
HAL Id: hal-02371238
https://hal.science/hal-02371238v1

Submitted on 19 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards ultra-scale Branch-and-Bound using a
high-productivity language

Tiago Carneiro, Jan Gmys, Nouredine Melab, Daniel Tuyttens

To cite this version:
Tiago Carneiro, Jan Gmys, Nouredine Melab, Daniel Tuyttens. Towards ultra-scale Branch-and-
Bound using a high-productivity language. Future Generation Computer Systems, 2020, SI: On The
Road to Exascale II: Advances on High Performance Computing and Simulations, 105, pp.196-209.
�10.1016/j.future.2019.11.011�. �hal-02371238�

https://hal.science/hal-02371238v1
https://hal.archives-ouvertes.fr

Towards Ultra-scale Branch-and-Bound Using a
High-productivity Language

Tiago Carneiroa,∗, Jan Gmysc, Nouredine Melaba,b, Daniel Tuyttensc

aINRIA Lille - Nord Europe, France
bUniversité de Lille, CNRS/CRIStAL, France

cMathematics and Operational Research Department (MARO), University of Mons,
Belgium

Abstract

Due to the highly irregular nature and prohibitive execution times of Branch-

and-Bound (B&B) algorithms applied to combinatorial optimization problems

(COPs), their parallelization has received these two last decades great atten-

tion. Indeed, significant efforts have been made to revisit the parallelization of

B&B following the rapid evolution of high-performance computing technologies

dealing with their associated scientific and technical challenges. However, these

parallelization efforts have always been guided by the performance objective

setting aside programming productivity. Nevertheless, this latter is crucial for

designing ultra-scale algorithms able to harness modern supercomputers which

are increasingly complex, including millions of processing cores and heteroge-

neous building-block devices. In this paper, we investigate the partitioned global

address space (PGAS)-based approach using Chapel for the productivity-aware

design and implementation of distributed B&B for solving large COPs. The

proposed algorithms are intensively experimented using the Flow-shop schedul-

ing problem as a test-case. The Chapel-based implementation is compared to its

MPI+X-based traditionally used counterpart in terms of performance, scalabil-

ity, and productivity. The results show that Chapel is much more expressive and

up to 7.8×more productive than MPI+Pthreads. In addition, the Chapel-based

∗Corresponding author
Email address: tiago-carnero.pessoa@inria.fr (Tiago Carneiro)

Preprint submitted to Journal of LATEX Templates November 19, 2019

search presents performance equivalent to MPI+Pthreads for its best results on

1024 cores and reaches up to 84% of the linear speedup. However, there are

cases where the built-in load balancing provided by Chapel cannot produce reg-

ular load among computer nodes. In such cases, the MPI-based search can be

up to 4.2× faster and reaches speedups up to 3× higher than its Chapel-based

counterpart. Thorough feedback on the experience is given, pointing out the

strengths and limitations of the two opposite approaches (Chapel vs. MPI+X).

To the best of our knowledge, the present study is pioneering within the context

of exact parallel optimization.

Keywords: Ultra-scale optimization, Branch-and-Bound, PGAS, Chapel,

MPI+X.

1. Introduction

Tree search algorithms are strategies that implicitly enumerate a solution

space, dynamically building a tree. This class of algorithms is often used for

the exact resolution of combinatorial optimization problems (COP), and it is

present in many areas, such as operations research, artificial intelligence, bioin-5

formatics, and machine learning [1, 2]. As COPs are often NP-hard, the size

of problems that can be solved to optimality is limited, even if large-scale dis-

tributed computing is used [3, 4].

Among the tree search algorithms, the Branch-and-Bound (B&B) is one

of the most widely used methods for solving instances of COPs to optimality.10

Due to its intrinsically parallel nature and prohibitive execution times [4], B&B

algorithms have been revisited using several parallel computer architectures, in-

cluding multicore [5], manycore processors [6, 7], and computational grids [8].

In this sense, it is expected that exascale computers will allow a significant

decrease in the execution time required by B&B algorithms to solve COP in-15

stances to optimality. However, such large scale systems are going to be complex

to program, and efforts towards productivity are crucial for better exploiting

this future generation of computers [9, 10].

2

The parallelization efforts of B&B algorithms have always been guided by the

performance objective setting aside productivity. Indeed, the focus is mostly put20

on the design of new data structures that are often problem-specific [11, 12, 13,

5]. Moreover, high-productivity languages historically suffer from severe perfor-

mance penalties. Additionally, they often do not provide low-level features and

are not suited to parallelism [14, 15]. Therefore, high-productivity languages

are not commonly employed within the scope of parallel tree search. Instead,25

this kind of algorithm is frequently coded in C/C++, and different libraries

and programming models are combined for exploiting parallelism and commu-

nication [3]. Among the high-productivity languages, Chapel is one designed

for high-performance computing, and it is competitive to both C-OpenMP and

MPI+X in terms of performance, considering different benchmarks [16].30

The objective of the present research is to investigate whether it is possible to

use a high-productivity language for efficient implementation of distributed B&B

algorithms for solving COPs. To the best of our knowledge, the present research

is the first one that investigates the use of a high-productivity language for this

purpose. The primary challenge is to find a trade-off between productivity and35

performance, as parallel B&B algorithms often require hand-optimized code to

achieve performance.

To accomplish the objective of this paper, we present a B&B algorithm

conceived for the Chapel high-productivity language. This algorithm is im-

plemented using the productivity-aware features of Chapel for distributed pro-40

gramming and applies both the global-view of control flow and data structures

(PGAS) programming models, instead of the well-known Single Program - Mul-

tiple Data (SPMD). This implementation performs load balancing among dif-

ferent processes and also harnesses all CPU cores that a computer node has.

The experimental results show that, in the context of the present research,45

Chapel is almost 6× more expressive and from 2× to 7.8× more productive

than MPI+Pthreads. The Chapel-based search presents performance equivalent

to MPI+Pthreads for its best results on 32 computer nodes (1024 cores) and

reaches up to 84% of the linear speedup. The productivity-aware features for

3

load balancing provided by Chapel are not enough for efficiently exploiting the50

computer resources of several locales in more irregular scenarios. In such cases,

the MPI-based search can be up to 4.2× faster and reach speedups up to 3×

higher than its Chapel-based counterpart.

The main contributions of this paper are the following:

• We present a parallel distributed B&B for solving permutation combina-55

torial optimization problems implemented using the productivity-aware

features of Chapel for distributed programming. We intensively exper-

iment the proposed algorithm using two lower bound functions, which

result in two entirely distinct behaviors of the search.

• We analyze the influence of the distribution of the PGAS data structure60

on the overall performance of the implementation. Moreover, we study

the effects of using atomic global view variables and the limits of the code

automatically generated for exploiting the intra-node parallelism.

• Chapel provides three load balancing iterators for distributed program-

ming. We also investigate which one is the best in the scope of B&B65

search algorithms.

• We compare the implementation in Chapel to a state-of-the-art B&B writ-

ten in MPI+Pthreads. This comparison is made in terms of performance,

scalability, and productivity.

• Finally, we discuss the results in terms of productivity, performance, and70

the road towards exascale. The insights provided by the present research

may help potential users of other high-productivity languages and PGAS-

based libraries, such as Unified Parallel C (UPC), X10, and OpenSHMEM.

The remainder of this paper is structured as follows. Section 2 brings back-

ground information and related works. Section 3 presents the distributed B&B75

algorithm written in Chapel. In turn, Section 4 presents a performance and

scalability evaluation of the proposed implementation. A productivity-oriented

4

evaluation of Chapel for programming distributed B&B is performed in Sec-

tion 5. Then, Section 6 brings a discussion of the results obtained in the present

research. Finally, conclusions are outlined in Section 7.80

2. Background and Related Works

2.1. The Chapel Programming Language

Chapel (Cascade High Productivity Language) is an open-source parallel

programming language designed to improve productivity in high performance

computing [17]. It incorporates features from compiled languages such as C,85

C++, and Fortran, as well as high-level concepts related to Python and Matlab.

The parallelism is expressed in terms of lightweight tasks, which can run on

several locales or a single one. In this work, the term locale refers to a symmetric

multiprocessing computer in a parallel system [18].

In Chapel, both global view of control flow and global view of data struc-90

tures are present [16]. Concerning the first one, the program is started with

a single task, and parallelism is added through data or task-parallel features.

Moreover, a task can refer to any variable lexically visible, whether this variable

is placed in the same locale on which the task is running, or in the memory of

another one. Regarding the second one, indexes of data structures are globally95

expressed, even in case the implementation of such data structures distributes

them across several locales. Thus, Chapel is a language that applies the Parti-

tioned Global Address Space (PGAS) programming model [19]. Finally, indexes

of data structures are mapped to different locales using distributions. Contrast-

ing to other PGAS-based languages, such as UPC and Fortran, Chapel also100

supports user-defined distributions [20].

Previous versions of Chapel were not yet a suitable replacement for C or

Fortran+MPI in terms of performance. But, they could be instead a suitable

replacement for both Matlab and Python [21, 22]. Chamberlain et al. [16]

present the release 1.18 of the Chapel language, and show that it is competitive105

5

to MPI+X, OpenMP, and SHMEM regarding performance, taking into account

different benchmarks.

2.2. Tree Search Algorithms

Algorithms for solving combinatorial optimization problems can be divided

into exact (complete) or approximate strategies [23]. Exact strategies guarantee110

to return an optimal solution for any instance of the problem in a finite amount

of time. Complete algorithms for NP-hard problems usually apply concepts

of enumerative strategies and therefore have exponential worst-case execution

times [24]. In contrast, the approximate ones trade optimality against a good

and valid solution obtained in reasonable time [25].115

Tree search algorithms are strategies that implicitly enumerate a solution

space, dynamically building a tree [2]. The internal nodes of the tree are partial

solutions, whereas the leaves are complete solutions. Algorithms that belong to

this class start with an initial node, which represents the root of the tree, i.e.,

the initial state of the problem to be solved. Nodes are branched during the120

search process, generating children nodes more constrained than their father

node. As shown in Figure 1, the generated nodes are evaluated, and then, the

valid and feasible ones are stored in a data structure called Active Set.

At each iteration, a node is removed from the active set according to a selec-

tion rule [1]. The search generates and evaluates nodes until the data structure125

is empty or another termination criterion is satisfied. If an undesirable state

is reached, the algorithm discards this node and then chooses an unexplored

x

x
Branching Bounding

Active Set

Pruning

Pruning

Selection

Figure 1: Visual representation of a B&B search algorithm (Own representation based on [3]).

6

(frontier) node in the active set. This action prunes some regions of the solu-

tion space, preventing the algorithm from unnecessary computation. The degree

of parallelism of tree-based search algorithms is potentially very high, as the so-130

lution space can be partitioned into a large number of disjoint portions, which

can be explored in parallel.

2.2.1. Branch-and-Bound Search Algorithms

Branch-and-Bound tree search algorithms are one of the most widely em-

ployed methods for solving combinatorial optimization problems to optimality.135

At each iteration, a B&B algorithm uses four basic operators (branching, bound-

ing, pruning, and selection) to explore a usually huge search space intelligently.

The best solution found so far is saved and can be improved from an iteration

to another. The four operators of a B&B algorithm are described as follows.

• The branching operator divides a subproblem into several smaller, pair-140

wise disjoint subproblems.

• The bounding operator is used to compute a lower-bound value of the

optimal solution of each generated subproblem.

• The pruning operator uses the lower bound to decide whether to elim-

inate a subproblem or to continue its exploration. A subproblem s is145

eliminated (pruned) if LB(s) ≥ f(π∗), where LB designates the lower

bounding function, f the objective function to minimize and π∗ the best

solution found so far (incumbent).

• The selection operator chooses one subproblem among all pending sub-

problems according to a predefined exploration strategy. In this paper,150

depth-first search (DFS) is used (backtracking), as memory requirements

for other search strategies like best- or breadth-first search are often ex-

cessive [1].

In most B&B algorithms, the bounding operator is by far the most time-

consuming part. If multiple lower bounds are available for a given problem,155

7

one has to consider the trade-off between the computational complexity of a

bound and the size of the explored search tree. Stronger (and computationally

more expensive) lower bounds result in a more coarse-grained workload, while

weaker bounds lead to larger trees composed of easy-to-evaluate subproblems.

The choice of the bounding functions also has a strong impact on the irregular160

and unpredictable shape of the explored tree - thus, on load imbalance. Indeed,

the performance of parallel B&B strongly depends on the efficiency of the load

balancing strategy.

2.3. Branch-and-Bound Applied to the FSP

This section brings background information concerning the B&B applied165

to the Flow-shop scheduling problem (FSP). Initially, the FSP is introduced,

followed by the bounding functions used for node evaluation. Next, two imple-

mentation aspects of a B&B algorithm for solving the FSP are detailed: data

structures and the search procedure.

2.3.1. Problem overview170

This work focuses on permutation combinatorial optimization problems, for

which an N -sized permutation represents a valid and complete solution. Permu-

tation combinatorial problems are used to model diverse real-world situations,

and they are often NP-hard [26, 1]. The FSP consists in scheduling N jobs

on M machines m1, m2,. . ., mM in that order. The machines can handle at175

most one job at a time, and the processing of jobs cannot be interrupted. The

objective is to minimize the makespan, i.e., the termination date of the last job

on the last machine. Although optimal non-permutation schedules exist, the

search space is commonly restricted to permutation schedules. Even with this

simplification, FSP is NP-hard for M ≥ 3 [27].180

2.3.2. The Bounding Function

Considering FSP as a test-case, we will now briefly describe the two lower

bounds on the optimal makespan of a subproblem used in this work. A more

detailed description can be found in the framework of lower bounds for the FSP

8

proposed in [28]. Let pj,k designate the processing time for job j on machine

k and σ a subproblem defined by a partial permutation of jobs scheduled in

the beginning. After the completion of the initial schedule, each machine will

remain active at least for a time equal to the total remaining workload on that

machine. Consequently, a lower bound is given by

LB1(σ) = max
k

C(σ, k) +
∑
j∈J

pj,k + γk


where C(σ, k) designates the completion time of the partial schedule σ on ma-

chine k, J the set of unscheduled jobs and γk a precomputed term that corre-

sponds to the minimum time required between the end of operations on machine

k and the termination on the last machine (M). The computational complexity185

of the lower bound LB1 is O(M ×N).

A stronger lower bound, which we denote LB2, is obtained by relaxing ca-

pacity constraints on all but two bottleneck machines and taking the maximum

makespan of the resulting M(M−1)
2 two-machine problems. Sorting jobs accord-

ing to Johnson’s rule [29] for all machine pairs is performed as a preliminary190

task, which reduces the complexity of the lower bound LB2 from O(M2N logN)

to O(M2N).

We decided to carry out experiments with two different lower bounds in order

to gain insights into the impact of their different computational characteristics.

More precisely, the simple lower bound LB1 results in larger trees with a more195

fine-grained workload. The two-machine bound LB2 results in a more coarse-

grained but also more irregular workload, due to the improved efficiency of the

pruning operator. Both lower bounds are implemented in C.

2.3.3. Data Structures and Search Procedure

The data structure Node is similar to any permutation combinatorial prob-200

lem. It contains two integer vectors of the size of the complete solution. In

the scope of the FSP, both vectors are of size I.jobs. The first vector, called

permutation, keeps a feasible and valid incomplete solution, while the second

9

Algorithm 1: Depth-first B&B algorithm [2].

1 I ← get instance()
2 upper bound ← get initial solution(I)
3 stack.push(get initial node(I))
4 repeat
5 node ← stack.pop()
6 node.cost ← lower bound(node, I)
7 if node is not a complete solution then
8 if node.cost < upper bound then
9 generate the children nodes of node

10 push the generated children nodes onto the stack

11 end

12 else
13 if node.cost < upper bound then
14 upper bound ← node.cost
15 end

16 end

17 until stack is empty

one, called scheduled, keeps track of the already scheduled jobs by setting its

position j to 1 if job j is scheduled. In turn, the instance I contains a matrix205

CN×M of integers that gives the processing time pj,k of a job j (j = 1, . . . , N)

on machine k (k = 1, . . . ,M).

The search procedure is based on a serial and hand-optimized backtracking

for solving permutation combinatorial problems originally written in C [13].

The serial backtracking was then adapted to Chapel, obeying the hand-made210

optimizations, instruction-level parallelism, data structures, and types. The

search strategy is a non-recursive backtracking that does not use dynamic data

structures, such as stacks. The semantics of a stack is obtained by using a

variable depth and by trying to increment the value of the vector permutation

at position depth. If this increment results in a valid incomplete solution, its215

feasibility is checked. In case the current incomplete solution is also valid, the

depth variable is incremented, and the search proceeds to the next depth. After

all configurations for a given depth are explored, the search backtracks to the

previous one. One can see in Algorithm 1 a high-level design of the search

strategy implemented in this work.220

10

2.4. Related Works

Due to the highly irregular nature and prohibitive execution times of B&B

algorithms for COPs, their parallelization has received these two last decades

great attention from both combinatorial optimization and parallel computing

communities. Indeed, big efforts have been made to revisit the parallelization225

of B&B following the rapid evolution of high-performance computing technolo-

gies1 and their associated scientific and technical challenges. Indeed, B&B has

been revisited for computational grids [4, 8] in the late 1990s and early 2000s,

for multi-core processors [5] in the mid-2000s for many-core processors includ-

ing GPU accelerators [6] and Intel Xeon Phi coprocessors and their combina-230

tion [7], etc. However, these parallelization efforts have always been guided by

the performance objective setting aside programming productivity. Indeed, the

focus is mostly put on the design of new, often problem-specific, data structures

[11, 12, 13, 5] for the efficient management of the ”tsunami” of sub-problems

generated during the resolution process and the proposition of new optimiza-235

tion techniques to deal with challenging issues including dynamic load balancing,

communication optimization, synchronization, etc. These parallelization efforts

are often limited to one or two specific hardware resource(s), which is obviously

not sufficient to harness modern supercomputers. Indeed, these latter are in-

creasingly large and include more and more heterogeneous devices making their240

programming more complex. Therefore, in addition to performance, produc-

tivity is a major criterion that should be considered when designing ultra-scale

parallel applications like B&B.

Targeting performance, parallel tree-based search algorithms including B&B

are very often written in C/C++, due to their low-level features and supported245

parallel computing libraries [30]. In a distributed context, these algorithms

are combined with distributed programming libraries for the implementation of

load balancing and the explicit communication between processes [3, 31, 4]. As a

1as attested by the Top500 international ranking of the 500 most powerful supercomputers
in the World.

11

consequence, programming distributed tree search algorithms can be challenging

and time-demanding. Therefore, high-level PGAS-based programming environ-250

ments are good candidates for improving productivity. However, for B&B (exact

optimization) the PGAS-oriented approach has never been investigated, which

makes our contribution pioneering to the best of our knowledge. More generally,

in the parallel optimization setting the rare papers we have found are [32, 33],

which are related to parallel local search (PLS) metaheuristics (approximate255

optimization). In [32], the authors investigate the use of Global Address Space

Programming Interface (GPI) PGAS API [34] for PLS. According to the re-

ported experimental results, GPI allows one to get speed-ups similar to those

obtained using MPI. In [33], the X10 [35] general-purpose language, developed

by IBM, is used for PLS. X10 is based on Asynchronous PGAS and supports260

different levels of concurrency. The reported results show that good speed-ups

could be obtained on some basic problem instances. However, no comparison

to MPI(+X) is given as it is out of the scope of the paper.

3. A Productivity-aware Branch-and-Bound Algorithm

This section presents a distributed B&B algorithm for solving instances of265

the FSP to optimality that applies the productivity-aware features of Chapel.

Initially, the initial premises considered in the design and implementation of the

algorithm are discussed. Then, the main steps of the algorithm are detailed:

the initial serial search and the distributed B&B.

3.1. Initial Premises270

The main challenge in the conception of a B&B algorithm using a high-

productivity language is to find a trade-off between productivity and perfor-

mance. However, as stated in the last section, programmers have sacrificed

productivity to achieve performance and to cope with the massive number of

subproblems generated during the search. To achieve such a trade-off, we pro-275

ceed as follows.

12

Figure 2: Initial search that generates the active set A for jobs = 4 and cutoff = 3. The
figure depicts the branch that has the element 1 of the permutation as the root and generated
6 valid and feasible incomplete solutions at depth cutoff = 3.

The bounding operator of a B&B algorithm is problem-dependent and often

a complex algorithm by itself. Therefore, translating a bounding function from

C/C++ to Chapel would be time-consuming and error-prone. In this work, we

exploit the C-interoperability features of Chapel. The bounding function used280

is a legacy code implemented in C, whereas all the search elements, i.e., the

enumerative aspects of the search and the coherency of the incumbent solution,

are implemented in Chapel. Furthermore, the built-in load balancing features

of Chapel are used on both inter- and intra-node levels of parallelism.

The proposed algorithm consists of two main parts: the initial serial search285

on locale 0 and the multi-locale (distributed) search. The pseudo-codes pre-

sented in the following sections contain elements related to the Chapel lan-

guage. Finally, the concepts further presented are similar to any permutation

combinatorial problem and can be adapted for solving other problems with

straightforward modifications [6, 13].290

3.2. The Initial Search

Thanks to Chapel’s global view of the control flow, it is not necessary to

implement the SPMD programming model. Instead, the search starts serially,

with task 0 running on locale 0. As one can see in Algorithm 2, task 0 initially

receives an instance I of the problem, the first cutoff depth, and the second295

cutoff depth (lines 1−3). As illustrated in Figure 2, a cutoff of c means that the

initial search enumerates all feasible and valid incomplete solutions containing c

13

Algorithm 2: Initial Search on task 0, locale 0.

1 I ← get instance()

2 cutoff ← get cutoff depth()

3 second cutoff ← get scnd cutoff depth()

4 ub ← calculate initial solution(I)

5 N ← I.jobs

6 metrics ← (0, 0)

7 maxcutoff ← N !
(N−cutoff)!

8 A ← [maxcutoff] Node

9 metrics + = generate initial active set(cutoff, I, ub,A)

elements of the permutation. Then, to make the pruning process more efficient,

an initial upper bound (complete and valid solution) for instance, I is received

or calculated (lines 4).300

Before the initial search, it is required to define an active set A with its

size equal to the maximum possible number of feasible and valid incomplete

solutions at depth cutoff (maxcutoff) (line 8). Next, the initial B&B generates

a sufficiently large workload for the distributed search (line 9). For this purpose,

task 0 searches from depth 1 (initial problem configuration) until the cutoff depth305

cutoff , storing all feasible and valid incomplete solutions at depth cutoff into

the active set A (line 9). The second cutoff depth will be used further.

3.3. Data Replication

Due to the global view programming model, the variables of Algorithm 2

are visible to tasks on other locales. However, to avoid remote reads and issues310

concerning the lower bound implementation written in C, read-only data needs

to be replicated and initialized on each locale i ∈ {0, ..., L− 1}, where L is the

number of locales on which the application is going to run.

The pseudo-code in Algorithm 3 shows the initialization and replication of

data structures required by the multi-locale search. Initially, a set of instances,315

of atomic upper bounds, and read-only data are defined using the Private dis-

tribution, which maps each index i ∈ {0, ..., L− 1} to Locales[i]. Then, three

14

Algorithm 3: Data replication algorithm.

1 PrivateSpace ← domain(1) mapped according to Private()

2 Instances ← [PrivateSpace] I type;

3 read only ← [PrivateSpace] RoData;

4 Upper bounds ← [PrivateSpace] atomic int

5 forall inst in Instances, r in Read only, and upper in Upper bounds do

6 inst ← I

7 r ← start read only(Instances[here.id])

8 upper.write(ub)

9 end

loops take place for initializing these sets. The first one initializes each in-

stance in the set Instances using the values of the one located on locale zero,

whereas the second loop initializes the ready-only data requested by the bound-320

ing function on each locale. Finally, the third one is responsible for initializing

an atomic upper bound one each locale. As all sets are defined using the Private

distribution, each iteration i of the loop (line 5) is executed on locale i.

It is worth to mention that the built-in variable here present in (line 7) is

of type locale. The .id query returns the identification id ∈ {0, ..., L − 1} of325

the locale on which the loop iteration is being executed. Finally, as upper is an

atomic variable, it can only be written through the write() method (line 8) .

3.4. Distributing the Active Set

For distributing the active set A across several locales, it is required to

define a domain and map it onto locales according to a distribution. As stated330

in Section 2.1, a distribution indicates how indexes of a data structure are

mapped onto locales [20]. One can see in Algorithm 4 the steps required for the

initialization and distribution of the PGAS-based active set.

Initially, the domain Size is defined using as a parameter the number of

feasible and valid incomplete solutions in the task-local active set A (line 1).335

Then, Size is mapped according to a standard distribution (line 2) 2. Next,

2https://chapel-lang.org/docs/modules/layoutdist.html

15

(locale 0)
Task 0

Cutoff depth

Active set (A)

Ad = A
(Implicit Bulk-Transfer)

Distributed Aset (Ad)

0
Ad

Locale 0

1

Locale 1

Ad

Locale 2

2
Ad

(Initial search)

Figure 3: Task 0 is responsible for distributing the active set across several locales. The
distributed active set Ad consists of several sets Ai

d, i ∈ {0, ..., L− 1}, where L is the number
of locales on which the application is going to run.

Algorithm 4: Active set distribution.

1 Size ← {0..(|A| − 1)} // Domain

2 D ← Size mapped onto locales according to a standard distribution
3 Ad ← [D] : Node

4 Ad ← A // Using implicit bulk-transfer

the distributed active set Ad of type Node is defined over D (line 3), and it

receives the nodes of the task-local active set A though an implicit bulk-transfer

(line 4). This way, instead of performing |A| small transfers, only L − 1 bulk

transfers are performed through the network, being L the number of locales340

on which the application is going to run. Finally, as shown in Figure 3, the

distributed active set Ad is an abstraction consisting in the union of several sets

Ai
d, i ∈ {0, ..., L− 1}.

3.5. The Multi-locale Search

After distributing the active set across different locales, the multi-locale345

search takes place. As one can see in Algorithm 5, parallelism is added in a

way similar to OpenMP shared memory programming, through a forall clause,

16

applying a master-worker model. Moreover, also similarly to OpenMP, there

is no need for implementing distributed load balancing, which is performed by

using distributed iterators (DistributedIters).350

In the master-worker model, task 0 (locale 0) is responsible for distributing

chunks of nodes to other locales. Moreover, the searches are independent, and

the nodes received are roots of B&B trees. Metrics are reduced through Reduce

Intents (with keyword, line 1). In Chapel, it is possible to use the Tuple data

type (equivalent to C-structs) and reduce all metrics at once (line 2). Differently355

from OpenMP, it is not required to define a tuple reduction. The distributed

search finishes when the active set Ad is empty. Then, the program presents a

report taking into account the metrics collected and the found optimal solution.

3.5.1. Exploiting Intra-locale Parallelism

It is possible to perform a multi-locale search relying only on the forall loop360

of Algorithm 5 (line 1). The generated code exploits two levels of parallelism:

inter-locale (distributed) and intra-locale (the CPU cores a locale has). In such

situation, a task receives a chunk of nodes from the master, and then the B&B

search proceeds from depth cutoff until the depth N , i.e. the number of jobs.

However, the number of feasible and valid incomplete solutions at depth cutoff365

may be insufficient to efficiently use all CPU cores of several locales at once. To

cope with this situation, we proceed as outlined in Algorithm 6.

Initially, we calculate the maximum number of children nodes the node re-

ceived as a parameter can have at depth second cutoff , further referred to

by max children (line 6). In Algorithm 6, a child node is a valid and feasi-370

ble incomplete solution at depth second depth which has node as its ancestor

Algorithm 5: Launching the multi-locale search.

1 forall node in Ad following a distributed iterator with(+ reduce metrics) do

2 metrics + = distributed BB(node, cutoff, second cutoff,

3 Instances[here.id], Upper bound[here.id]);

4 end

5 show results(metrics, Upper bound)

17

Algorithm 6: Exploiting intra-node parallelism.

Input: node, cutoff , second cutoff , Ii, and upper boundi

Output: A tuple containing the explored tree size and the number of

solutions found.

1 N ← Ii.jobs

2 metrics ← (0, 0)

3 upper ← upper boundi.read()

4 max first ← (N)!
(N−cutoff)!

5 max second ← (N)!
(N−second cutoff)!

6 max children ← max second
max first

7 At ← [max children] Node // Task-local active set.

8 metrics + = generate task local active set(node,

9 cutoff, second cutoff, Ii, upper,At);

10 forall n in At following an iterator with(+ reduce metrics) do

11 metrics + = local BB(n, Ii, second cutoff, upper boundi);

12 end

13 return metrics

at depth cutoff. Before the intra-locale B&B, a task-local active set At of size

max children is defined. Next, a second search is performed from depth cutoff

until second cutoff , also storing into At all children nodes (line 8). Finally, the

task-local B&B takes place (lines 10−12), searching from depth second cutoff375

until N (number of jobs), also applying the master-worker model of Algorithm 5.

In this case, regular iterators are used instead of the distributed ones. The task-

local B&B also finishes when At is empty. The strategy of performing several

partial searches using two or more cutoff depths is similar to load balancing

strategies applied in the context of GPU-accelerated tree search [13].380

3.6. Global-view Consistency of the Incumbent Solution

Thanks to Chapel’s global view of the control flow, it is possible to access

an atomic variable in the same way it is accessed in a shared memory environ-

ment, regardless the locale on which it is located. This should be interesting in

18

Algorithm 7: Overview of the multi-locale B&B algorithm.

1 (I, cutoff, second cutoff) ← get problem()

2 ub ← calculate initial solution(I)

3 A ← generate initial active set(cutoff, I, ub)

4 (Instances, Upper bound) ← replicate readOnly data(I, ub)

5 Ad ← distribute active set(A)

6 forall node in Ad following a distributed iterator with(+ reduce metrics) do

7 distributed BB(node, cutoff, second cutoff,

8 Instances[here.id], Upper bound[here.id]);

9 end

10 show results(metrics, Upper bound)

case one has at his/her disposal a Cray system that supports network-atomics.385

Otherwise, accessing atomic variables placed on a different locale works like a

remote procedure call, being executed on the locale on which the atomic variable

is declared.

To avoid such an overhead, tasks on locale i search using the Upper bounds[i]

atomic variable. Moreover, to ensure that all locales can access the best solution390

found so far, and to return an optimal solution for the instance at hand, an

incumbent atomic solution is also declared on locale 0. When the search called

in Algorithm 6 (line 11) finds a new solution, it attempts to update both global

and local incumbent solutions through the minExchange operation. If it is not

possible to update neither the former nor the latter, the minExchange function395

returns to the task the smallest value globally found so far.

3.7. Overview of the Proposed Algorithm

Algorithm 7 is an overview of the proposed distributed B&B, and its lines

correspond to high-level representations of the algorithms previously detailed.

Algorithm 2 corresponds to lines 1 − 3. In turn, the read-only data replica-400

tion and the active set distribution correspond to lines 4 and 5, respectively.

Finally, lines 6 to 10 correspond to Algorithm 5. The intra-locale parallelism

and the coherency of the incumbent solution take place inside the subroutines

of Algorithm 6.

19

4. Performance Evaluation405

This section presents a performance-oriented evaluation of the B&B algo-

rithm previously proposed, and it is organized as follows. Section 4.1 defines

the experimental protocol and Section 4.2 brings the parameter settings. The

performance and scalability results are presented and analyzed in Section 4.3

and Section 4.4, respectively.410

4.1. Experimental Protocol

In this evaluation, the following B&B implementations are considered:

• Chapel-BB: implementation of the productivity-aware distributed B&B

presented in the last section. As previously mentioned, the used bounding

function is a legacy code implemented in C, whereas all other features of415

the search are implemented in Chapel.

• MPI-PBB: single program - multiple data (SPMD) B&B written in C++

and MPI+Pthreads. MPI-PBB is a Master-Worker algorithm using an

interval-based encoding of work units and the IVM data structure [6] for

the implementation of depth-first search. Each worker consists of mul-420

tiple worker threads performing local work stealing operations for load

balancing on the intra-node level. A dedicated thread is used for commu-

nication with the master process, allowing to overlap work progress and

communication efficiently. Further details can be found in [36] and some

implementation aspects are discussed in Section 6.1.425

It is worth to mention that both implementations follow the master-worker

parallel model, use the DFS search strategy as selection rule, and implement the

bounding functions introduced in Section 2.3.2. However, Chapel-BB is not a

translation of MPI-PBB. The data structures and the used bounding functions

differ between them. For a fair comparison, both implementations enumerate430

equivalent search spaces for proving the optimality of a solution.

20

In this section, we investigate the single and multi-locale performance of

Chapel-BB, its scalability according to the number of locales, as well as the

influence of the PGAS data structure distribution on the execution time. We

also study the impact of the built-in distributed load balancing strategies on the435

overall performance of the application. Due to the massive amount of collected

data, some results are presented in a summarized way.

4.2. Parameters Settings

The benchmark instances used in our experiments are the FSP instances

defined by Taillard [37]. We use only the 10 instances where M = N = 20. For440

most instances where M = 5 or 10, the bounding operator gives such good LBs

that it is possible to solve them in few seconds using a sequential B&B. Instances

with M = 20 and N = 50, 100, 200 or 500 are very hard to solve. For example,

the resolution of the instance Ta056 (N = 50, M = 20), performed in [4], lasted

25 days with an average of 328 processors and a cumulative computation time445

of about 22 years.

To compare the performance of two B&B algorithms, both should explore

the same search space. When an instance is solved twice using a parallel tree

search algorithm, the number of explored nodes varies between two resolutions.

Therefore, for all instances, the initial upper bound (cost of the best found450

solution) is set to the optimal value, and the search proves the optimality of

this solution. This initialization ensures that precisely the critical sub-tree is

explored, i.e., the nodes visited are exactly those nodes which have a lower

bound smaller than the optimal solution [38].

All computer nodes are symmetric and operate under Debian 4.9.0, 64 bits.455

They are equipped with two Intel Xeon Gold 6130 @ 2.10 GHz (a total of 32

cores/64 threads per node) and 192 GB RAM. Thus, up to 1024 cores/2048

threads are used in the experiments. All locales are interconnected through a

100 Gbps Intel Omni-Path network. The number of locales in the experiments

ranges from 1 to 32, and the application is the same for either one or more460

than one computer node(s). The number of locales is passed to the B&B using

21

Table 1: Summary of the environment configuration for multi-locale execution and compila-
tion.

Variable Value
CHPL RT NUM THREADS PER LOCALE 64

CHPL TARGET ARCH native
CHPL COMM gasnet

CHPL GASNET SEGMENT everything
CHPL COMM SUBSTRATE ofi
GASNET PSM SPAWNER ssh

Chapel’s built-in command line parameter -nl L, where L is the number of

locales on which the application is executed.

In MPI-PBB, each worker can be configured to use any number of worker

threads. We chose to use 8 threads (plus one additional communication thread)465

per MPI process. Therefore, a total of 8L processes is launched and mapped

evenly across the L compute nodes using the -map-by:8:node option for mpirun.

Node 0 runs the master process using the same configuration, meaning that node

0 hosts at most 7 worker processes (56 threads).

The Chapel implementation was programmed for version 1.19, and the de-470

fault task layer (qthreads) is the one employed. Chapel’s multi-locale code runs

on top of GASNet, and several environment variables should be set with the

characteristics of the system the multi-locale code is supposed to run. One can

see in Table 1 a summary of the runtime configurations for multi-locale execu-

tion. The OpenFabrics GASNet implementation is the one used for communi-475

cation (CHPL COMM SUBSTRATE) along with SSH, which is responsible for getting

the executables running on different locales (GASNET PSM SPAWNER). Concerning

MPI+PBB, OpenMPI 2.0.2 with MPI THREAD MULTIPLE support and along with

gcc 6.3.0 were used for compilation and execution.

Chapel provides several standard distributions to map data structures onto480

locales. Different tests were also carried out to identify the best option in

the context of this work. The one chosen was the one-dimension BlockDist,

which horizontally maps elements across locales. For instance, in case L = 3

and |Ad| = 8, elements 0, ..., 2 are on locale l0, 3, .., 5 on locale l1, and 6, 7 on

locale l2. In the scope of the present research, choosing a different standard485

distribution does not lead to performance improvements.

22

 0

 1

 2

 3

 4

 5

 6

 7

 8

ta22 ta23 ta25 ta27 ta30

N
o
rm

a
liz

e
d

 T
im

e

Instance

Guided8
Static8

Guided16
Static16
Dynamic

(a) LB1

 0

 1

 2

 3

 4

 5

 6

 7

 8

ta22 ta23 ta25 ta27 ta30

N
o
rm

a
liz

e
d

 T
im

e

Instance

Guided8
Static8

Guided16
Static16
Dynamic

(b) LB2

Figure 4: Comparison of all three distributed load balancing schemes for (a) LB1 and (b) LB2
executed on 8 and 16 locales (256 and 512 cores, respectively).

Experiments were carried out to choose suitable cutoff depths (Algorithm 2,

lines 2 and 3). The first cutoff depth directly influences the size of Ad, and

therefore the time spent in distributing the active set across locales. More-

over, this parameter also influences the granularity of the search. The choice of490

such a parameter is difficult because each instance has its own characteristics,

and therefore, the size of Ad at depth cutoff varies. According to prelim-

inary experiments, the best overall results are observed for cutoff = 4 and

second cutoff = 7. Table 2 summarizes the best parameters experimentally

found for Chapel-BB.495

Chapel provides two different distributed load balancing iterators: guided

23

Table 2: The Best parameters experimentally found for the B&B implementation written in
Chapel.

Parameter LB1 LB2

cutoff 4 4
second cutoff 7 7

Distributed chunk 32 8
Intra-node chunk 4 2

and dynamic, which are also similar to OpenMP’s schedules of the same name.

Experiments were also carried out to identify the best chunk for both load

balancing strategies. As depicted in Figure 4, using the dynamic distributed

iterator results in the best overall performance. Therefore, it is the iterator to500

be considered hereafter in the results presented for Chapel-BB.

As mentioned in Section 3, it is an option to exploit two levels of parallelism

by just executing the forall loop of Algorithm 5 (line 1). This version of the

implementation is further referred to as Regular. However, as one can see in

Figure 5, relying on the code automatically generated by the compiler for ex-505

ploiting two levels of parallelism results in inefficient use of the computational

resources. Implementing the intra-node parallelism results in a distributed B&B

from 2× to 5× faster than its counterpart that relies on the compiler (Regular

implementation).

Finally, due to the global view of the control flow, it is possible to access510

 0

 1

 2

 3

 4

 5

 6

ta22 ta23 ta25 ta27 ta30

N
o
rm

a
liz

e
d

 T
im

e

Instance

Regular8
Regular16
Improved

(a)

 0

 1

 2

 3

 4

 5

 6

ta22 ta23 ta25 ta27 ta30

N
o
rm

a
liz

e
d

 T
im

e

Instance

Regular8
Regular16
Improved

(b)

Figure 5: Comparison between the Regular Chapel-BB version and the Improved one, which
has its intra-node parallelism programmed by hand. Results shown are for (a) LB1 and (b)
LB2 executed on 8 (256 cores) and 16 locales (512 cores).

24

Table 3: Number of decomposed subproblems (NN) for proving the optimality of the initial
solution received by both B&B implementations, using lower bounds LB1 and LB2 (in 106

nodes). Corresponding execution time (T) using 1 node (in seconds).

Instance-# 22 23 24 25 26 27 28 29 30

NNLB1 (106) 711 37 200 71 876 5208 11 392 1854 12 285 3018 111
TLB1 (sec) 120 6400 11 460 970 1750 320 2100 490 20

NNLB2 (106) 14 114 2132 233 511 54 194 9 13
TLB2 (sec) 28 190 2930 395 680 112 292 18 19

an incumbent solution defined on locale 0 atomically. However, the atomic

operations are performed on the locale on which the atomic variable was defined.

According to preliminary experiments, the strategy of using a single atomic

incumbent solution on locale 0 is unfeasible. For instance, it is 6× slower solving

instance ta22 accessing a unique incumbent solution on locale 0 than using the515

strategy proposed in Section 3.6.

4.3. Performance Results

Table 3 reports the size number of decomposed subproblems for solving the

chosen instances to the optimality with LB1 and LB2. The corresponding exe-

cution time on a single node is also shown for MPI-BB. Although the instances520

have the same number of machines and jobs, the search space enumerated to

prove the optimality of the initial solution can vary considerably (e.g., ta24 vs.

ta30). Consequently, for MPI-PBB the execution times on a single node range

from 18 seconds to more than 3 hours.

It is shown in Figure 7a the relative execution time of Chapel-BB compared525

to MPI-PBB for solving to the optimality the chosen instances on 1 to 32 locales.

Taking into account LB1 and up to 2 computer nodes, Chapel-BB is from 8%

to 22% faster than MPI-PBB, being only slower for the two smallest instances

(ta22 and ta30) on 2 locales. The high single-node performance of Chapel is

justified by the fact that it is a compiled language that allows one to program530

hand-optimized data structures when necessary. Moreover, the data structures

used by Chapel-BB were designed for achieving performance in situations where

the bounding function is not compute-intensive [39]. As LB1 is less compute-

intensive than LB2, the fastest data structure of Chapel-BB pays off in such a

25

 0

 2

 4

 6

 8

 10

 12

ta22 ta23 ta24 ta25 ta26 ta27 ta28 ta29 ta30

N
o
rm

a
liz

e
d
 T

im
e
 (

in
 %

)

Instance

LB1
LB2

Figure 6: Proportion (in %) of the initialization and distribution of Ad compared to the whole
execution time. Results are for lower bounds LB1 and LB2, executed on 32 locales

case. Finally, MPI-PBB reserves computational resources to be the coordinator535

of the search. Therefore, the smaller number of worker threads compared to

Chapel-BB negatively impacts MPI-PBB’s performance on up to 2 locales.

As the number of computer nodes increases, the load balancing becomes

crucial for achieving performance. Taking into account 32 locales (1024 cores),

Chapel-BB remains faster or at least equivalent to MPI-PBB for the three540

biggest instances (ta23, ta24 and ta28), and it is 21% and 31% slower for ta25

and ta26, respectively. As depicted in Figure 8a, the built-in load balancing

provided by Chapel generates more regular loads among locales for these five

instances. The ratio of the biggest load processed by a locale over the smallest

one varies from 1.09× (ta23) to 1.72× (ta26). Additionally, as one can see in545

Figure 6, the distribution of the PGAS-based active set amounts for less than

2% of the execution time for the three biggest instances.

In turn, the built-in load balancing provided by Chapel cannot deliver to

the 4 smallest instances (ta22, ta27, ta29 and ta30) regular loads among locales

(Figure 8). Taking into account ta22 and ta30, the biggest load is 4.2× and 10×550

bigger than the smallest one, respectively. The distribution of the active set is

also costly for these instances. It amounts for 4% (ta22) and 12% (ta30) of the

execution time on 32 locales, as depicted in Figure 6. Consequently, Chapel-BB

is from 1.68× (ta27) to 2.34× (ta30) slower than MPI-PBB on 32 locales. The

26

worst results are observed for ta30, which combines small search space with555

irregularity and costly active set distribution. However, these results were not

seen for ta30 on 32 locales, because MPI-PBB also faces the same challenges as

the number of locales increases.

As one can see in Table 3, the 2-machine bound (LB2) is much stronger than

LB1, resulting in smaller trees. This way, the distribution of Ad amounts more560

negatively for LB2 than for LB1 (refer to Figure 6). The behavior observed

for LB1 when solving the smaller instances can be seen for all cases but ta24,

which has the biggest solution space. Load imbalances are present even on 2

computer nodes. For instance, the value of the biggest over smallest load is

1.75× for ta24 (See Figure 8b). Moreover, as pointed out in Section 2.3.2, LB2565

is much more costly to compute than LB1, which removes from Chapel-BB the

benefits of a faster data structure. As a consequence, an equivalent execution

time to MPI-PBB on one locale can be observed only for ta27. On two locales,

Chapel-BB is from 1.20× (ta24) to 2.28× (ta29) slower than its counterpart, as

depicted in Figure 7b. As the number of locales increases, the criticality of load570

imbalance increases as well. The value of the biggest load over the smallest one

processed by a locale reaches 15.8× and 18.7× on 32 locales for ta30 and ta22,

respectively. As depicted in Figure 7b, Chapel-BB is from 1.47× to 4.2× slower

than MPI-PBB on 32 locales.

4.4. Scalability Analysis575

As in Section 4.3, we first consider LB1. Figure 9a shows the speedups

achieved by Chapel-BB and MPI-PBB on 2 to 32 locales. Results ranging from

19% (ta30) to 84.3% (ta24) of the linear speedup on 32 locales are observed for

Chapel-BB. Speedups ranging from 60% (ta25) to 85% (ta24) are observed for

those instances to which the built-in load balancing produces more regular loads,580

and the distribution of the active set is less costly. As for the execution time

results and due to the same reasons, the higher speedups can be seen for ta23

and ta24. For the smaller instances (ta22, ta27, ta29 and ta30), severe speedup

decreases are observed when comparing the results on 2 to the ones on 32 locales.

27

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

ta22 ta23 ta24 ta25 ta26 ta27 ta28 ta29 ta30

N
o
rm

a
liz

e
d
 T

im
e

Instance

1 2 4 8 16 32 MPI

(a) LB1

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

ta22 ta23 ta24 ta25 ta26 ta27 ta28 ta29 ta30

N
o
rm

a
liz

e
d
 T

im
e

Instance

1 2 4 8 16 32 MPI

(b) LB2

Figure 7: Execution times of Chapel-BB for solving instances ta21-30 to optimality. Results
shown are for (a) LB1 and (b) LB2 executed on 1 (32 cores) to 32 locales (1024 cores). For
each < instance, locale > configuration, the execution time is given relative to the MPI-PBB
baseline.

28

 0

 2

 4

 6

 8

 10

ta22 ta23 ta24 ta25 ta26 ta27 ta28 ta29 ta30

R
a
ti

o
 (

b
ig

g
e
st

 /
 s

m
a
lle

st
)

Instance

2 4 8 16 32

(a) LB1

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

ta22 ta23 ta24 ta25 ta26 ta27 ta28 ta29 ta30

R
a
ti

o
 (

b
ig

g
e
st

 /
 s

m
a
lle

st
)

Instance

2 4 8 16 32

(b) LB2

Figure 8: Proportion of the biggest load over the smallest one produced by the dynamic
distributed iterator provided by Chapel. In this case, the term load means the percentage of
the solution space processed by a given locale. Results shown are for (a) LB1 and (b) LB2
executed on 2 (64 cores) to 32 locales (1024 cores).

29

For such subset of instances, results range from 30% (ta30) to 45% (ta27) of the585

linear speedup. In turn, the hand-programmed work stealing mechanism and

communication of MPI-PBB pays off. The speedups achieved by the MPI-based

search are greater than 80% of the linear one on 2 to 32 nodes. Severe speedup

decreases are only observed for ta22 and ta30, due to the reasons already exposed

in Section 4.3. Figure 10a shows the speedup reached by Chapel-BB compared590

to the results of MPI-PBB. The search written in Chapel reaches from 40%

(ta22) to 92% (ta24) of the values observed for its MPI-based counterpart.

Taking into account LB2, results farther from the linear speedup are observed

for both Chapel-BB and MPI-PBB. Moreover, when comparing to the results

of LB1, severe speedup decreases are noted for the majority of instances. As595

can be seen in Figure 9b, MPI-PBB achieves from 38% to 93% of the linear

speedup on 32 locales. However, severe speedup drops are observed for 55% of

the instances. Considering ta29, the speedup decreases from 88% (2 locales)

to 38.7% (32 locales), and the same behavior can be seen for ta22, ta27 and

ta30. Therefore, this scenario with smaller trees and coarser granularity shows600

to be challenging even for the state of the art work stealing implemented by

MPI-PBB. In turn, Chapel-BB achieves from 19% (ta22) to 78% (ta24) of the

linear speedup on 32 locales, which represents from 35% to 85% of the values

seen for MPI-PBB (refer to Figure 10b). Severe speedup drops are observed for

7 out of 9 instances.605

5. Productivity-oriented Evaluation

This section presents a productivity-oriented evaluation of Chapel for pro-

gramming distributed B&B algorithms. Section 5.1 brings the experimental

protocol and Section 5.2 brings the results.

5.1. Experimental Protocol610

In this section, we use the model proposed by Snir and Bader for measuring

productivity in high-performance computing [40]. Initially, consider Utility as

30

 0

 20

 40

 60

 80

 100

ta22 ta23 ta24 ta25 ta26 ta27 ta28 ta29 ta30

S
p

e
e
d

u
p

 (
In

 %
 o

f
th

e
 l
in

e
a
r)

Instance

2 4 8 16 32 Lin MPI

(a) LB1

 0

 20

 40

 60

 80

 100

ta22 ta23 ta24 ta25 ta26 ta27 ta28 ta29 ta30

S
p

e
e
d

u
p

 (
In

 %
 o

f
th

e
 l
in

e
a
r)

Instance

2 4 8 16 32 Lin MPI

(b) LB2

Figure 9: Speedup achieved by Chapel-BB and MPI-PBB on 2 (64 cores) to 32 locales (1024
cores) compared to the execution on one locale. Values are given in percent of the linear
speedup (Lin− 100%). For a given < instance, locale > configuration, the speedup achieved
by MPI-PBB is presented through an 7 mark. Results shown are for (a) LB1 and (b) LB2.

31

 0

 0.2

 0.4

 0.6

 0.8

 1

ta22 ta23 ta24 ta25 ta26 ta27 ta28 ta29 ta30

N
o
rm

a
liz

e
d
 S

p
e
e
d
u
p

Instance

2 4 8 16 32 MPI

(a) LB1

 0

 0.2

 0.4

 0.6

 0.8

 1

ta22 ta23 ta24 ta25 ta26 ta27 ta28 ta29 ta30

N
o
rm

a
liz

e
d
 S

p
e
e
d
u
p

Instance

2 4 8 16 32 MPI

(b) LB2

Figure 10: Speedup achieved by Chapel-BB on 2 (64 cores) to 32 locales (1024 cores) compared
to the execution on one locale. Values are given based on the speedups achieved by MPI-PBB.
Results are shown for (a) LB1 and (b) LB2.

32

the value received on getting an answer to a problem in a certain time [41].

According to the model, Productivity (ψ) is utility over a total cost, and it is

defined as follows.615

ψ =
Sp × E ×A
Cs + Co + CM

(1)

where:

• Sp : the operations/time peak that can be achieved on the system.

• E : efficiency achieved by the parallel program.

• A : availability of the system.

• Cs : software cost.620

• CM and Co: cost of the machine and ownership, respectively. These

metrics concern any cost related to energy, hardware maintenance, human

resources, etc.

In this work, we consider both the machine and ownership costs as zero.

These values are justified by the fact that the authors do not handle costs.625

Moreover, the availability value is 100%. The most challenging parameter to

set is the software cost (Cs), which should reflect all costs involved in the design

of the program.

The parameter Cs can be defined as:

Cs = cm × Γ× r (2)

where cm is the monetary cost of the programmer, r is a measure of program-630

ming effort, such as time unit per line of code, and Γ is the size of the program.

Hereafter, the size of the program is going to be measured in lines of codes

(SLOC). In the context of the present work, it is difficult to measure the time

required to produce each B&B implementation introduced in Section 4.1. More-

over, the time to program the Chapel-based B&B also includes the time needed635

33

to learn several aspects of the language. Concerning the monetary costs, the

languages used are freely available, and the programmers have a fixed cost.

Therefore, for the sake of greater simplicity, the software cost is going to be

hereafter considered as Cs = Γ. It is also difficult to calculate the SLOC in the

context of this work. The two B&B implementations are programmed in dif-640

ferent languages, and they follow distinct programming models. Additionally,

the data structures differ between both applications. This way, we isolate the

following code segments for calculating the software cost:

• Initialization of the distributed aspects of the search.

• Termination criteria checking.645

• Operations involved in the coherency of the incumbent solution.

• Load balancing/work distribution.

• Second-level (intra-node) parallelism.

Once those code segments are isolated, non-essential parts such as comments,

timers, includes, and print functions are removed. Moreover, as MPI-PBB is650

implemented in C++, the declarations inside the header files are not taken

into account. As Chapel is a compiled language and declaration significantly

amounts for SLOC, declarations of variables are also removed from Chapel-

BB’s SLOC count. One can see in Table 4 the SLOC count for Chapel-BB and

MPI-PBB.655

5.2. Productivity Results

According to Table 4, the overall software cost of MPI-PBB is 5.6× higher

than the one of Chapel-BB. The most expensive parts of the MPI-PBB code

are the load balancing and termination criteria, which are 35× and 18× more

costly than for Chapel-BB, respectively. Concerning the load balancing, the use660

of PGAS-based data structure hides several aspects of communication. Further-

more, it also allows the use of distributed iterators for load balancing in a way

34

Table 4: The SLOC count for Chapel-BB and MPI-BB, which represents the software cost

parameter (Cs). The total SLOC is smaller than the sum of costs because some lines serve

for more than one purpose.

Segment of the code Chapel-BB MPI-PBB

Initialization 23 37

Incumbent solution 12 44

Metrics reduction 4 9

Load balancing 5 176

Second level of parallelism 12 72

Termination criteria 2 36

Total SLOC 53 300

similar to shared memory programming. Moreover, as shown in Algorithm 5,

there is no need for programming termination criteria. The loop of line 1 fin-

ishes when the distributed active set is empty, and metrics are reduced by using665

a distributed reduction that is also hidden from the programmer. As shown in

Table 4, the initialization of the search is the most costly part of Chapel-BB.

It is responsible for the definition of the local active set, the initial search, the

definition of the distribution, mapping Ad according to this distribution, and fi-

nally, it also distributes Ad across different locales. In turn, for MPI+Pthreads,670

the initialization takes into account several MPI routines and details concerning

the IVM data structure and initialization of the workers and the master process.

The SLOC metric is not enough for measuring productivity, and it is re-

lated to the expressiveness power of Chapel compared to MPI+Pthreads [42].

Besides low software cost, a language must also allow the programmer to pro-675

duce software that scales and is efficient to achieve high productivity [41]. One

can see in Figure 11a the productivity (ψ) achieved by Chapel compared to

MPI+Pthreads, taking into account LB1. As the results are given in terms

of a utility value over the software cost, the highest results are observed for 1

and 2 locale(s). In such cases, Chapel’s productivity is from 4.0× (ta30, 2 lo-680

cales) to 7.7× (ta24, 2 locales) superior to the one achieved by MPI+Pthreads.

As the number of locales increases, MPI-PBB presents better efficiency than

Chapel-BB. Therefore, despite Chapel’s low software cost, its productivity val-

35

 0

 1

 2

 3

 4

 5

 6

 7

 8

ta22 ta23 ta24 ta25 ta26 ta27 ta28 ta29 ta30

N
o
rm

a
liz

e
d
 P

ro
d
u
ct

iv
it

y

Instance

1 2 4 8 16 32 MPI

(a) LB1

 0

 1

 2

 3

 4

 5

 6

ta22 ta23 ta24 ta25 ta26 ta27 ta28 ta29 ta30

N
o
rm

a
liz

e
d
 P

ro
d
u
ct

iv
it

y

Instance

1 2 4 8 16 32 MPI

(b) LB2

Figure 11: Normalized productivity achieved by Chapel compared to MPI+Pthreads when
implementing the B&B applications listed in the last section. Results shown are for (a) LB1
and (b) LB2, and given for each pair < instance, locale > taking into account from 1 (32
cores) to 32 locales (1024 cores).

36

ues decrease. For instance, it is only 70% more productive than MPI+Pthreads

for ta30 (4 locales), and the productivity observed for ta22 and ta27 drops for685

around 30% of the value reached on one locale. Taking into account LB1 and

32 locales, Chapel is from 2.2× to 5.2× more productive than MPI+Pthreads.

Taking into account LB2 (Figure 11b), the highest productivity achieved by

Chapel is also observed on up to 2 locales: from 3.5× (ta29, 1 locale) to 5.9×

(t24, 2 locales). Then, the productivity values decrease as the node count in-690

creases. Moreover, as Chapel-BB is less efficient for LB2, the overall results for

LB2 are also smaller than for LB1. Productivity values ranging from 2× (ta30)

to 4.8× (ta24) are observed on 32 locales.

6. Discussion

6.1. Productivity695

It is difficult to provide an exact number of SLOC indispensable for MPI-

PBB. Considering only the core of the master process, MPI-based communica-

tion routines, and a basic multi-core worker using work stealing and a dedicated

communication thread, the size of the code is between 1000 and 2000 lines.

The fact that multiple synchronization points at the node level (work-stealing,700

termination of a workgroup, update of the incumbent) need to be handled asyn-

chronously with two-sided MPI communications is challenging and error-prone

as it induces several hard-to-detect race conditions. At the inter-node level

work unit communications are interleaved with smaller, auxiliary messages for

global termination detection, and sharing of the best solution found so far.705

This requires pre-receive queries of message types using MPI_Probe and sepa-

rate send/receive routines for different message types. The same goes for the

aggregation of metrics from worker threads, which requires rather significant

programming efforts in MPI-PBB.

The total SLOC of Chapel-BB is much closer to the values of Table 4 than for710

MPI-PBB. Thanks to Chapel’s global view of the control flow and data struc-

tures, the main difference between the multi- and single-locale versions lies in

37

the use of the PGAS data structures and distributed iterators. There is no need

for explicitly dealing with communication between locales, termination criteria,

and metrics reduction. Furthermore, there is no need for an additional library715

to exploit each level of parallelism. Moreover, the coherency of the incumbent

solution is close to the way it is performed in shared-memory programming.

These features greatly simplify the code and remove potential sources of errors.

The points discussed in the last paragraphs show that Chapel has a higher

expressiveness power than MPI+Pthreads indeed, and also provides several fea-720

tures that might decrease the cost of programming a distributed B&B algorithm.

However, the software cost used for calculating productivity does not take into

account several time-consuming tasks involved in the design of Chapel-BB. For

instance, the time spent on understanding the new programming models and

learning the language. Moreover, in the context of this work, the program needs725

to be efficient to achieve high productivity. As MPI+X is a standard for HPC,

the authors already know several best practices for achieving performance and

scalability using MPI+X, which penalizes Chapel-related results. Chapel-BB

could achieve better scalability and productivity in case the authors had more

experience with the Chapel language.730

6.2. Performance and Scalability

The performance results achieved in this work are positive for a first dis-

tributed implementation of a B&B algorithm using a high-productivity lan-

guage. On its best results, Chapel-BB is can be slightly faster or equivalent

to MPI-PBB on 32 locales (1024 cores). Moreover, it is up to 30% slower for735

other 2 instances. It is worth to mention that the MPI-PBB implementation

is a state-of-the-art algorithm, and our experience with MPI+X is much higher

than with Chapel. Moreover, we did not try to mimic MPI-PBB. Those results

were achieved by only using the Chapel’s productivity aware features for dis-

tributed programming, and the programmings models implemented by Chapel740

were followed.

The load balancing is the segment of code for which MPI-PBB dedicates

38

more SLOC compared to Chapel-BB. As a consequence, speedups higher than

60% of the linear one can be observed for 78% of the test cases. In contrast,

for Chapel-BB, this value drops for 40% of the test-cases. The poor scalabil-745

ity faced by Chapel-BB for the smallest instances shows that there is room for

improvement. A future research direction is to incorporate into Chapel compo-

nents of the work stealing present in MPI-PBB. We do not plan to use lower

level features, such as MPI or ZeroMQ library for implementing load balancing

and communication. Instead, the objective is to harness the built-in features750

provided by Chapel for exploiting locality. As Chapel is an open-source lan-

guage, the produced load balancing could be incorporated into the language as

a distributed iterator.

6.3. Road Towards Exascale

One of the major obstacles on the road to the exascale computing era is755

dealing efficiently with scalability up to millions of cores. Another observation

that can be made from the last editions of Top500 is that the cores are mostly

supplied in low-energy computing resources (GPU, MIC, etc.). Therefore, deal-

ing with scalability implicitly induces the heterogeneity issue [43]. According to

Chapel’s official documentation, the Xeon Phi accelerator is supported. How-760

ever, there is no information concerning the support of GPUs. Another critical

issue the scalability comes with is fault tolerance, because harnessing millions of

cores results in a very high probability of failure [44]. The presence of fault toler-

ance in Chapel would encourage the adoption of this language for programming

ultra-scale optimization algorithms. There is a work that proposes resilience765

features for Chapel [45]. However, these features were not incorporated into the

language.

6.4. Main Insights

The following summarizes the main insights from our study on the use of

Chapel for programming distributed B&B search algorithms.770

39

• Researchers familiar with shared memory programming can incrementally

design a distributed B&B algorithm using Chapel.

• It is possible to achieve performance and scalability competitive to MPI+

Pthreads using a high-productivity language.

• The productivity-aware features for load balancing provided by Chapel775

are not enough for efficiently exploiting the computer resources of several

locales in more irregular scenarios.

• The C-interoperability features of Chapel are crucial for productivity. It

was possible to reuse legacy code and focus on other aspects of the pro-

gram, rather than porting the bounding functions to Chapel.780

• The support for GPU and fault tolerance are crucial features that would

encourage the use of Chapel for programming large-scale parallel opti-

mization algorithms.

7. Conclusions and Future Works

In this paper, we have investigated the use of Chapel high-productivity lan-785

guage for the design and implementation of distributed B&B algorithms for

solving combinatorial optimization problems. The proposed algorithm was im-

plemented using the productivity-aware features of Chapel for distributed pro-

gramming and applies both the global-view of control flow and PGAS program-

ming models, instead of the well-known SPMD.790

According to the productivity-oriented results, Chapel presents an overall

expressiveness almost 6× higher, and it is up to 8× more productive than

MPI+Pthreads. Researchers familiar with shared memory programming can in-

crementally design a distributed B&B algorithm using Chapel. Despite the high

level of its features for distributed programming, it is possible to hand-optimize795

the data structures involved in the search process, and also incorporate legacy

code written in C, which is essential in the context of exact parallel optimization.

40

Concerning performance and scalability, the best results of Chapel are equiv-

alent to MPI+Pthreads on 32 locales (1024 cores). However, B&B algorithms

are usually highly irregular applications, and the overhead of distributing the800

PGAS data structure, allied to the difficulties faced by its built-in distributed

load balancing strategies, limits the scalability of Chapel-BB.

Concerning the adoption of Chapel, it is worth pointing out that users may

be reluctant to learn another language [15]. The capacity of Chapel to include

C code can be a partial solution for this situation. One could use C along805

with Chapel’s high-productivity features for distributed programming. More-

over, C/C++ code usually exploits one library for each level of parallelism.

Using Chapel along with C-interoperability may represent an equivalent learn-

ing curve. Finally, fault tolerance and the support of accelerators such as GPUs

are crucial features towards exascale that are currently missing in Chapel.810

As future work, we plan to program a work stealing technique that could be

incorporated into the language as a distributed iterator. We also plan to run

experiments on large-scale clusters. This way, it would be possible to investigate

the limits of the productivity-aware features of Chapel concerning performance

and scalability. Another future work is to compare Chapel to other PGAS-based815

libraries and high-productivity languages, such as OpenSHMEM, UPC, Dash,

and Julia.

Acknowledgments

The experiments presented in this paper were carried out on the Grid’5000

testbed [46], hosted by INRIA and including several other organizations 3. We820

thank Bradford Chamberlain, Elliot Ronaghan (Cray inc.) and Paul Hargrove

(Berkeley lab.) for helping us to run GASNet on GRID5000. We also thank

Michael Ferguson, Lydia Duncan (Cray inc.), and Louis Jenkins (University of

Rochester) for their support on Chapel’s Gitter platform 4.

3http://www.grid5000.fr
4https://gitter.im/chapel-lang/chapel

41

References825

[1] W. Zhang, Branch-and-Bound Search Algorithms and Their Computa-

tional Complexity, Technical Report, DTIC Document, 1996.

[2] A. Y. Grama, V. Kumar, A survey of parallel search algorithms for discrete

optimization problems, ORSA Journal on Computing 7 (1993).

[3] T. Crainic, B. Le Cun, C. Roucairol, Parallel branch-and-bound algorithms,830

Parallel combinatorial optimization (2006) 1–28.

[4] M. Mezmaz, N. Melab, E.-G. Talbi, A grid-enabled branch and bound

algorithm for solving challenging combinatorial optimization problems, in:

IEEE International Parallel and Distributed Processing Symposium, 2007.

IPDPS 2007., IEEE, 2007, pp. 1–9.835

[5] M. Mezmaz, R. Leroy, N. Melab, D. Tuyttens, A multi-core parallel

branch-and-bound algorithm using factorial number system, in: 2014

IEEE 28th International Parallel and Distributed Processing Symposium,

Phoenix, AZ, USA, May 19-23, 2014, 2014, pp. 1203–1212. URL: https:

//doi.org/10.1109/IPDPS.2014.124. doi:10.1109/IPDPS.2014.124.840

[6] J. Gmys, M. Mezmaz, N. Melab, D. Tuyttens, IVM-based parallel branch-

and-bound using hierarchical work stealing on multi-GPU systems, Con-

currency and Computation: Practice and Experience 29 (2017) e4019.

[7] N. Melab, J. Gmys, M. Mezmaz, D. Tuyttens, Multi-core versus many-core

computing for many-task branch-and-bound applied to big optimization845

problems, Future Generation Computer Systems 82 (2018) 472 – 481.

[8] K. Aida, T. Osumi, A case study in running a parallel branch and bound

application on the grid, in: The 2005 Symposium on Applications and the

Internet, IEEE, 2005, pp. 164–173.

[9] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,850

K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams,

42

https://doi.org/10.1109/IPDPS.2014.124
https://doi.org/10.1109/IPDPS.2014.124
https://doi.org/10.1109/IPDPS.2014.124
http://dx.doi.org/10.1109/IPDPS.2014.124

et al., The landscape of parallel computing research: A view from berkeley,

Technical Report, Technical Report UCB/EECS-2006-183, EECS Depart-

ment, University of , 2006.

[10] S. Fiore, M. Bakhouya, W. W. Smari, On the road to exascale: Advances855

in high performance computing and simulationsan overview and editorial,

Future Generation Computer Systems 82 (2018) 450 – 458.

[11] P. San Segundo, C. Rossi, D. Rodriguez-Losada, Recent developments in

bit-parallel algorithms, INTECH Open Access Publisher, 2008.

[12] F. Feinbube, B. Rabe, M. von Löwis, A. Polze, NQueens on CUDA: Op-860

timization issues, in: Parallel and Distributed Computing (ISPDC), 2010

Ninth International Symposium on, IEEE, 2010, pp. 63–70.

[13] T. Carneiro Pessoa, J. Gmys, F. H. de Carvalho Junior, N. Melab, D. Tuyt-

tens, GPU-accelerated backtracking using CUDA dynamic parallelism,

Concurrency and Computation: Practice and Experience (2017) e4374–865

n/a.

[14] G. Da Costa, T. Fahringer, J. A. R. Gallego, I. Grasso, A. Hristov, H. D.

Karatza, A. Lastovetsky, F. Marozzo, D. Petcu, G. L. Stavrinides, et al.,

Exascale machines require new programming paradigms and runtimes, Su-

percomputing frontiers and innovations 2 (2015) 6–27.870

[15] E. Lusk, K. Yelick, Languages for high-productivity computing: the

DARPA HPCS language project, Parallel Processing Letters 17 (2007)

89–102.

[16] B. L. Chamberlain, E. Ronaghan, B. Albrecht, L. Duncan, M. Ferguson,

B. Harshbarger, D. Iten, D. Keaton, V. Litvinov, P. Sahabu, et al., Chapel875

comes of age: Making scalable programming productive, in: Cray User

Group, 2018.

[17] D. Callahan, B. L. Chamberlain, H. P. Zima, The cascade high produc-

tivity language, in: Ninth International Workshop on High-Level Parallel

43

Programming Models and Supportive Environments, 2004. Proceedings.,880

IEEE, 2004, pp. 52–60.

[18] Cray Inc., Chapel language specification v.986, Cray Inc. (2018).

[19] G. Almasi, PGAS (partitioned global address space) languages, in: Ency-

clopedia of Parallel Computing, Springer, 2011, pp. 1539–1545.

[20] B. L. Chamberlain, S.-E. Choi, S. J. Deitz, A. Navarro, User-defined par-885

allel zippered iterators in chapel, in: Proceedings of Fifth Conference on

Partitioned Global Address Space Programming Models, 2011, pp. 1–11.

[21] N. Dun, K. Taura, An empirical performance study of chapel programming

language, in: 2012 IEEE 26th International Parallel and Distributed Pro-

cessing Symposium Workshops & PhD Forum, IEEE, 2012, pp. 497–506.890

[22] B. L. Chamberlain, S.-E. Choi, M. Dumler, T. Hildebrandt, D. Iten,

V. Litvinov, G. Titus, The state of the chapel union, Proceedings of

the Cray User Group (2013) 114.

[23] C. Blum, A. Roli, Metaheuristics in combinatorial optimization: Overview

and conceptual comparison, ACM Computing Surveys (CSUR) 35 (2003)895

268–308.

[24] G. J. Woeginger, Exact algorithms for NP-hard problems: A survey, in:

Combinatorial optimization – eureka, you shrink!, Springer, 2003, pp. 185–

207.

[25] E. Alba, E.-G. Talbi, G. Luque, N. Melab, Metaheuristics and parallelism,900

Parallel Metaheuristics: A New Class of Algorithms (2005) 79–103.

[26] C. Papadimitriou, K. Steiglitz, Combinatorial optimization: algorithms

and complexity, Dover Pubns, 1998.

[27] M. R. Garey, D. S. Johnson, R. Sethi, The Complexity of Flowshop and

Jobshop Scheduling, Mathematics of Operations Research 1 (1976) pp.905

117–129.

44

[28] B. J. Lageweg, J. K. Lenstra, A. H. G. R. Kan, A general bounding scheme

for the permutation flow-shop problem, Operations Research 26 (1978) 53–

67.

[29] S. M. Johnson, Optimal two- and three-stage production schedules with910

setup times included, Naval Research Logistics Quarterly 1 (1954) 61–68.

[30] T. Carneiro, F. H. de Carvalho Júnior, N. G. P. B. Arruda, A. B. Pin-

heiro, Um levantamento na literatura sobre a resolução de problemas de

otimização combinatória através do uso de aceleradores gráficos, in: Pro-

ceedings of the XXXV Ibero-Latin American Congress on Computational915

Methods in Engineering (CILAMCE), Fortaleza-CE, Brasil, 2014, pp. 1–20.

[31] S. Tschoke, R. Lubling, B. Monien, Solving the traveling salesman prob-

lem with a distributed branch-and-bound algorithm on a 1024 processor

network, in: 9th International Parallel Processing Symposium, 1995. Pro-

ceedings., IEEE, 1995, pp. 182–189.920

[32] R. Machado, S. Abreu, D. Diaz, Parallel local search: Experiments with a

PGAS-based programming model, CoRR abs/1301.7699 (2013).

[33] D. Munera, D. Diaz, S. Abreu, P. Codognet, A parametric framework

for cooperative parallel local search, in: Evolutionary Computation in

Combinatorial Optimization - 14th European Conference, EvoCOP 2014,925

Granada, Spain, April 23-25, 2014, Revised Selected Papers, 2014, pp. 13–

24.

[34] D. Grünewald, C. Simmendinger, The GASPI API specification and its

implementation GPI 2.0, in: 7th International Conference on PGAS Pro-

gramming Models, 2013, p. 243.930

[35] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu,

C. Von Praun, V. Sarkar, X10: An object-oriented approach to non-uniform

cluster computing, ACM Sigplan Notices 40 (2005) 519–538.

45

[36] J. Gmys, Heterogeneous cluster computing for many-task exact opti-

mization - Application to permutation problems, Theses, Université de935

Mons (UMONS) ; Université de Lille, 2017. URL: https://hal.inria.

fr/tel-01652000.

[37] E. Taillard, Benchmarks for basic scheduling problems, European journal

of operational research 64 (1993) 278–285.

[38] G. Karypis, V. Kumar, Unstructured tree search on SIMD parallel com-940

puters, IEEE Transactions on Parallel and Distributed Systems 5 (1994)

1057–1072.

[39] T. C. Pessoa, J. Gmys, N. Melab, F. H. de Carvalho Junior, D. Tuyttens, A

gpu-based backtracking algorithm for permutation combinatorial problems,

in: International Conference on Algorithms and Architectures for Parallel945

Processing, Springer, 2016, pp. 310–324.

[40] M. Snir, D. A. Bader, A framework for measuring supercomputer produc-

tivity, The International Journal of High Performance Computing Appli-

cations 18 (2004) 417–432.

[41] J. Kepner, HPC productivity: An overarching view, The International950

Journal of High Performance Computing Applications 18 (2004) 393–397.

[42] K. Kennedy, C. Koelbel, R. Schreiber, Defining and measuring the pro-

ductivity of programming languages, The International Journal of High

Performance Computing Applications 18 (2004) 441–448.

[43] M. J. Schulte, M. Ignatowski, G. H. Loh, B. M. Beckmann, W. C. Brantley,955

S. Gurumurthi, N. Jayasena, I. Paul, S. K. Reinhardt, G. Rodgers, Achiev-

ing exascale capabilities through heterogeneous computing, IEEE Micro 35

(2015) 26–36.

[44] M. Snir, R. W. Wisniewski, J. A. Abraham, S. V. Adve, S. Bagchi, P. Balaji,

J. Belak, P. Bose, F. Cappello, B. Carlson, et al., Addressing failures960

46

https://hal.inria.fr/tel-01652000
https://hal.inria.fr/tel-01652000
https://hal.inria.fr/tel-01652000

in exascale computing, The International Journal of High Performance

Computing Applications 28 (2014) 129–173.

[45] K. Panagiotopoulou, H.-W. Loidl, Towards resilient chapel: Design and

implementation of a transparent resilience mechanism for chapel, in: Pro-

ceedings of the 3rd International Conference on Exascale Applications and965

Software, University of Edinburgh, 2015, pp. 86–91.

[46] R. Bolze, F. Cappello, E. Caron, M. Dayde, F. Desprez, E. Jeannot,

Y. Jégou, S. Lanteri, J. Leduc, N. Melab, G. Mornet, R. Namyst, P. Primet,

B. Quétier, O. Richard, E.-G. Talbi, I. Touche, Grid’5000: A Large Scale

And Highly Reconfigurable Experimental Grid Testbed, International Jour-970

nal of High Performance Computing Applications 20 (2006) 481–494.

47

	Introduction
	Background and Related Works
	The Chapel Programming Language
	Tree Search Algorithms
	Branch-and-Bound Search Algorithms

	Branch-and-Bound Applied to the FSP
	Problem overview
	 The Bounding Function
	 Data Structures and Search Procedure

	Related Works

	A Productivity-aware Branch-and-Bound Algorithm
	Initial Premises
	The Initial Search
	Data Replication
	Distributing the Active Set
	The Multi-locale Search
	Exploiting Intra-locale Parallelism

	Global-view Consistency of the Incumbent Solution
	Overview of the Proposed Algorithm

	Performance Evaluation
	Experimental Protocol
	Parameters Settings
	Performance Results
	Scalability Analysis

	Productivity-oriented Evaluation
	Experimental Protocol
	Productivity Results

	Discussion
	Productivity
	Performance and Scalability
	Road Towards Exascale
	Main Insights

	Conclusions and Future Works

