; Offner and Chaban, 2017; Murray et al., 2018),
stellar initial mass function (Krumholz et al., 2012), origin of
turbulence driving (Nakamura and Li, 2011; Offner and Liu,
2018), as well as cluster and massive star formation (Wang et al.,
2010; Cunningham et al., 2011; Kuiper et al., 2015; Li et al., 2018).

In the context of massive star formation, another class of
outflowsmodels are based on the luminosity and ionization. Sub-
grids models of outflows generated by massive star luminosity
have been developed (e.g., Krumholz et al., 2005; Peters et al.,
2014), but the physical mechanisms driving this type of outflows
are not yet well understood. No work in the context of massive
star formation has accounted for the combined effects of
magnetic fields and radiative force with a resolution sufficient
to resolve the magnetic outflow launch. There is certainly a
combination of magneto-centrifugal process and from radiative
pressure, depending on the mass of the forming protostar.

7.3. Second Collapse and Pre-main
Sequences
Ideally, the sub-grid models should be designed to reproduce the
results of high resolution studies, which resolve the protostar
scales. The short time integration after stellar core formation,
dominated by the adiabatic evolution, does not allow to design
sub-grid models for protostellar feedback from full 3D RMHD
calculations with a high level of confidence. For these reason,
all recent works mostly rely on the results of 1D spherical
symmetry results to set their protostellar core evolution models.
For instance, Kuiper and Yorke (2013) use the pre-main sequence
evolution code STELLAR (Bodenheimer et al., 2007; Beuther
et al., 2008) to determine the protostellar luminosity of the
non-resolved protostars. Pelupessy et al. (2013) developed the
open source Astrophysical Multi-purpose Software Environment
(AMUSE), a component library of simulations involving different
physical domains and scales. For instance, it enables one to
couple hydrodynamical codes (GADGET, ATHENA, AMRVAC)
with pre-main sequence and binary evolution codes such as
MESA (Paxton et al., 2011). Recently, Wall et al. (2019) used
AMUSE to perform a star cluster formation model that includes
individual star formation from self-gravitating, magnetized gas,
coupled to collisional stellar dynamics. It couples different tools:
the AMR code FLASH (Fryxell et al., 2000), the N-body code ph4
(Capuzzo-Dolcetta et al., 2012), and the stellar evolution code
SeBa (Portegies Zwart and Verbunt, 1996). We anticipate to see
more works using this strategy of coupling tools and scales in the
near future.

Recent work fromVaytet et al. (2018) have managed to resolve
the second core formation with non-ideal MHD (Ohm diffusion
and ambiploar diffusion) from collapse 1 M⊙ dense core (see
Figure 3). Interestingly, they show that the magnetic field lines
topology is very different at the first and second core scales.
Ambipolar diffusion is dominating at the first core scale. The
magnetic fields direction is essentially vertical and the magnetic
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fields and the gas evolution are decoupled. At the second core
scale, the ionization rises due to high temperature and the
system is back to ideal MHD, but with a high plasma beta β =
Ptherm/Pmag. The weak magnetic field is efficiently wrapped up
by the gas rotation and the resulting fields direction is essentially
toroidal. On the opposite, when ideal MHD is preserved all the
way from the dense core to the stellar core, the magnetic fields
lines are strongly pinched and the field remains poloidal at the
second core scale. The energy balance at the first and second
core accretion shocks is also different. While the accretion shock
at the first core has been classified as a radiative supercritical
shock, with all the incident kinetic energy radiated away (or often
referred to as cold accretion), in 1D spherical core collapse studies
(Commerçon et al., 2011a; Vaytet et al., 2012), recent 3D works
have shown that the first core accretion experiences both cold
and hot accretion at the same time at its surface, depending on
the accretion flows morphology. On the surface of the stellar
core, the accretion shock has been found to be subcritical (Vaytet
et al., 2012; Vaytet et al., 2018; Tomida et al., 2013) with a
significant part of the incident kinetic energy transferred to the
protostars. Although these results have been investigated only
for the very first stages of the protostar evolution (only 1 month
in Vaytet et al., 2018), they indicate that it is not easy to derive
general properties of small scales phenomena to design robust
sub-grid models. In particular, Wurster et al. (2018) show that
the magnetic fields evolution of the protostars they formed in
their SPH models is largely affected by numerical diffusion. Last,
the radiative efficiency of the stellar accretion shock has been
shown to be a key process for the pre-main sequence evolution
and sets the radius of the young protostars (Baraffe et al., 2012).
We recall that the sub-gridsmodels designed for the radiative and
dynamical feedback take the protostellar radius as an input. The
launching speed of the protostellar jets as well as the accretion
luminosity depends on R−1

⋆ .

8. DISCUSSION

We have described almost all the numerical methods that are
required tomodel the star formation process within the turbulent
interstellar medium. These discretised equations must now be
solved for a given set of initial and boundary conditions, over
some prescribed time. This defines the numerical set up and
the overall simulation strategy. Obviously, given the wide range
of spatial and temporal scales involved, one cannot realistically
model an entire galaxy all the way down to the formation of
brown dwarves and proto-planetary disks. Unfortunately, given
the complexity of the star formation process, and the fact that
large and small scales are strongly coupled, this is required by
the physics of the problem. Indeed, supersonic turbulence is
seeded on large scales, where kinetic energy is injected through
shearing or colliding flows induced by galactic rotation, spiral
waves and extra-galactic accretion flows. Moreover, turbulence
and gas ejection can be triggered by stellar feedback processes
occurring on very small scales, such as radiation driven flows, jets
and ultimately supernovae explosions.

Modeling star formation is therefore fundamentally a multi-
scale, multi-physics problem, and a very difficult one. Past or
present day simulations always rely on some compromises.

We can decompose them into several categories, corresponding
roughly to the adopted box size and initial conditions. First, full
galaxy simulations, where spiral waves and spiral shocks are used
as the seed for turbulence. The box size must be of several tens
of kiloparsecs to contain the entire rotating disk and possibly
the galactic corona. The gas is compressed through the spiral
shocks or various colliding flows. Thermal and gravitational
instabilities fragment the gas into small molecular clouds. The
spatial resolution never really drops below 0.1 or 1 pc in these
simulations, so that stars cannot be modeled individually, at
least for massive galaxies like the Milky Way (see Figure 4

for illustration). Simulators rely on simplified, sub-grid star
formation recipes based on stochastically spawning star cluster
particles of the same mass, or on the sink particle technique
where in this case sink particles represent a star cluster, rather
than a single star. Bournaud et al. (2010) studied the properties
the ISM substructure and turbulence in galaxy simulations with
resolutions up to 0.8 pc and 5 × 103 M⊙ with RAMSES. Renaud
et al. (2013) and Kraljic et al. (2014) were able to capture the
transition from turbulence-supported to self-gravitating gas with
resolution up to 0.05 pc in simulations ofMilkyWay-like galaxies
using RAMSES. Hopkins et al. (2012) presented SPH simulations
dwarfs galaxies and Milky Way (MW) analogs to massive star-
forming galactic discs with pc-scale resolution. Later, Hopkins
et al. (2014) wrapped their implementation of feedback in the
FIRE (Feedback In Realistic Environments) simulations suite,
aiming, among others objectives, at resolving the formation of
giant molecular clouds and the multi-phase interstellar medium
(ISM). More recently, Hopkins et al. (2018) updated the FIRE
implementation in the GIZMO code and performed sub-parsec
resolution simulations of galactic discs. We also refer readers
to the work of Dobbs et al. (2018) using SPH, Tasker (2011)
using ENZO, and Smith et al. (2018) using AREPO. In addition,
we note that for dwarf galaxies, it becomes possible to model
much smaller scales so that at least massive stars can be modeled
individually: Hu et al. (2016), Hu (2019) using SPH and a
resolution of 1 − 5 M⊙ by gas particle, Emerick et al. (2018) and
Emerick et al. (2019) using ENZO with a maximum resolution
of 1.8 pc.

The second approach relies on simulating only a small portion
of vertically stratified galactic disks. The box size is usually
around 1 kilo-parsec, with periodic boundary conditions in the
direction of the disk plane and outflow conditions in the direction
perpendicular to the disk plane. The geometry is clearly heavily
constrained by this elongated, vertical and stratified layer of
gas but it captures most of the phenomenon at work locally in
the disk. Using the shearing box technique, one can also add
more realistic shearing conditions, so that turbulence can be
maintained both by stellar feedback and a large scale galactic
shearing flow (Kim et al., 2002). In this case, the resolution
can drop significantly below 0.1 parsec, may be 0.01 parsec or
even less for the highest resolution simulations. Unfortunately,
it is still impossible to model individual stars at this resolution
so that here again most papers are based on the sink particle
techniques for representing star clusters. It is however almost
possible to resolve massive molecular cores (and their associated
sink particles) individually, so that individual supernovae and
HII regions can be resolved. These simulations are probably the
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FIGURE 4 | Simulation of the Milky Way: column density of the gas disc in a sub-parsec resolution simulation. The color table only applies to the main panel: the table

has been changed in each zoom-in view to enhance contrast. Figure adapted from Renaud et al. (2013) with permission from the authors.

most realistic models of the interstellar medium of the Galaxy,
although still far from resolving the entire stellar population. In
standard setups, the models account for the thermal instability
and feedback (mechanical by SN and radiative by massive stars).
First grid-based models were presented in Korpi et al. (1999)
and included magnetic fields, SN heating and radiative cooling.
3D MHD AMR models of a kpc-scale ISM driven by SNe were
presented in de Avillez and Breitschwerdt (2005) and Joung and
Mac Low (2006). Currently, numerous studies and projects are
based on a similar setup, with increasing physics put on over
several years (SNe, radiative feedback, cosmic-rays, shear, etc.):
the series of papers by Hennebelle and Iffrig (2014), Iffrig and
Hennebelle (2017), and Colling et al. (2018) as well as the work
of Martizzi et al. (2016) and Butler et al. (2015, 2017) using
RAMSES, by Kim et al. (2011), Kim et al. (2013), Kim and
Ostriker (2015), Kim and Ostriker (2017), and Kim and Ostriker
(2018) using ATHENA, the SILCC project papers using FLASH

(Walch et al., 2015; Girichidis et al., 2016, 2018; Gatto et al., 2017;
Peters et al., 2017).

The third approach aims at simulating individual molecular
cores. The box size ranges from 100 parsec down to 0.1 parsec
for the highest resolution simulations. The mass typically ranges
from 50 to a few 103 M⊙. Boundary conditions are either
periodic or isolated. In the latter case, the cloud as a whole
can collapse, while the former set of simulations represents a
more uniform background with collapsing regions only at very
small scales. The smallest box sizes represents internal regions
of larger clouds and are the only simulations for which the
entire star population, down to the brown dwarf limit, can be
modeled. These simulations are directly tackling the origin of
the stellar IMF, and the formation of proto-planetary disks. We
mention in the following a non-exhaustive list of the work done
in this intense field of research. The series of papers by Bate &
collaborators have investigated the collapse of molecular clouds
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of mass ranging from 50 to 500 M⊙ with increasing physics
and numerical resolution since their pioneer work (Bate et al.,
2003) using SPH. In particular, they have investigated the effect
of radiative transfer (Bate, 2009, 2012) and magnetic fields (Price
and Bate, 2008; Price and Bate, 2009). The work of Dale et al.
(2007), Dale and Bonnell (2011), and Dale et al. (2012) have also
used SPH simulations to study the effect of ionizing radiation
from the formingmassive stars. AMR codes have also been widely
used in this context, accounting for a lot of physics and initial
and boundary conditions. We note the work of Girichidis et al.
(2011), Girichidis et al. (2012b), and Girichidis et al. (2012a)
using FLASH who studied the importance of isolated initial
conditions in isothermal cloud core collapse (without stellar
feedback). Federrath et al. (2014b) also used FLASH to perform
simulations of isolated cores with protostellar feedback (jets).
Krumholz et al. (2007a), Krumholz et al. (2012), Hansen et al.
(2012), Myers et al. (2013), Myers et al. (2014), Cunningham
et al. (2011), Li et al. (2018), and Offner and Chaban (2017)
presented 3D collapse models using ORION with radiative
transfer and/or ideal MHD, as well as protostellar feedback
(luminosity, outflows). RAMSES has also been extensively used

in this approach: Hennebelle et al. (2011) and Commerçon et al.
(2011b) for 100 M⊙ isolated core collapse models with (R)MHD,
Lee and Hennebelle (2018a), Lee and Hennebelle (2018b), and
Lee and Hennebelle (2018c) focused on the peak of the IMF
using (M)HD 1000 M⊙ isolated core collapse models, Geen et al.
(2015), Geen et al. (2016), and Gavagnin et al. (2017) studied the
effect of ionizing radiation using the M1 moment method for
radiative transfer. Last, we note the work of Wang et al. (2010)
using ENZO with isolated boundary conditions, ideal MHD and
protostellar jets. This non-exhaustive list of works done using this
approach demonstrates the importance and the utility of such
models. These simulations, however, rarely follow the formation
of the second Larson core. They still rely on the sink particle
technique, and on sub-grid models as well, when it comes to
modeling proto-stellar jet launching, energy budget at accretion
shocks and their associated radiation.

The last category of simulations deals with isolated collapsing
low-mass dense cores, with the goal of following the formation
of protostellar disks and ultimately the entire second collapse
without relying on any sub-grid model. This ambitious strategy
has already been discussed at length in the previous sections,

FIGURE 5 | Simulation of protostellar disk formation within molecular clouds. The column density maps show the entire molecular (upper left panel) and successive

zoom within a star-forming dense core. Figure adapted from Zhang et al. (2018) with permission from the authors.
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so we will not describe it here again. We also refer the reader
to the review by Wurster and Li (2018) on the formation of
protostellar disks.

An interesting intermediate strategy has been developed
recently with the zoom-in technique. This method is used now
routinely in galaxy formation simulations, for which only a single
dark matter halo can be re-simulated at much higher resolution,
keeping the entire cosmological environment alive but at a
coarser resolution. Here, the idea is to model the turbulent
molecular cloud on large scales, say with a box of size 100 parsecs,
to identify a single collapsing core, and to zoom-in on the core
with much higher resolution and follow the first and possibly
the second collapse and the formation of the proto-planetary
disk. For instance, Kuffmeier et al. (2017) and Kuffmeier et al.
(2018) presented RAMSES AMR zoom-in calculations from an
outer scale of 40 pc down to cell sizes of 2 au to study the
effect of the environment on the formation and the evolution
of protoplanetary disks. Zhang et al. (2018) performed high
resolution calculations of the formation and evolution of a star-
forming core, obtained by running larger scale calculations of
molecular cloud formation (Zamora-Avilés et al., 2018). They
used FLASH with a maximum resolution of 25 AU and were able
to cover scales from 256 pc to 25 AU (see Figure 5). Mocz et al.
(2017) performed moving mesh AREPO calculations from a box
size of about 5 pc down to a maximum resolution of ≃ 4 AU
(≃ 5 × 10−5 pc) to study the magnetic fields morphology from
large to dense core scales. At larger scale, Padoan et al. (2017)
performed a simulation of supernova-driven turbulence using
RAMSES, with a box size of 250 pc and a maximum resolution of
0.0076 pc. At kpc scales, Hennebelle (2018) (FRIGG project with
RAMSES, simulation of the formation of self-gravitating cores)
and Seifried et al. (2017) (SLICC-Zoom project with FLASH,
simulations of the formation of molecular clouds) presented
zoom calculations of stratified Galactic disks down to resolution
of 10−2 − 10−3 pc. Thanks to the steady increase in CPU
power, we expect to see more and more work using the zoom-in
technique in the coming years.

These different strategies are all in different ways very
ambitious and address different problems in the theory of star
formation. In addition, a compromise needs to be found between
physical realism and computational efficiency. On one hand, we
need to include magnetic fields, radiation fields and complex
chemistry, but on the other hand, we need many small resolution
elements and many time steps. Moreover, in the context of
high performance computing, modern supercomputers are very
hard to use at full efficiency when complex grid geometries is
used in conjunction with expensive and demanding algorithms.
There is a clear tendency for simulation projects deployed on

the largest supercomputers in the world to use simple grid
geometry, like Cartesian meshes and periodic boxes, with a
highly simplified physical model. These large scale simulations
are however very interesting to explore statistical aspects and
large inertial range for turbulent flows. For example, Federrath
(2013) performed 40963 hydrodynamic isothermal turbulence
simulations using FLASH with periodic boundary condition
for more than 40,000 time-steps on 32,768 CPU cores. In
the framework of the magnetorotational turbulence, Fromang
(2010), Ryan et al. (2017) performed high resolution simulations
of isothermal shearing boxes using, respectively, ZEUS and a
GPU version of RAMSES.

In conclusion, all simulations of star formation published in
the literature, many of which have been discussed here, explore
various corners of the numerical parameter space: resolution
vs. box size, statistics vs. internal structure, physical realism vs.
computational speed. It is interesting that at the smallest scales of
interest here, a “first principle” approach is in principle possible
and pursued by several groups. At larger scales, however, star
formation simulations share the same kind of limitations as
galaxy formation simulations, or climate models and weather
forecasting simulations, namely a strong dependence of the
results on small, unresolved scales. Although bigger computers
with more efficient, higher order codes and more realistic
models will certainly help shed light of the mysteries of star
formation, a robust methodology to implement sub-grid models
and couple them properly to the fluid equations still needs to
be invented in our field. Various attempts have been proposed
in the context of unresolved turbulence and star formation
from analytical works (Krumholz and McKee, 2005; Hennebelle
and Chabrier, 2011; Padoan and Nordlund, 2011; Federrath
and Klessen, 2012) but the methodology, in the context of
the full spectrum of required physical processes, is still at
its infancy.
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