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Abstract: An inexpensive alloy of light lanthanides, called misch-

metall, has been used in the preparation of a mixture of lanthanide

trichloride hydrates. The use of this new type of material is de-

scribed in Biginelli reactions.

Key words: mischmetall, lanthanide trichlorides, Biginelli-type re-

action

We have reported, in a preceding letter,1 a simple method
for the preparation of a mixture of lanthanide trichloride
hydrates directly from mischmetall and hydrochloric acid
(Scheme 1). We used this new reagent in stoichiometric
amounts in the Luche-type reduction to prepare allylic al-
cohols or allyl alkyl ethers. Results showed that misch-
metall trichloride hydrates were as efficient as cerium
trichloride hydrates.

Scheme 1 Synthesis of lanthanide trichloride hydrates from

mischmetall ingots

Herein we wish to report the first use of this new material
as a catalyst. We studied the synthesis of 3,4-dihydropyri-
midin-2-(1H)-ones obtained by a one-pot Biginelli-type
reaction and compared the reactivity of this catalyst with
classically-used trichloride hydrates derived from pure
lanthanide metals.

In 1893, Biginelli reported the first synthesis of 3,4-dihy-
dropyrimidin-2-(1H)-ones (DHPMs) via a one-pot reac-
tion involving aromatic aldehydes, urea (or thiourea) and
ethyl acetoacetate in an ethanolic solution under acidic
conditions (Scheme 2).2

Scheme 2 Typical Biginelli-type reaction

These multicomponent reactions (MCRs), unexplored un-
til the 1980s, have attracted considerable attention over
the past decade, since dihydropyrimidin-2(1H)-ones and
their derivatives were found to display a fascinating array
of pharmacological and therapeutic properties.3 DHPMs
have been developed as antiviral, antibacterial or antihy-
pertensive agents, a1a-antagonists, neuropeptide Y (NPY)
antagonists or potent calcium channel blockers. More-
over, recently marine alkaloids have been isolated that
contain a dihydropyrimidinone-5-carboxylate core (the
batzelladine alkaloids), and these alkaloids were found to
be potent HIV gp-120-CD4 inhibitors.4

The initial one-pot Biginelli procedure, catalyzed by hy-
drochloric acid in ethanolic solution, suffers from major
drawbacks such as long reaction times and low yields, es-
pecially when aliphatic and substituted aromatic alde-
hydes are used. Recently, growing interest in MCRs and
the elucidation of the mechanism of the Biginelli reaction
have been combined to considerably improve the efficien-
cy of the reaction. Various strategies have been developed
to overcome problems: among these are multistep syn-
thetic strategies,5 improvement of the one-pot procedure
using acidic clay,6 ionic liquids,7 microwave irradiation
under solventless conditions8 or catalysis using Lewis ac-
ids (BiCl3, BF3·OEt2–CuCl/H+, InCl3).

9 Lanthanide com-
plexes have also proved to be efficient catalysts in the
Biginelli-type reaction: asymmetric synthesis of dihydro-
pyrimidin-2(1H)-ones has been demonstrated using CeCl3

or Ln(OTf)3 (Ln = La, Sm or Yb)10 with chiral ligands and
original processes such as parallel synthesis using solid-
supported ytterbium(III).11 Cerium(IV) ammonium ni-
trate has also been used as a catalyst.12 In this field, lan-
thanide complexes are very interesting since these mild
Lewis acids are environmentally friendly (LaCl3·7H2O)13

and some of them can easily be recycled [Ln(OTf)3].
14

Nevertheless, many of these methods involve expensive
reagents; therefore, we wish to report the direct synthesis
of 3,4-dihydropyrimidin-2(1H)-ones using lanthanide
trichloride heptahydrates derived from mischmetall. This
inexpensive catalyst can be easily prepared in a one-step
procedure from mischmetall and promotes the Biginelli
reaction under mild conditions (Scheme 3).

Evaluation of the efficacy of LnCl3·7H2O in a Biginelli-
type reaction is relevant due to a communication by Lu et
al.13 describing a similar study using lanthanum chloride
(50 mol%/aldehyde) as a catalyst.
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Our results are presented in Table 1. A test reaction was
carried out with benzaldehyde, urea and ethyl acetoace-
tate; the use of 0.2 equivalent (entry 2) instead of 0.5
equivalent of LnCl3·7H2O (entry 1) did not significantly
affect the yield. In both cases, reaction time could be re-
duced to five hours instead of 18 hours under classical
Biginelli conditions. Furthermore, urea could be easily re-
placed by thiourea (entry 3) without significantly decreas-
ing the yields (entries 2 vs. 3 and 4 vs. 6). Therefore, we
chose to lower the catalyst amount to 20 mol% from 50
mol%.13 Two general cases were observed:

1) Benzaldehyde or activated aromatic aldehydes pro-
duced DHPMs in good yields (entries 1–6, 9 and 10), even
with low catalyst loading and in the absence of hydrochlo-
ric acid. However, when the reaction was performed with
p-hydroxybenzaldehyde, it was necessary to increase the
amount of catalyst to obtain the DHPM in good yield (en-
tries 11 and 12); this may be due to catalyst coordination
to the free hydroxyl group. When hydrochloric acid was
not added to the reaction, lower yields were always ob-
served (entries 5, 8 and 10).

2) When deactivated aromatic aldehydes were used (en-
tries 7, 8, 13 and 14) yields were lower, but remained sat-
isfactory. However, in these cases, the lack of
hydrochloric acid seemed to have a dramatic influence on
the completion of the reaction (entries 7 and 8).

A comparison of our results with those published by Lu et
al.13 showed that using a mixture of lanthanide trichlo-
rides instead of lanthanum trichloride heptahydrate did
not significantly affect the yields of DHPMs or reaction
times. We demonstrated that the amount of catalyst could
be lowered to 0.2 equivalent without significantly de-
creasing the yield. In all cases, the reaction was about
three times faster than the original Biginelli reaction and
the yields were improved (classical conditions: catalytic
HCl in EtOH, reflux, 18 h).2,13

The mechanism of the Biginelli reaction has recently been
revised by Kappe.16 Based on this work we suggest the
following mechanism for the LnCl3·7H2O-catalyzed Big-
inelli reaction (Scheme 4).

The first step is the acid-catalyzed condensation of alde-
hyde and urea (or thiourea). The formation of N-acyl imi-
ne intermediate A is the rate-limiting step of the reaction.
The intermediate A is complexed by lanthanide chlorides,
giving B, which acts as an electrophile for the nucleo-
philic addition of the ketoester enol. The resulting adduct
C undergoes condensation with the urea-NH2 to give the
cyclized product D.

Lanthanide trichloride hydrates prepared from mischmet-
all can be used as catalysts for the Biginelli-type cyclo-
condensation. This method not only preserves the
simplicity of the initial one-pot reaction, but also notice-
ably improves the yields of DHPM and reduces reaction
times.

Scheme 3 Biginelli reaction catalyzed by lanthanide trichloride hy-

drates
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Table 1 Use of LnCl3·7H2O as Catalyst in Biginelli-Type 

Reaction15

Entry Ar Y Catalyst 

(equiv)

Product Yield 

(%)a

1 Ph O 0.5 1 92

2 Ph O 0.2 1 85

3 Ph S 0.2 2 83

4 4-MeOC6H4 O 0.2 3 84

5 4-MeOC6H4 O 0.2 3 64b

6 4-MeOC6H4 S 0.2 4 88

7 3-BrC6H4 O 0.2 5 82

8 3-BrC6H4 O 0.2 5 36b

9 4-ClC6H4 O 0.2 6 83

10 4-ClC6H4 O 0.2 6 68b

11 4-HOC6H4 O 0.2 7 56

12 4-HOC6H4 O 0.5 7 80

13 4-O2NC6H4 O 0.2 8 31

14 4-O2NC6H4 O 0.5 8 75

15 furyl O 0.5 9 56

a Yields of pure products (after recrystallization).
b The reaction was performed without HCl.

Scheme 4 Assumed mechanism for LnCl3·7H2O-catalyzed Biginel-

li reaction
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This example is the first example of the use of mischmet-
all trichloride hydrates as catalyst in organic synthesis.
This material could be tested in a wide variety of reactions
involving lanthanide salts as catalyst.
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