Total Synthesis of Discodermolide: Optimization of the Effective Synthetic Route

Elsa De lemos, François-Hugues Porée, Arnaud Bourin, Julien Barbion, Evangelos Agouridas, Marie-Isabelle Lannou, Alain Commerçon, Jean-François Betzer, Ange Pancrazi, Janick Ardisson

To cite this version:

Elsa De lemos, François-Hugues Porée, Arnaud Bourin, Julien Barbion, Evangelos Agouridas, et al.. Total Synthesis of Discodermolide: Optimization of the Effective Synthetic Route. Chemistry - A European Journal, 2008, 14 (35), pp.11092-11112. 10.1002/chem.200801478 . hal-02371110

HAL Id: hal-02371110

https://hal.science/hal-02371110

Submitted on 3 Sep 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Total Synthesis of Discodermolide: Optimization of the Effective Tactic

Elsa de Lemos, ${ }^{[\text {[a] }}$ François-Hugues Porée, ${ }^{[a]}$ Arnaud Bourin, ${ }^{[\text {a] }]}$ Julien Barbion, ${ }^{[a]}$ Evangelos Agouridas, ${ }^{[a]}$ Marie-Isabelle Lannou, ${ }^{[a]}$ Alain Commerçon, ${ }^{[b]}$ Jean-François Betzer, ${ }^{[a]}$ Ange Pancrazi, ${ }^{[a]}$ Janick Ardisson*[a]

Abstract

An efficient and modulable total synthesis of discodermolide (DDM), a unique anticancer polyketide of marine sponge origin is described including related alternative synthetic approaches. Particularly notable is the repeated application of crotyltitanation reaction to yield homoallylic (Z)- O -ene-carbamate alcohols in excellent selectivity. Advantage was taken of this reaction not only for the sterecontrolled building of the syn-anti methyl-

hydroxy-methyl triads of DDM but also for the direct construction of the terminal (Z)-diene. Of particular interest is also the installation of the C13-C14 (Z) double bond utilizing a highly selective dyotropic rearrangement. The preparation of the middle C8-C14 fragment in two sequential stages and it coupling to the C1-C7 moiety was a real challenge and required careful optimization. Several synthetic routes were explored to allow
high and reliable yields. Due to the flexibility and robust character of this approach, it might enable a systematic structural variation of DDM and therefore the elaboration and exploration of novel discodermolide structural analogues.

Keywords: discodermolide - total synthesis - allylation - cuprate rearrangement - nickel crosscoupling reaction

Introduction

In 1990, Gunasekera and co-workers reported the isolation of discodermolide (DDM) 1, ${ }^{[1]}$ a unique polyketide marine metabolite obtained in low yields from the Caribbean deep-water sponge Discodermia dissoluta. Biological studies revealed DDM to be a potent microtubule-stabilizing agent that, like Taxol (Paclitaxel), arrests cells at the G2/M boundary of the cell cycle. ${ }^{[2]}$ The IC50 values reported for discodermolide in breast, prostate, colon, lung, and ovarian cancer cell lines are generally in the low nM range. Comparative studies showed that DDM was 1000 -fold more active than Taxol in promoting the same microtubule polymerization/bundling. This product is also more water-soluble than taxoid compounds, and acts synergistically in combination with paclitaxel. ${ }^{[3]}$ Extensive investigation of the site and mode of binding of DDM to β-tubulin as well as the determination of its bioactive conformation led to the proposal of a pharmacophore model. ${ }^{[4]}$ Due to the potential therapeutic applications and the extreme scarcity of this compound, there has been considerable synthetic efforts directed towards DDM, culminating in several total syntheses, ${ }^{[5]}$ including development of a preparative-scale approach. ${ }^{[6]}$ Phase I clinical trials were initiated from Novartis Pharma AG; however,
despite encouraging results, trials were suspended due to adverse toxicity at higher doses. ${ }^{[7]}$ Owing to the remarkable profile of DDM and its potential as lead structure, conception and synthesis of analogues have to be developped.

In this full account, we report full details of our total synthesis of DDM 1 including related alternative synthetic approaches. ${ }^{[8]}$. Due to the flexibility and robust character of this approach, it might allow a systematic structural variation of DDM and therefore the elaboration and exploration of novel discodermolide structural analogues.

Results and Discussion

Retrosynthetic and strategic considerations: Our synthetic strategy coincides in the disassembly of DDM into three fragments of similar size and stereochemical complexity (A C15-C24, B C8C14, C C1-C7) (Scheme 1). The joining of these subunits appears us to be optimally convergent, the two internal (Z)-alkenes C8-C9 and C13-C14 being pivotal in the choice of disconnection strategies either in acetylide addition to aldehyde/reduction sequence or Pd catalyzed sp_{2}-sp3 coupling.

[^0]

Scheme 1. Retrosynthetic analysis of discodermolide.

A central feature of our approach was the repeated matched addition of the chiral secondary (R)-crotyltitanium reagent 2 to $\alpha-$ (S)-methyl aldehydes 4. As exemplified in Scheme 2, this crotyltitanation reaction initially developed by Hoppe ${ }^{[9]}$ and widely used in total synthesis by our group, ${ }^{[10]}$ yielded homoallylic adducts 5 encompassing syn-anti methyl-hydroxy-methyl triad linked to a (Z)- O-enecarbamate group, in excellent diastereoselectivity. The enantioenriched $\quad(R)$ - α-(N, N-diisopropylcarbamoyloxy)crotyltitanium 2 could easily be prepared in situ from the deprotonation of crotyl diisopropylcarbamate $\mathbf{3}$, with $n-\mathrm{BuLi} /(-)-$ sparteine and tetra(isopropoxy)titanium. ${ }^{[11]}$

Our plan was precisely to take advantage of the reactivity of this terminal (Z)- O-enecarbamate function in two ways. First, nickelcatalyzed cross-coupling reaction would configure the terminal C21C24 (Z) diene $\mathbf{6}$ of fragment $\mathbf{A},{ }^{[12]}$ whereas a carbenoid rearrangement would install the terminal C8-C9 alkyne $\mathbf{7}$ of \mathbf{B} subunit in one step. ${ }^{[13]}$

Scheme 2. Crotyltitanation of aldehyde. Insaturations set-up from (Z) acyclic or cyclic enol ether.

Another highlight of our strategy was the stereocontrolled building of the C13-C14 trisubstituted (Z) double bond. With our C14-C15 disconnection, elected by several research groups, the elaboration of the pivotal segment C8-C14 B, which encompassing (Z) vinyl halide in $\mathrm{C}-14$ position, was needed for the sp_{2}-sp3 crosscoupling reaction between \mathbf{A} and \mathbf{B}. A (Z) vinyl iodide can be obtained in one step, by Zhao aldehyde olefination, ${ }^{[14]}$ but the yields were modest and the Z / E stereoselectivity remained disappointing. ${ }^{[15]}$ To circumvent this reaction, we considered focusing on a dyotropic rearrangement of the 5 -lithiodihydrofurans 9 and 10, obtained by metalation of cyclic enol ethers 8 and 9 leading to (Z)-alkenes $\mathbf{1 2}$ and 13. These rearrangements of such lithiated species were first examined by Fujisawa ${ }^{[16]}$ and developed by Kocienski ${ }^{[17]}$ and our group. ${ }^{[18]}$ This attractive reaction would allow the construction of various (Z) or (E) trisubstituted double bonds, in expected good yields and a total control of their geometry.

This retrosynthetic plan should ultimately allow for modifications of every substructure embedded into the frame of the natural compounds.

Preparation of the building blocks: The recent determination of the DDM bioactive "U"-shaped conformation confirmed the crucial nature of the middle part of DDM molecule. ${ }^{[4]}$ The preparation of this C8-C14 fragment region \mathbf{B} was a real challenge; the strategy involved two main stages, crotyltitanation set up of the C10-C12 anti-syn stereotriad and dyotropic rearrangement building of the C13-C14 trisubstituted (Z) double bond. Two alternative routes were examined, differing in the ordering of the two key steps.

The first sequence commenced with the commercially available $(S)-(+)$ Roche ester 14 (Scheme 3). Protection of 14 as a $p-$ methoxybenzyl ether ${ }^{[19]}$ was followed by reduction of the methyl ester to the primary alcohol and subsequent oxidation to aldehyde 15. ${ }^{[20]}$ The crotyltitanation reaction of chiral aldehyde 15 , with enantioenriched reagent $(\boldsymbol{R})-2$ led to the desired diastereomer 16 in good yield and excellent diastereomeric ratio (97:3) (Scheme 3).

Obtention of a O-enecarbamate moiety during the crotyltitanation process allowed for the generation of the alkyne 17, by a Fritsch-Buttenberg-Wiechell rearrangement. ${ }^{[13]}$ Enol $\mathbf{1 8}$ was readily available from 17, after PMB ether cleavage with DDQ, IBX oxidation of the resulting alcohol and subsequent aldehyde homologation with the commercially available (methoxymethyl)triphenylphosphonium ylide. Aqueous acidic hydrolysis of the resulting enol $\mathbf{1 8}$ accompanied by removal of the TES group afforded lactol 19.

Scheme 3. a) $\mathrm{CCl}_{3} \mathrm{C}(\mathrm{N}) \mathrm{OPMB}$, PPTS ($5 \mathrm{~mol} \%$), $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ cyclohexane $1: 2, \mathrm{RT}, 40 \mathrm{~h}$, 88%; b) LAH, THF, $0{ }^{\circ} \mathrm{C} \rightarrow$ RT, $3 \mathrm{~h}, 95 \%$; c) TEMPO ($2 \mathrm{~mol} \%$), $\mathrm{NaOCl}, \mathrm{KBr}$, $\mathrm{NaHCO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}$; d) (\boldsymbol{R})-2, cyclohexane/pentane 1:7, $-78{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}, 85 \%$ (two steps, c-d), dr 97:3; e) TESOTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C} \rightarrow \mathrm{RT}, 2 \mathrm{~h}, 97 \%$; f) t-BuLi, $\mathrm{Et}_{2} \mathrm{O}$, $30^{\circ} \mathrm{C} \rightarrow-20^{\circ} \mathrm{C}, 45 \mathrm{~min}, 84 \%$; g) n-BuLi, THF, $-78^{\circ} \mathrm{C} \rightarrow 0^{\circ} \mathrm{C}, 1 \mathrm{~h}$, then TMSCl, $78{ }^{\circ} \mathrm{C} \rightarrow \mathrm{RT}$, overnight, 92%; h) DDQ, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O} 95: 5,0^{\circ} \mathrm{C} \rightarrow \mathrm{RT}, 30 \mathrm{~min}, 86 \%$; i) IBX, DMSO, RT, $3 \mathrm{~h} ; \mathrm{j}$) (methoxymethyl)triphenylphosphonium chloride, LiHMDS, $10^{\circ} \mathrm{C}, 1 \mathrm{~h}, 85 \% ;$ k) Acetone $/ \mathrm{H}_{2} \mathrm{O} 9: 1, \mathrm{HCl}, 6{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 61 \%$ (three steps, h-k); l) PTSA, PPTS, $\mathrm{CuSO}_{4}, \mathrm{NH}_{4} \mathrm{NO}_{3}$ or Burgess reagent; m) PhSH, $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, 4 \AA \mathrm{MS}, \mathrm{Et}_{2} \mathrm{O}, 1 \mathrm{~h}$, 80%; n) DBU, neat, $245^{\circ} \mathrm{C}, 30 \%$; o) $m \mathrm{CPBA}, \mathrm{NaHCO}_{3}, \mathrm{PhH}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}$, then, reflux, 1 h , 19%. p) t-BuLi, Me2 $2 \mathrm{CuLi} . \mathrm{LiCN}, \mathrm{THF} / \mathrm{Et}_{2} \mathrm{O} / 1: 2,0^{\circ} \mathrm{C} \rightarrow \mathrm{RT}, 3 \mathrm{~h}$, then n - $\mathrm{Bu}_{3} \mathrm{SnCl},-$ $30^{\circ} \mathrm{C} \rightarrow \mathrm{RT}, 5 \mathrm{~h}, 20 \%$. TES=triethylsilyl, TMS=trimethylsilyl, $\mathrm{DDQ}=2,3$-dichloro-5,6 dicyano-1,4-benzoquinone, IBX=2-iodoxybenzoic acid, HMDS=hexamethyldisilazane, PTSA $=p$-toluenesulfonic acid, PPTS=pyridinium p-toluenesulfonate, MS=molecular sieves, $\mathrm{DBU}=1,8$-diazabicyclo[5.4.0]undec-7-ene, $m \mathrm{CPBA}=3$-chloroperbenzoic acid.

We next turned to build the C13-C14 trisubstituted functionalized (Z) double bond via a dyotropic rearrangement. However, the envisaged transformation of lactol 19 into the 2,3dihydrofuran (DHF) derivative 21, turned out to be more difficult than anticipated. Specifically, all attempts to effect a direct elimination (PTSA, ${ }^{[21]}$ PPTS ${ }^{[22]}, \mathrm{CuSO}_{4},{ }^{[23]} \mathrm{NH}_{4} \mathrm{NO}_{3},{ }^{[24]}$ or Burgess reagent ${ }^{[25]}$) from compound 19 failed to give the expected DHF 21 Lactol 19 could be smoothly converted to hemithioketal 20 . Upon DBU pyrolysis of $\mathbf{2 0}$ with concomitant distillation of the elimination product, ${ }^{[26]}$ the desired dihydrofuran $\mathbf{2 1}$ was obtained in 30% yield. Attempts to improve this outcome by conversion of phenyl sulfide 20 into corresponding sulfoxide derivative ${ }^{[27]}$ and subsequent
elimination, delivered DHF 21 in only 19\% yield. Application of dyotropic rearrangement conditions (1,2 -cuprate transfer in presence of cyano-Gilman dimethylcuprate and tri- n-butyltin trapping) to 21 led to the expected C8-C14 segment 22 in 20% yield. This 15 steps sequence to obtain the C8-C14 subunit $\mathbf{2 2}$ and the very poor yield of the last two steps did not allow for providing sufficient quantities to carry on the synthesis.

The formation of the DHF ring with an alkyne part was a critical step in the synthesis. The strategy was reconsidered and an alternative tactic was suggested based on an earlier formation of DHF ring. With the same approach, we inverted the order of the crotyltitanation-dyotropic rearrangement sequence. This approach implied the introduction of C13-C14 functionalized double bond bearing a metallic or halide function in a very early stage of synthesis. According to literature, ${ }^{[4]]}$ we choose to introduce in C14 position, a vinyl tin function, precursor of the vinyl halide core.

Stability of the vinyl stannane function during C8-C14 subunit elaboration was a challenging problem. With the aim to determine the chemical compatibility of this moiety, we decided to construct a C12-desmethyl model (\pm)-25 (Scheme 4). While the formation of alkene $\mathbf{1 2}$ in one step by metallate rearrangement with a cyanoGilman dimethylcuprate from the commercially available 2,3dihydrofuran 8 proceeded smoothly, ${ }^{[28]}$ significant problems were encountered during conversion of homoallylic alcohol 12 into aldehyde 23. Extensive screening was performed. Classical oxidations as, Swern, ${ }^{[29]}$ Doering-Parikh ${ }^{[30]}$ or PCC ${ }^{[31]}$ led to decomposition with the loss of the tin function. On the other hand, milder reagents as TPAP/NMO ${ }^{[32]}$ or IBX ${ }^{[33]}$ resulted in recovery of the starting material. The Saigo-Mukaiyama protocol, ${ }^{[34]}$ employing $1,1^{\prime}$-(azodicarbonyl)dipiperidine (ADD) as a hydride acceptor failed, resulting only in the recovery of the starting material, despite encouraging Marshall precedence. ${ }^{[35]}$

Scheme 4. a) t - $\mathrm{BuLi}, \mathrm{Me}_{2} \mathrm{CuLi} . \mathrm{LiCN}, \mathrm{THF} / \mathrm{Et}_{2} \mathrm{O} / 1: 2,0^{\circ} \mathrm{C} \rightarrow \mathrm{RT}, 3 \mathrm{~h}$, then $n-\mathrm{Bu}_{3} \mathrm{SnCl}$, $-30^{\circ} \mathrm{C} \rightarrow \mathrm{RT}, 5 \mathrm{~h}, 61 \%$; b) TEMPO ($10 \mathrm{~mol} \%$), BAIB, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{RT}, 2 \mathrm{~h} ; \mathrm{c}$) (\pm)-2 (from 3, $n-\mathrm{BuLi} / T M E D A, \mathrm{Et}_{2} \mathrm{O}$), $\mathrm{Et}_{2} \mathrm{O},-78^{\circ} \mathrm{C}, 2 \mathrm{~h}, 63 \%$ (two steps b and c); d) $t-\mathrm{BuLi}^{\circ}, \mathrm{Et}_{2} \mathrm{O}$, $-30^{\circ} \mathrm{C} \rightarrow-20^{\circ} \mathrm{C}, 30 \mathrm{~min}, 70 \%$.

Therefore we were pleased to see that the application of TEMPO free radical and a suitable co-oxidant led to a significant improvement. Recourse to [bis(acetoxy)iodo]benzene (BAIB) as cooxidant delivered cleanly the oxidation product. ${ }^{[36]}$ In return, fast protodestannylation upon purification or even shelf storage of $\mathbf{2 3}$ was observed. Therefore, the crude product was directly subjected to crotyltitanation conditions with the racemic ($\mathbf{\pm} \mathbf{- 2}$. The O enecarbamate $(\pm) \mathbf{- 2 4}$ was then converted into terminal alkyne ($\mathbf{\pm} \mathbf{)} \mathbf{- 2 5}$ by t-BuLi treatment. After the difficulties encountered during the oxidation step, it was gratifying to find that the (Z)-vinyl stannane function was sufficiently stable toward crotyltitanation conditions and especially upon t-BuLi treatment. Thus 12-desmethyl C8-C14
fragment (\pm)-24 could be obtained in only 4 steps, from commercially available 2,3 -dihydrofuran $\mathbf{8}$, in 26.9% overall yield.

With secured information on tin stability in hand, the stage was set for the synthesis of DHF 9 bearing a methyl group in C12 position (DDM numbering (Scheme 5). Preparation of DHF 9 was realized from the commercially available (R)-3-bromo-2-methyl-1propanol 26. Cyanide displacement of the bromide and partial reduction of the nitrile function led to lactol 27 after spontaneous cyclisation of the γ-hydroxy aldehyde. After several protocols used, a straightforward dehydration with PTSA in quinoline with simultaneous distillation of the volatile elimination product from the reaction mixture afforded cleanly the desired DHF 9 in 85% yield and mostly in a neat form (Scheme 5). ${ }^{[37]}$ This expeditious three-step sequence furnished the enantiopure DHF 9 in 64% overall yield.

Scheme 5. a) $\mathrm{NaCN}, \mathrm{DMSO}, 60^{\circ} \mathrm{C}, 24 \mathrm{~h}, 92 \%$; b) DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}$, 82%; c) PTSA, quinoline, $160{ }^{\circ} \mathrm{C} \rightarrow 245{ }^{\circ} \mathrm{C}, 45 \mathrm{~min}, 85$. DIBAL$\mathrm{H}=$ diisobutylaluminium hydride, $\mathrm{PTSA}=p$-toluenesulfonic acid.

DHF 9 was subjected to metallate rearrangement under the standard laboratory conditions with a cyano-Gilman dimethylcuprate to afford the expected trisubstituted (Z)-alkene $\mathbf{1 3}$ in a low 27% yield (Scheme 6 , Table 1, entry 2). It was decided to investigate the influence of different reaction parameters. To this end, the solvent and/or cuprate ligands were modified with regard to the classical $1: 2 \mathrm{THF} / \mathrm{Et}_{2} \mathrm{O}$ solvent mixture. The results are summarized in Table 1, from commercial DHF $\mathbf{8}$ as a model. It was envisaged to activate the $\mathrm{C}-\mathrm{O}$ bond of the dihydrofuran ring by addition of Lewis acids (table 1, entries 3-4), to promote organometallic dissociation (table 1, entries 5-7) or to modify the cuprate ligands in presence of TMEDA or pyridine (table 1, entries $8-9$), but without significant effect. However, recourse to sulphur additives resulted in appreciable yields (table 1, entries $10-12$). Thereby, a 4:1 mixture of $\mathrm{Et}_{2} \mathrm{O}$ and dimethylsulfide (DMS) (table 1, entry 12) allowed the formation of the expected (Z)-alkene $\mathbf{1 2}$ in a satisfactory 76% yield. It was noted, however, that the magnesiocuprates prepared from MeMgBr and $\mathrm{CuBr} . \mathrm{Me}_{2} \mathrm{~S}$ (table 1, entry 13), versus cyanocuprates, gave disappointing results and yields remained below 22%.

Scheme 6 Cuprate rearrangement with methyl transfer from DHF $\mathbf{8}$ or 9.

Table 1. Results of cuprate rearrangement with methyl transfer from DHF $\mathbf{8}$ or 9.

| Entry | Starting | Additive |
| :---: | :---: | :---: |\quad Conditions | $(Z) \mathbf{- 1 2}$ | or | $\mathbf{- 1 3}$ |
| :--- | :--- | :--- | :--- |
| $(\%)$ | | |

1	8	None ${ }^{[a],[b]}$	RT 3 h	61
2	9	None ${ }^{[a],[b]}$	RT 3 h	27
3	8	$\underset{[\mathrm{ab},[\mathrm{~b}]}{\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2} \text { (2.5 equiv.) }}$	RT 3 h	13
4	8	TMSCl (4 equiv.) ${ }^{[\mathrm{aj},[\mathrm{b}]}$	RT 3 h	46
5	8	HMPA (5 equiv.) ${ }^{[a],[b]}$	RT 3 h	29
6	8	DMPU (5 equiv.) ${ }^{[a],[b]}$	RT 3 h	0
7	8	DMF (20 equiv.) ${ }^{[a],[b]}$	RT 3 h	0
8	8	TMEDA (10 equiv.) ${ }^{[\mathrm{a}][\mathrm{lb]}}$	RT 3 h	45
9	8	Pyridine (10 equiv. ${ }^{[a],[b]}$	RT 3 h	16
10	8	Thiophene (20 equiv.) [a],[b]	RT 12 h	55
11	8	Tetrahydrothiophene (20 equiv.) ${ }^{[a],[b]}$	RT 12 h	67
12	8	DMS ($\left.\mathrm{Et}_{2} \mathrm{O} / \mathrm{DMS} 4: 1\right)^{[\mathrm{b}]}$	RT 12 h	76
13	8	None ${ }^{[a],[c]}$	RT 3 h	22
14	9	DMS ($\left.\mathrm{Et}_{2} \mathrm{O} / \mathrm{DMS} 4: 1\right)^{[\mathrm{b}]}$	RT 12 h	68

[a] THF/Et ${ }_{2} \mathrm{O}$ 1:2. [b] MeLi/CuCN. [c] MeMgBr (4 equiv.), $\mathrm{CuBr} \bullet \mathrm{Me}_{2} \mathrm{~S}$ (2 equiv.).

Application of optimized conditions to DHF 9 led to the (Z)-tin derivative $\mathbf{1 3}$ in a substantial 68% yield (Table 1, entry 14).

We developed a useful and efficient dimethylsulfide-promoted methyl transfer in the 1,2 cuprate rearrangement leading to (Z)trisubstituted olefins. With a good supply of alkene $\mathbf{1 3}$ being assured, the synthesis of the C8-C14 subunit B was tackled. In agreement with model C12-desmethyl series, compound $\mathbf{1 3}$ was converted to carbamate 29 as a single diastereomer in 84% yield after oxidation to aldehyde $\mathbf{2 8}$ with TEMPO/BAIB and crotyltitanation (Scheme 7). To confirm the (S)-C11 secondary hydroxy centre configuration, 29 was derivatized to the (R) - and (S)- α-methoxy-phenylacetic acid (MPA) ester (see experimental part). ${ }^{[38]}$

Scheme 7. a) TEMPO ($10 \mathrm{~mol} \%$), BAIB, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{RT}, 2 \mathrm{~h} ;$ b) (R)-2, cyclohexane/pentane $1: 7,-78{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}, 84 \%$ (two steps, a and b). DMS=dimethyl sulphide, TEMPO=2,2,6,6-tetramethyl-1-piperidinyloxy free radical, BAIB $=[$ bis(acetoxy)iodo $]$ benzene.

DHF 9 was also prepared in racemic form. After some experimentation, it was found that the most effective approach
started from the commercial available ethyl 2-methyl-4-pentenoate $\mathbf{(} \pm \mathbf{)} \mathbf{3 0}$ (Scheme 8). Reduction of ester function followed by ozonolysis of terminal double bond and dehydration of the corresponding lactol led to the desired DHF $(\pm)-9$. Oxidation of the 1,2 cuprate transfer product (\pm)-13 and crotyltitanation delivered the required Felkin-Anh homoallylic alcohols 29 in 42% yield and a minor diastereomer 31 in 14% yield. At this stage of the synthesis, it is important to point out that these C12-epimeric compounds 29/31 were easily separated by flash chromatography.

Scheme 8. a) $\mathrm{LAH}, \mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C} \rightarrow \mathrm{RT}, 3 \mathrm{~h}$; b) O_{3}, sudan III, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 1: 1,-78{ }^{\circ} \mathrm{C}$, 7 h then $\mathrm{PPh}_{3},-78^{\circ} \mathrm{C} \rightarrow \mathrm{RT}$, overnight, 80% (two steps, a and b), anomeric ratio $2: 1 ; \mathrm{c}$) PTSA, quinoline, $160{ }^{\circ} \mathrm{C} \rightarrow 245{ }^{\circ} \mathrm{C}, 45 \mathrm{~min}, 85 \%$; d) t-BuLi, Me 2 CuLi.LiCN, $\mathrm{Et}_{2} \mathrm{O} / \mathrm{DMS} 4: 1,0^{\circ} \mathrm{C} \rightarrow \mathrm{RT}, 18 \mathrm{~h}$, then n - $\mathrm{Bu}_{3} \mathrm{SnCl},-30^{\circ} \mathrm{C} \rightarrow \mathrm{RT}, 5 \mathrm{~h}, 68 \%$; e) TEMPO ($10 \mathrm{~mol} \%$), BAIB, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{RT}, 2 \mathrm{~h} ;$ f) (\boldsymbol{R})-2, cyclohexane/pentane 1:7, $-78{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}$, compound 2942% (two steps, e and f) and compound 3114% (two steps, e and f; g) t BuLi, THF, $-40^{\circ} \mathrm{C} \rightarrow-20^{\circ} \mathrm{C}, 20 \mathrm{~min}, 78 \%$; h) MOMCl, TBAI, Hunig's base, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, RT, $18 \mathrm{~h}, 92 \%$. LAH=lithium aluminium hydride, $\mathrm{PTSA}=p$-toluenesulfonic acid, TEMPO $=2,2,6,6$-tetramethyl-1-piperidinyloxy free radical, BAIB=[bis(acetoxy)iodo]benzene, MOM=methoxymethyl, TBAI=tetra- $n-$ butylammonium iodide, Hunig's base=diisopropylethylamine.

From carbamate 29, α-elimination reaction upon a $t \mathrm{BuLi}$ treatment and subsequent C11 secondary alcohol protection as methoxymethyl ether furnished alkyne 32 (Scheme 8). Subunit 32 was obtained in eight steps in 13.9% or 26.3%, respectively from pentenoate $(\pm) \mathbf{- 3 0}$ (with a kinetic resolution step) or enantiopure propanol 26. However, taking into account the cost of the starting material 26 and the convenient separation of the C12-epimeric compounds, we preferred recourse to the racemic DHF ($\mathbf{\pm})-9$ to produce C8-C14 subunit $\mathbf{3 2}$ on a multigram scale.

The synthesis of the C15-C24 subunit A started with the C16C18 syn-syn motif preparation, planned by a substrate-based crotylation reaction. The addition of the achiral tri-nbutylcrotylstannane on chiral aldehyde $\mathbf{1 3}$ under Keck's conditions $\left(\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right),{ }^{[39]}$ led to a $85: 15$ mixture of diastereomers 33 and 34. Felkin-Ahn selectivity was optimized to $95: 5$ when replacing $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ by $\mathrm{Et}_{2} \mathrm{O}$ (Scheme 9). However, large scale production of $\mathbf{3 3}$ was impeded by difficulties associated with diastereomer separation. This difficulty was readily overcome using chiral crotylborane procedure developed by Brown. ${ }^{[40]}$ The desired homoallylic alcohol 33 was delivered cleanly in a stereospecific manner from the (Z)-crotyldiisopinocampheylborane reagent derived from (-)- $\mathrm{Ipc}_{2} \mathrm{~B}(\mathrm{OMe})$.

The absolute configuration of the stereogenic centres of $\mathbf{3 3}$ was confirmed by chemical correlation. Cleavage of the PMB moiety was accomplished to provide the known triol 36. The NMR data and the specific optical rotation were in agreement with literature. ${ }^{[41]}$

Scheme 9. a) Tri-n-butylcrotylstannane, $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, \mathrm{Et}_{2} \mathrm{O},-100^{\circ} \mathrm{C}, 2 \mathrm{~h}, 74 \%$, dr $95: 5$; b) (Z)-2-butene, n-BuLi, t-BuOK, [(-)--Ipc] $]_{2} \mathrm{BOMe}^{2}, \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, 65 \%$, dr 100:0; c) TBSOTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C} \rightarrow \mathrm{RT}, 2 \mathrm{~h}, 92 \%$; d) $\mathrm{DDQ}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O} 95: 5,0{ }^{\circ} \mathrm{C} \rightarrow \mathrm{RT}, 2$ h, 75%; e) O_{3}, sudan III, $\mathrm{Py}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 1: 1,-78^{\circ} \mathrm{C}, 2 \mathrm{~h}$ then DMS, $-78^{\circ} \mathrm{C} \rightarrow \mathrm{RT}$, overnight; f) (R)-2, cyclohexane/pentane 1:7, $-78{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}, 77 \%$, dr 100:0. PMB $=p-$ methoxybenzyl, PPTS=pyridium p-toluenesulfonate, LAH=lithium aluminium hydride, TEMPO $=2,2,6,6$-tetramethyl-1-piperidinyloxy free radical, Ipc=isopinocampheyl, TBS=tert-butyldimethylsilyl, \quad DDQ=2,3-dichloro-5,6-dicyano-1,4-benzoquinone, TBAF=tetra- n-butylammonium fluoride, $\mathrm{Py}=$ pyridine, $\mathrm{DMS}=$ dimethyl sulfide.

For the construction of the second C18-C20 syn-anti stereotriad, we selected a crotyltitanation reaction. After protection of the C17 hydroxy group of $\mathbf{3 3}$ as TBS ether, an oxidative cleavage of corresponding alkene $\mathbf{3 5}$ by ozonolysis delivered the aldehyde 37 . When the crotyltitanation reaction was realized with the chiral, nonracemic (\boldsymbol{R})-2, the desired isomer $\mathbf{3 8}$ was provided in 77% yield with a total stereocontrol.

On the basis of extensive precedent, we had predicted that the unique isomer from this addition would be the C18-C20 syn-anti stereoisomer 38. This assignment was confirmed applying the Rychnovsky method ${ }^{[42]}$ and analysis of the ${ }^{1} \mathrm{H}$ NMR vicinal coupling constants of corresponding acetonides (see experimental section).

Application of this crotyltitanation reaction was also instrumental in the preparation of the required terminal (Z)-diene. As previously described in our group, ${ }^{[12]}$ the direct vinylation of a Z -O-enecarbamate moiety was performed in the presence of $\mathrm{Ni}(\mathrm{acac})_{2}$ with commercially available vinylmagnesium bromide. In this way, from carbamate 39, this reaction gave highly variable but mostly disappointing low yields (Scheme 10, see Table 2 entry 1). The cross-coupled product $\mathbf{4 0}$ was generated solely or as a mixture with the corresponding inseparable reduced compound 41 (selectivity varying from $100: 0$ to $0: 100$). The quality of commercial vinylmagnesium bromide solution was unreliable. Furthermore, even with the same batch, the selectivity in cross-coupled product decreased during the time of storage. We decided to prepare ourselves the vinylmagnesium bromide. Three methods were explored. First, direct insertion of magnesium into vinyl bromide ${ }^{[43]}$ led to reliable results but with a modest selectivity into the desired compound 40, i.e. 80:20 (entry 2). The vinylmagnesium reagent was also generated in situ, by transmetallation of the vinyllithium derivative with magnesium bromide. ${ }^{[44]}$ When the vinyllithium was
produced from vinyl bromide by metal-halogen exchange, ${ }^{[45]}$ no reaction occurred (entry 3). On the other hand, the preparation of the vinyllithium from tetravinyltin and MeLi, ${ }^{[46]}$ afforded cleanly the cross-coupled product 40 in modest yield (entry 4).

The reaction with the solely vinyllithium species (without magnesium salts), produced from tetravinyltin and MeLi, ${ }^{[46]}$ led to a significant improvement (entry 5). This method allowed for the selective formation of the cross-coupled product $\mathbf{4 2}$ in reproducible 80% yield (no reduction product was recovered). Use of tetravinylstannane and MeLi authorized to scale up the crosscoupling reaction to 2.5 g . To the best of our knowledge, it is the first example of a $\mathrm{C}\left(\mathrm{sp}_{2}\right)-\mathrm{C}\left(\mathrm{sp}_{2}\right)$ cross-coupling between a vinyllithium and a vinylic electrophilic species. ${ }^{[47]}$

Scheme 10. a) TESOTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C} \rightarrow \mathrm{RT}, 1.5 \mathrm{~h}, 78 \%$; b) $\mathrm{Ni}(\mathrm{acac})_{2}$, $\mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$, overnight, vinylmagnesium bromide, see Table 1; c) $\mathrm{DDQ}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}$ $95: 5,0{ }^{\circ} \mathrm{C} \rightarrow \mathrm{RT}, 40 \mathrm{~min}, 72 \%$; d) $\mathrm{I}_{2}, \mathrm{PPh}_{3}$, imid, $\mathrm{C}_{6} \mathrm{H}_{6} / \mathrm{Et}_{2} \mathrm{O}, 0{ }^{\circ} \mathrm{C} \rightarrow \mathrm{RT}, 2 \mathrm{~h}, 79 \%$. TES=triethylsilyl, acac=acetylacetonate, \quad DDQ=2,3-dichloro-5,6-dicyano-1,4 benzoquinone, imid=imidazole.

Table 2. Results of direct vinylation of a $Z-O$-enecarbamate under a $\mathrm{Ni}(\mathrm{acac})_{2}$ catalyzed cross-coupling reaction from compound $\mathbf{3 9}$.

Entry	Conditions	40	41	Yield ${ }^{[a]}$
1	$\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{MgBr}^{[\mathrm{b]}}$	$100 \rightarrow 0$	$0 \rightarrow 100$	$35 \rightarrow 80 \%$
2	$\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{Br}, \mathrm{Mg}$	80	20	65\%
3	$\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{Br}, t-\mathrm{BuLi}, \mathrm{MgBr}_{2} \bullet \mathrm{OEt}_{2}$	-	-	_[c]
4	$\left(\mathrm{CH}_{2}=\mathrm{CH}\right)_{4} \mathrm{Sn}, \mathrm{MeLi}, \mathrm{MgBr}_{2} \cdot \mathrm{OEt}_{2}$	100	0	50\% ${ }^{\text {[d] }}$
5	$\left(\mathrm{CH}_{2}=\mathrm{CH}\right)_{4} \mathrm{Sn}, \mathrm{MeLi}$	100	0	80\%

[a] Isolated yield of $\mathbf{4 2}$ and $\mathbf{4 3}$ mixture. [b] Commercial reagent. [c] Only the starting material was recovered. [d] 10% of starting material was recovered.

To achieve the synthesis of subunit 43, the PMB ether was removed by treatment with DDQ and the resulting alcohol $\mathbf{4 2}$ was transformed into akyl iodide $\mathbf{4 3}$ under optimized Garegg conditions in a benzene/diethyl ether mixture under high dilution. ${ }^{[48]}$ The C15C24 subunit 43, bearing five contiguous stereogenic centres and a terminal diene, was obtained in 13.7% overall yield for 11 steps.

Our initial approach to the synthesis of the third building block C1-C7 C commenced with standard Brown crotylation of aldehyde

44 (derived from (S) Roche ester 14), to afford the desired syn-anti homoallylic alcohol 45 in 76% yield (Scheme 11). ${ }^{[49]}$ It was envisaged to rely upon substrate-directable epoxidation/oxirane regioselective ring opening sequence for the installation of the missing C5 chiral centre.

Scheme 11 a) $\mathrm{CCl}_{3} \mathrm{C}(\mathrm{N}) \mathrm{OBn}$, $\mathrm{TfOH}(5 \mathrm{~mol} \%), \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ cyclohexane $1: 2,0^{\circ} \mathrm{C} \rightarrow \mathrm{RT}, 40$ h, 84%; b) LAH, THF, $0{ }^{\circ} \mathrm{C} \rightarrow$ RT, $3 \mathrm{~h}, 94 \% \mathrm{c}$) IBX, DMSO, RT, $3 \mathrm{~h}, 92 \%$; d) (E)-2butene, n - BuLi, t-BuOK, $[(-)-\mathrm{Ipc}]_{2} \mathrm{BOMe}, \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, 76 \%$, dr $90: 10$; e) $\mathrm{VO}(\mathrm{acac})_{2}$, TBHP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 78 \%$, dr $90: 10$; f) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{Br}, t$ - $\mathrm{BuLi}, \mathrm{CuCN}, \mathrm{THF},-78{ }^{\circ} \mathrm{C} \rightarrow 0{ }^{\circ} \mathrm{C}$, overnight, 86%; g) Li, NH_{3}, THF, $-78{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$; h) TBSOTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ \rightarrow RT, $3 \mathrm{~h}, \quad 99 \%$ (two steps, g and h). Ipc=isopinocampheyl, $\mathrm{Tf}=$ trifluoromethanesulfonyl, LAH=lithium aluminium hydride, IBX=2-iodoxybenzoic acid, acac=acetylacetonate, TBHP=tert-butyl hydroperoxide, TBS=tert butyldimethylsilyl.

The epoxydation of homoallylic alcohol 45 turned out to be more difficult than anticipated. The use of $m \mathrm{CPBA}, \mathrm{Mo}(\mathrm{CO}) / / \mathrm{TBHP}$ or $\mathrm{VO}(\mathrm{O} i-\mathrm{Pr})_{3} / \mathrm{TBHP}$ never gave more than 40% of selectivity, while recourse to $\mathrm{VO}(\mathrm{acac}) 2 / \mathrm{TBHP}{ }^{[50]}$ led to a significant improvement (78% yield of oxiranes $\mathbf{4 6}$ and $\mathbf{4 7}$ as a $90: 10$ mixture of separable diastereomers). However, upon attempted optimization and up-scaling, this reaction was not reproducible. Pure 46 was then subjected to a regioselective ring opening by a cyano-Gilman divinyl cuprate, $\left(\mathrm{CH}_{2}=\mathrm{CH}\right)_{2} \mathrm{CuLi} \cdot \mathrm{LiCN},{ }^{[51]}$ to ensure the formation of the alkene $\mathbf{4 8}$ in 86% yield. Finally, cleavage of the O-Bn group with lithium in liquid ammonia followed by silylation afforded the C1-C7 subunit 49.

An alternative route allowed the generation of the C 5 chiral centre by hetero-Michael addition on α, β-unsaturated Weinreb amide 53, which in turn could derived from aldehyde 50 through crotyltitanation reaction and homologation (Scheme 12). Thus, crotyltitanation of aldehyde 50 (which was prepared from (S) Roche ester 14) delivered cleanly the syn-anti homoallylic alcohol 51. A cross-metathesis (CM) reaction between alkene $\mathbf{5 1}$ and N -methoxy-N-methylacrylamide was experimented. ${ }^{[52]}$ None of the desired product was formed and most of the starting material was recovered. We suspected that the N, N-diisopropyl- O-enecarbamate function could have deleterious effects for steric or/and electronic reasons. Thus, the vinylic function of compound $\mathbf{5 1}$ was deoxygenated by hydride reduction with i-propylmagnesium bromide in a nickel catalyzed reaction to furnish $\mathbf{5 2}$. ${ }^{[53]}$ More surprisingly, the CM reactions between N-methoxy- N -methylacrylamide or methyl acrylate and terminal olefinic compound $\mathbf{5 2}$ failed using Grubbs II or Hoveyda catalyst. Gratifyingly, a two-step sequence involving an oxidative cleavage of double bond, followed by a Horner-Wadsworth-Emmons reaction (HWE) with the commercially available diethyl (N-methoxy- N -
methylcarbamoylmethyl)phosphonate, delivered the α, β-unsaturated Weinreb amide 53. Reaction of $\mathbf{5 3}$ with benzaldehyde mediated by KHMDS afforded benzylidene $\mathbf{5 4}$ in 79% yield with an excellent diastereoselectivity ($\mathrm{dr}>95: 5$). ${ }^{[54]}$ After reduction of $\mathbf{5 4}$ into aldehyde $\mathbf{5 5}$ by treatment with DIBAL-H, ${ }^{[55]}$ the last C1-C7 subunit, bearing four stereocentres, was obtained in 32.7% overall yield for 8 steps.

Scheme 12 a) TBSCl, imid, DMF, $0{ }^{\circ} \mathrm{C} \rightarrow \mathrm{RT}$, overnight, 98%; b) DIBAL- $\mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-$ $20^{\circ} \mathrm{C}, 30 \mathrm{~min}, 92 \%$; c) $\left(\mathrm{COCl}_{2}\right.$, DMSO, $\mathrm{Et}_{3} \mathrm{~N},-55^{\circ} \mathrm{C} \rightarrow \mathrm{RT}, 1 \mathrm{~h}$; d) (R)-2, cyclohexane/pentane $1: 7,-78{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}, 66 \%$ (two steps, c and d); e) $\mathrm{Ni}(\mathrm{acac})_{2}(10 \mathrm{~mol} \%)$, $i-\mathrm{PrMgBr}$, THF, R.T, overnight, 50%; f) O_{3}, sudan III, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$, then PPh_{3}, $78{ }^{\circ} \mathrm{C} \rightarrow \mathrm{RT}, 3 \mathrm{~h}, 87 \%$; g) (EtO) $)_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{NMe}(\mathrm{OMe}), \mathrm{NaH}, \mathrm{THF}, 0^{\circ} \mathrm{C} \rightarrow \mathrm{RT}, 45$ $\min , 86 \%$; h) PhCHO, KHMDS, THF, $-20^{\circ} \mathrm{C}, 45 \mathrm{~min}, 79 \%$; i) DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $78{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, \quad 93 \%$. TBS=tert-butyldimethylsilyl, imid=imidazole, DIBAL$\mathrm{H}=$ diisobutylaluminium, $\mathrm{HMDS}=$ he xamethyldisilazane.

Completion of the total synthesis of discodermolide: With access to the required fragments now reliable, the stage was set for the coupling. The first coupling reaction involved an addition of the C8C14 acetylenic compound $\mathbf{3 2}$ to C1-C7 aldehyde 55 (Scheme 13). Previous observations on the stability of the sterically hindered trisubstituted Z-vinyl stannane provided encouraging precedence with regard to the chemoselectivity issue. Although lithiated acetylide of $\mathbf{3 2}$ was chemoselectively produced by action of t-BuLi at low temperature, its reaction with aldehyde $\mathbf{5 5}$ afforded a 2:1 mixture of separable C7 diastereomers $\mathbf{5 6}$ and $\mathbf{5 7}$ in modest 50% yield. To assign the C 7 stereochemistry of these both epimers, each C7 isomeric secondary alcohol was independently subjected to the formation of (R) - and (S)-MPA ester derivatives (see experimental part). To our surprise, the desired and expected 5,7-anti diol 56 was the minor product (Scheme 13). ${ }^{[56]}$

Scheme 13 a) 32, t-BuLi, THF, $-78{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}$, then $\mathbf{5 5},-78{ }^{\circ} \mathrm{C} \rightarrow 0{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}, 50 \%$, dr 1:2.

A more appropriate solution was found with the addition of acetylenic derivative $\mathbf{3 2}$ on Weinreb amide $\mathbf{5 4}$ followed by stereoselective reduction of ynone 58 (Scheme 14). Preliminary assays were conducted using t-BuLi as metallating agent and afforded cleanly the desired adduct $\mathbf{5 8}$ in 80% yield. However, upon attempted optimization and up-scaling, this reaction was not reproducible. During these initial tries, however, it was noticed that Weinreb amide 54 was totally consumed with production of significant amount of benzaldehyde, indicating a probable retro hetero-Michael followed by a vinylogous retro-aldol reaction. After careful optimization, it was found that this addition reaction proceeded best using a solution of n-BuLi generated by treatment of butyl bromide by lithium metal in $\mathrm{Et}_{2} \mathrm{O},{ }^{[57]}$ whereas protocols involving commercial n-BuLi, LDA or LiHMDS did not bring any significant improvement. This procedure led cleanly and faster to the desired ynone $\mathbf{5 8}$ in a reliable 81% yield. Subsequent reagentcontrolled stereoselective reduction of $\mathbf{5 8}$ with (S)-CBS reagent ${ }^{[58]}$ provided alcohol 56 in high yield (95%) and diastereoselectivity (dr $>98: 2$).

Scheme 14. a) 32, n-BuLi/Et2 O , THF, $-40^{\circ} \mathrm{C}, 50 \mathrm{~min}$, then $\mathbf{5 4},-40^{\circ} \mathrm{C}->0^{\circ} \mathrm{C}, 1 \mathrm{~h}, 80 \%$,; b) (S)-(-)-2-Methyl-CBS-oxazaborolidine, $\mathrm{BH}_{3} . \mathrm{Me}_{2} \mathrm{~S}$, THF, $-30^{\circ} \mathrm{C}, 2 \mathrm{~h}, 95 \%$, dr 98:2. CBS $=$ Corey-Bakshi-Shibata.

Coupling of the two C1-C7 and C8-C14 fragments now in hand required the consecutive formation of vinyl iodide $\mathbf{6 0}$, in view of an alkyl-Suzuki reaction with the C15-C24 subunit 43. Alcohol $\mathbf{5 6}$ was smoothly converted to methyl ester 59 by a two-step MOMprotection and TBS-ether cleavage protocol following by oxidation of the resulting alcohol and esterification (Scheme 15). Subsequent standard Lindlar hydrogenation of the alkyne $\mathbf{5 9}$ seemed optimal as
compared to discodermolide C8-C9 semi-reduction cases previously reported in the literature. ${ }^{[4]}$ However, this reduction resulted only in recovery of starting material. After some experimentation, it was found that the reaction proceeded best using PtO_{2} protocol without overreduction. Consecutive iododestannylation furnished the desired (Z)-vinyl iodide $\mathbf{6 0}$ in 71% for two steps.

The stage was set for the coupling of the vinyl iodide $\mathbf{6 0}$ and C15-C24 sub-unit 43. Alkyl-Suzuki reaction was performed according to Marshall et al. procedure, ${ }^{[59]}$ by using trialkyl boronate species made from alkyl iodide 43 with t-BuLi and B-methoxy-9BBN under $\left[\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}\right]$ and AsPh_{3} conditions to afford the discodermolide backbone $\mathbf{6 0}$ in 60% yield.

Selective cleavage of the C19 TES-ether followed by reaction with trichloroacetylisocyanate furnished corresponding carbamate. ${ }^{[60]}$ Final total deprotection with concomitant lactonization following the procedure established in the previous total syntheses ${ }^{[4]}$ afforded discodermolide 1 in 70% yield. The spectroscopic and analytic data of the synthetic samples of $\mathbf{1}$ as well as their in vitro cytotoxicity levels were in full accord with those of the natural product reported in the literature.

Scheme 15. a) MOMCl, TBAI, Hunig's base, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{RT}, 18 \mathrm{~h}, 86 \%$; b) HF/Py, Py/THF, RT, $4 \mathrm{~h}, 96 \%$; c) TEMPO ($10 \mathrm{~mol} \%$), BAIB, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, RT, 3 h ; d) NaClO_{2} $\mathrm{NaH}_{2} \mathrm{PO}_{4}$, 2-methyl-but-2-ene, t - $\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$, RT, 1 h ; e) $\mathrm{TMSCHN}_{2}, \mathrm{C}_{6} \mathrm{H}_{6} / \mathrm{MeOH}$, RT, $15 \mathrm{~min}, 66 \%$ (three steps, c-e); f) $\mathrm{H}_{2}, \mathrm{PtO}_{2}(30 \mathrm{~mol} \%)$, $\mathrm{AcOEt}, \mathrm{RT}, 12 \mathrm{~h}$; g) $\mathrm{I}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, $0^{\circ} \mathrm{C}, 10 \mathrm{~min}, 71 \%$ (two steps, f and g) ; h) $\mathbf{4 3}, t-\mathrm{BuLi}, \mathrm{Et}_{2} \mathrm{O},-78^{\circ} \mathrm{C}, 5 \mathrm{~min}, B$-methoxy-9-BBN, THF, $-78{ }^{\circ} \mathrm{C} \rightarrow$ RT, then $\mathbf{6 0}, \mathrm{CsCO}_{3}, \mathrm{PdCl}_{2} \mathrm{dppf}, \mathrm{AsPh}_{3}, \mathrm{DMF}, \mathrm{H}_{2} \mathrm{O}, 18 \mathrm{~h}, 60 \%$; i) PTSA, $\mathrm{MeOH}, 0{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 77 \%$; j) $\mathrm{Cl}_{3} \mathrm{CC}(\mathrm{O}) \mathrm{NCO}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, RT, 15 min , then $\mathrm{K}_{2} \mathrm{CO}_{3}$ $\mathrm{MeOH}, \mathrm{RT}, 1.5 \mathrm{~h}, 64 \%$; k) $\mathrm{HCl} 4 \mathrm{~N}, \mathrm{THF}, \mathrm{RT}, 72 \mathrm{~h}, 70 \%$. MOM=methoxymethyl, TBAI=tetra- n-butylammonium iodide, Py=pyridine, TEMPO=2,2,6,6-tetramethyl-1piperidinyloxy free radical, TMS=trimethylsilyl, $\mathrm{BBN}=$ borabicyclo[3,3,1]nonane, dppf=(diphenylphosphino)ferrocene.

Conclusion

The investigation outlined above resulted in a total synthesis of the anticancer marine metabolite discodermolide $\mathbf{1}$ in 1.6% overall yield over 21 linear steps. The chosen approach bears witness to the maturity of crotyltitanation reaction with enantiomerically-defined secondary crotyltitane reagent. The repeated application of this reaction yielded homoallylic (Z)-O-enecarbamate alcohols 16, 29, 38 and $\mathbf{5 1}$ in excellent diastereoselectivity. Moreover, advantage
was taken of these alkenyl carbamates to form the next carboncarbon bond. Particularly notable is the direct construction of the terminal C21-C24 (Z) diene 40, with high geometric control, utilizing an original cross-coupling nickel-catalyzed reaction. Another highlight of our strategy was the 1,2 cuprate rearrangement of the dihydrofuran 9 leading to the stereocontrolled building of the C13-C14 trisubstituted (Z) alkene $\mathbf{1 3}$ with total selectivity.

Of the key steps employed en route to $\mathbf{1}$, the most significant problems were posed by the methyl transfer during the C13-C14 trisubstituted (Z) double bond installation, the construction of the middle C8-C14 fragment in two sequential stages (dyotropic rearrangement/crotyltitanation), and the coupling of the C8-C14 acetylenic sub-unit to the C1-C7 moiety. After careful optimization, these reactions allowed high and reliable yields. Hence, this study illustrates the notion that the total synthesis of complex target molecules remains the ultimate test for the performance, scope and limitations of any newly development methodology.

The strategy is flexible enough to accommodate systematic structural variations and therefore to provide novel discodermolide structural analogues.

Experimental Section

All reactions were carried out in oven or flame-dried glassware under an argon atmosphere employing standard techniques in handling air-sensitive materials. All solvents were employing reagent grade. Tetrahydrofurane (THF) and diethyl ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)$ were freshly distilled from sodium/benzophenone under nitrogen immediately prior to use. Dichloromethane (DCM), cyclohexane and pentane were freshly distilled over calcium hydride. All other reagents were used as supplied. Reactions were magnetically stirred and monitored by thin layer chromatography with 0.20 mm SDS 60F254 pre-coated silica gel plates. Visualization was accomplished with UV light then treatment with a 10% ethanolic phopshomolybdic acid solution followed with heating. Flash chromatography was performed with silica gel 60 (particle size $0.040-0.063 \mathrm{~mm}$) supplied by SDS. Yield refers to chromatography and spectroscopically pure compounds, unless otherwise noted. ${ }^{1} \mathrm{H}$ NMR spectra were recorded using an internal deuterium lock at ambient temperature on a JEOL JNM-ECX 270 or 400 MHz spectrometer. Internals references of $\delta_{\mathrm{H}} 7.26$ and 1.96 were used respectively for CDCl_{3} and $\mathrm{CD}_{3} \mathrm{CN}$. Data are represented as follows: chemical shift (in ppm), multiplicity ($\mathrm{s}=$ single, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet $)$, integration, coupling constant $(\mathrm{J} / \mathrm{Hz}) .{ }^{13} \mathrm{C}-$ NMR spectra were recorded on a Jeol 67.5 or 100.5 MHz spectrometer. Internals references of $\delta_{\mathrm{C}} 77.16$ and 118.26 were used respectively for CDCl_{3} and $\mathrm{CD}_{3} \mathrm{CN}$. Infrared spectra were recorded on a Nicolet Impact-400 and wavelength (v) is given in cm^{-1}. Mass spectra were recorded on a GC/MS coupling unit with a MSD 5973 spectrometer and a Hewlett-Packard HP-GC 6890 chromatograph. Ionization was obtained either by electronic impact (EI) or chemical ionization with methane (CI, CH_{4}). Mass spectral data are reported as m / z. Optical rotations were recorded on a Jasco $\mathrm{P}-1010$ digital polarimeter at 589 nm and reported as follows: $[\alpha]_{\mathrm{D}}^{20}$, concentration (c in $\mathrm{g} / 100 \mathrm{~mL}$) and solvent. Elemental analysis were performed on a CHN 240 PerkinElmer instrument by the Service de Microanalyses, Centre d'Etudes Pharmaceutiques, Chatenay-Malabry, F-92296. High-resolution mass-spectra were obtained on a ThermoElectron MAT-95 spectrometer in the ICMMO, Mass Spectrometry Laboratory, Orsay University, F-91 405 Orsay. IUPAC nomenclature was used for all compounds.
(2S)-3-(4-Methoxybenzyloxy)-2-methyl propanal (15): p-Methoxybenzylalcohol $(20.0 \mathrm{~g}, 144.7 \mathrm{mmol}, 1.0$ equiv) was added to a suspension of $\mathrm{NaH}(60 \%$ in mineral oil, $0.58 \mathrm{~g}, 14.5 \mathrm{mmol}, 0.1$ equiv) in anhydrous diethyl ether (45 mL) over 30 min at $20^{\circ} \mathrm{C}$. The mixture was stirred for 1 h and cooled to $0^{\circ} \mathrm{C}$. Trichloroacetonitrile ($23.0 \mathrm{~g}, 16 \mathrm{~mL}$, $159.2 \mathrm{mmol}, 1.1$ equiv) was then introduced over 10 min . After 1.5 h the solution was concentrated in vacuum. The crude residue was treated with a mixture of pentane (150 $\mathrm{mL})$ and methanol (0.6 mL), stirred at $20^{\circ} \mathrm{C}$ for 30 min , and filtered through a pad of celite. Concentration gave the trichloroimidate ($40.2 \mathrm{~g}, 98 \%$ yield) as yellow oil which was used without further purification. A solution of commercial methyl (S)-(+)-3-hydroxy-2-methylpropionate 14 ($13.9 \mathrm{~g}, 118 \mathrm{mmol}, 1.0$ equiv) and pyridinium p toluene sulfonate (PPTS, $1.48 \mathrm{~g}, 5.9 \mathrm{mmol}, 0.05$ equiv) in an anhydrous mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL}) /$ cyclohexane (100 mL) was cooled to $0{ }^{\circ} \mathrm{C}$ and treated with crude trichloroimidate ($40.2 \mathrm{~g}, 142 \mathrm{mmol}, 1.2$ equiv) over 10 min . After 3 h , the mixture was warmed to $20^{\circ} \mathrm{C}$ and stirred for 24 h . The solution was filtered through a pad of celite and the solvents were removed under reduced pressure. The crude ($2 R$) -3 -(4-methoxybenzyloxy)-2-methyl propan-1-ol was directly used in the next step without
further purification. RN: 132969-71-2; $[\alpha]_{\mathrm{D}}^{20}=+8.3\left(c=1.57, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.26(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.50(\mathrm{~s}$, $2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{dd}, J=8.9,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{dd}, J=8.9,5.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.79(\mathrm{dqd}, J=7.3,7.3,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.19\left(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=174.9(\mathrm{C}), 158.9(\mathrm{C}), 129.9(2 \mathrm{CH}), 128.9(\mathrm{C}), 113.4(2 \mathrm{CH})$, $72.4\left(\mathrm{CH}_{2}\right), 71.3\left(\mathrm{CH}_{2}\right), 54.8\left(\mathrm{CH}_{3}\right), 51.3\left(\mathrm{CH}_{3}\right), 39.8(\mathrm{CH}), 13.6\left(\mathrm{CH}_{3}\right)$; MS: $(\mathrm{GC}, \mathrm{CI}$, CH_{4}): $m / z: 267\left(\mathrm{M}^{+}+29\right), 237,223,207,187,161,149,137,121,101,87$; IR (Film) $v=$ 2939, 2858, 1741, 1729, 1612, 1513, 1462, 1364, 1302, 1248, 1200, 1175, 1089, 1034, $820 \mathrm{~cm}^{-1}$.

A solution of the above ester compound ($28.1 \mathrm{~g}, 118 \mathrm{mmol}, 1.0$ equiv) in anhydrous THF (50 mL) was added to a suspension of $\mathrm{LiAlH}_{4}(5.0 \mathrm{~g}, 130 \mathrm{mmol}, 1.1$ equiv) in THF $(110 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 3 h at $20^{\circ} \mathrm{C}$ then cooled to $0^{\circ} \mathrm{C}$ and quenched by successive addition of water (5 mL), $15 \% \mathrm{NaOH}(5 \mathrm{~mL})$, and then water (15 mL). The resulting mixture was filtered through a pad of celite then treated with MgSO_{4}, filtered, and the solvent was removed under reduced pressure. The residue was then purified by chromatography on silica gel (cyclohexane/ethyl acetate $80: 20$ to $50: 50$) to give 20.0 g (81% yield over 2 steps) of ($2 R$)-3-(4-methoxybenzyloxy) 2methyl propanol. RN: 136320-64-4; $[\alpha]_{\mathrm{D}}^{20}=+14.6\left(c=0.87, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400.0 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.26(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.47(\mathrm{~s}, 2 \mathrm{H}), 3.82$ $(\mathrm{s}, 3 \mathrm{H}), 3.62(\mathrm{bd}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.54(\mathrm{dd}, J=9.2,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{dd}, J=9.2,7.7$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.64 (bs, 1H, OH), 2.07 (dqdd, $J=7.7,6.9,5.9,5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 0.87 (d, $J=6.9$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=159.2(\mathrm{C}), 130.0(\mathrm{C}), 129.2(2 \mathrm{CH})$, $113.8(2 \mathrm{CH}), 75.3\left(\mathrm{CH}_{2}\right), 73.0\left(\mathrm{CH}_{2}\right), 68.0\left(\mathrm{CH}_{2}\right), 55.2\left(\mathrm{CH}_{3}\right), 35.5(\mathrm{CH}), 13.4\left(\mathrm{CH}_{3}\right)$; MS (GC, CI, CH 4): $m / z 239:\left(\mathrm{M}^{+}+29\right.$), 210, 201, 161, 149, 137, 121, 103, 91, 73, 55; IR (Film) $v=3301,2952,2859,1612,1513,1462,1363,1302,1246,1173,1090,1034$, $819 \mathrm{~cm}^{-1}$.

To a vigorously stirred solution of (2R)-3-(4-methoxybenzyloxy) 2-methyl propanol ($6.0 \mathrm{~g}, 28.5 \mathrm{mmol}, 1.0$ equiv), $\mathrm{NaHCO}_{3}(7.2 \mathrm{~g}, 86 \mathrm{mmol}, 3$ equiv), $\mathrm{KBr}(3.4 \mathrm{~g}, 28.5$ mmol, 1.0 equiv) and TEMPO ($90 \mathrm{mg}, 0.57 \mathrm{mmol}, 0.2$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL}) / \mathrm{H}_{2} \mathrm{O}$ $(30 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added dropwise a solution of $\mathrm{NaOCl} 9.6 \%(33 \mathrm{~mL}, 57 \mathrm{mmol}, 1.9$ equiv). The mixture was stirred for 10 min and then quenched with a solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} 1 \mathrm{M}$ and extracted with diethyl ether. The organic layer was washed with water and brine, dried over MgSO_{4} and the solvent removed under reduced pressure to give the title compound 15 as orange oil ($5.8 \mathrm{~g}, 98 \%$ yield) which was used directly without further purification. (15): RN: $132969-60-9$; ${ }^{1} \mathrm{H}$ NMR ($400.0 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.72(\mathrm{~d}$, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.47(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~s}$, 3 H), $3.65(\mathrm{dd}, J=9.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{dd}, J=9.2,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.66$ (qddd, $J=7.3$, $6.4,5.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.13\left(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
(1Z,3R,4R,5S)-1-((N,N-Diisopropyl)carbamoyloxy)-3,5-dimethyl-4-hydroxy-6-(4methoxybenzyloxy) hex-1-ene (16): To a quick stirred solution of (E)crotyldiisopropylcarbamate ($749 \mathrm{mg}, 3.74 \mathrm{mmol}, 2.0$ equiv) and (-)-sparteine (885 mg , $3.74 \mathrm{mmol}, 2.0$ equiv) in pentane (5.0 mL) and cyclohexane $(830 \mu \mathrm{~L})$ at $-78^{\circ} \mathrm{C}$, was added a solution of $n-\operatorname{BuLi}(1.6 M$ in hexanes, $2.3 \mathrm{~mL}, 3.74 \mathrm{mmol}, 2.0$ equiv) and after 10 min white crystals appeared. After 3 h of crystallisation at $-78^{\circ} \mathrm{C}$, a precooled (-40 ${ }^{\circ} \mathrm{C}$) solution of titane tetraisopropoxide $\left(\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)\right)_{4}, 3.4 \mathrm{~mL}, 11.2 \mathrm{mmol}, 6.0$ equiv) in pentane (2.0 mL) was quickly added via cannula to the reaction mixture of lithiocarbamate which became limpid and turn orange. After 1 h at $-78^{\circ} \mathrm{C}$ aldehyde $\mathbf{1 5}$ ($390 \mathrm{mg}, 1.87 \mathrm{mmol}, 1.0$ equiv) in pentane (1.5 mL) was slowly added to the orange solution. The reaction mixture was stirred for 3 h at $-78^{\circ} \mathrm{C}$ and quenched by addition of methanol (7.0 mL). The solution was poured into a mixture of diethyl ether-aqueous hydrochloric acid solution (0.5 N). After extraction with diethyl ether, the organic layer was washed with brine, dried over MgSO_{4}, filtered and the solvent removed under reduced pressure. The residue was purified by chromatography on silica gel (cyclohexane/diethyl ether 90:10 to 50:60) to give the desired compound $\mathbf{1 6}$ (598 mg) and its 3,4-bis-epi diastereomer (19 mg) (85% yield, selectivity 97:3). (16): ${ }^{1} \mathrm{H}$ NMR $\left(270.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.18(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=$ $8.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.63$ (dd, $J=9.9,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.37$ (s, 2H), 4.08 (bs, 1 H), 3.73 ($\mathrm{s}, 3 \mathrm{H}$, CH_{3}), $3.68(\mathrm{bs}, 1 \mathrm{H}), 3.54(\mathrm{dd}, J=8.9,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{dd}, J=9.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.45$ (dd, $J=8.9,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.87$ (ddq, $J=9.9,9.2,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 2.00$ (qddd, $J=6.9,6.2,5.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.30-1.10\left(\mathrm{~m}, 12 \mathrm{H}, 4 \mathrm{CH}_{3}\right), 0.90(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 0.87\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=158.9(\mathrm{C})$, $152.8(\mathrm{C}), 135.9(\mathrm{CH}), 130.3(\mathrm{C}), 129.0(2 \mathrm{CH}), 113.6(3 \mathrm{CH}), 75.7(\mathrm{CH}), 74.0\left(\mathrm{CH}_{2}\right)$, $72.7\left(\mathrm{CH}_{2}\right), 55.0\left(\mathrm{CH}_{3}\right), 46.8(\mathrm{CH}), 45.4(\mathrm{CH}), 35.1(\mathrm{CH}), 33.8(\mathrm{CH}), 21.4\left(2 \mathrm{CH}_{3}\right), 20.2$ $\left(2 \mathrm{CH}_{3}\right), 17.2\left(\mathrm{CH}_{3}\right), 9.8\left(\mathrm{CH}_{3}\right) ; \mathrm{MS}\left(\mathrm{GC}, \mathrm{CI}, \mathrm{CH}_{4}\right): \mathrm{m} / \mathrm{z}: 407,348,319,262,199,174$, 137, 121. (3,4-bis-epi diastereomer of 16): ${ }^{1} \mathrm{H}$ NMR $\left(270.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.20(\mathrm{~d}$, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.89(\mathrm{dd}, J=9.5,6.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.39(\mathrm{~s}, 2 \mathrm{H}), 4.10(\mathrm{bs}, 1 \mathrm{H}), 3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.73(\mathrm{bs}, 1 \mathrm{H}), 3.54(\mathrm{~m}, 1 \mathrm{H})$, $3.49(\mathrm{~m}, 1 \mathrm{H}), 3.43(\mathrm{dd}, J=8.9,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{~m}, 1 \mathrm{H}), 2.25(\mathrm{~m}, 1 \mathrm{H}), 2.21(\mathrm{bs}, 1 \mathrm{H}$, $\mathrm{OH}), 1.21\left(\mathrm{~m}, 12 \mathrm{H}, 4 \mathrm{CH}_{3}\right), 1.10\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.80(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}$, CH_{3}).

(3R,4R,5S)-3,5-Dimethyl-6-(4-methoxybenzyloxy)-4-(triethylsilyloxy)-1-

(trimethylsilyl) hex-1-yne (17): To a solution of carbamate $16(3.0 \mathrm{~g}, 7.43 \mathrm{mmol}, 1.0$ equiv) in dried $\mathrm{CH}_{2} \mathrm{Cl}_{2}(65 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ were added 2,6 -lutidine ($2.6 \mathrm{~mL}, 22.3 \mathrm{mmol}$, 3.0 equiv) and TESOTf ($2.4 \mathrm{~mL}, 11.1 \mathrm{mmol}, 1.5$ equiv). After stirring for 2 h at $20^{\circ} \mathrm{C}$, the reaction was partitioned between diethyl ether and a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$
solution and extracted with diethyl ether. The organic layer was washed with brine dried over MgSO_{4}, filtered and the solvent removed under reduced pressure. The residue was purified by chromatography on silica gel (cyclohexane/diethyl ether 100:0 to $85: 15$) to give the ($1 Z, 3 R, 4 R, 5 S$)-1-((N,N-diisopropyl)carbamoyloxy)-3,5-dimethyl-4-(triethylsilyloxy)-6-(4-methoxybenzyloxy) hex-1-ene ($3.77 \mathrm{~g}, 97 \%$ yield) as a yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(270.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.16(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.79(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.71(\mathrm{dd}, J=9.9,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~s}, 2 \mathrm{H}), 4.01(\mathrm{bs}, 1 \mathrm{H})$, $3.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.68(\mathrm{bs}, 1 \mathrm{H}), 3.58(\mathrm{dd}, J=4.8,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{dd}, J=8.9,6.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.15(\mathrm{dd}, J=8.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{~m}, 1 \mathrm{H}), 1.86(\mathrm{~m}, 1 \mathrm{H}), 1.25-1.10(\mathrm{~m}, 12 \mathrm{H}$, $4 \mathrm{CH}_{3}$), $0.91\left(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.86\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 0.83(\mathrm{~d}, J=6.9$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.51\left(\mathrm{q}, J=7.6 \mathrm{~Hz}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=158.9$ (C), 152.7 (C), $134.4(\mathrm{CH}), 130.5(\mathrm{C}), 128.9(2 \mathrm{CH}), 113.5(\mathrm{CH}), 113.4$ (2CH), 76.3 $(\mathrm{CH}), 72.8\left(\mathrm{CH}_{2}\right), 72.4\left(\mathrm{CH}_{2}\right), 54.9\left(\mathrm{CH}_{3}\right), 46.4(\mathrm{CH}), 45.4(\mathrm{CH}), 37.7(\mathrm{CH}), 34.2(\mathrm{CH})$, $21.2\left(2 \mathrm{CH}_{3}\right), 20.1\left(2 \mathrm{CH}_{3}\right), 18.6\left(\mathrm{CH}_{3}\right), 11.8\left(\mathrm{CH}_{3}\right), 6.9\left(3 \mathrm{CH}_{3}\right), 5.3\left(3 \mathrm{CH}_{2}\right)$; MS (GC, CI, CH_{4}): $m / z: 420,313,251,193,161,128,115$; elemental analysis calcd (\%) for $\mathrm{C}_{29} \mathrm{H}_{51} \mathrm{NO}_{5} \mathrm{Si}$: C 66.75, H 9.85, N 2.68 ; found: C 66.28, H 9.91, N 2.42 .

To a solution of the preceding carbamate ($3.77 \mathrm{~g}, 7.23 \mathrm{mmol}, 1.0$ equiv) in diethyl ether $(80 \mathrm{~mL})$ at $-30^{\circ} \mathrm{C}$ was added dropwise $t-\operatorname{BuLi}(1.5 \mathrm{M}$ in pentane, $9.5 \mathrm{~mL}, 14.3 \mathrm{mmol}$, 1.98 equiv). The resulting solution was stirred for 45 min between $-25 /-20^{\circ} \mathrm{C}$ and then quenched by addition of a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with diethyl ether. The organic layer was washed with brine, dried over MgSO_{4}, filtered and the solvent removed under reduced pressure. The residue was purified by chromatography on silica gel (cyclohexane/diethyl ether $90: 10$) to give the ($3 R, 4 R, 5 S$) 3,5 -dimethyl-6-(4-methoxybenzyloxy)-4-(triethylsilyloxy) hex-1-yne ($2.3 \mathrm{~g}, 84 \%$ yield) as a yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(270.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.17(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 4.33(\mathrm{~s}, 2 \mathrm{H}), 3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.70-3.67(\mathrm{~m}, 1 \mathrm{H}), 3.33(\mathrm{dd}, J=8.9,6.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.20(\mathrm{dd}, J=8.9,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.54-2.50(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.08(\mathrm{~d}, J=6.9$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.88\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 0.81\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.57(\mathrm{q}, J=$ $\left.7.5 \mathrm{~Hz}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=159.0(\mathrm{C}), 130.6(\mathrm{C}), 129.2$ $(2 \mathrm{CH}), 113.6(2 \mathrm{CH}), 87.5(\mathrm{C}), 75.0(\mathrm{CH}), 73.0\left(\mathrm{CH}_{2}\right), 72.5\left(\mathrm{CH}_{2}\right), 69.6(\mathrm{CH}), 55.1$ $\left(\mathrm{CH}_{3}\right), 36.5(\mathrm{CH}), 31.4(\mathrm{CH}), 17.4\left(\mathrm{CH}_{3}\right), 11.3\left(\mathrm{CH}_{3}\right), 7.0\left(3 \mathrm{CH}_{3}\right), 5.4\left(3 \mathrm{CH}_{2}\right)$; MS (GC, CI, CH4): m/z: 347 (M+29), 323, 227, 187, 173, 137, 121.

To a solution of the preceding alkyne ($2.3 \mathrm{~g}, 6.11 \mathrm{mmol}, 1.0$ equiv) in THF at $-78{ }^{\circ} \mathrm{C}$ was added $n-\mathrm{BuLi}(1.6 \mathrm{M}$ in hexane, $4.0 \mathrm{~mL}, 6.42 \mathrm{mmol}, 1.05$ equiv). After 10 min the bath was removed and the reaction mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$. The solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and freshly distilled TMSCl was added $(2.1 \mathrm{~mL}, 24.4 \mathrm{mmol}, 4.0$ equiv). The solution was warmed to $20^{\circ} \mathrm{C}$ overnight. After addition of $\mathrm{Et}_{3} \mathrm{~N}$ (6.0 equiv) the mixture was partitioned between diethyl ether and a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with diethyl ether. The organic layer was washed with brine, dried over MgSO_{4}, filtered and the solvent removed under reduced pressure. The residue was purified by chromatography on silica gel (cyclohexane/diethyl ether 100:0 to $90: 10$) to give protected alkyne 17 ($2.54 \mathrm{~g}, 92 \%$ yield). (17): ${ }^{1} \mathrm{H}$ NMR $(270.0 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=7.12(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.74(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.29(2 \mathrm{~d}, J=11.5 \mathrm{~Hz}$, $2 \mathrm{H}), 3.67\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.63(\mathrm{dd}, J=6.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{dd}, J=9.2,7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.12(\mathrm{dd}, J=9.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.45$ (quint, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{ddd}, J=7.3,7.2,6.6$ $\mathrm{Hz}, 1 \mathrm{H}), 0.99\left(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.83\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 0.73(\mathrm{~d}, J=6.6$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.52\left(\mathrm{q}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 0.00\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $(67.5$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=159.0(\mathrm{C}), 130.6(\mathrm{C}), 129.2(2 \mathrm{CH}), 113.6(2 \mathrm{CH}), 110.8(\mathrm{C}), 85.2(\mathrm{C})$, $75.0(\mathrm{CH}), 73.0\left(\mathrm{CH}_{2}\right), 72.4\left(\mathrm{CH}_{2}\right), 55.1\left(\mathrm{CH}_{3}\right), 36.4(\mathrm{CH}), 32.5(\mathrm{CH}), 17.6\left(\mathrm{CH}_{3}\right), 10.9$ $\left(\mathrm{CH}_{3}\right), 7.0\left(3 \mathrm{CH}_{3}\right), 5.4\left(3 \mathrm{CH}_{2}\right), 0.00\left(3 \mathrm{CH}_{3}\right) ; \mathrm{MS}(\mathrm{GC}, \mathrm{EI}): m / z: 449,433,341,323,269$, 227, 187, 173, 137, 121.
(1E/Z,3S,4R,5S)-3,5-Dimethyl-1-methoxy-4-(triethylsilyloxy)-7-(trimethylsilyl) hept-6-yn-1-ene (18): At $0{ }^{\circ} \mathrm{C}$, a solution of protected alcohol $17(2.08 \mathrm{~g}, 4.64 \mathrm{mmol}$, 1.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(48 \mathrm{~mL})$ was treated with water $(2.4 \mathrm{~mL})$ and DDQ $(1.27 \mathrm{~g}, 5.57$ $\mathrm{mmol}, 1.2$ equiv). The mixture was stirred for 10 min at $0^{\circ} \mathrm{C}$, warmed to $20^{\circ} \mathrm{C}$ and stirred an additional 30 min . The mixture was quenched with a saturated aqueous NaHCO_{3} solution, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with water and brine. The combined organic layers were dried over MgSO_{4}, filtered and the solvent removed under reduced pressure. The residue was purified by chromatography on silica gel (cyclohexane/ethyl acetate $80: 20$) to give the ($2 S, 3 R, 4 R$)-2,4-dimethyl-3-(triethylsilyloxy)-1-(trimethylsilyl) hex-5-yn-1-ol ($1.31 \mathrm{~g}, 86 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(270.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.58-3.49(\mathrm{~m}$, $3 \mathrm{H}), 2.53-2.48(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 1.79-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.03(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 0.83\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 0.74\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.50(\mathrm{q}, J=7.6 \mathrm{~Hz}$, $\left.6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 0.00\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=110.0(\mathrm{C}), 86.0(\mathrm{C})$, $76.5(\mathrm{CH}), 65.3\left(\mathrm{CH}_{2}\right), 39.4(\mathrm{CH}), 31.5(\mathrm{CH}), 17.6\left(\mathrm{CH}_{3}\right), 12.4\left(\mathrm{CH}_{3}\right), 7.0\left(3 \mathrm{CH}_{3}\right), 5.3$ $\left(3 \mathrm{CH}_{2}\right), 0.0\left(3 \mathrm{CH}_{3}\right)$; MS (GC, EI): m/z: 327, 299, 269, 225, 203.

To a solution of IBX ($2.72 \mathrm{~g}, 9.72 \mathrm{mmol}, 2.2$ equiv) in DMSO (35 mL) at $20^{\circ} \mathrm{C}$ was added the preceding alcohol ($1.45 \mathrm{~g}, 4.42 \mathrm{mmol}, 1.0$ equiv) in DMSO (10 mL). The mixture was stirred for 3 h , and then cooled to $0{ }^{\circ} \mathrm{C} . \mathrm{H}_{2} \mathrm{O}$ was added and the solution was filtered through a pad of celite and then extracted with diethyl ether (3X). The organic layer was washed with water, brine, dried over MgSO_{4} and the solvent removed under reduced pressure. The crude ($2 S, 3 S, 4 S$)-2,4-dimethyl-3-(triethylsilyloxy)-6(trimethylsilyl) hex-5-yn-1-al was used without further purification ($1.31 \mathrm{~g}, 90 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($270.0 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.71(\mathrm{~s}, 1 \mathrm{H}), 3.96(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{qd}, J=$ $6.9,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{qd}, J=7.3,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.05\left(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.98(\mathrm{~d}, J$
$\left.=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.83\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 0.50\left(\mathrm{q}, J=7.6 \mathrm{~Hz}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 0.00$ (s, $9 \mathrm{H}, 3 \mathrm{CH}_{3}$).

To a cooled $\left(-10{ }^{\circ} \mathrm{C}\right)$ stirred suspension of (methoxymethyl)triphenylphosphonium chloride ($3.14 \mathrm{~g}, 9.15 \mathrm{mmol}$, 2.3 equiv) in 30 mL of anhydrous THF was added 7.96 mL of lithium bis(trimethylsilyl)amide (1.0 M in THF, $7.96 \mathrm{mmol}, 2.0$ equiv) which became deep red. After 5 min aldehyde prepared before ($1.31 \mathrm{~g}, 3.98 \mathrm{mmol}, 1.0$ equiv) in THF ($5 \mathrm{~mL}, 5 \mathrm{~mL}$ rinse) was added via cannula. The resulting solution was kept at $-10^{\circ} \mathrm{C}$ for 1 h and then diluted with a saturated aqueous NaHCO_{3} solution. After extraction with $\mathrm{Et}_{2} \mathrm{O}$ and concentration of the organic layer, the residue was rapidly filtered through a pad of silice (cyclohexane/ethyl acetate $90: 10$) to remove most of the phosphine byproduct and concentrated again. Olefin 18 was used without further purification in the lactolisation step (selectivity Z/E 4:6). (18): Trans isomer: ${ }^{1} \mathrm{H}$ NMR (270.0 MHz , CDCl_{3}): $\delta=6.18(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{dd}, J=12.9,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 3.24(\mathrm{dd}, J=5.9,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{~m}, 1 \mathrm{H}), 2.20(\mathrm{~m}, 1 \mathrm{H}), 1.02(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.85\left(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 0.80\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.51(\mathrm{q}, J=7.9$ $\left.\mathrm{Hz}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 0.00\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right)$. Cis isomer: ${ }^{1} \mathrm{H}$ NMR ($270.0 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.67$ (d, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{dd}, J=9.6,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.36(\mathrm{dd}, J=5.9$, $5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{~m}, 1 \mathrm{H}), 2.20(\mathrm{~m}, 1 \mathrm{H}), 1.01\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.84(\mathrm{t}, J=7.9$ $\left.\mathrm{Hz}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 0.80\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.51\left(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 0.00(\mathrm{~s}$, $9 \mathrm{H}, 3 \mathrm{CH}_{3}$); MS (GC, EI): $m / z: 354,337,309,269,229,199,175,155,139$.
(2R/S,4S,5R(1S))-4-Methyl-5-(1-methyl-3-(trimethylsilyl)-prop-2-yn-1-yl)
tetrahydrofuran-2-ol (19): Compound $\mathbf{1 8}$ was dissolved in acetone/water ($9: 1,40 \mathrm{~mL}$) and concentrated $\mathrm{HCl}(140 \mu \mathrm{~L})$ was added. Then the solution was heated at $65^{\circ} \mathrm{C}$ for 1 h, and the reaction was quenched by addition of a saturated aqueous NaHCO_{3} solution and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with water, brine, dried over MgSO_{4} and concentrated. The residue was purified by chromatography on silica gel (cyclohexane/Et2O 80:20) to give 553 mg of lactol 19 (61% yield from alcohol 17) (19): ${ }^{1} \mathrm{H}$ NMR $\left(270.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.50(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{dd}, J=6.9,4.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.23(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 2.41(\mathrm{~m}, 1 \mathrm{H}), 2.22(\mathrm{~m}, 1 \mathrm{H}), 1.97(\mathrm{~m}, 1 \mathrm{H}), 1.75(\mathrm{~m}, 1 \mathrm{H})$, $1.08(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}), 0.95\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.00\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=109.4(\mathrm{C}), 98.3(\mathrm{CH}), 85.2(\mathrm{C}), 84.4(\mathrm{CH}), 41.2\left(\mathrm{CH}_{2}\right)$, $33.9(\mathrm{CH}), 28.6(\mathrm{CH}), 18.7\left(\mathrm{CH}_{3}\right), 13.5\left(\mathrm{CH}_{3}\right), 0.00\left(3 \mathrm{CH}_{3}\right)$; MS (GC, EI): m/z: 208, 193, 173, 126, 117, 109, 87.

(2R/S,4S,5R(1S))-4-Methyl-5-(1-methyl-3-(trimethylsilyl)-prop-2-ynyl)-2-

phenylsulfanyl tetrahydrofuran (20): To an ice-cold solution of lactol 19 (553 mg , $2.44 \mathrm{mmol}, 1.0$ equiv) and thiophenol ($290 \mu \mathrm{~L}, 2.78 \mathrm{mmol}, 1.14$ equiv) in anhydrous $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})$ containing activated 4 A molecular sieves, was added dropwise via syringe BF_{3}. OEt 2 ($460 \mu \mathrm{~L}, 3.78 \mathrm{mmol}, 1.55$ equiv). After 1 h the reaction was quenched by the addition of a 4 N NaOH solution and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with water, brine, dried over MgSO_{4} and concentrated. The residue was purified by chromatography on silica gel (cyclohexane/Et O_{2} 95:5) to give 622 mg of thioproduct 20 (80% yield). (20): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(270.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.45(\mathrm{dd}, J=7.9,1.7$ $\mathrm{Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{dd}, J=6.9,5.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.84(\mathrm{dd}, J=7.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{~m}, 2 \mathrm{H}), 2.02(\mathrm{~m}, 1 \mathrm{H}), 1.05(\mathrm{~d}, J$ $\left.=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.81\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.00\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $(67.5$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=135.4(\mathrm{C}), 132.0(2 \mathrm{CH}), 128.5(2 \mathrm{CH}), 127.0(\mathrm{CH}), 109.0(\mathrm{C}), 86.2$ $(\mathrm{CH}), 85.2(\mathrm{C}), 83.3(\mathrm{CH}), 40.8\left(\mathrm{CH}_{2}\right), 34.1(\mathrm{CH}), 27.7(\mathrm{CH}), 17.8\left(\mathrm{CH}_{3}\right), 13.6\left(\mathrm{CH}_{3}\right)$, $0.00\left(3 \mathrm{CH}_{3}\right)$; MS (GC, EI): $m / z: 318,209,193,167,151,137,121$.
(4R,5S(1S))-4-Methyl-5-(1-methyl-3-(trimethylsilyl)-prop-2-ynyl)-2,3-dihydrofuran (21): a) To a solution of the thio-ether $\mathbf{2 0}(300 \mathrm{mg}, 0.9 \mathrm{mmol})$ and DBU ($160 \mu \mathrm{l}, 1.05$ mmol, 1.1 equiv) was rapidly heated (40 min) at $200^{\circ} \mathrm{C}$ in a short distillation apparatus (Kugelrorh), then the mixture was distilled under vacuum $(15 \mathrm{mmHg})$ at $200-240^{\circ} \mathrm{C}$ to furnish the title compound 21 ($60 \mathrm{mg}, 30 \%$ yield). b)To a solution of the thio-ether $\mathbf{2 0}$ ($335 \mathrm{mg}, 1.05 \mathrm{mmol}, 1.0$ equiv) in dry benzene (30 mL) containing $\mathrm{NaHCO}_{3}(88 \mathrm{mg}$, $3.16 \mathrm{mmol}, 3.0$ equiv) was added at $0{ }^{\circ} \mathrm{C} m$-CPBA ($70-75 \%$ purity, $310 \mathrm{mg}, 1.26$ mmol, 1.2 equiv) in benzene. After $1 \mathrm{~h}_{\mathrm{Et} 3 \mathrm{~N}}(440 \mu \mathrm{~L}, 3.16 \mathrm{mmol}, 3.0$ equiv) the resulting sulsoxyde was added and the mixture was heated at reflux for 1 h then cooled to $20^{\circ} \mathrm{C}$. The solution was partitioned between a saturated aqueous NaHCO_{3} solution and $\mathrm{Et}_{2} \mathrm{O}$. After extraction the organic layer was washed with water in order to remove most of the benzene, dried over MgSO_{4} and concentrated carefully. The residue was distilled in a Kugelrohr apparatus ($80-90^{\circ} \mathrm{C}, 7.10^{-2}$ Torr) to give dihydrofuran 21 (42 $\mathrm{mg}, 19 \%$ yield). (21): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(270.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.26(\mathrm{dd}, J=2.6,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.91(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{~m}, 2 \mathrm{H}), 1.19(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.92\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.00\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (67.5 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=144.8(\mathrm{CH}), 108.5(\mathrm{C}), 107.5(\mathrm{CH}), 86.4(\mathrm{CH}), 83.3(\mathrm{C}), 37.6(\mathrm{CH}), 27.5$ $(\mathrm{CH}), 18.7\left(\mathrm{CH}_{3}\right), 14.0\left(\mathrm{CH}_{3}\right), 0.00\left(3 \mathrm{CH}_{3}\right) ; \mathrm{MS}(\mathrm{GC}, \mathrm{EI}): m / z: 208,193,126,119,109$, 97, 83.

(3S,4R,5S,6Z)-3,5-Dimethyl-4-hydroxy-7-(tributylstannyl)-1-trimethylsilyl-oct-6-

 en-1-yne (22): To a suspension of $\mathrm{CuCN}\left(12 \mathrm{mg}, 0.12 \mathrm{mmol}, 2.0\right.$ equiv) of in dry $\mathrm{Et}_{2} \mathrm{O}$ $(3 \mathrm{~mL})$ at $-30^{\circ} \mathrm{C}$ was added $\mathrm{MeLi}(1.6 \mathrm{M}$ solution in diethyl ether, $1.9 \mathrm{~mL}, 3.0 \mathrm{mmol}$, 5.0 equiv). The solution was stirred at $-30^{\circ} \mathrm{C}$ for 5 min and allowed to warm up to $0{ }^{\circ} \mathrm{C}$ for 20 min (pale yellow colour). To a solution of 2,3-dihydrofurane 21 ($125 \mathrm{mg}, 0.6$ mmol, 1.0 equiv) in dry THF $(3 \mathrm{~mL})$ at $-60^{\circ} \mathrm{C}$ was added t-BuLi (1.5 M solution inpentane, $0.45 \mathrm{~mL}, 0.7 \mathrm{mmol}, 1.2$ equiv). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 50 min . Then the solution of the lithio-dihydrofurane, prepared above, was diluted with 4 mL of THF and added via cannula to the cyanocuprate and the reaction mixture was heated to $35^{\circ} \mathrm{C}$ for 3 h . The mixture was cooled at $-30^{\circ} \mathrm{C}$ and tri- n-butyltin chloride $(0.85 \mathrm{~mL}$, $3.0 \mathrm{mmol}, 5.0$ equiv) was added. The reaction mixture was allowed to warm up to $20^{\circ} \mathrm{C}$ over 12 h . Finally the reaction mixture was poured into a mixture of a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and concentrated ammonia (4:1) at $0{ }^{\circ} \mathrm{C}$ and stirred for 1 h at $20^{\circ} \mathrm{C}$ before extraction with diethyl ether. The organic layer was washed with water, brine, dried over MgSO_{4} and the solvent was removed under reduced pressure. The crude residue was purified by chromatography on silica gel (cyclohexane/diethyl ether 100:0 to $50: 50$) to give the title compound 22 ($48 \mathrm{mg}, 20 \%$ yield). (22): ${ }^{1} \mathrm{H}$ NMR (400.0 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.87\left(\mathrm{dq}, J=9.6,1.8 \mathrm{~Hz}, J_{1_{\mathrm{H}-117 \mathrm{~S}_{\mathrm{n}}}}=J_{1_{\mathrm{H}-119 \mathrm{~S}_{\mathrm{n}}}}=135.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.17$ (ddd, $J=9.0,7.5,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{~m}, 1 \mathrm{H}), 1.90\left(\mathrm{~d}, J=2.0 \mathrm{~Hz}, J_{1_{\mathrm{H}}-117_{\mathrm{sn}}}\right.$ $\left.=J_{1_{\mathrm{H}}-119 \mathrm{~S}_{\mathrm{n}}}=41.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.74(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 1.53-1.42\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right)$, 1.34 (sext, $J=7.5 \mathrm{~Hz}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}$), $1.26\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.08(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.0-0.90\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 0.87\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 0.00\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right) ;$
 (C), $109.0(\mathrm{C}), 85.0(\mathrm{C}), 78.0(\mathrm{CH}), 43.5\left(\mathrm{CH}, J^{13 \mathrm{C}-117 \mathrm{Sn}_{\mathrm{s}}}=J_{{ }_{13} \mathrm{C}-119 \mathrm{~S}_{\mathrm{Sn}}}=33.6 \mathrm{~Hz}\right), 30.2$ $(\mathrm{CH}), 29.0\left(3 \mathrm{CH}_{2}, J^{13}{ }_{\mathrm{C}-117 \mathrm{~S}_{\mathrm{n}}}=J_{13 \mathrm{C}-119_{\mathrm{Sn}}}=19.2 \mathrm{~Hz}\right), 27.1\left(3 \mathrm{CH}_{2}, J^{13} \mathrm{C}-117_{\mathrm{Sn}}=J_{13 \mathrm{C}-1199_{\mathrm{Sn}}}=\right.$ $58.7 \mathrm{~Hz}), 27.0\left(\mathrm{CH}_{3}, J^{13 \mathrm{C}-117 \mathrm{sn}}=J_{13 \mathrm{C}-119 \mathrm{sn}}=44.0 \mathrm{~Hz}\right), 18.4\left(\mathrm{CH}_{3}\right), 17.0\left(\mathrm{CH}_{3}\right), 13.4$ $\left(3 \mathrm{CH}_{3}\right), 9.7\left(3 \mathrm{CH}_{2}, J^{13 \mathrm{C} .117_{\mathrm{Sn}}}=314.4 \mathrm{~Hz}, J_{1{ }^{1} \mathrm{C}-119 \mathrm{~S}_{\mathrm{n}}}=328.8 \mathrm{~Hz}\right), 0.00\left(3 \mathrm{CH}_{3}\right)$.
(3Z)-4-(Tributylstannyl) pent-3-en-1-ol (12): To a suspension of $\mathrm{CuCN}(10.5 \mathrm{~g}, 120$ mmol, 2.0 equiv) of in $\mathrm{dry}^{\mathrm{Et}} \mathrm{E}_{2} \mathrm{O}(60 \mathrm{~mL})$ at $-30^{\circ} \mathrm{C}$ was added $\mathrm{MeLi}(1.6 \mathrm{M}$ solution in diethyl ether, $188 \mathrm{~mL}, 300 \mathrm{mmol}, 5.0$ equiv). The solution was stirred at $-30^{\circ} \mathrm{C}$ for 5 \min and allowed to warm up to $0{ }^{\circ} \mathrm{C}$ for 20 min (pale yellow colour). To a solution of commercial 2,3-dihydrofurane $\mathbf{8}(4.6 \mathrm{~g}, 60 \mathrm{mmol}, 1.0$ equiv) in dry THF (60 mL) at - -60 ${ }^{\circ} \mathrm{C}$ was added $t-\operatorname{BuLi}(1.5 M$ solution in pentane, $48 \mathrm{~mL}, 72 \mathrm{mmol}, 1.2$ equiv). The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 50 min . Then the solution of the lithio-dihydrofurane, prepared above, was diluted with 80 mL of THF and added via cannula to the cyanocuprate and the reaction mixture was heated to $35^{\circ} \mathrm{C}$ for 3 h . The mixture was cooled at $-30^{\circ} \mathrm{C}$ and tri- n-butyltin chloride ($49.1 \mathrm{~mL}, 181.2 \mathrm{mmol}, 5.0$ equiv) was added. The reaction mixture was allowed to warm up to $20^{\circ} \mathrm{C}$ over 12 h . Finally the reaction mixture was poured into a mixture of a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and concentrated ammonia (4:1) at $0{ }^{\circ} \mathrm{C}$ and stirred for 1 h at $20^{\circ} \mathrm{C}$ before extraction with diethyl ether. The organic layer was washed with water, brine, dried over MgSO_{4} and the solvent was removed under reduced pressure. The crude residue was purified by chromatography on silica gel (cyclohexane/diethyl ether 100:0 to 50:50) to give the title compound 12 ($11.0 \mathrm{~g}, 49 \%$ yield). (12): ${ }^{1} \mathrm{H}$ NMR $\left(400.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.05$ (tq, J $\left.=6.4,1.4 \mathrm{~Hz}, J_{1_{\mathrm{H}-1} 17 \mathrm{~S}_{\mathrm{s}}}=J_{1_{\mathrm{H}-119 \mathrm{~S}_{\mathrm{n}}}}=128.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.63(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.25(\mathrm{td}, J$ $=7.3,6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.92\left(\mathrm{~d}, J=1.4 \mathrm{~Hz}, J_{1_{\mathrm{H}}-117_{\mathrm{Sn}}}=J_{1_{\mathrm{H}-1} 19_{\mathrm{Sn}}}=41.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.50-$ $1.42\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{OH}, 3 \mathrm{CH}_{2}\right), 1.31\left(\right.$ sext, $\left.J=7.3 \mathrm{~Hz}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 0.95-0.91\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right)$, $0.90\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=142.0\left(\mathrm{C}, J^{13 \mathrm{C}_{\mathrm{C}}-117 \mathrm{sn}}\right.$

 $27.5\left(3 \mathrm{CH}_{2}, J_{13 \mathrm{C}-117 \mathrm{sn}}=J_{13 \mathrm{C}-119 \mathrm{~S}_{\mathrm{n}}}=57.1 \mathrm{~Hz}\right), 27.0\left(\mathrm{CH}_{3}, J_{13 \mathrm{C}-117 \mathrm{Sn}_{\mathrm{s}}}=J_{13 \mathrm{C}-119 \mathrm{~S}_{\mathrm{Sn}}}=46.0\right.$ $\mathrm{Hz}), 13.5\left(3 \mathrm{CH}_{3}\right), 10.0\left(3 \mathrm{CH}_{2}, J_{13 \mathrm{C}-117 \mathrm{Sn}_{\mathrm{n}}}=314.4 \mathrm{~Hz}, J_{13 \mathrm{c}-119 \mathrm{Sn}}=328.0 \mathrm{~Hz}\right)$; MS (GC, CI, CH4 $)$: $\mathrm{m} / \mathrm{z}: 319\left(\mathrm{M}^{+}-57\right), 289,261,245,233,207,177,137,121$.
(3Z)-4-(Tributylstannyl)-pent-3-en-1-al (23): To a solution of alcohol $\mathbf{1 2}$ (11.0 g, 29.3 $\mathrm{mmol}, 1.0$ equiv) and TEMPO ($457 \mathrm{mg}, 2.93 \mathrm{mmol}, 0.1$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was added BAIB ($10.4 \mathrm{~g}, 32.2 \mathrm{mmol}, 1.1$ equiv). The mixture was stirred until disappearance of starting material (2 h), diluted with cyclohexane, washed with an aqueous saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution, and extracted with cyclohexane. The combined organic phases were washed with a saturated aqueous NaHCO_{3} solution, brine, dried over MgSO_{4} and the solvent was removed under reduced pressure. The crude aldehyde 23 was directly used in the next step. (23): ${ }^{1} \mathrm{H}$ NMR $\left(400.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.67(\mathrm{t}, J$ $=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.16\left(\mathrm{tq}, J=7.3,1.9 \mathrm{~Hz}, J_{1_{\mathrm{H}} .117_{\mathrm{Sn}}}=J_{1_{\mathrm{H}}-119_{\mathrm{Sn}}}=122.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.89(\mathrm{dd}, J$ $=7.3,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.98\left(\mathrm{~d}, J=1.9 \mathrm{~Hz}, J_{1_{\mathrm{H}}-117_{\mathrm{Sn}}}=J_{1_{\mathrm{H}-1} 19_{\mathrm{Sn}}}=38.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.60-$ $1.40\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 1.39-1.20\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 1.02-0.84\left(\mathrm{~m}, 15 \mathrm{H}, 3 \mathrm{CH}_{2}+3 \mathrm{CH}_{3}\right)$.
(1Z,6Z,3R/S,4R/S)-1-((N,N-Diisopropyl)carbamoyloxy)-4-hydroxy-3-methyl-7-
(tributylstannyl) oct-1,6-diene [(+/-)-24]: To a quick stirred solution of the (E)-crotyl (diisopropyl)carbamate ($11.7 \mathrm{~g}, 59.0 \mathrm{mmol}, 2.0$ equiv) and TMEDA $(6.8 \mathrm{~g}, 59.0 \mathrm{mmol}$, 2.0 equiv) in diethyl ether $(70 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added a solution of n-BuLi $(1.6 \mathrm{M}$ in hexane, $44 \mathrm{~mL}, 70.0 \mathrm{mmol}, 2.04$ equiv). After 30 min at $-78{ }^{\circ} \mathrm{C}$, titanium tetraisopropoxide ($\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}, 52.0 \mathrm{~mL}, 176.0 \mathrm{mmol}, 6.0$ equiv) was quickly added via cannula to the reaction mixture of lithio carbamate which turned orange. After 30 min at $-78^{\circ} \mathrm{C}$, aldehyde $\mathbf{2 3}(10.9 \mathrm{~g}, 29.3 \mathrm{mmol}, 1.0$ equiv) in diethyl ether (15 mL) was slowly added to the orange solution, and the mixture was stirred for 3 h at $-78^{\circ} \mathrm{C}$. The solution was then poured into a mixture of $\mathrm{Et}_{2} \mathrm{O}$-saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. After extraction with $\mathrm{Et}_{2} \mathrm{O}$, the organic layer was washed with brine, dried over MgSO_{4}, filtered and the solvent removed under reduced pressure. The residue was purified by chromatography on silica gel (cyclohexane/ $\mathrm{Et}_{2} \mathrm{O} 95: 5$ to $60: 40$) to give the title compound $(+/-)-24(7.4 \mathrm{~g}, 44 \%$ yield for 2 steps $) .[(+/-)-24]$: ${ }^{1} \mathrm{H}$ NMR (400.0 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=7.12(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.10\left(\mathrm{ddq}, J=5.9,5.5,1.4 \mathrm{~Hz}, J_{1_{\mathrm{H}-117}}=J_{1_{\mathrm{H}}-119_{\mathrm{s}}}\right.$ $=131.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{dd}, J=9.9,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.19-4.11(\mathrm{bs}, 1 \mathrm{H}), 3.80-3.75(\mathrm{bs}, 1 \mathrm{H})$, 3.51 (dddd, $J=8.6,5.0,3.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.81 (ddq, $J=9.9,8.6,7.3 \mathrm{~Hz}, 1 \mathrm{H}$), $2.30-2.15$ $(\mathrm{m}, 1 \mathrm{H}), 2.10-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.92\left(\mathrm{~d}, J=1.4 \mathrm{~Hz}, J_{1_{\mathrm{H}}-117_{\mathrm{Sn}}}=J_{1_{\mathrm{H}}-119_{\mathrm{Sn}}}=41.7 \mathrm{~Hz}, 3 \mathrm{H}\right.$,
CH_{3}), 1.78 (bd, $\left.J=3.0 \mathrm{~Hz}, \mathrm{IH}, \mathrm{OH}\right), 1.58-1.38\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 1.38-1.17(\mathrm{~m}, 18 \mathrm{H}$ $\left.3 \mathrm{CH}_{2}+4 \mathrm{CH}_{3}\right), 1.07\left(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.96-0.85\left(\mathrm{~m}, 15 \mathrm{H}, 3 \mathrm{CH}_{2}+3 \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=152.3(\mathrm{C}), 141.9(\mathrm{C}), 136.4\left(\mathrm{CH}, J_{13 \mathrm{C}-117 \mathrm{Sn}}=J_{13 \mathrm{c}-119 \mathrm{Sn}}\right.$ $=28.1 \mathrm{~Hz}), 135.3(\mathrm{CH}), 111.9(\mathrm{CH}), 74.1(\mathrm{CH}), 45.4(\mathrm{CH}), 45.2(\mathrm{CH}), 39.6\left(\mathrm{CH}_{2}, J_{13 \mathrm{C}}\right.$

 $\mathrm{Hz}), 21.1\left(2 \mathrm{CH}_{3}\right), 20.3\left(2 \mathrm{CH}_{3}\right), 17.0\left(\mathrm{CH}_{3}\right), 13.2\left(3 \mathrm{CH}_{3}\right), 9.6\left(3 \mathrm{CH}_{2}, J_{13 \mathrm{C}-11 \mathrm{~S}_{\mathrm{s}}}=313.4\right.$ $\mathrm{Hz}, J_{13 \mathrm{c}-119 \mathrm{~s} \mathrm{~s}}=326.8 \mathrm{~Hz}$); IR (Film) $v=3470$, 2957, 2925, 2872, 2855, 1712, 1705, $1679,1642,1456,1444,1371,1306,1211,1147,1134,1065,1001,961,903,885,865$ $762 \mathrm{~cm}^{-1}$.
(3R/S,4R/S,6Z)-4-Hydroxy-3-methyl-7-(tributylstannyl)-oct-6-en-1-yne [(+/-)-25]: To a solution of the preceding carbamate ($+/-$) $\mathbf{- 2 4}(8.4 \mathrm{~g}, 13.6 \mathrm{mmol}, 1.0$ equiv) in diethyl ether $(100 \mathrm{~mL})$ at $-40^{\circ} \mathrm{C}$ was slowly added a solution of $t-\mathrm{BuLi}(1.5 \mathrm{M}$ in pentane, $27.2 \mathrm{~mL}, 40.8 \mathrm{mmol}, 3.0$ equiv). The solution was stirred for 20 min at $-20^{\circ} \mathrm{C}$ then quenched by addition of a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and extracted with diethyl ether. The combined organic phases were washed with brine, dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude residue was purified by chromatography on silica gel (cyclohexane/ $\mathrm{Et}_{2} \mathrm{O} 90: 10$ to $80: 20$) to give ($+/-$)-25 (4.7 g , 78% yield). [(+/-)-25]: ${ }^{1} \mathrm{H}$ NMR ($270.0 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.00(\mathrm{ddq}, J=7.7,6.5,1.7$ $\left.\mathrm{Hz}, J_{1_{\mathrm{H}-1} 17_{\mathrm{Sn}}}=J_{1_{\mathrm{H}}-119_{\mathrm{sn}}}=129.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.47-3.42(\mathrm{~m}, 1 \mathrm{H}), 2.54(\mathrm{qdd}, J=6.9,4.0,2.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.26(\mathrm{~m}, 1 \mathrm{H}), 2.16(\mathrm{~m}, 1 \mathrm{H}), 2.14(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.86\left(\mathrm{~d}, J=1.7 \mathrm{~Hz}, J_{1_{\mathrm{H}}}\right.$ $\left.{ }_{117 \mathrm{Sn}_{\mathrm{n}}}=J_{1_{\mathrm{H}-1} 19_{\mathrm{Sn}}}=41.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.50-1.33\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 1.32-1.11(\mathrm{~m}, 10 \mathrm{H}, 1 \mathrm{OH}$ $\left.+1 \mathrm{CH}_{3}+3 \mathrm{CH}_{2}\right), 0.98-0.74\left(\mathrm{~m}, 15 \mathrm{H}, 3 \mathrm{CH}_{2}+3 \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $142.8(\mathrm{C}), 136.1\left(\mathrm{CH}, J^{13} \mathrm{C}-117_{\mathrm{sn}}=J{ }_{13} 3_{\mathrm{C}-119_{\mathrm{sn}}}=26.8 \mathrm{~Hz}\right), 85.1(\mathrm{C}), 74.0(\mathrm{CH}), 71.0(\mathrm{CH})$, $40.1\left(\mathrm{CH}_{2}\right), 32.2(\mathrm{CH}), 29.2\left(3 \mathrm{CH}_{2}, J_{13 \mathrm{C}-117 \mathrm{~s}_{\mathrm{n}}}=J_{13 \mathrm{C}-119 \mathrm{Sn}_{\mathrm{n}}}=19.5 \mathrm{~Hz}\right), 27.4\left(3 \mathrm{CH}_{2}, J_{13 \mathrm{C}}\right.$ $\left.{ }^{117}{ }_{\mathrm{Sn}}=J_{{ }_{13} \mathrm{C}-119_{\mathrm{Sn}}}=56.2 \mathrm{~Hz}\right), 17.3\left(\mathrm{CH}_{3}\right), 13.7\left(3 \mathrm{CH}_{3}\right), 9.6\left(3 \mathrm{CH}_{2}, J_{13 \mathrm{C}-117_{\mathrm{sn}}}=314.4 \mathrm{~Hz}, J\right.$ ${ }^{13} 3_{\mathrm{C}-119 \mathrm{~S}_{\mathrm{n}}}=328.8 \mathrm{~Hz}$); IR (Film) $v=\square 3311,2956,2926,2871,2854,1712,1463,1376$, 1260, 1192, 1072, 1039, $960 \mathrm{~cm}^{-1}$
(2R/S,4R/S)-4-Methyltetrahydrofuran-2-ol [(\pm)-27]: To a solution of $\mathrm{LiAlH}_{4}(6.4 \mathrm{~g}$, $169 \mathrm{mmol}, 0.8$ equiv) in $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added over 30 min a solution of commercial ethyl 4-methylpentenoate (\pm)-30 ($30 \mathrm{~g}, 211 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{Et}_{2} \mathrm{O}$ (200 mL). After stirring for 4 h at $20^{\circ} \mathrm{C}$, the mixture was cooled at $0{ }^{\circ} \mathrm{C}$ and successively were added $\mathrm{H}_{2} \mathrm{O}(6.5 \mathrm{~mL})$, an aqueous $\mathrm{NaOH} 15 \%$ solution (6.5 mL) and $\mathrm{H}_{2} \mathrm{O}$ (19.5 mL). The mixture was stirred for 2 h , and filtered through a pad of celite. The filtrate was dried over MgSO_{4} and the solvent was removed under reduced pressure. The crude 2-methylpent-4-en-1-ol was directly used in the next step. ${ }^{1} \mathrm{H}$ NMR $(400.0 \mathrm{MHz}$, CDCl_{3}): $\delta=5.75$ (dddd, $\left.J=17.0,10.1,7.3,6.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.97(\mathrm{dd}, J=17.0,1.4 \mathrm{~Hz}, 1 \mathrm{H})$ 4.94 (dd, $J=10.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.55$ (ddd, $J=6.9,6.0,4.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.45 (ddd, $J=6.4$, $6.0,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{ddd}, J=8.2,6.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{ddd}, J=8.2,7.3,6.4 \mathrm{~Hz}$, 1 H), 1.66 (quinttd, $J=6,9,6.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{t}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 0.85(\mathrm{~d}, J=$ $\left.6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=136.9(\mathrm{CH}), 116.0\left(\mathrm{CH}_{2}\right), 67.7$ $\left(\mathrm{CH}_{2}\right), 37.7\left(\mathrm{CH}_{2}\right), 35.5(\mathrm{CH}), 16.3\left(\mathrm{CH}_{3}\right)$; MS (GC, EI): m/z: $82(\mathrm{M}-18), 67,58$.

To a solution of the preceding 2-methyl-pent-4-en-1-ol ($24.2 \mathrm{~g}, 241.5 \mathrm{mmol}, 1.0$ equiv) and Sudan III (small amount) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(100 \mathrm{~mL}: 100 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was bubbled a stream of ozone until the pink solution became colourless (ca 7 h). Then PPh_{3} ($63.3 \mathrm{~g}, 241.5 \mathrm{mmol}, 1.0$ equiv) was cautiously added (over 30 min), the cold bath was removed and the mixture was stirred at $20^{\circ} \mathrm{C}$ for one night. The solvents were removed under reduced pressure (20 mm Hg) and the product was distilled out of the reaction mixture using a microdistillation apparatus under reduced pressure (0.2 mmHg) at $70^{\circ} \mathrm{C}$ to give lactol $(\pm)-27(19.7 \mathrm{~g}, 80 \%)$ as a mixture $1: 2$ of two diastereomers as a colourless oil. [(\pm)-27]: RN: 34314-85-7; first anomer: ${ }^{1} \mathrm{H}$ NMR ($400.0 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.46$ (d, $J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{dd}, J=7.8,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{bs}, 1 \mathrm{H}$, OH), 2.24 (dddqd, $J=9.2,7.8,7.3,6.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.97(\mathrm{dd}, J=12.8,6.9 \mathrm{~Hz}, 1 \mathrm{H})$, 1.51 (ddd, $J=12.8,9.2,5.0 \mathrm{~Hz}, 1 \mathrm{H}), \mathrm{H}_{\mathrm{a}}-11,1.03\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$; second anomer: ${ }^{1} \mathrm{H}$ NMR $\left(400.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.46(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{dd}, J=8.2$, $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{dd}, J=8.7,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 2.58-2.48(\mathrm{~m}, 1 \mathrm{H}), 1.76$ $1.70(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.09\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$; first anomer: ${ }^{13} \mathrm{C}^{\mathrm{C}} \mathrm{NMR}$ $\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=98.9(\mathrm{CH}), 74.4\left(\mathrm{CH}_{2}\right), 41.8\left(\mathrm{CH}_{2}\right), 31.4(\mathrm{CH}), 17.8\left(\mathrm{CH}_{3}\right)$; second anomer: ${ }^{13} \mathrm{C}$ NMR $\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=99.4(\mathrm{CH}), 73.5\left(\mathrm{CH}_{2}\right), 41.8\left(\mathrm{CH}_{2}\right)$, $33.3(\mathrm{CH}), 17.3\left(\mathrm{CH}_{3}\right)$; MS (GC, EI): $m / z: 101,84,72,56$; IR (Film) $v=3406,2960$, 2935, 2875, 1455, 1379, 1346, 1290, 1122, 1095, 1056, 1002, $927 \mathrm{~cm}^{-1}$
(4R/S)-3-Methyl-2,3-dihydro-furan [(\pm)-9]: To a solution of lactol ($\mathbf{~}$)-27 (19.7 g, 192.9 mmol, 1.0 equiv), thiophenol ($21.3 \mathrm{~g}, 192.9 \mathrm{mmol}, 1.0$ equiv) and $4 \AA$ molecular sieves in dry diethyl ether $(400 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added dropwise boron trifluoride ethyl etherate ($\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, 24.4 \mathrm{~mL}, 192.9 \mathrm{mmol}, 1.0$ equiv). The cold bath was removed and the mixture was stirred 2 h at $20^{\circ} \mathrm{C}$. The reaction mixture was removed by filtration through a pad of celite and the solid was washed with diethyl ether. The combined filtrate and washings were neutralized by addition of $4 N$ aqueous NaOH solution (58 $\mathrm{mL}, 232 \mathrm{mmol}, 1.2$ equiv). The organic layer was dried over MgSO_{4}, filtered and the solvent removed under reduced pressure. Purification by flash chromatography on silica gel (cyclohexane/diethyl ether 100:0 to 75:25) gave 4-methyl-2-phenylsulfanyl-tetrahydro-furan ($31.5 \mathrm{~g}, 84 \%$ yield) as a $1: 1$ mixture of diastereomers as yellow oil. First anomer: ${ }^{1} \mathrm{H}$ NMR $\left(400.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.54-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.20(\mathrm{~m}, 3 \mathrm{H})$, $5.70(\mathrm{dd}, J=7.3,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{dd}, J=8.2,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{dd}, J=8.2,5.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.50$ (ddqdd, $J=7.6,7.3,6.9,6.9,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.17$ (ddd, $J=12.0,7.6,4.1 \mathrm{~Hz}$
$1 \mathrm{H}), 2.02(\mathrm{dt}, J=12.0,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.08\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$; second anomer: ${ }^{1} \mathrm{H}$ NMR ($400.0 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.54-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.20(\mathrm{~m}, 3 \mathrm{H}), 5.63$ (dd, $J=6.9$, $6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{dd}, J=8.6,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{dd}, J=9.6,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.63$ (ddd, J $=13.3,8.2,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.30$ (ddddq, $J=9.6,9.0,8.2,7.3,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.53$ (ddd, $J=$ $13.3,9.0,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.11\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$; first anomer: ${ }^{13} \mathrm{C}$ NMR (100.5 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=135.8(\mathrm{C}), 130.6(\mathrm{CH}), 128.8(2 \mathrm{CH}), 126.6(2 \mathrm{CH}), 87.2(\mathrm{CH}), 74.2$ $\left(\mathrm{CH}_{2}\right), 41.0\left(\mathrm{CH}_{2}\right), 32.7(\mathrm{CH}), 18.7\left(\mathrm{CH}_{3}\right)$; second anomer: ${ }^{13} \mathrm{C}$ NMR (100.5 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=136.1(\mathrm{C}), 130.9(\mathrm{CH}), 128.8(2 \mathrm{CH}), 126.7(2 \mathrm{CH}), 87.2(\mathrm{CH}), 73.5\left(\mathrm{CH}_{2}\right)$, $41.0\left(\mathrm{CH}_{2}\right), 33.6(\mathrm{CH}), 16.3\left(\mathrm{CH}_{3}\right)$; MS (GC, EI): $m / z: 194\left(\mathrm{M}^{+\bullet}\right), 164,149,135,123$, $110,85,77,69,57,50$; IR (Film) $v=3058,2961,2930,2871,2360,2341,1584,1481$, 1439, 1067, 1037, 1007, 901, $741 \mathrm{~cm}^{-1}$.

Hemithioacetal elimination: A mixture of the above hemithiocetal ($15.2 \mathrm{~g}, 78.2 \mathrm{mmol}$, 1.0 equiv) and $\operatorname{DBU}(14.3 \mathrm{~g}, 93.9 \mathrm{mmol}, 1.2$ equiv) in a microdistillation apparatus were heated from $160^{\circ} \mathrm{C}$ to $240{ }^{\circ} \mathrm{C}$ (over 30 min). The elimination product was simultaneously distilled out of the reaction mixture and the temperature was kept at 240 ${ }^{\circ} \mathrm{C}$ until the distillation ceased to give the neat DHF $(\pm)-9(3.72 \mathrm{~g}, 57 \%)$.

Lactol elimination: A solution of lactol $(\pm)-27(4.0 \mathrm{~g}, 39 \mathrm{mmol}, 1.0$ equiv $)$ and p toluene sulfonic acid ($16 \mathrm{mg}, 0.09 \mathrm{mmol}, 0.0022$ equiv) in quinoline $(2.1 \mathrm{~mL}$) was heated from $160{ }^{\circ} \mathrm{C}$ to $245{ }^{\circ} \mathrm{C}$. Distillation of a mixture of the title compound with water was achieved in 45 min (bp: $80-90^{\circ} \mathrm{C}$). After separation of water, 2.8 g of dihydrofuran ($\mathbf{\pm}$)-9 were obtained with 85% yield. $[(\pm)-9]$: see above for data
(4S)-3-Methyl-2,3-dihydro-furan (9): To a solution of commercially available (R)-3-bromo-2-methyl-propanol 26 ($13.1 \mathrm{~g}, 85.8 \mathrm{mmol}, 1.0$ equiv) in DMSO (140 mL) was added sodium cyanide ($4.62 \mathrm{~g}, 94.4 \mathrm{mmol}, 1.2$ equiv). The reaction was stirred for 24 h , at $20^{\circ} \mathrm{C}$. The solution was then poured out into water, and extracted three times with EtOAc. To extract the remainder of the compound, the aqueous solution was carefully acidified to $\mathrm{pH}=5$ using 10% sulfuric acid. After extracting the aqueous layer three more times, the combined organic layers were washed with brine, dried over MgSO_{4} and the solvent removed under reduced pressure. The ($2 S$)-3-cyano-2-methyl propan-1ol ($7.6 \mathrm{~g}, 89 \%$ yield) was collected and used directly in the next step. ($(2 S)$-3-cyano-2methyl propan-1-ol): ${ }^{1} \mathrm{H}$ NMR $\left(400.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.65$ (ddd, $J=10.5,5.0,4.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.50(\mathrm{ddd}, J=10.5,7.3,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 2.50(\mathrm{dd}, J$ $=16.7,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.37$ (dd, $J=16.7,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.06$ (dquintdd, $J=7.3,6.9,5.5$, $4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.08\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=118.7$ (C), $65.6\left(\mathrm{CH}_{2}\right), 32.8(\mathrm{CH}), 20.8\left(\mathrm{CH}_{2}\right), 15.8\left(\mathrm{CH}_{3}\right)$; IR (Film) $v=3416,2967,2933$, 2880, 2251, 1644, 1464, 1424, 1387, 1350, 1044, 993; MS (GC, EI): m/z: 99, 69, 59, 54.

To a solution of the preceding nitrile derivative ($3.4 \mathrm{~g}, 34 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(60 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was slowly added a solution of DIBAL-H (1 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 86 \mathrm{~mL}$, $86 \mathrm{mmol}, 2.5$ equiv). The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ until disappearance of the starting material, then diluted with AcOEt and poured into a solution of Rochelle salt $\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{KNaO}_{6} \bullet 4 \mathrm{H}_{2} \mathrm{O}, 78 \mathrm{~g}, 8.0\right.$ equiv). After stirring for 12 h the mixture was extracted with AcOEt, the combined organic phases were washed with brine, dried over MgSO_{4} and the solvent removed under reduced pressure. The ($2 R / S, 4 S$)-4-methyl tetrahydrofuran-2-ol 27 was obtained as a 1:2 diastereomeric mixture ($2.87 \mathrm{~g}, 82 \%$ yield).(27): RN: 34314-85-7. (See above analysis description of racemic $4-$ methyltetrahydrofuran-2-ol (\pm)-27).

A solution of the above optically active lactol $27(5.0 \mathrm{~g}, 49 \mathrm{mmol}, 1.0$ equiv) and p toluene sulfonic acid ($25 \mathrm{mg}, 0.11 \mathrm{mmol}, 0.0022$ equiv) in quinoline $(2.5 \mathrm{~mL}$) was heated from $160^{\circ} \mathrm{C}$ to $245{ }^{\circ} \mathrm{C}$. Distillation of a mixture of the title compound with water was achieved in 45 min (bp: $80-90^{\circ} \mathrm{C}$). After separation of water, 3.5 g of dihydrofuran 9 were obtained with 85% yield (9): RN: 1708-27-6; ${ }^{1} \mathrm{H}$ NMR (400.0 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.30(\mathrm{dd}, J=2.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{dd}, J=2.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.38$ (dd, $J=9.6,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{dd}, J=8.7,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{dqdt}, J=9.6,6.9,6.4,2.3$ $\mathrm{Hz}, 1 \mathrm{H}), 1.07\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=145.3(\mathrm{CH})$, $106.6(\mathrm{CH}), 76.8\left(\mathrm{CH}_{2}\right), 36.6(\mathrm{CH}), 20.8\left(\mathrm{CH}_{3}\right)$.
(2S,3Z)-2-Methyl-4-tributylstannyl-pent-3-en-1-ol (13): To a suspension of CuCN $\left(5.41 \mathrm{~g}, 60.4 \mathrm{mmol}, 2.0\right.$ equiv) of in dry $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ and dimethyl sulfide $(40 \mathrm{~mL})$ at $30^{\circ} \mathrm{C}$ was added $\mathrm{MeLi}(1.6 \mathrm{M}$ solution in diethyl ether, $94.4 \mathrm{~mL}, 151.0 \mathrm{mmol}, 5.0$ equiv). The solution was stirred at $-30^{\circ} \mathrm{C}$ for 5 min and allowed to warm up to $0^{\circ} \mathrm{C}$ for 20 min (pale yellow colour). To a solution of dihydrofuran $9(2.54 \mathrm{~g}, 30.2 \mathrm{mmol}, 1.0$ equiv) in dry diethyl ether (50 mL) at $-60^{\circ} \mathrm{C}$ was added t - $\operatorname{BuLi}(1.5 M$ solution in pentane, $24.2 \mathrm{~mL}, 36.2 \mathrm{mmol}$, 1.2 equiv). The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 50 min . Then the solution of the lithio-dihydrofuran, prepared above, was added via cannula to the cyanocuprate ($\mathrm{Et}_{2} \mathrm{O} / \mathrm{DMS} 4: 1$) and the reaction mixture was allowed to warm up to $20^{\circ} \mathrm{C}$ (strong orange colour) over 12 h . The mixture was cooled at $-30^{\circ} \mathrm{C}$ and tri- $n-$ butyltin chloride ($49.1 \mathrm{~mL}, 181.2 \mathrm{mmol}, 5.0$ equiv) was added. The reaction mixture was allowed to warm up to $20^{\circ} \mathrm{C}$ over 5 h . Finally the reaction mixture was poured into a mixture of a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and concentrated ammonia (4:1) at 0 ${ }^{\circ} \mathrm{C}$ and stirred for 1 h at $20^{\circ} \mathrm{C}$ before extraction with diethyl ether. The organic layer was washed with water, brine, dried over MgSO_{4} and the solvent was removed under reduced pressure. The crude residue was purified by chromatography on silica gel (cyclohexane/diethyl ether 100:0 to 60:40) to give the title compound $\mathbf{1 3}(8.21 \mathrm{~g}, 68 \%$
yield). (13): ${ }^{1} \mathrm{H}$ NMR ($400.0 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.78$ (dq, $J=9.6,1.8 \mathrm{~Hz}, J_{1_{\mathrm{H}-117 \mathrm{sn}}}=J$ $\left.{ }^{1} \mathrm{H}-119_{\mathrm{Sn}}=128.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.47(\mathrm{ddd}, J=10.5,8.7,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{ddd}, J=10.5,8.2$, $3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.16$ (dddq, $J=9.6,8.7,8.2,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.92\left(\mathrm{~d}, J=1.8 \mathrm{~Hz}, J_{1_{\mathrm{H}}-17 \mathrm{~S}_{\mathrm{sn}}}=J\right.$ $\left.1_{\mathrm{H}-119 \mathrm{~S}_{\mathrm{n}}}=41.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.55-1.45\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 1.39-1.28\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{OH}+3 \mathrm{CH}_{2}\right)$, $0.95\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.99-0.91\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 0.90\left(\mathrm{~m}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=143.0\left(\mathrm{CH}, J_{13 \mathrm{C} .117 \mathrm{Sn}}=J_{13 \mathrm{C} .119_{\mathrm{Sn}}}=27.8 \mathrm{~Hz}\right), 140.9(\mathrm{C}), 67.3$ $(\mathrm{CH}), 42.4\left(\mathrm{CH}, J_{13 \mathrm{C}-11 \mathrm{~s}_{\mathrm{sn}}}=J_{13 \mathrm{C}-119_{\mathrm{Sn}}}=33.6 \mathrm{~Hz}\right), 29.3\left(3 \mathrm{CH}_{2}, J_{13 \mathrm{C}_{\mathrm{C}}-11 \mathrm{~S}_{\mathrm{Sn}}}=J_{13 \mathrm{C}-119_{\mathrm{Sn}}}=\right.$ $20.4 \mathrm{~Hz}), 27.5\left(3 \mathrm{CH}_{2}, J_{13 \mathrm{c}-117 \mathrm{Sn}}=J_{13 \mathrm{c}-119 \mathrm{~S}_{\mathrm{s}}}=57.5 \mathrm{~Hz}\right), 27.2\left(\mathrm{CH}_{3}, J_{13 \mathrm{C}-117 \mathrm{sn}}=J_{13 \mathrm{c}-119 \mathrm{Sn}}\right.$ $=46.0 \mathrm{~Hz}), 17.4\left(\mathrm{CH}_{3}\right), 13.7\left(3 \mathrm{CH}_{3}\right), 10.1\left(3 \mathrm{CH}_{2}, J^{13} \mathrm{C} .117 \mathrm{~s}_{\mathrm{sn}}=314.4 \mathrm{~Hz}, J_{13 \mathrm{C} .119 \mathrm{~S}_{\mathrm{Sn}}}=\right.$ 329.7 Hz); MS (GC, CI, NH_{3}): m/z: $373\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}\right), 359\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}-\mathrm{Bu}\right), 291$ $\left(\mathrm{Bu}_{3} \mathrm{Sn}^{+}\right), 261,249,235,141,113,101,85,57$; IR (Film) $v=3327,2956,2928,2920$ 2871, 2853, 1678, 1623, 1483, 1456, 1377, 1340, 1292, 1072, 1037, 996, 864, 690, 668 cm^{-1}; elemental analysis calcd (\%) for $\mathrm{C}_{18} \mathrm{H}_{38} \mathrm{OSn}$: C 55.55 , H 9.84; found: C $55.73, \mathrm{H}$ 10.02 .
(2S,3Z)-2-Methyl-4-tributylstannyl-pent-3-en-1-al (28): To a solution of alcohol $\mathbf{1 3}$ ($6.7 \mathrm{~g}, 17.2 \mathrm{mmol}, 1.0$ equiv) and TEMPO ($538 \mathrm{mg}, 3.45 \mathrm{mmol}, 0.2$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(40 \mathrm{~mL})$ was added BAIB ($6.09 \mathrm{~g}, 18.9 \mathrm{mmol}, 1.1$ equiv). The mixture was stirred until disappearance of starting material (2 h), diluted with cyclohexane, washed with an aqueous saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution, and extracted with cyclohexane. The combined organic phases were washed with a saturated aqueous NaHCO_{3} solution, brine, dried over MgSO_{4} and the solvent was removed under reduced pressure until the volume is approximately equal to 20 mL . This solution can be kept only few hour before use (the neat product $\mathbf{2 8}$ is more instable). (28): ${ }^{1} \mathrm{H}$ NMR ($400.0 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.48$ (d, $J=$ $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.72\left(\mathrm{dq}, J=9.7,1.6 \mathrm{~Hz}, J_{1_{\mathrm{H}-1}-17_{\mathrm{s}}}=J_{1_{\mathrm{H}}-119_{\mathrm{sn}}}=122.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.89(\mathrm{dqd}, J$ $=9.7,6.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.89\left(\mathrm{~d}, J=1.6 \mathrm{~Hz}, J_{1_{\mathrm{H}}-117 \mathrm{Sn}}=J_{1_{\mathrm{H}-1} 19 \mathrm{Sn}}=40.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.47-1.37\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 1.24\left(\right.$ sext, $\left.J=7.3 \mathrm{~Hz}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 1.08(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 0.91-0.86\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 0.83\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $(100.5 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=202.1(\mathrm{CH}), 146.0\left(\mathrm{C}, J^{13 \mathrm{C} .117 \mathrm{~S}_{\mathrm{sn}}}=346.0 \mathrm{~Hz}, J^{13} \mathrm{C} \cdot 119_{\mathrm{Sn}}=362.3 \mathrm{~Hz}\right), 136.2$ $\left(\mathrm{CH}, J_{13 \mathrm{C}-117 \mathrm{Sn}_{\mathrm{n}}}=J_{13 \mathrm{C}-119 \mathrm{~S}_{\mathrm{n}}}=24.9 \mathrm{~Hz}\right), 53.1\left(\mathrm{CH}, J_{13 \mathrm{C}-117 \mathrm{~S}_{\mathrm{n}}}=J_{13 \mathrm{C}-119 \mathrm{~S}_{\mathrm{n}}}=31.6 \mathrm{~Hz}\right), 29.1$ $\left(3 \mathrm{CH}_{2}, J^{13}{ }_{\mathrm{C}-117 \mathrm{Sn}}=J_{13 \mathrm{C}_{\mathrm{C}}-119 \mathrm{Sn}}=19.2 \mathrm{~Hz}\right), 27.4\left(\mathrm{CH}_{3}, J_{13 \mathrm{C}-117_{\mathrm{Sn}}}=J_{13 \mathrm{C}-119 \mathrm{Sn}}=40.3 \mathrm{~Hz}\right.$, $\left.\mathrm{CH}_{3}\right), 27.3\left(3 \mathrm{CH}_{2}, J{ }^{13}{ }_{\mathrm{C} .117 \mathrm{sn}}=J{ }^{13} \mathrm{C}_{\mathrm{C}} 119_{\mathrm{Sn}}=58.5 \mathrm{~Hz}\right)$, $14.4\left(\mathrm{CH}_{3}\right), 13.7\left(3 \mathrm{CH}_{3}\right), 10.1$ $\left(3 \mathrm{CH}_{2}, J^{13}{ }_{\mathrm{C}-117 \mathrm{Sn}_{\mathrm{s}}}=317.3 \mathrm{~Hz}, J^{13}{ }_{\mathrm{C}-1199_{\mathrm{s}}}=332.6 \mathrm{~Hz}\right)$; MS (GC, CI, NH3): m/z: $331\left(\mathrm{M}^{+\bullet}\right.$ Bu), 291 ($\mathrm{Bu}_{3} \mathrm{Sn}+$), 275, 255, 235, 217, 189, 177, 159, 147, 135, 121, 97; IR (Film) $v=$ 2958, 2927, 2872, 2854, 2809, 1726, 1614, 1463, 1426, 1377, 1072, 999, 854, $689 \mathrm{~cm}^{-1}$.
(2R/S,3Z)-2-Methyl-4-tributylstannyl-pent-3-en-1-ol [(\pm)-13]: The same protocol used before for the synthesis of $\mathbf{1 3}$ was employed to prepare ($\mathbf{\pm}$)-13 ($16.5 \mathrm{~g}, 67 \%$ yield) from (\pm)-9 (5 g). See above for data
(2R/S,3Z)-2-Methyl-4-tributylstannyl-pent-3-en-1-al [(\pm)-28]: The same protocol used before for the synthesis of $\mathbf{2 8}$ was employed to prepare (\pm)-28 from (\pm)-13 (2.5g). See above for data
(1Z,3S,4S,5S,6Z)-1-((N,N-Diisopropyl)carbamoyloxy)-3,5-dimethyl-7-tributylstannyl-octa-1,6-dien-4-ol (29):
(1Z,3S,4S,5R,6Z)-1-((N,N-Diisopropyl)carbamoyloxy)-3,5-dimethyl-7-tributylstannyl-octa-1,6-dien-4-ol (31): From optically pure aldehyde 28: To a quick stirred solution of the (E)-crotyldiisopropylcarbamate ($787 \mathrm{mg}, 3.95 \mathrm{mmol}, 3.0$ equiv) and (-)-sparteine $\left(925 \mathrm{mg}, 3.95 \mathrm{mmol}, 3.0\right.$ equiv) in pentane (6 mL) and cyclohexane $(1 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$, was added a solution of n-BuLi (1.6 M in hexanes, $2.4 \mathrm{~mL}, 3.95 \mathrm{mmol}, 3.0$ equiv), and after 10 min white crystals appeared. After 3 h of crystallization at $-78{ }^{\circ} \mathrm{C}$, a pre-cooled $\left(-40^{\circ} \mathrm{C}\right)$ solution of titanium tetraisopropoxide $(\mathrm{Ti}(\mathrm{Oi} \mathrm{Pr}) 4,3.5 \mathrm{~mL}, 11.9 \mathrm{mmol}, 9.0$ equiv) in pentane (7 mL) was quickly added via cannula to the reaction mixture of lithio carbamate which became limpid and turned orange. After 1 h at $-78{ }^{\circ} \mathrm{C}$ aldehyde 28 ($513 \mathrm{mg}, 1.30 \mathrm{mmol}, 1.0$ equiv) in cyclohexane (5 mL) was slowly added to the orange solution, and the mixture was stirred for 3 h at $-78^{\circ} \mathrm{C}$. The solution was then poured into a mixture of $\mathrm{Et}_{2} \mathrm{O}$-saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. After extraction with $\mathrm{Et}_{2} \mathrm{O}$ the organic layer was washed with brine, dried over MgSO_{4}, filtered and the solvent removed under reduced pressure. The residue was purified by chromatography on silica gel (cyclohexane/AcOEt 95:5 to 80:20) to give the title compound 29 ($669 \mathrm{mg}, 87 \%$ yield for two steps) as a single diastereomer. (29): $[\alpha]_{\mathrm{D}}^{20}=+20.7\left(c=0.94, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400.0 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.15(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.17\left(\mathrm{dq}, J=9.9,1.4 \mathrm{~Hz}, J_{1_{\mathrm{H}}}\right.$ $\left.{ }_{117} 7_{\mathrm{sn}}=J{ }^{1}{ }_{\mathrm{H}-1}{ }^{119} \mathrm{~S}_{\mathrm{s}}=134.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.66(\mathrm{dd}, J=9.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.19-4.02(\mathrm{bs}, 1 \mathrm{H})$, $3.78-3.61$ (bs, 1 H$), 3.25$ (dt, $J=8.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.86 (ddq, $J=9.8,8.0,6.9 \mathrm{~Hz}, 1 \mathrm{H})$, $2.18(\mathrm{dqd}, J=9.9,6.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.90\left(\mathrm{~d}, J=1.4 \mathrm{~Hz}, J_{1_{\mathrm{H} .177_{\mathrm{Sn}}}}=J_{1 \mathrm{H} .119 \mathrm{~S}_{\mathrm{s}}}=42.6 \mathrm{~Hz}\right.$, $3 \mathrm{H}, \mathrm{CH}_{3}$), 1.72 (bd, $J=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}$), 1.55-1.45 (m, 6H, $3 \mathrm{CH}_{2}$), 1.38-1.16 (sext, $J=$ $\left.7.3 \mathrm{~Hz}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 1.20-1.12\left(\mathrm{~m}, 12 \mathrm{H}, 4 \mathrm{CH}_{3}\right), 1.00\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.98(\mathrm{~d}, J$ $\left.=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.99-0.92\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 0.89\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=152.9(\mathrm{C}), 144.3\left(\mathrm{CH}, J_{13_{\mathrm{C}-117 \mathrm{sn}}}=J_{13 \mathrm{C} .119 \mathrm{~S}_{\mathrm{n}}}=27.8 \mathrm{~Hz}\right), 137.7$ $\left(\mathrm{C}, J^{13 \mathrm{C} .117 \mathrm{sn}} 1=375.7 \mathrm{~Hz}, J_{13 \mathrm{c}-119_{\mathrm{Sn}}}=392.0 \mathrm{~Hz}\right), 136.7(\mathrm{CH}), 113.2(\mathrm{CH}), 78.6(\mathrm{CH})$, $47.1(\mathrm{CH}), 45.7(\mathrm{CH}), 41.3\left(\mathrm{CH}, J{ }^{13} \mathrm{C} .117 \mathrm{sn}=J{ }_{13 \mathrm{C} .119 \mathrm{~S}_{\mathrm{n}}}=32.6 \mathrm{~Hz}\right), 34.5(\mathrm{CH}), 29.3$ $\left(3 \mathrm{CH}_{2}, J_{13 \mathrm{C}-117 \mathrm{sn}}=J_{13 \mathrm{C}-119 \mathrm{~S}_{\mathrm{s}}}=19.2 \mathrm{~Hz}\right), 27.5\left(3 \mathrm{CH}_{2}, J_{13 \mathrm{C}-117 \mathrm{sn}}=J_{13 \mathrm{C}-119 \mathrm{~S}_{\mathrm{n}}}=57.5 \mathrm{~Hz}\right)$, $27.2\left(\mathrm{CH}_{3}, J_{13 \mathrm{C} .117_{\mathrm{s}}}=J_{13 \mathrm{C}-119_{\mathrm{Sn}}}=46.0 \mathrm{~Hz}\right), 21.7\left(2 \mathrm{CH}_{3}\right), 20.4\left(2 \mathrm{CH}_{3}\right), 17.6\left(\mathrm{CH}_{3}\right), 14.2$ $\left(\mathrm{CH}_{3}\right), 13.8\left(3 \mathrm{CH}_{3}\right), 10.0\left(3 \mathrm{CH}_{2}, J_{13 \mathrm{C}-117 \mathrm{sn}}=313.4 \mathrm{~Hz}, J_{13 \mathrm{C} .119_{\mathrm{Sn}}}=326.8 \mathrm{~Hz}\right)$; IR (Film) $v=3490,2957,2929,2872,2851,1705,1463,1455,1441,1370,1301,1289,1210$, 1135, 1065, 997, 862, $762 \mathrm{~cm}^{-1}$; MS (GC, CI, NH ${ }_{3}$): $m / z: 530,385,327,291\left(\mathrm{Bu}_{3} \mathrm{Sn}^{+}\right)$,

257, 235, 199, 177, 12, 86, 69; elemental analysis calcd (\%) for $\mathrm{C}_{29} \mathrm{H}_{57} \mathrm{NO}_{5} \mathrm{Sn}$: C 59.39, H 9.802, N 2.39 ; found: C 59.51, H 9.90, N 2.30 .

From racemic aldehyde $(\pm)-28:$ To a quick stirred solution of the (E)crotyldiisopropylcarbamate ($6.84 \mathrm{~g}, 34.4 \mathrm{mmol}, 2.0$ equiv) and (-)-sparteine $(8.30 \mathrm{~g}$, $35.4 \mathrm{mmol}, 2.06$ equiv) in pentane (36 mL) and cyclohexane (6 mL) at $-78^{\circ} \mathrm{C}$, was added a solution of n-BuLi ($1.6 M$ in hexane, $23 \mathrm{~mL}, 36.8 \mathrm{mmol}, 2.14$ equiv), and after 10 min white crystals appeared. After 3 h of crystallization at $-78^{\circ} \mathrm{C}$, a pre-cooled (-40 ${ }^{\circ} \mathrm{C}$) solution of titanium tetraisopropoxide $\left(\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right) 4,30.5 \mathrm{~mL}, 103.2 \mathrm{mmol}, 6.0\right.$ equiv) in pentane (30 mL) was quickly added via cannula to the reaction mixture of lithio carbamate which became limpid and turned orange. After 1 h at $-78{ }^{\circ} \mathrm{C}$ aldehyde ($+/-$)$28(6.66 \mathrm{~g}, 17.2 \mathrm{mmol}, 1.0$ equiv) in cyclohexane (5 mL) was slowly added to the orange solution, and the mixture was stirred for 3 h at $-78^{\circ} \mathrm{C}$. The solution was then poured into a mixture of $\mathrm{Et}_{2} \mathrm{O}$-saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. After extraction with $\mathrm{Et}_{2} \mathrm{O}$, the organic layer was washed with brine, dried over MgSO_{4}, filtered and the solvent removed under reduced pressure. The residue was purified by chromatography on silica gel (cyclohexane/AcOEt 95:5 to 80:20) to give the title compound 29 (8.50 g , 42% yield for two steps) and its $12 R$ minor isomer $31(1.41 \mathrm{~g}, 14 \%$ yield). (29): see above for data. (31): ${ }^{1} \mathrm{H}$ NMR ($400.0 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.10(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.88$ (dq, $\left.J=9.8,1.7 \mathrm{~Hz}, J_{1_{\mathrm{H}}-117_{\mathrm{sn}}}=J_{1_{\mathrm{H}-119 \mathrm{~S}_{\mathrm{n}}}}=128.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.86(\mathrm{dd}, J=10.1,6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.12-3.99(\mathrm{bs}, 1 \mathrm{H}), 3.91-3.78(\mathrm{bs}, 1 \mathrm{H}), 3.19(\mathrm{dd}, J=8.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{dqd}, J$ $=10.1,6.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{dqd}, J=9.8,8.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.92\left(\mathrm{~d}, J=1.7 \mathrm{~Hz}, J_{1_{\mathrm{H}}}\right.$
 $\left.\mathrm{Hz}, 19 \mathrm{H}, 3 \mathrm{CH}_{2}+\mathrm{OH}+4 \mathrm{CH}_{3}\right), 1.13\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.96(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 0.99-0.92\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 0.89\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100.5 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=152.6(\mathrm{C}), 144.3\left(\mathrm{CH}, J_{13 \mathrm{C}-17 \mathrm{~S}_{\mathrm{n}}}=J_{13 \mathrm{C}-119 \mathrm{Sn}}=28.8 \mathrm{~Hz}\right), 142.2\left(\mathrm{C}, J_{13 \mathrm{C}-117 \mathrm{sn}}\right.$ $\left.=355.1 \mathrm{~Hz}, J_{13 \mathrm{C}-119 \mathrm{Sn}}=372.4 \mathrm{~Hz}\right), 135.3(\mathrm{CH}), 111.0(\mathrm{CH}), 77.7(\mathrm{CH}), 46.6(\mathrm{CH}), 46.0$ $(\mathrm{CH}), 44.0\left(\mathrm{CH}, J_{13 \mathrm{c}-117 \mathrm{sn}}=J^{13} \mathrm{C} .119 \mathrm{Sn}=29.8 \mathrm{~Hz}\right), 32.1(\mathrm{CH}), 29.1\left(3 \mathrm{CH}_{2}, J_{13 \mathrm{c}-117 \mathrm{sn}}=J\right.$ $\left.{ }^{13}{ }^{\mathrm{C}-119 \mathrm{~S}_{\mathrm{n}}}=20.2 \mathrm{~Hz}\right), 27.4\left(3 \mathrm{CH}_{2}, J_{13 \mathrm{C}-117_{\mathrm{Sn}}}=J_{13 \mathrm{C}-119 \mathrm{~S}_{\mathrm{n}}}=57.6 \mathrm{~Hz}\right), 27.2\left(\mathrm{CH}_{3}, J_{13 \mathrm{C}-117 \mathrm{~S}_{\mathrm{n}}}=\right.$ $\left.J_{13 \mathrm{C}-119 \mathrm{Sn}}=42.2 \mathrm{~Hz}\right), 21.4\left(2 \mathrm{CH}_{3}\right), 20.3\left(2 \mathrm{CH}_{3}\right), 18.7\left(\mathrm{CH}_{3}\right), 17.3\left(\mathrm{CH}_{3}\right), 13.6\left(3 \mathrm{CH}_{3}\right)$, $10.1\left(3 \mathrm{CH}_{2}, J_{13 \mathrm{C} .117 \mathrm{Sn}}=315.7 \mathrm{~Hz}, J^{13}{ }_{\mathrm{C} .119 \mathrm{~S}_{\mathrm{S}}}=330.1 \mathrm{~Hz}\right)$.

(R)-mandelic ester of 29 :

(\boldsymbol{R})-mandelic ester of 31: a) from pure carbamate 29: To a solution of compounds 29 ($150 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.0$ equiv), obtained from optically pure aldehyde $\mathbf{2 8}$, in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (. mL) at $20^{\circ} \mathrm{C}$ were successively added $(R)-(-)$-methoxyphenylacetic acid ($80 \mathrm{mg}, 0.48$ mmol, 2.0 equiv), DCC ($100 \mathrm{mg}, 0.48 \mathrm{mmol}, 2.0$ equiv) and DMAP ($10 \mathrm{mg}, 0.09$ $\mathrm{mmol}, 0.4$ equiv). The resulting mixture was stirred for 4 h at $20^{\circ} \mathrm{C}$ then quenched with a saturated aqueous NaHCO_{3} solution and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layers were washed with water and brine, dried over MgSO_{4}, filtered and the solvent removed under reduced pressure. The residue was purified by chromatography on silica gel (cyclohexane/ $\mathrm{Et}_{2} 085: 15$) to give $154 \mathrm{mg}(84 \%$ yield) of the title (\boldsymbol{R})-mandelic ester of 29 compound. b) from a mixture of carbamates 29 and 31: To a solution of compounds 29 and $31(125 \mathrm{mg}, 0.21 \mathrm{mmol}, 1.0$ equiv), obtained from racemic aldehyde ($+/-$)-28, in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at $20^{\circ} \mathrm{C}$ were successively added (R)-(-)-methoxyphenylacetic acid (71 $\mathrm{mg}, 0.43 \mathrm{mmol}, 2.0$ equiv), DCC ($88 \mathrm{mg}, 0.43 \mathrm{mmol}, 2.0$ equiv) and DMAP ($5 \mathrm{mg}, 0.08$ $\mathrm{mmol}, 0.4$ equiv). The resulting mixture was stirred for 4 h at $20^{\circ} \mathrm{C}$ then quenched with a saturated aqueous NaHCO_{3} solution and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layers were washed with water and brine, dried over MgSO_{4}, filtered and the solvent removed under reduced pressure. The residue was purified by chromatography on silica gel (cyclohexane/ $\mathrm{Et}_{2} 085: 15$) to give 85 mg (54% yield) of the $(\boldsymbol{R}$)-mandelic ester of 29 and 14 mg of its 3,4-bis epi diastereomer $(\boldsymbol{(R)}$-mandelic ester of 31, 9% yield). ((\boldsymbol{R}) mandelic ester of 29): $[\alpha]_{\mathrm{D}}^{20}=+42.1\left(c=1.4, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400.0 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) ; \delta=7.46-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.22(\mathrm{~m}, 3 \mathrm{H}), 6.82(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{dq}, J$ $\left.=9.6,1.8 \mathrm{~Hz}, J_{1_{\mathrm{H}-117 \mathrm{Sn}}}=J_{1_{\mathrm{H}-119 \mathrm{~S}_{\mathrm{n}}}}=131.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.83(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{~s}$, $1 \mathrm{H}), 4.46$ (dd, $J=9.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-4.03(\mathrm{bs}, 1 \mathrm{H}), 3.67-3.53(\mathrm{bs}, 1 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), 2.90 (dqd, $J=9.6,6.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.23 (dqd, $J=9.6,6.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.77 (d,
 (sext, $J=7.3 \mathrm{~Hz}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}$), $1.25-1.18\left(\mathrm{~m}, 12 \mathrm{H}, 4 \mathrm{CH}_{3}\right), 0.93-0.87\left(\mathrm{~m}, 18 \mathrm{H}, 4 \mathrm{CH}_{3}+\right.$ $\left.3 \mathrm{CH}_{2}\right), 0.71\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.6(\mathrm{C})$, $152.7(\mathrm{C}), 142.0\left(\mathrm{CH}, J_{13 \mathrm{C}-117 \mathrm{Sn}}=J_{13 \mathrm{C}-119 \mathrm{~S}_{\mathrm{n}}}=29.7 \mathrm{~Hz}\right), 139.1\left(\mathrm{C}, J_{13 \mathrm{C}-117 \mathrm{~S}_{\mathrm{n}}}=J_{13 \mathrm{C}-119 \mathrm{~S}_{\mathrm{s}}}\right.$ $=384.4 \mathrm{~Hz}), 136.7(\mathrm{C}), 135.6(\mathrm{CH}), 128.8(2 \mathrm{CH}), 128.6(2 \mathrm{CH}), 127.4(\mathrm{CH}), 110.8$ $(\mathrm{CH}), 83.0(\mathrm{CH}), 80.6(\mathrm{CH}), 57.5\left(\mathrm{CH}_{3}\right), 47.1(\mathrm{CH}), 45.5(\mathrm{CH}), 40.8\left(\mathrm{CH}, J_{13 \mathrm{C}-117_{\mathrm{Sn}}}=J\right.$
 $\left(3 \mathrm{CH}_{2}, J_{13 \mathrm{C}-117 \mathrm{Sn}}=J_{13 \mathrm{C}-119 \mathrm{~S}_{\mathrm{n}}}=57.5 \mathrm{~Hz}\right), 27.2\left(\mathrm{CH}_{3}, J_{13 \mathrm{C}-11 \mathrm{~S}_{\mathrm{n}}}=J_{13 \mathrm{C}-119 \mathrm{~S}_{\mathrm{n}}}=42.2 \mathrm{~Hz}\right)$, $21.7\left(2 \mathrm{CH}_{3}\right), 20.4\left(2 \mathrm{CH}_{3}\right), 17.9\left(\mathrm{CH}_{3}\right), 17.0\left(\mathrm{CH}_{3}\right), 13.8\left(3 \mathrm{CH}_{3}\right), 10.0\left(3 \mathrm{CH}_{2}, J_{13 \mathrm{C}-117 \mathrm{sn}}=\right.$ $314.4 \mathrm{~Hz}, J^{13 \mathrm{c} .119 \mathrm{~S}_{\mathrm{n}}}=328.8 \mathrm{~Hz}$); IR (Film) $v=2960$, 2928, 2872, 2851, 1751, 1710, $1453,1439,1374,1308,1288,1210,1174,1152,1135,1120,1056,1000 \mathrm{~cm}^{-1}$; elemental analysis calcd (\%) for $\mathrm{C}_{38} \mathrm{H}_{65} \mathrm{NO}_{5} \mathrm{Sn}$: C 62.13 , H 8.92 , N 1.91 ; found: C $62.20, \mathrm{H} 9.05, \mathrm{~N} 1.85$. ((R)-mandelic ester of 31): $[\alpha]_{\mathrm{D}}^{20}=-36.7\left(c=0.9, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400.0 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.47-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.05(\mathrm{~d}, J=6.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.12\left(\mathrm{dq}, J=9.6,1.8 \mathrm{~Hz}, J_{1_{\mathrm{H}}-17_{\mathrm{sn}}}=J_{1_{\mathrm{H}}-119_{\mathrm{Sn}}}=131.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.77(\mathrm{dd}, J=$ $7.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~s}, 1 \mathrm{H}), 4.67(\mathrm{dd}, J=9.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.29-4.12(\mathrm{bs}, 1 \mathrm{H}), 3.85-$ $3.71(\mathrm{bs}, 1 \mathrm{H}), 3.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.00(\mathrm{dqd}, J=9.6,6.9,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{dqd}, J=9.6$, $6.4,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.58\left(\mathrm{~d}, J=1.8 \mathrm{~Hz}, J_{1_{\mathrm{H}-117_{\mathrm{Sn}}}}=J_{1_{\mathrm{H}}-119_{\mathrm{Sn}}}=42.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.50-$ $1.39\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 1.38-1.19\left(\mathrm{~m}, 18 \mathrm{H}, 3 \mathrm{CH}_{2}+4 \mathrm{CH}_{3}\right), 0.98\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $0.93-0.87\left(\mathrm{~m}, 15 \mathrm{H}, 3 \mathrm{CH}_{2}+3 \mathrm{CH}_{3}\right), 0.69\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $(100.5$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=170.2(\mathrm{C}), 153.0(\mathrm{C}), 142.1\left(\mathrm{CH}, J^{13}{ }_{\mathrm{C}-117 \mathrm{Sn}}=J_{1{ }^{13} \mathrm{C}-119_{\mathrm{Sn}}}=27.8 \mathrm{~Hz}\right)$,
138.6 (C), 136.9 (C), 135.8 (CH), 128.8 (2CH), 128.7 (2CH), 127.5 (CH), 112.4 (CH), $82.6(\mathrm{CH}), 80.4(\mathrm{CH}), 57.6\left(\mathrm{CH}_{3}\right), 47.2(\mathrm{CH}), 45.6(\mathrm{CH}), 40.2\left(\mathrm{CH}, J_{13 \mathrm{C}_{\mathrm{C}} .17 \mathrm{~S}_{\mathrm{sn}}}=J^{13}{ }^{13} \mathrm{C}\right.$ $\left.{ }_{1199_{\mathrm{s}}}=32.6 \mathrm{~Hz}\right), 32.9(\mathrm{CH}), 29.3\left(3 \mathrm{CH}_{2}, J^{13_{\mathrm{C}-117} \mathrm{~S}_{\mathrm{n}}}=J_{13 \mathrm{C}-119_{\mathrm{Sn}}}=20.1 \mathrm{~Hz}\right), 27.5\left(3 \mathrm{CH}_{2}, J\right.$ $\left.{ }_{13 \mathrm{C}-117 \mathrm{~s}_{\mathrm{n}}}=J_{13 \mathrm{c}-119 \mathrm{~s}_{\mathrm{n}}}=58.5 \mathrm{~Hz}\right), 27.0\left(\mathrm{CH}_{3}, J_{13 \mathrm{C}-117 \mathrm{~s} \mathrm{~s}}=J_{13 \mathrm{C}-119 \mathrm{~S}_{\mathrm{n}}}=45.1 \mathrm{~Hz}\right), 21.8$ $\left(2 \mathrm{CH}_{3}\right), 20.5\left(2 \mathrm{CH}_{3}\right), 17.6\left(\mathrm{CH}_{3}\right), 15.0\left(\mathrm{CH}_{3}\right), 13.8\left(3 \mathrm{CH}_{3}\right), 9.7\left(3 \mathrm{CH}_{2}, J_{13 \mathrm{C} .117 \mathrm{Sn}}=J_{13 \mathrm{C}} \mathrm{C}\right.$ ${ }_{119_{\mathrm{Sn}}}=328.8 \mathrm{~Hz}$); IR (Film) $v=2959,2928,2873,2851,1752,1710,1455,1439,1373$, $1310,1285,1210,1172,1154,1118,1063,1005 \mathrm{~cm}^{-1}$.
(S) - mandelic ester of 29 :
(S)- mandelic ester of 31: : a) from pure carbamate 29: To a solution of compound 29 $\left(150 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.0\right.$ equiv), obtained from optically pure aldehyde $\mathbf{2 8}$, in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL) at $20^{\circ} \mathrm{C}$ were successively added $(S)-(-)$-methoxyphenylacetic acid ($80 \mathrm{mg}, 0.48$ mmol, 2.0 equiv), DCC ($100 \mathrm{mg}, 0.48 \mathrm{mmol}, 2.0$ equiv) and DMAP ($10 \mathrm{mg}, 0.09$ $\mathrm{mmol}, 0.4$ equiv). The resulting mixture was stirred for 4 h at $20^{\circ} \mathrm{C}$ then quenched with a saturated aqueous NaHCO_{3} solution and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layers were washed with water and brine, dried over MgSO_{4}, filtered and the solvent removed under reduced pressure. The residue was purified by chromatography on silica gel (cyclohexane/ $\mathrm{E}_{2} 085: 15$) to give 160 mg (87% yield) of the (\boldsymbol{S})-mandelic ester of 29 compound. b)) from a mixture of carbamates 29 and 31: To a solution of compounds 29 and $31(97 \mathrm{mg}, 0.165 \mathrm{mmol}, 1.0$ equiv), obtained from racemic aldehyde ($+/-$)-28, in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at $20{ }^{\circ} \mathrm{C}$ were successively added $(S)-(-)$-methoxyphenylacetic acid (55 $\mathrm{mg}, 0.33 \mathrm{mmol}, 2.0$ equiv), DCC ($68 \mathrm{mg}, 0.33 \mathrm{mmol}, 2.0$ equiv) and DMAP ($4 \mathrm{mg}, 0.07$ $\mathrm{mmol}, 0.4$ equiv). The resulting mixture was stirred for 4 h at $20^{\circ} \mathrm{C}$ then quenched with a saturated aqueous NaHCO_{3} solution and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layers were washed with water and brine, dried over MgSO_{4}, filtered and the solvent removed under reduced pressure. The residue was purified by chromatography on silica gel (cyclohexane/ $\mathrm{Et}_{2} 085: 15$) to give 82 mg (68% yield) of (\boldsymbol{S})-mandelic ester of 29 and 24 mg of (\boldsymbol{S})-mandelic ester of $\mathbf{3 1}\left(20 \%\right.$ yield). ((\mathbf{S}) - mandelic ester of 29): $[\alpha]_{\mathrm{D}}^{20}=+$ $58.6\left(c=1.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.49-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.30$ $(\mathrm{m}, 3 \mathrm{H}), 7.04(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.13\left(\mathrm{dq}, J=9.4,1.6 \mathrm{~Hz}, J_{1_{\mathrm{H}-17} \mathrm{~S}_{\mathrm{Sn}}}=J_{1_{\mathrm{H}-119} \mathrm{~S}_{\mathrm{n}}}=131.9\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 4.77(\mathrm{dd}, J=7.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~s}, 1 \mathrm{H}), 4.67(\mathrm{dd}, J=9.9,6.4 \mathrm{~Hz}, 1 \mathrm{H})$, 4.28-4.11 (bs, 1 H$), 3.88-3.71(\mathrm{bs}, 1 \mathrm{H}), 3.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.0(\mathrm{ddq}, J=9.9,7.8,6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.13(\mathrm{dqd}, J=9.4,6.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.58\left(\mathrm{~d}, J=1.6 \mathrm{~Hz}, J_{1_{\mathrm{H}-117}} \mathrm{~S}_{\mathrm{sn}}=J_{1_{\mathrm{H}-11} 9_{\mathrm{Sn}}}=41.7\right.$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.49-1.38\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 1.37-1.19\left(\mathrm{~m}, 18 \mathrm{H}, 3 \mathrm{CH}_{2}+4 \mathrm{CH}_{3}\right), 0.98(\mathrm{~d}, J=$ $\left.6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.93-0.83\left(\mathrm{~m}, 15 \mathrm{H}, 3 \mathrm{CH}_{2},+3 \mathrm{CH}_{3}\right), 0.69\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR ($100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.2(\mathrm{C}), 153.0(\mathrm{C}), 142.1\left(\mathrm{CH}, J_{13 \mathrm{C}-117 \mathrm{~s}_{\mathrm{sn}}}=J_{13 \mathrm{C}}\right.$ $\left.{ }_{119 \mathrm{~S}_{\mathrm{Sn}}}=30.7 \mathrm{~Hz}\right), 138.6\left(\mathrm{C}, J_{13 \mathrm{C} .117 \mathrm{Sn}}=368.1 \mathrm{~Hz}\right.$, $\left.J_{13 \mathrm{C} .119_{\mathrm{Sn}}}=396.8 \mathrm{~Hz}\right), 136.9(\mathrm{C}), 135.8$ $(\mathrm{CH}), 128.8(2 \mathrm{CH}), 128.7(2 \mathrm{CH}), 127.5(\mathrm{CH}), 112.4(\mathrm{CH}), 82.6(\mathrm{CH}), 80.4(\mathrm{CH}), 57.6$ $\left(\mathrm{CH}_{3}\right), 47.2(\mathrm{CH}), 45.6(\mathrm{CH}), 40.3\left(\mathrm{CH}, J^{13} \mathrm{C}-117_{\mathrm{sn}}=J^{13} \mathrm{C}-119_{\mathrm{Sn}}=33.6 \mathrm{~Hz}\right), 32.9(\mathrm{CH})$, $29.3\left(3 \mathrm{CH}_{2}, J^{13 \mathrm{C}_{\mathrm{C}}-117_{\mathrm{sn}}}=J_{13 \mathrm{C}-119_{\mathrm{Sn}}}=19.2 \mathrm{~Hz}\right)$, $27.5\left(3 \mathrm{CH}_{2} J^{13 \mathrm{C}-117 \mathrm{~S}_{\mathrm{Sn}}}=J_{13 \mathrm{C}-119_{\mathrm{Sn}}}=57.5\right.$ $\mathrm{Hz}), 27.0\left(\mathrm{CH}_{3}, J^{13}{ }_{\mathrm{C}-117 \mathrm{Sn}}=J_{13 \mathrm{C}-119_{\mathrm{Sn}}}=45.1 \mathrm{~Hz}\right), 21.8\left(2 \mathrm{CH}_{3}\right), 20.5\left(2 \mathrm{CH}_{3}\right), 17.6\left(\mathrm{CH}_{3}\right)$, $15.4\left(\mathrm{CH}_{3}\right)$, $13.8\left(3 \mathrm{CH}_{3}\right)$, $9.7\left(3 \mathrm{CH}_{2}, J^{13 \mathrm{c} .117 \mathrm{Sn}_{\mathrm{n}}}=J_{13 \mathrm{c}-119 \mathrm{~S}_{\mathrm{n}}}=327.8 \mathrm{~Hz}\right.$); IR (Film) $v=$ 2960, 2928, 2873, 2852, 1753, 1710, 1454, 1440, 1373, 1309, 1288, 1210, 1175, 1152, 1133, 1118, 1060, $1005 \mathrm{~cm}^{-1}$; elemental analysis calcd (\%) for $\mathrm{C}_{38} \mathrm{H}_{6} \mathrm{NO}_{5} \mathrm{Sn}$: C 62.13, H 8.92, N 1.91 ; found: C 62.220, H 9.04, N 1.96 . ((\mathbf{S}) - mandelic ester of 31): $[\alpha]_{\mathrm{D}}^{20}=$ - 37.2 ($\left.c=1.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.47-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.40-$ $7.29(\mathrm{~m}, 3 \mathrm{H}), 6.82(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.68\left(\mathrm{dq}, J=9.6,1.4 \mathrm{~Hz}, J_{1_{\mathrm{H}}-117 \mathrm{sn}}=J_{1_{\mathrm{H}-119 \mathrm{Sn}}}=\right.$ $130.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{~s}, 1 \mathrm{H}), 4.45(\mathrm{dd}, J=9.6,6.4 \mathrm{~Hz}, 1 \mathrm{H})$, 4.29-4.08 (bs, 1H), 3.73-3.61 (bs, 1H), 3.43 (s, 3H, CH ${ }_{3}$), $2.90(\mathrm{dqd}, J=9.6,6.9,6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.23(\mathrm{dmd}, J=9.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.77\left(\mathrm{~d}, J=1.4 \mathrm{~Hz}, J_{1_{\mathrm{H}}-117 \mathrm{Sn}_{\mathrm{Sn}}}=J_{1_{\mathrm{H}}-19_{\mathrm{Sn}}}=41.2\right.$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.50-1.39\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 1.36-1.18\left(\mathrm{~m}, 18 \mathrm{H}, 3 \mathrm{CH}_{2}+4 \mathrm{CH}_{3}\right), 0.95-0.81$ $\left(\mathrm{m}, 18 \mathrm{H}, 4 \mathrm{CH}_{3}+3 \mathrm{CH}_{2}\right), 0.70\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.6(\mathrm{C}), 152.7(\mathrm{C}), 142.0\left(\mathrm{CH}, J^{13 \mathrm{C}_{\mathrm{C}}-11 \mathrm{~S}_{\mathrm{sn}}}=J_{13_{\mathrm{C}-119 \mathrm{~S}_{\mathrm{n}}}}=26.8 \mathrm{~Hz}\right), 139.1(\mathrm{C}), 136.9$ (C), $135.5(\mathrm{CH}), 128.8(2 \mathrm{CH}), 128.7(2 \mathrm{CH}), 127.5(\mathrm{CH}), 110.7(\mathrm{CH}), 83.0(\mathrm{CH}), 80.6$ $(\mathrm{CH}), 57.5\left(\mathrm{CH}_{3}\right), 47.0(\mathrm{CH}), 45.4(\mathrm{CH}), 40.8\left(\mathrm{CH}, J_{13 \mathrm{C}-117 \mathrm{Sn}}=J_{13 \mathrm{C}-119 \mathrm{~S}_{\mathrm{n}}}=33.6 \mathrm{~Hz}\right)$, $32.9(\mathrm{CH}), 29.3\left(3 \mathrm{CH}_{2}, J_{13 \mathrm{C} .117 \mathrm{sn}}=J_{13 \mathrm{c} .119 \mathrm{Sn}}=21.1 \mathrm{~Hz}\right), 27.6\left(3 \mathrm{CH}_{2}, J_{13 \mathrm{C}-117 \mathrm{sn}}=J_{13 \mathrm{C}}\right.$ $\left.{ }_{1199_{\mathrm{Sn}}}=57.5 \mathrm{~Hz}\right), 27.2\left(\mathrm{CH}_{3}, J_{13 \mathrm{c}_{-1} 11 \mathrm{~S}_{\mathrm{sn}}}=J_{13_{\mathrm{C}-11} 9_{\mathrm{Sn}}}=44.1 \mathrm{~Hz}\right), 21.7\left(2 \mathrm{CH}_{3}\right), 20.5\left(2 \mathrm{CH}_{3}\right)$, $17.9\left(\mathrm{CH}_{3}\right), 17.0\left(\mathrm{CH}_{3}\right), 13.8\left(3 \mathrm{CH}_{3}\right), 10.0\left(3 \mathrm{CH}_{2}, J^{13} \mathrm{C}-117 \mathrm{~s}_{\mathrm{sn}}=317.3 \mathrm{~Hz}, J^{13} \mathrm{C}_{\mathrm{C}}-119_{\mathrm{Sn}}=\right.$ 329.7 Hz); IR (Film) $v=2960$, 2927, 2870, 2849, 1752, 1710, 1454, 1439, 1375, 1309, $1288,1210,1174,1152,112,1056,1007 \mathrm{~cm}^{-1}$.
(3S,4R,5S,6Z)-3,5-Dimethyl-4-((methoxymethyl)oxy)-7-(tributylstannyl)-oct-6-en-1-yne (32): To a solution of carbamate $29(8.4 \mathrm{~g}, 13.6 \mathrm{mmol}, 1.0$ equiv) in diethyl ether $(100 \mathrm{~mL})$ at $-40{ }^{\circ} \mathrm{C}$ was slowly added a solution of tert-BuLi $(1.5 \mathrm{M}$ in pentane, 27.2 $\mathrm{mL}, 40.8 \mathrm{mmol}, 3.0$ equiv). The solution was stirred for 20 min at $-20^{\circ} \mathrm{C}$ then quenched by addition of a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and extracted with diethyl ether. The combined organic phases were washed with brine, dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude residue was purified by chromatography on silica gel (cyclohexane/ $\mathrm{Et}_{2} \mathrm{O} 90: 10$ to $80: 20$) to give $(3 S, 4 R, 5 S, 6 Z)$ -3,5-dimethyl-4-hydroxy-7-(tributylstannyl)-oct-6-en-1-yne (4.7 g, 78% yield). $[\alpha]_{\mathrm{D}}^{20}=$ - $26.8\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.87(\mathrm{dq}, J=9.6,1.8 \mathrm{~Hz}, J$ $\left.{ }^{1}{ }_{\mathrm{H}-117 \mathrm{Sn}}=J_{1_{\mathrm{H}-1} 119 \mathrm{Sn}}=133.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.17(\mathrm{ddd}, J=9.0,7.5,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{dqd}, J=$ $7.5,6.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{dqd}, J=9.6,6.9,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.90$ $\left(\mathrm{d}, J=1.8 \mathrm{~Hz}, J_{1_{\mathrm{H}-1} 17 \mathrm{Sn}}=J_{1_{\mathrm{H}-119 \mathrm{Sn}}}=40.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.74(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH})$ 1.53-1.42 (m, 6H, $3 \mathrm{CH}_{2}$), $1.34\left(\mathrm{sext}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 1.26(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 1.08\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.98-0.91\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 0.89(\mathrm{t}, J=7.3 \mathrm{~Hz}, 9 \mathrm{H}$, $\left.3 \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=142.8\left(\mathrm{CH}, J^{13 \mathrm{C}-117 \mathrm{Sn}}=J_{{ }_{13}{ }^{13}-119 \mathrm{Sn}}=28.8\right.$ $\mathrm{Hz}), 138.8(\mathrm{C}), 84.8(\mathrm{C}), 78.0(\mathrm{CH}), 71.5(\mathrm{CH}), 43.2\left(\mathrm{CH}, J^{13 \mathrm{C}_{\mathrm{C}}-117_{\mathrm{Sn}}}=J^{13}{ }^{13}-119_{\mathrm{Sn}}=33.6\right.$
$\mathrm{Hz}), 30.4(\mathrm{CH}), 29.0\left(3 \mathrm{CH}_{2}, J_{13 \mathrm{c}-117 \mathrm{sn}_{\mathrm{sn}}}=J_{13_{\mathrm{C}}-119_{\mathrm{Sn}}}=19.2 \mathrm{~Hz}\right), 27.1\left(3 \mathrm{CH}_{2}, J_{13 \mathrm{C}-117_{\mathrm{Sn}}}=J\right.$ $\left.{ }^{13} \mathrm{C}-119 \mathrm{~S}_{\mathrm{n}}=58.7 \mathrm{~Hz}\right), 27.0\left(\mathrm{CH}_{3}, J_{13 \mathrm{C}-117 \mathrm{Sn}}=J_{13 \mathrm{C}-119 \mathrm{~S}_{\mathrm{sn}}}=44.0 \mathrm{~Hz}\right), 18.4\left(\mathrm{CH}_{3}\right), 17.0\left(\mathrm{CH}_{3}\right)$, $13.4\left(3 \mathrm{CH}_{3}\right)$, $9.7\left(3 \mathrm{CH}_{2}, J_{13 \mathrm{C}-117_{\mathrm{Sn}}}=314.4 \mathrm{~Hz}, J^{13 \mathrm{C}_{\mathrm{C}}-119_{\mathrm{S}}}=328.8 \mathrm{~Hz}\right)$; IR (Film) $v=$ $3560,350,3456,3310,2957,2926,2872,2854,1463,1455,1376,1247,1115,1070$, 1050, 997, 981, 960, 873, 862, 690, 663, $631 \mathrm{~cm}^{-1}$; elemental analysis calcd (\%) for $\mathrm{C}_{22} \mathrm{H}_{42} \mathrm{OSn}$: C 59.88, H 9.59; found: C 59.99, H 9.77.

A mixture of hexanoyl chloride ($62.2 \mathrm{~g}, 500 \mathrm{mmol}, 1.0$ equiv) and dimethoxymethane ($38.0 \mathrm{~g}, 500 \mathrm{mmol}, 1.0$ equiv) with a few drops of $\mathrm{HCl} 3 N$ was heated at $55-60^{\circ} \mathrm{C}$ for 12 h . Methoxymethyl chloride (MOMCl) was then distilled out (bp: $53-55^{\circ} \mathrm{C} ; 32.0 \mathrm{~g}$, 80% yield).

To a solution of the above alcohol (3.51 g, $7.95 \mathrm{mmol}, 1.0$ equiv), dimethylaminopyridine ($194 \mathrm{mg}, 1.59 \mathrm{mmol}, 0.2$ equiv) and TBAI ($294 \mathrm{mg}, 0.795$ mmol, 0.1 equiv) in dried $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ were added diisopropylethylamine ($27.7 \mathrm{~mL}, 159 \mathrm{mmol}, 20$ equiv) and $\mathrm{MOMCl}(6.9 \mathrm{~mL}, 79.5 \mathrm{mmol}, 10$ equiv). After stirring for 12 h at $20^{\circ} \mathrm{C}$, the reaction was quenched with a saturated aqueous NaHCO_{3} solution and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layers were washed with brine, dried over MgSO_{4}, filtered and the solvent was removed under reduced pressure. The crude residue was purified by chromatography on silica gel (cyclohexane/Et $t_{2} \mathrm{O} 98: 2$ to 90:10) to give the title compound 32 (3.53 g, 92% yield) as a yellow oil. (32): $[\alpha]_{\mathrm{D}}^{20}=-20.6$ ($c=$ $\left.0.98, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.87\left(\mathrm{~d}, J=9.6 \mathrm{~Hz}, J_{1_{\mathrm{H}-}{ }^{117} \mathrm{Sn}}=J_{1_{\mathrm{H}}}\right.$ $\left.{ }_{119} \mathrm{Sn}=133.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.80(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 3.19(\mathrm{dd}, J=7.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{qdd}, J=7.3,3.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{ddq}, J=$ $9.6,7.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.88\left(\mathrm{~s}, J_{1_{\mathrm{H}-117 \mathrm{Sn}}}=J_{1_{\mathrm{H}}-119 \mathrm{Sn}}=40.8 \mathrm{~Hz}\right.$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.52-1.42\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 1.32\left(\mathrm{sext}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 1.25(\mathrm{~d}, J=7.3$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.02\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.97-0.93\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 0.89(\mathrm{t}, J=7.3$ $\left.\mathrm{Hz}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=143.6\left(\mathrm{CH}, J_{13 \mathrm{C}-117 \mathrm{Sn}}=J_{13 \mathrm{C}-119 \mathrm{Sn}}=\right.$ $28.7 \mathrm{~Hz}), 138.5(\mathrm{C}), 98.4\left(\mathrm{CH}_{2}\right), 86.1(\mathrm{C}), 85.9(\mathrm{CH}), 70.0(\mathrm{CH}), 56.3\left(\mathrm{CH}_{3}\right), 42.8(\mathrm{CH}$, $\left.J{ }^{13}{ }_{\mathrm{C}-117 \mathrm{Sn}}=J{ }^{13}{ }_{\mathrm{C}-119 \mathrm{Sn}}=30.1 \mathrm{~Hz}\right), 30.0(\mathrm{CH}), 27.3\left(3 \mathrm{CH}_{2}, J^{13 \mathrm{C}-117 \mathrm{Sn}}=J^{13}{ }_{\mathrm{C}-119 \mathrm{Sn}}=20.1\right.$ $\mathrm{Hz}), 27.3\left(3 \mathrm{CH}_{2}, J^{13}{ }^{1}-117 \mathrm{Sn}=J{ }^{13} \mathrm{C}_{-}-119 \mathrm{Sn}=59.4 \mathrm{~Hz}\right), 27.2\left(\mathrm{CH}_{3}, J^{13}{ }^{1}-117_{\mathrm{Sn}}=J{ }^{13} \mathrm{C}_{-}-1{ }^{119 \mathrm{Sn}}=\right.$ $40.2 \mathrm{~Hz}), 18.8\left(\mathrm{CH}_{3}\right), 17.7\left(\mathrm{CH}_{3}\right), 13.7\left(3 \mathrm{CH}_{3}\right), 9.9\left(3 \mathrm{CH}_{2}, J_{13 \mathrm{C}-117 \mathrm{Sn}}=314.4 \mathrm{~Hz}, J^{13 \mathrm{C}}\right.$ ${ }_{119}{ }_{\mathrm{Sn}}=328.7 \mathrm{~Hz}$); IR (Film) $v=3312,2956,2926,2872,2823,1458,1376,1146,1096$, 1035, 996, 668, $634 \mathrm{~cm}^{-1}$; elemental analysis calcd (\%) for $\mathrm{C}_{24} \mathrm{H}_{46} \mathrm{O}_{2} \mathrm{Sn}: \mathrm{C} 59.39, \mathrm{H}$ 9.55; found: C 59.55, H 9.73.

(3R,4S,5S)-3,5-Dimethyl-6-(4-methoxybenzyloxy) hex-1-en-4-ol (33)

(3S,4R,5S)-3,5-Dimethyl-6-(4-methoxybenzyloxy) hex-1-en-4-ol (34): Brown reaction - To a solution of freshly sublimed potassium tert-butoxide $(7.56 \mathrm{~g}, 67.4 \mathrm{mmol}$, 1.2 equiv) in THF $(100 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was slowly added a solution of cis-2-butene (12.5 mL) in THF (10 mL); n - BuLi (1.6 M in hexane, $44 \mathrm{~mL}, 70.3 \mathrm{mmol}, 1.25$ equiv) was then added dropwise and the yellow mixture was stirred at $-78^{\circ} \mathrm{C}$ for 5 min and at -45 ${ }^{\circ} \mathrm{C}$ for 20 min . The resulting orange solution was cooled to $-78^{\circ} \mathrm{C}$, and a solution of (-)-B-diisopinocamphenylmethoxyborane ($25 \mathrm{~g}, 78.7 \mathrm{mmol}, 1.4$ equiv) in 46 mL of diethyl ether was added dropwise over $c a .15 \mathrm{~min}$. The resulting white solution was stirred at $78{ }^{\circ} \mathrm{C}$ for 40 min . Boron trifluoride ethyl etherate $\left(\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, 11.8 \mathrm{~mL}, 95.5 \mathrm{mmol}, 1.7\right.$ equiv) was added dropwise followed after 5 min by addition of a solution of the aldehyde $\mathbf{1 3}(11.7 \mathrm{~g}, 56.2 \mathrm{mmol}, 1.0$ equiv) in THF (25 mL). The resulting solution was stirred at $-78^{\circ} \mathrm{C}$ for 5 h and the reaction was then quenched by successive addition of an aqueous NaOH solution ($2.5 \mathrm{~N}, 66 \mathrm{~mL}$) and an aqueous $\mathrm{H}_{2} \mathrm{O}_{2}$ solution ($30 \%, 20 \mathrm{~mL}$). The acetone-dry ice bath was then removed, and the mixture was heated at $45^{\circ} \mathrm{C}$ for 45 min . The cloudy solution was cooled to $20^{\circ} \mathrm{C}$, diluted with diethyl ether (45 mL), washed with brine, dried over MgSO_{4}, filtered and the solvent was removed under reduced pressure. The crude residue was distilled $\left(85-90^{\circ} \mathrm{C}, 3.3 \mathrm{~mm} \mathrm{Hg}\right)$ to remove most of the by-product isopinocampheol. The remaining oil was then purified by chromatography on silica gel to give the title compound $\mathbf{3 3}$ and used in the next step.

Crotylation reaction with crotylstannane - Crotylstannane preparation: method 1 : To a solution of diisopropylamine ($8.0 \mathrm{~mL}, 79 \mathrm{mmol}, 1.15$ equiv) in THF (130 mL) at $0{ }^{\circ} \mathrm{C}$ was added $n-\mathrm{BuLi}\left(1.4 M\right.$ in hexane, $49 \mathrm{~mL}, 69 \mathrm{mmol}, 1.0$ equiv). 10 min later, HSnBu_{3} ($20.0 \mathrm{~g}, 69 \mathrm{mmol}, 1.0$ equiv) was added over 10 min to the LDA solution. After stirring for 20 min at $0{ }^{\circ} \mathrm{C}$, the mixture was cooled to $-40{ }^{\circ} \mathrm{C}$ and a solution of (E) crotylchloride ($6.2 \mathrm{~g}, 69 \mathrm{mmol}, 1.0$ equiv) in THF (70 mL) was added via cannula. The mixture was stirred for 15 min at $-20^{\circ} \mathrm{C}$ and then treated by a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. After extraction with diethyl ether, the organic layer was washed with water and brine, dried over MgSO_{4} and the solvent removed under reduced pressure. The residue was then distilled under reduced pressure $\left(154-158{ }^{\circ} \mathrm{C}, 0.3 \mathrm{mbar}\right)$ to give a mixture of $(E) /(Z)$-crotylstannane $50: 50(19.0 \mathrm{~g}, 81 \%$ yield). Crotylstannane preparation: method 2 - To a freshly sublimed potassium t-butoxide ($4.0 \mathrm{~g}, 36 \mathrm{mmol}$, 1.2 equiv) in THF (70 mL) at $-78^{\circ} \mathrm{C}$ was cannulated a solution of trans-butene (7 mL) in THF. n-BuLi was then added dropwise (1.4 M in hexane, $26.6 \mathrm{~mL}, 37.2 \mathrm{mmol}, 1.25$ equiv). After stirring for 1 h at $-45{ }^{\circ} \mathrm{C}$, tributyltin chloride $(9.7 \mathrm{~g}, 30 \mathrm{mmol}, 1.0$ equivalent) was added slowly and the resulting mixture was allowed to warm to $20^{\circ} \mathrm{C}$ for 12 h . The reaction was then quenched by addition of a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. After extraction with diethyl ether, the organic layer was washed with water and brine, dried over MgSO_{4} and the solvent removed under reduced pressure. The
residue was then distilled under reduced pressure ($154-158{ }^{\circ} \mathrm{C}, 0.3 \mathrm{mbar}$) to give a mixture of $(E) /(Z)$-crotylstannane $75: 25(3.25 \mathrm{~g}, 32 \%$ yield).

To a solution of aldehyde $\mathbf{1 3}(6.0 \mathrm{~g}, 28.9 \mathrm{mmol}, 1.0$ equiv) in diethyl ether $(90 \mathrm{~mL})$ at $100{ }^{\circ} \mathrm{C}$ was added $\mathrm{BF}_{3} . \mathrm{OEt} 2(9.0 \mathrm{~g}, 8.1 \mathrm{~mL}, 63.8 \mathrm{mmol}, 2.2$ equiv). After stirring for 10 min, crotyltributylstannane ($13.3 \mathrm{~g}, 38.6 \mathrm{mmol}, 1.1$ equiv) was added; the resulting mixture was stirred for 3 h at $-100{ }^{\circ} \mathrm{C} /-95^{\circ} \mathrm{C}$ and then a saturated aqueous NaHCO_{3} solution was added. After extraction with diethyl ether, the organic layer was washed with water and brine, dried over MgSO_{4} and the solvent removed under reduced pressure. The residue was purified by chromatography on silica gel (cyclohexane/ ethyl acetate 90:10 to 70:30) to give the title compound 33 as a yellow oil ($5.64 \mathrm{~g}, 74 \%$ yield) and its diastereomer 34 (dr 91:9). (33): $[\alpha]_{\mathrm{D}}^{20}=-2.7\left(c=9.6, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400.0 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.26$ (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}$), 6.88 (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}$), 5.63 (ddd, J $=17.2,10.2,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{dd}, J=17.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{dd}, J=10.2,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.46(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.55-3.45(\mathrm{~m}$, $2 \mathrm{H}), 3.43(\mathrm{dd}, J=9.1,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 2.23(\mathrm{dqd}, J=8.6$, $7.3,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.92-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.10\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.96(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=159.2(\mathrm{C}), 141.3(\mathrm{CH}), 130.3(\mathrm{C}), 129.2$ $(2 \mathrm{CH}), 114.5\left(\mathrm{CH}_{2}\right), 113.8(2 \mathrm{CH}), 75.4(\mathrm{CH}), 73.1\left(\mathrm{CH}_{2}\right), 72.0\left(\mathrm{CH}_{2}\right), 55.3\left(\mathrm{CH}_{3}\right), 42.1$ (CH), $35.4(\mathrm{CH}), 17.2\left(\mathrm{CH}_{3}\right), 9.8\left(\mathrm{CH}_{3}\right)$; MS (GC, CI, $\left.\mathrm{CH}_{4}\right): m / z: 293\left(\mathrm{M}^{+}+29\right), 264$, 246, 190, 161, 149, 137, 121, 109, 69, 57; IR (Film) $v=2960,2907,2870,1612,1513$, 1462, 1365, 1302, 1210, 1173, 1093, 1037, 982, $914 \mathrm{~cm}^{-1}$. (34): ${ }^{1} \mathrm{H}$ NMR (400.0 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=7.26(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.86(\mathrm{ddd}, J=17.9,10.1$, $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{dd}, J=17.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{dd}, J=10.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J$ $=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.67-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.55-3.45$ $(\mathrm{m}, 2 \mathrm{H}), 2.70(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 2.25-2.22(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.04(\mathrm{~d}, J$ $\left.=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.96\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
(3R,4S,5S)-4-(tert-Butyldimethylsilyloxy)-3,5-dimethyl-6-(4-methoxybenzyloxy)
hex-1-ene (35): To a solution of alcohol $33(5.64 \mathrm{~g}, 21.3 \mathrm{mmol}, 1.0$ equiv) in dried $\mathrm{CH}_{2} \mathrm{Cl}_{2}(90 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ were added $2,6-\mathrm{l}$ utidine ($6.9 \mathrm{~g}, 7.5 \mathrm{~mL}, 64 \mathrm{mmol}, 3.0$ equiv) and TBSOTf ($8.5 \mathrm{~g}, 7.35 \mathrm{~mL}, 32 \mathrm{mmol}, 1.5$ equiv). After stirring for 2 h at $20^{\circ} \mathrm{C}$, the reaction was partitioned between diethyl ether and a saturated aqueous solution of ammonium chloride and extracted with diethyl ether. The organic layer was washed with brine, dried over MgSO_{4}, filtered and the solvent removed under reduced pressure. The residue was purified by chromatography on silica gel (cyclohexane/ethyl acetate 98:2 to $95: 5$) to give 6.30 g (78% yield) of the title compound $\mathbf{3 5}$ as a yellow oil. (35): $[\alpha]_{\mathrm{D}}^{20}=+1.3\left(c=1.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.25(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.79$ (ddd, $J=17.6,10.2,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{dd}, J=17.6$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{dd}, J=10.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=11.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{dd}, J=6.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{dd}, J=8.9,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.19$ (dd, $J=8.9,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.34$ (dqd, $J=7.8,6.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.97$ (dqdd, $J=7.9,6.6$, $6.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.99\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.89\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 0.85(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{CH}_{3}$), $0.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$), $0.02\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$); ${ }^{13} \mathrm{C}$ NMR $\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $159.0(\mathrm{C}), 142.0(\mathrm{CH}), 130.8(\mathrm{C}), 129.1(2 \mathrm{CH}), 113.6(2 \mathrm{CH}), 113.4\left(\mathrm{CH}_{2}\right), 75.5(\mathrm{CH})$, $73.4\left(\mathrm{CH}_{2}\right), 72.4\left(\mathrm{CH}_{2}\right), 55.2\left(\mathrm{CH}_{3}\right), 42.6(\mathrm{CH}), 36.5(\mathrm{CH}), 26.1\left(3 \mathrm{CH}_{3}\right), 18.4(\mathrm{C}), 16.9$ $\left(\mathrm{CH}_{3}\right), 11.0\left(\mathrm{CH}_{3}\right),-3.6\left(2 \mathrm{CH}_{3}\right) ; \mathrm{MS}\left(\mathrm{GC}, \mathrm{CI}, \mathrm{CH}_{4}\right): \mathrm{m} / \mathrm{z} 407:\left(\mathrm{M}^{+}+29\right), 377,363,323$, 271, 241, 199, 187, 161, 145, 121, 109, 89, 75; IR (Film) v = 2959, 2855, 1653, 1615, 1513, 1462, 1360, 1301, 1246, 1172, 1103, 1039, 911, $836 \mathrm{~cm}^{-1}$; elemental analysis calcd (\%) for $\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{Si}$: C 69.79 , H 10.12; found: C 70.16, H 10.35 .
(2S,3S,4R)-2,4-Dimethyl-hex-5-ene-1,3-diol (36): At $0{ }^{\circ} \mathrm{C}$ a solution of compound 33 ($100 \mathrm{mg}, 0.38 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was treated with water $(0.15 \mathrm{~mL})$ and 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ, $72 \mathrm{mg}, 0.317 \mathrm{mmol}, 1.2$ equiv). The mixture was stirred for 10 min at $0^{\circ} \mathrm{C}$, warmed to $20^{\circ} \mathrm{C}$, and stirred an additional 30 min. The mixture was quenched with a saturated aqueous NaHCO_{3} solution, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with water and brine. The combined organic layers were dried over MgSO_{4}, filtered and the solvent removed under reduced pressure. The crude residue was purified by chromatography on silica gel (cyclohexane/ethyl acetate 60:40 then $50: 50$) to give the title compound $\mathbf{3 6}$ as white crystals ($41 \mathrm{mg}, 75 \%$ yield). (36): RN: 108867-45-4; $[\alpha]_{\mathrm{D}}^{20}=+40\left(c=1.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(270.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 6.03-5.49 (m, 1H), 5.03-4.89 (m, 2H), 3.69-3.57 (m, 2H), $3.51(\mathrm{dd}, J=9.2,2.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.49(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 2.28-2.19(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.03\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $0.87\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=140.8(\mathrm{CH}), 114.7$ $\left(\mathrm{CH}_{2}\right), 76.5(\mathrm{CH}), 67.8\left(\mathrm{CH}_{2}\right), 42.2(\mathrm{CH}), 36.5(\mathrm{CH}), 17.1\left(\mathrm{CH}_{3}\right), 8.9\left(\mathrm{CH}_{3}\right)$; IR (film) $v=3464,2957,1655,1264,1105,1094,1023,1016,798 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{GC}, \mathrm{CI}, \mathrm{CH}_{4}\right): m / z:$ $127\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}\right), 125,109,97,89,83,71,57$; elemental analysis calcd (\%) for $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{2}$: C 66.63, H 11.18; found C 66.46, H 11.07 .
(2S,3R,4S)-3-(tert-Butyldimethylsilyloxy)-2,4-dimethyl-5-(4-methoxybenzyloxy)
pentanal (37): To a $-78{ }^{\circ} \mathrm{C}$ solution of compound $35(6.3 \mathrm{~g}, 16.6 \mathrm{mmol}, 1.0$ equiv) in 200 mL of $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:1), containing pyridine (4 mL , $50 \mathrm{mmol}, 3.0$ equiv) and a few amount of Sudan III was bubbled a stream of ozone until the pink solution became colourless. The solution was treated with dimethylsulfide $(36.5 \mathrm{~mL}, 498 \mathrm{mmol}, 30$ equiv) and then warmed to $20^{\circ} \mathrm{C}$ for 12 h . The solution was concentrated under reduced pressure, diluted with diethyl ether, washed with water (3x), dried over MgSO_{4} and the solvent was removed under reduced pressure. The crude $(2 S, 3 R, 4 S)-3$-(tert-butyldimethylsilyloxy)-5-(4-methoxybenzyloxy)-2,4-dimethylpentanal 37 ($6.0 \mathrm{~g}, 95 \%$ yield) was used in the next step without further purification. (37): ${ }^{1} \mathrm{H}$ NMR (400.0
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.87(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 4.41(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{dd}, J=5.1,3.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{dd}, J=9.0,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{dd}, J=9.0,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.54$ (qdd, $J=6.9,5.1,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.94$ (dqdd, $J=7.3,6.9,5.9,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.05(\mathrm{~d}, J=$ $\left.6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.91\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 0.86\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $0.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=205.5(\mathrm{C}), 129.2(2 \mathrm{CH}), 113.7$ $(2 \mathrm{CH}), 72.6\left(\mathrm{CH}_{2}\right), 72.5\left(\mathrm{CH}_{2}\right), 72.3(\mathrm{CH}), 55.2\left(\mathrm{CH}_{3}\right), 51.3(\mathrm{CH}), 37.0(\mathrm{CH}), 25.9$ $\left(3 \mathrm{CH}_{3}\right), 18.2(\mathrm{C}), 12.1\left(\mathrm{CH}_{3}\right), 9.3\left(\mathrm{CH}_{3}\right),-4.0\left(2 \mathrm{CH}_{3}\right)$, one C -arom not detected; MS (GC, EI): m/z: 323 (${ }^{+\bullet}-t$-Bu), 251, 199, 187, 137, 121, 107, 98, 89, 73, 59; elemental analysis calcd (\%) for $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{Si}$: C 66.67, H 9.53; found: C 66.60, H 9.67.
(1Z,3S,4S,5R,6R,7S)-6-(tert-Butyldimethylsilyloxy)-1-((N,N-
diisopropyl)carbamoyloxy)-8-(4-methoxybenzyloxy)-3,5,7-trimethyl oct-1-en-4-ol (38): (E)-crotyldiisopropylcarbamate preparation - To a suspension of $\mathrm{NaH}(60 \%, 12.2 \mathrm{~g}$, $306 \mathrm{mmol}, 1.2$ equiv) in THF $(50 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added a solution of 2-buten-1-ol (E/Z mixture, $18.4 \mathrm{~g}, 255 \mathrm{mmol}, 1.0$ equiv) in THF (50 mL) over 20 min . After stirring 20 \min at $20^{\circ} \mathrm{C}$, the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and a solution of N, N diisopropylcarbamoyl chloride ($50 \mathrm{~g}, 306 \mathrm{mmol}, 1.2$ equiv) in THF (70 mL) was slowly added. The reaction mixture was stirred for 3 h at $20^{\circ} \mathrm{C}$, then poured into an aqueous HCl $1 N$ solution (150 mL) and extracted with diethyl ether. The combined organic layers were washed with a saturated aqueous NaHCO_{3} solution and brine, dried over MgSO_{4}, filtered and the solvent removed under reduced pressure. The crude residue was distilled ($64^{\circ} \mathrm{C}, 0.1 \mathrm{mbar}$) to give (E)-crotyldiisopropylcarbamate ($50.0 \mathrm{~g}, 98 \%$ yield).

Crotylation reaction with optically active crotyltitane - To a quick stirred solution of the (E)-crotyl diisopropylcarbamate ($6.6 \mathrm{~g}, 33.2 \mathrm{mmol}, 2.0$ equiv) and (-)-sparteine (8.01 g , 34.2 mmol , 2.1 equiv), in pentane (30 mL) and cyclohexane (5 mL) at $-78{ }^{\circ} \mathrm{C}$, was added a solution of $n-\operatorname{BuLi}(1.4 M$ in hexanes, $25.5 \mathrm{~mL}, 35.5 \mathrm{mmol}, 2.1$ equiv), and after 10 min white crystals appeared. After 3 h of crystallization at $-78^{\circ} \mathrm{C}$, a pre-cooled $\left(-40^{\circ} \mathrm{C}\right)$ solution of titanium tetraisopropoxide $\left(\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}, 29.5 \mathrm{~mL}, 99.6 \mathrm{mmol}, 6.0\right.$ equiv) in pentane (30 mL) was quickly added via cannula to the reaction mixture of lithio carbamate which became limpid and turned orange. After 1 h at $-78^{\circ} \mathrm{C}$ a solution of aldehyde $37(6.32 \mathrm{~g}, 16.6 \mathrm{mmol}, 1.0$ equiv) in pentane (10 mL) was slowly added to the orange solution, and the mixture was stirred for 3 h at $-78^{\circ} \mathrm{C}$. The solution was then poured into a mixture of diethyl ether $(250 \mathrm{~mL})$-aqueous hydrochloric acid solution $(0.5$ $N, 250 \mathrm{~mL}$). After extraction with diethyl ether, the organic layer was washed with brine, dried over MgSO_{4}, filtered and the solvent removed under reduced pressure. The crude residue was purified by chromatography on silica gel (cyclohexane/ethyl acetate 90:10 to $80: 20$) to give 7.1 g (77% yield) of the title compound 38 as a single diastereomer.

Crotylation reaction with racemic crotyltitane - To a solution of the (E)-crotyl diisopropylcarbamate ($875 \mathrm{mg}, 4.4 \mathrm{mmol}, 2.0$ equiv) and TMEDA ($730 \mu \mathrm{~L}, 4.84 \mathrm{mmol}$, 2.2 equiv), in diethyl ether (6 mL) at $-78^{\circ} \mathrm{C}$, was added a solution of n - BuLi (1.6 M in hexanes, $2.85 \mathrm{~mL}, 4.84 \mathrm{mmol}, 2.2$ equiv). After 30 min stirring at $-78{ }^{\circ} \mathrm{C}$, titanium tetraisopropoxide ($\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}, 4.0 \mathrm{~mL}, 13.2 \mathrm{mmol}, 6.0$ equiv) was quickly added via cannula to the reaction mixture of lithio carbamate which became limpid and turned orange. After 30 min at $-78^{\circ} \mathrm{C}$ a solution of aldehyde $39(840 \mathrm{mg}, 2.2 \mathrm{mmol}, 1.0$ equiv) in diethyl ether (2 mL) was slowly added to the orange solution, and the mixture was stirred for 3 h at $-78^{\circ} \mathrm{C}$. The solution was then poured into a mixture of diethyl ether aqueous hydrochloric acid solution $(0.5 \mathrm{~N})$. After extraction with diethyl ether, the organic layer was washed with brine, dried over MgSO_{4}, filtered and the solvent removed under reduced pressure. The crude residue was purified by chromatography on silica gel (cyclohexane/ethyl acetate 90:10 to 80:20) to 632 mg of the title compound 38 and 299 mg of its 3,4-epi diastereomer (73 \% yield; selectivity 68:32). (38): $[\alpha]_{\mathrm{D}}^{20}=+$ $16.6\left(c=1.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.25(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.15$ (d, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.62(\mathrm{dd}, J=9.9,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~s}$, $2 \mathrm{H}), 4.15(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{dd}, J=5.9,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{dd}, J=8.9,6.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.34(\mathrm{ddd}, J=8.6,2.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{dd}, J=8.9,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.89-2.85(\mathrm{~m}$, $1 \mathrm{H}), 2.10-2.07(\mathrm{~m}, 1 \mathrm{H}), 1.82(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 1.79-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.23(\mathrm{~m}, 12 \mathrm{H}$, $4 \mathrm{CH}_{3}$), $0.96-0.88\left(\mathrm{~m}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 0.89\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 0.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.03(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}); ${ }^{13} \mathrm{C}$ NMR ($100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=158.9$ (C), 152.7 (C), $136.5(\mathrm{CH}), 130.6(\mathrm{C})$, $129.1(2 \mathrm{CH}), 113.6(2 \mathrm{CH}), 113.4(\mathrm{CH}), 75.1(\mathrm{CH}), 74.7(\mathrm{CH}), 73.5\left(\mathrm{CH}_{2}\right), 72.3\left(\mathrm{CH}_{2}\right)$, $55.1\left(\mathrm{CH}_{3}\right), 45.3(2 \mathrm{CH}), 37.9(\mathrm{CH}), 36.5(\mathrm{CH}), 34.4(\mathrm{CH}), 26.0\left(3 \mathrm{CH}_{3}\right), 21.4\left(4 \mathrm{CH}_{3}\right)$, $18.3(\mathrm{C}), 17.0\left(\mathrm{CH}_{3}\right), 11.2\left(\mathrm{CH}_{3}\right), 9.1\left(\mathrm{CH}_{3}\right),-3.8\left(2 \mathrm{CH}_{3}\right)$; MS (GC, CI, $\left.\mathrm{CH}_{4}\right): m / z: 379$ (MH+ - t - $\mathrm{Bu}-\mathrm{OC}(\mathrm{O}) \mathrm{N}^{i} \mathrm{Pr}_{2}$), 351, 323, 299, 273, 259, 243, 227, 215, 203, 187, 173, 161, 149, 137, 121, 99, 75; IR (Film) $v=3511,2969,2932,2856, ~ 2361, ~ 1709, ~ 1513, ~ 1441, ~$ 1302, 1211, 1134, 1043, $837 \mathrm{~cm}^{-1}$; elemental analysis calcd (\%) for $\mathrm{C}_{32} \mathrm{H}_{57} \mathrm{NO}_{6} \mathrm{Si}: \mathrm{C}$ 66.28, H $9.91, \mathrm{~N} 2.42$; found C 65.69, H 10.14, N 2.50 . (3,4-epi diastereomer of 38): $[\alpha]_{\mathrm{D}}^{20}=-7.8\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.27(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.11(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.95(\mathrm{dd}, J=9.9,6.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.43(\mathrm{~s}, 2 \mathrm{H}), 4.01(\mathrm{dd}, J=3.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~m}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.69-3.65(\mathrm{~m}$, $1 \mathrm{H}), 3.42(\mathrm{dd}, J=8.9,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.30-3.265(\mathrm{~m}, 2 \mathrm{H}), 2.88-2.77(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.04$ $(\mathrm{m}, 1 \mathrm{H}), 1.87(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-18, \mathrm{OH}), 1.27\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 12 \mathrm{H}, 4 \mathrm{CH}_{3}\right) 1.16(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{CH}_{3}$), $1.05\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.93\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 0.77(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}$, CH_{3}), $0.14\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=159.0$ (C), 152.9 (C), $130.5(\mathrm{CH}), 130.6$ (C), $129.0(2 \mathrm{CH}), 113.7(2 \mathrm{CH}), 110.8(\mathrm{CH}), 77.5$ $(2 \mathrm{CH}), 73.7\left(\mathrm{CH}_{2}\right), 72.4\left(\mathrm{CH}_{2}\right), 55.2\left(\mathrm{CH}_{3}\right), 46.0(2 \mathrm{CH}), 41.4(\mathrm{CH}), 33.8(\mathrm{CH}), 33.2$
$(\mathrm{CH}), 25.8\left(3 \mathrm{CH}_{3}\right)$, $21.4\left(4 \mathrm{CH}_{3}\right), 18.3\left(\mathrm{CH}_{3}\right), 18.0(\mathrm{C}), 13.6\left(\mathrm{CH}_{3}\right), 12.6\left(\mathrm{CH}_{3}\right),-4.1$ $\left(2 \mathrm{CH}_{3}\right)$. IR (Film) $v=2959,2762,2362,1709 \mathrm{~cm}^{-1}$.

4,6-acetonide derivative of 38: To a solution of compound $\mathbf{3 8}(100 \mathrm{mg}, 172 \mu \mathrm{~mol}, 1.0$ equiv) in THF (0.6 mL) at $20^{\circ} \mathrm{C}$ was added a solution of tetrabutylammonium fluoride (TBAF) (1.0 M in THF, $345 \mu \mathrm{~L}, 345 \mu \mathrm{~mol}, 2.0$ equiv). The reaction mixture was stirred for 4 h , quenched by addition of water and extracted with ethyl acetate. The organic layer was washed with brine, dried over MgSO_{4}, filtered and concentrated. The residue was purified by chromatography on silica gel (cyclohexane/ethyl acetate $80: 20$ to 70:30) to give 73 mg (91% yield) of the corresponding ($2 S, 3 R, 4 R, 5 S, 6 S$)-3,5-dihydroxy- 8 $\{((N, N$-diisopropyl)carbamoyloxy)-1-(4-methoxy-benzyloxy)- 2,4,6-trimethyl oct-7ene. $[\alpha]_{\mathrm{D}}^{20}=+0.8\left(c=0.75, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(270.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.18(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.53(\mathrm{dd}, J=9.9,6.3 \mathrm{~Hz}$, 1 H), 4.35 ($\mathrm{s}, 2 \mathrm{H}$), 4.13-3.97 (bs, 1H), 3.73 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 3.72-3.60 (bs, 1H), 3.66-3.63 $(\mathrm{m}, 1 \mathrm{H}), 3.35-3.33(\mathrm{~m}, 2 \mathrm{H}), 3.32-3.28(\mathrm{~m}, 1 \mathrm{H}), 2.88-2.73(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.85(\mathrm{~m}, 1 \mathrm{H}$ $\mathrm{OH}), 1.94-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.48(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OH}), 1.21-1.16\left(\mathrm{~m}, 12 \mathrm{H}, 4 \mathrm{CH}_{3}\right), 0.98(\mathrm{~d}, J=$ $\left.6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.88\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.85\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=158.9$ (C), 152.5 (C), 137.2 (CH), 130.2 (C), 129.1 (2CH), $113.7(2 \mathrm{CH}), 112.9(\mathrm{CH}), 78.5(\mathrm{CH}), 77.9(\mathrm{CH}), 73.9\left(\mathrm{CH}_{2}\right), 72.3\left(\mathrm{CH}_{2}\right), 55.2$ $\left(\mathrm{CH}_{3}\right), 45.7(2 \mathrm{CH}), 36.1(\mathrm{CH}), 35.6(\mathrm{CH}), 34.2(\mathrm{CH}), 21.0\left(4 \mathrm{CH}_{3}\right), 16.2\left(\mathrm{CH}_{3}\right), 13.1$ $\left(\mathrm{CH}_{3}\right), 5.8\left(\mathrm{CH}_{3}\right)$; IR (Film) $v=2969,2934,2873,1708,1692,1513,1441,1370,1305$, 1247, 1210, 1135, 1063, $971 \mathrm{~cm}^{-1}$

To a solution of the above diol ($65 \mathrm{mg}, 0.14 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $20^{\circ} \mathrm{C}$ were added 2,2 -dimethoxypropane ($210 \mu \mathrm{~L}, 1.67 \mathrm{mmol}, 12$ equiv) and pyridinium p-toluene sulfonate (PPTS, 10%). The reaction mixture was stirred for 2 h . Then the solution was cooled to $0{ }^{\circ} \mathrm{C}$ and triethylamine (1 mL) was added. The reaction mixture was concentrated under reduced pressure. The crude residue was purified by chromatography on silica gel (cyclohexane/ethyl acetate 70:30) to give 59 mg (84% yield) of the title product. ($\mathbf{4 , 6}$ acetonide of 38): $[\alpha]_{\mathrm{D}}^{20}=+29.6\left(c=2.9, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($270.0 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.18(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.79$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.49(\mathrm{dd}, J=8.9,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~s}, 2 \mathrm{H}), 4.16-4.02(\mathrm{bs}, 1 \mathrm{H})$, $3.75-3.58(\mathrm{bs}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{dd}, J=9.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{dd}, J=9.6,2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.24(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.78-2.63(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.42(\mathrm{~m}$, 1 H), 1.27-1.16 (m, $\left.12 \mathrm{H}, 4 \mathrm{CH}_{3}\right), 1.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.25\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.96(\mathrm{~d}, J=6.6$ $\mathrm{Hz}, 3 \mathrm{H}), 0.81(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.75(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(67.5 \mathrm{MHz}$ $\left.\mathrm{CDCl}_{3}\right): \delta=159.0(\mathrm{C}), 153.2(\mathrm{C}), 134.9(\mathrm{CH}), 130.5(\mathrm{C}), 129.0(2 \mathrm{CH}), 114.6(\mathrm{CH})$, $113.6(2 \mathrm{CH}), 98.8(\mathrm{C}), 77.5(\mathrm{CH}), 75.7(\mathrm{CH}), 72.7\left(\mathrm{CH}_{2}\right), 71.1\left(\mathrm{CH}_{2}\right), 55.1\left(\mathrm{CH}_{3}\right), 46.1$ $(2 \mathrm{CH}),, 34.9(\mathrm{CH}, \mathrm{C}-16), 31.8(\mathrm{CH}), 30.9(\mathrm{CH}), 29.8\left(\mathrm{CH}_{3}\right), 21.0\left(4 \mathrm{CH}_{3}\right), 19.4\left(\mathrm{CH}_{3}\right)$, $15.8\left(\mathrm{CH}_{3}\right), 14.8\left(\mathrm{CH}_{3}\right), 4.9\left(\mathrm{CH}_{3}\right)$; IR (Film) $v=2968,2936,1708,1513,1462,1439$, 1377, 1310, 1288, 1248, 1135, 1057, $1012 \mathrm{~cm}^{-1}$; MS (GC, CI, CH4): m/z: 534 (M + 29), $506(\mathrm{M}+1)$; elemental analysis calcd (\%) for $\mathrm{C}_{29} \mathrm{H}_{47} \mathrm{NO}_{6}$: C 68.88, H 9.37, N 2.77; found C 68.75, H 9.32, N, 2.85 .

2,4-acetonide of 38: To a cooled $\left(-70^{\circ} \mathrm{C}\right)$ solution of the carbamate $\mathbf{3 8}(100 \mathrm{mg}$, $172 \mu \mathrm{~mol}, 1.0$ equiv) in 10 mL of $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:1) containing $40 \mu \mathrm{~L}$ of pyridine and a few amount of Sudan III, was bubbled a stream of ozone until the pink solution became colourless. Sodium borohydride ($39 \mathrm{mg}, 1.03 \mathrm{mmol}, 6.0$ equiv) was added at $78^{\circ} \mathrm{C}$, and the mixture was allowed to warm to $20^{\circ} \mathrm{C}$ and stirred for 6 h . The reaction mixture was then cooled, treated with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with diethyl ether. The organic layers were washed with brine, dried over MgSO_{4}, filtered and concentrated. The residue was purified by flash chromatography on silica gel (cyclohexane/ethyl acetate 70:30) to give 60 mg (79% yield) of ($2 S, 3 R, 4 R, 5 S, 6 S$)-3-(tert-butyldimethylsilyloxy)-5,7-dihydroxy-1-(4-methoxy-benzyloxy)-2,4,6-trimethyl heptane. $[\alpha]_{\mathrm{D}}^{20}=-0.73\left(c=1.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(270.0$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.22-7.18(\mathrm{~m}, 2 \mathrm{H}), 6.85-6.79(\mathrm{~m}, 2 \mathrm{H}), 4.36(\mathrm{~s}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H})$, $3.86-3.67(\mathrm{~m}, 3 \mathrm{H}), 3.80-3.70(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OH}), 3.60-3.50(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OH}), 3.50(\mathrm{t}, J=10.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.40-3.31(\mathrm{~m}, 1 \mathrm{H}), 3.22-3.16(\mathrm{~m}, 1 \mathrm{H}), 2.06-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.65(\mathrm{~m}, 2 \mathrm{H}), 0.83$ $\left(\mathrm{s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 0.87-0.70\left(\mathrm{~m}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 0.03\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $(67.5 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=159.0(\mathrm{C}), 130.7(\mathrm{C}), 129.1(2 \mathrm{CH}), 113.6(2 \mathrm{CH}), 77.6(\mathrm{CH}), 73.9\left(\mathrm{CH}_{2}\right)$, $73.6(\mathrm{CH}), 72.4\left(\mathrm{CH}_{2}\right), 68.4\left(\mathrm{CH}_{2}\right), 55.2\left(\mathrm{CH}_{3}\right), 38.5(\mathrm{CH}), 35.8(\mathrm{CH}), 32.8(\mathrm{CH}), 26.1$ $\left(3 \mathrm{CH}_{3}\right), 18.4(\mathrm{C}), 12.1\left(\mathrm{CH}_{3}\right), 10.5\left(\mathrm{CH}_{3}\right), 9.6\left(\mathrm{CH}_{3}\right),-3.6\left(2 \mathrm{CH}_{3}\right)$; IR (Film) $v=2958$, 2933, 2856, 1653, 1618, 1559, 1514, 1423, 1344, 1270, 1103, 1037, $837 \mathrm{~cm}^{-1}$

To a solution of the preceding diol ($55 \mathrm{mg}, 125 \mu \mathrm{~mol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$, at $20^{\circ} \mathrm{C}$ were added 2,2-dimethoxypropane ($180 \mu \mathrm{~L}, 1.50 \mathrm{mmol}, 12$ equiv) and PPTS (10 $\mathrm{mol} \%$). The reaction mixture was stirred for 2 h . Then the solution was cooled to $0^{\circ} \mathrm{C}$ and triethylamine (1 mL) was added. The reaction mixture was concentrated under reduced pressure. The crude residue was purified by chromatography on silica gel (cyclohexane/ethyl acetate $90: 10$ to $60: 40$) to give 46 mg (78% yield) of the title product and 22 mg of starting diol.(2,4-acetonide of 38): $[\alpha]_{\mathrm{D}}^{20}=+12.2(c=1.2$ CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($270.0 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.21(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}$), $4.36(\mathrm{~s}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{dd}, J=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.63-3.49(\mathrm{~m}, 2 \mathrm{H})$, $3.43(\mathrm{t}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.36-3.30(\mathrm{~m}, 1 \mathrm{H}), 3.22-3.16(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.70(\mathrm{~m}, 3 \mathrm{H})$ $1.38-1.19\left(\mathrm{~m}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 0.87\left(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.84\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 0.80(\mathrm{~d}, J=$ $\left.6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.63\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.00\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $(67.5$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=159.5(\mathrm{C}), 131.5(\mathrm{C}), 129.5(2 \mathrm{CH}), 114.5(2 \mathrm{CH}), 98.5(\mathrm{C}), 75.2$ $(\mathrm{CH}), 74.2\left(\mathrm{CH}_{2}\right), 73.6(\mathrm{CH}) 72.8\left(\mathrm{CH}_{2}\right), 67.0\left(\mathrm{CH}_{2}\right), 55.8\left(\mathrm{CH}_{3}\right), 38.2(\mathrm{CH}), 36.8(\mathrm{CH})$, $31.3(\mathrm{CH}), 29.3\left(\mathrm{CH}_{3}\right), 26.7\left(3 \mathrm{CH}_{3}\right), 19.4\left(\mathrm{CH}_{3}\right), 19.0(\mathrm{C}), 12.8\left(\mathrm{CH}_{3}\right), 11.0\left(\mathrm{CH}_{3}\right), 10.5$
$\left(\mathrm{CH}_{3}\right),-3.6\left(2 \mathrm{CH}_{3}\right)$; IR (Film) $v=3256,1684,1653,1550,1501,1445,1359,1248$, 1101, 1032, $846 \mathrm{~cm}^{-1}$; MS (GC, CI, CH_{4}): $m / z: 481\left(\mathrm{MH}^{+}\right)$; elemental analysis calcd (\%) for $\mathrm{C}_{27} \mathrm{H}_{48} \mathrm{O}_{5} \mathrm{Si}$: C $67.45, \mathrm{H} 10.06$; found: C 67.32 , H 10.24.
(1Z,3S,4S,5R,6S,7S)-6-(tert-Butyldimethylsilyloxy)-1-((N,N-
diisopropyl)carbamoyloxy)-8-(4-methoxybenzyloxy)-4-(triethylsilyloxy)-3,5,7trimethyl oct-1-ene (39): To a solution of $38(1.09 \mathrm{~g}, 1.88 \mathrm{mmol}, 1.0$ equiv) in dried $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ were added 2,6-lutidine ($0.9 \mathrm{~mL}, 7.50 \mathrm{mmol}, 4.0$ equiv) and TESOTf ($0.9 \mathrm{~mL}, 3.76 \mathrm{mmol}, 2.5$ equiv). After stirring for 2 h at $20^{\circ} \mathrm{C}$, the mixture was partitioned between diethyl ether and saturated aqueous solution of ammonium chloride and extracted with diethyl ether. The organic layer was washed with brine, dried over magnesium sulfate, filtered and the solvent removed under reduced pressure. The residue was purified by chromatography on silica gel (cyclohexane/ethyl acetate $95: 5$ to $90: 10)$ to give 985 mg (76% yield) of the title compound 39 as an oil. (39): $[\alpha]_{\mathrm{D}}^{20}=+$ $14.4\left(c=0.8, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.22(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.90$ (d, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}$), $6.84(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.01(\mathrm{dd}, J=9.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=$ $11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.11-3.95(\mathrm{bs}, 1 \mathrm{H}$,), 3.82-3.69 (bs, 1 H$), 3.78$ $(\mathrm{s}, 3 \mathrm{H}), 3.67(\mathrm{dd}, J=6.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{dd}, J=6.3,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{dd}, J=8.6$, $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{t}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.78-2.72(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.67$ $(\mathrm{m}, 1 \mathrm{H}), 1.28-1.14\left(\mathrm{~m}, 12 \mathrm{H}, 4 \mathrm{CH}_{3}\right), 1.01\left(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.97-0.87(\mathrm{~m}, 12 \mathrm{H}$, $\left.4 \mathrm{CH}_{3}\right), 0.85\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 0.80\left(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.60(\mathrm{q}, J=7.6 \mathrm{~Hz}, 6 \mathrm{H}$, $3 \mathrm{CH}_{2}$), $0.02\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=159.0$ (C), $153.0(\mathrm{C}), 133.7(\mathrm{CH}), 130.7(\mathrm{C}), 129.2(2 \mathrm{CH}), 113.6(2 \mathrm{CH}), 112.7(\mathrm{CH}), 77.0$ $(\mathrm{CH}), 73.9(\mathrm{CH}), 73.6\left(\mathrm{CH}_{2}\right), 72.6\left(\mathrm{CH}_{2}\right), 55.2\left(\mathrm{CH}_{3}\right), 45.4(2 \mathrm{CH}), 42.9(\mathrm{CH}), 38.7$ $(\mathrm{CH}), 32.4(\mathrm{CH}), 26.1\left(3 \mathrm{CH}_{3}\right), 21.5\left(4 \mathrm{CH}_{3}\right), 20.3\left(\mathrm{CH}_{3}\right), 18.4(\mathrm{C}), 12.2\left(\mathrm{CH}_{3}\right), 11.1$ $\left(\mathrm{CH}_{3}\right), 7.0\left(3 \mathrm{CH}_{3}\right), 5.5\left(3 \mathrm{CH}_{2}\right), 3.2\left(2 \mathrm{CH}_{3}\right)$; IR (Film) $v=2966,2937,2877,1710,1514$, $1460,1439,1306,1249,1060,1042,1005,837 \mathrm{~cm}^{-1}$; elemental analysis calcd (\%) for $\mathrm{C}_{38} \mathrm{H}_{71} \mathrm{NO}_{6} \mathrm{Si}_{2}$: C, $65.75, \mathrm{H} 10.31, \mathrm{~N} 2.02$; found: C $65.72, \mathrm{H}, 10.27, \mathrm{~N} 1.97$.
(3Z,5S,6S,7R,8S,9S)-8-(tert-Butyldimethylsilyloxy)-10-(4-methoxybenzyloxy)-6 (triethylsilyloxy)-5,7,9-trimethyl deca-1,3-diene (40)
(3Z,5S,6S,7R,8S,9S)-6-(tert-Butyldimethylsilyloxy)-8-(4-methoxybenzyloxy)-6-
(triethylsilyloxy)-3,5,7-trimethyl-1-decene (41): Reaction with vinylmagnesium bromide - To a stirred suspension of $\mathrm{Ni}(\mathrm{acac})_{2}(26 \mathrm{mg}, 0.10 \mathrm{mmol}, 0.1$ equiv $)$ in diethyl ether (10 mL) at $0{ }^{\circ} \mathrm{C}$ were added a solution of the vinyl carbamate $39(700 \mathrm{mg}, 1.01$ $\mathrm{mmol}, 1.0$ equiv) in diethyl ether ($10 \mathrm{~mL}, 3 \mathrm{~mL}$ rinse) and vinylmagnesium bromide (sol. $1 M$ in THF, $15.1 \mathrm{~mL}, 15.1 \mathrm{mmol}$, 15 equiv). The resulting mixture was stirred for 24 h at $0{ }^{\circ} \mathrm{C}$. Then a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added and the solution was extracted with diethyl ether. The organic layer was washed with brine, dried over MgSO_{4}, filtered and the solvent removed under reduced pressure. The residue was purified by chromatography on silica gel (cyclohexane/ethyl acetate 100:0 to 90:10) to give 460 mg (80% yield) of diene $\mathbf{4 0}$ and compound $\mathbf{4 1}$. Reaction with vinyllithium To a solution of tetravinyltin ($1.7 \mathrm{~g}, 7.48 \mathrm{mmol}, 2.6$ equiv) in diethyl ether (12 mL) at 0 ${ }^{\circ} \mathrm{C}$ was added $\mathrm{MeLi}(1.6 \mathrm{M}$ in diethyl ether, $18 \mathrm{~mL}, 28.8 \mathrm{mmol}, 10$ equiv). After 30 min stirring, the mixture was added via cannula to a stirred solution of the carbamate 39 (2.0 $\mathrm{g}, 2.88 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{Ni}(\mathrm{acac})_{2}(74 \mathrm{mg}, 0.288 \mathrm{mmol}, 0.1$ equiv) in diethyl ether $(4 \mathrm{~mL})$ at $-5^{\circ} \mathrm{C} / 0^{\circ} \mathrm{C}$. After 6 h stirring the same amount of $\mathrm{Ni}(\mathrm{acac})_{2}$ was added and the resulting mixture was stirred for another 12 h at $0^{\circ} \mathrm{C}$. Then a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added and the solution was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with brine, dried over MgSO_{4}, filtered and the solvent removed under reduced pressure. The residue was purified by chromatography on silica gel (cyclohexane/ethyl acetate $98: 2$ to $80: 20)$ to give $1.33 \mathrm{~g}(80 \%$ yield $)$ of $\mathbf{4 0} .(\mathbf{4 0}):[\alpha]_{\mathrm{D}}^{20}=+8.9(c=2.1$, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400.0 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.24(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 6.57(\mathrm{dt}, J=16.9,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{t}, J=10.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.14(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.35(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{dd}, J=5.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{t}, J=4.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.38(\mathrm{dd}, J=16.5,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{dd}, J=16.5,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{~m}, 1 \mathrm{H})$, $1.99-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.03-0.85\left(\mathrm{~m}, 27 \mathrm{H}, 9 \mathrm{CH}_{3}\right), 0.59(\mathrm{q}, J=7.8 \mathrm{~Hz}$, $6 \mathrm{H}, 3 \mathrm{CH}_{2}$), $0.04\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=159.0(\mathrm{C}), 135.0$ $(\mathrm{CH}), 132.5(\mathrm{CH}), 130.8(\mathrm{C}), 129.2(2 \mathrm{CH}), 129.0(\mathrm{CH}), 117.1\left(\mathrm{CH}_{2}\right), 113.6(2 \mathrm{CH}), 77.5$ $(\mathrm{CH}), 73.2\left(\mathrm{CH}_{2}\right), 73.1(\mathrm{CH}), 72.5\left(\mathrm{CH}_{2}\right), 55.2\left(\mathrm{CH}_{3}\right), 40.2(\mathrm{CH}), 38.0(\mathrm{CH}), 36.5(\mathrm{CH})$, $26.2\left(3 \mathrm{CH}_{3}\right), 18.7(\mathrm{C}), 18.5\left(\mathrm{CH}_{3}\right), 11.9\left(\mathrm{CH}_{3}\right), 11.5\left(\mathrm{CH}_{3}\right), 7.2\left(3 \mathrm{CH}_{3}\right), 5.6\left(3 \mathrm{CH}_{2}\right),-3.3$ $\left(2 \mathrm{CH}_{3}\right)$; IR (Film) $v=2957,2857,1616,1490 \mathrm{~cm}^{-1}$; elemental analysis calcd (\%) for $\mathrm{C}_{33} \mathrm{H}_{60} \mathrm{O}_{4} \mathrm{Si}_{2}$: C 68.69 , H, 10.48; found: C 68.48 , H 10.67. (41): ${ }^{1} \mathrm{H}$ NMR (400.0 MHz , CDCl_{3}): $\delta=7.24(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.80$ (ddd, $J=15.1,11.9$, $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=11.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.35(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{dd}, 1 \mathrm{H}, J=5.9,3.2 \mathrm{~Hz}), 348(\mathrm{dd}, J=$ $5.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{dd}, J=8.7,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{dd}, J=8.7,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.34$ (dqd, $J=8.2,6.9,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.93$ (dqdd, $J=7.3,6.9,6.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 1.69 (qdd, $J=$ $6.9,5.9,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.99\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.93\left(\mathrm{t}, J=7.8 \mathrm{~Hz}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 0.88$ $\left(\mathrm{s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 0.86\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.85\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.59(\mathrm{q}, J=$ $\left.7.8 \mathrm{~Hz}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 0.03\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=159.0(\mathrm{C})$, $141.2(\mathrm{C}), 131.2(\mathrm{CH}), 129.3(2 \mathrm{CH}), 114.6\left(\mathrm{CH}_{2}\right), 113.6(2 \mathrm{CH}), 77.0(\mathrm{CH}), 73.3\left(\mathrm{CH}_{2}\right)$, $73.2(\mathrm{CH}), 72.6\left(\mathrm{CH}_{2}\right), 55.3\left(\mathrm{CH}_{3}\right), 39.6(\mathrm{CH}), 37.9(\mathrm{CH}), 33.5(\mathrm{CH}), 26.2\left(3 \mathrm{CH}_{3}\right), 18.5$ (C), $18.5\left(\mathrm{CH}_{3}\right), 11.7\left(\mathrm{CH}_{3}\right), 11.5\left(\mathrm{CH}_{3}\right), 7.2\left(3 \mathrm{CH}_{3}\right), 5.6\left(3 \mathrm{CH}_{2}\right),-3.4\left(2 \mathrm{CH}_{3}\right)$.
(3Z,5S,6S,7R,8S,9S)-8-(tert-Butyldimethylsilyloxy)-10-hydroxy-6-(triethylsilyloxy)-5,7,9-trimethyl deca-1,3-diene (42): To a solution of compound 40 ($249 \mathrm{mg}, 0.43$
mmol, 1.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL}) / \mathrm{H}_{2} \mathrm{O}(300 \mu \mathrm{~L})$ at $0^{\circ} \mathrm{C}$ was added 2, 3-dichloro-5,6 dicyano-1,4-benzoquinone ($\mathrm{DDQ}, 117 \mathrm{mg}, 0.52 \mathrm{mmol}, 1.1$ equiv). The mixture was stirred for 10 min at $0^{\circ} \mathrm{C}$, warmed to $20^{\circ} \mathrm{C}$ and stirred for an additional 30 min . The mixture was quenched with a saturated aqueous NaHCO_{3} solution, diluted with $\mathrm{Et}_{2} \mathrm{O}$, washed with water and brine. The combined organic layers were dried over MgSO_{4} filtered and the solvent was removed under reduced pressure. The crude residue was purified by chromatography on silica gel (cyclohexane/ethyl acetate $95: 5$ to 80:20) to give the title compound 42 ($142 \mathrm{mg}, 72 \%$ yield). (42): $[\alpha]_{\mathrm{D}}^{20}=+11.4(c=1.2$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400.0 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.58(\mathrm{ddd}, J=16.9,11.0,10.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.02(\mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{dd}, J=11.0,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H})$, $5.13(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{t}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.60-3.56(\mathrm{~m}, 1 \mathrm{H}), 3.51(\mathrm{dd}, J=7.3$ $3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.45-3.40(\mathrm{~m}, 1 \mathrm{H}), 2.88(\mathrm{dqd}, J=10.1,7.3,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{~m}, 1 \mathrm{H})$, $1.75(\mathrm{dd}, J=5.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 1.64(\mathrm{dqd}, J=7.3,6.9,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.04(\mathrm{~d}, J=7.3$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.98\left(\mathrm{t}, J=7.8 \mathrm{~Hz}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 0.94\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.85(\mathrm{~s}$ $\left.9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 0.83\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.65\left(\mathrm{q}, J=7.8 \mathrm{~Hz}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 0.11(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), $0.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=134.6(\mathrm{CH}), 132.5(\mathrm{CH})$, $129.2(\mathrm{CH}), 117.7\left(\mathrm{CH}_{2}\right), 78.0(\mathrm{CH}), 73.7(\mathrm{CH}), 66.2\left(\mathrm{CH}_{2}\right), 40.8(\mathrm{CH}), 40.2(\mathrm{CH}), 35.9$ $(\mathrm{CH}), 26.2\left(3 \mathrm{CH}_{3}\right), 19.2\left(\mathrm{CH}_{3}\right), 18.5(\mathrm{C}), 12.5\left(\mathrm{CH}_{3}\right), 11.9\left(\mathrm{CH}_{3}\right), 7.4\left(3 \mathrm{CH}_{3}\right), 5.8$ $\left(3 \mathrm{CH}_{2}\right),-3.5\left(\mathrm{CH}_{3}\right),-3.7\left(\mathrm{CH}_{3}\right)$; IR (Film) $v=3405,2956,2930,2878,2858,1461$, 1252, 1096, 1076, 1006, 837, 772, $737 \mathrm{~cm}^{-1}$; elemental analysis calcd (\%) for $\mathrm{C}_{25} \mathrm{H}_{52} \mathrm{O}_{3} \mathrm{Si}_{2}$: C 65.73, H 11.47; found: C 65.56, H 11.62.

(3Z,5S,6S,7R,8S,9S)-8-(tert-Butyldimethylsilyloxy)-10-iodo-6-(triethylsilyloxy)

5,7,9-trimethyl deca-1,3-diene (43): To a solution of compound 42 ($200 \mathrm{mg}, 0.44$ mmol, 1.0 equiv), triphenylphosphine ($\mathrm{PPh}_{3}, 218 \mathrm{mg}, 0.83 \mathrm{mmol}, 1.9$ equiv) and imidazole ($57 \mathrm{mg}, 0.83 \mathrm{mmol}, 1.9$ equiv) in a benzene/ $\mathrm{Et}_{2} \mathrm{O}$ mixture ($1.5 \mathrm{~mL}: 3 \mathrm{~mL}$) at 0 ${ }^{\circ} \mathrm{C}$ was slowly added a solution of iodine ($167 \mathrm{mg}, 0.66 \mathrm{mmol}, 1.5$ equiv) in $\mathrm{Et}_{2} \mathrm{O}$ (2 mL). After stirring for 2 h at $20^{\circ} \mathrm{C}$, a $1 \mathrm{M} \mathrm{Na} \mathrm{Na}_{2} \mathrm{O}_{3}$ solution was added and the reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layers were washed with, brine, dried over MgSO_{4}, filtered and the solvent was removed under reduced pressure. The residue was purified by chromatography on silica gel (cyclohexane/ $\mathrm{Et}_{2} \mathrm{O} 100: 0$ to 80:20) to give the title compound $43(197 \mathrm{mg}, 79 \%$ yield $) .(43):[\alpha]_{\mathrm{D}}^{20}=+11.3(c=0.68$ CHCl_{3});) ${ }^{1} \mathrm{H}$ NMR ($400.0 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.58$ (ddd, $J=16.9,11.0,10.1 \mathrm{~Hz}, 1 \mathrm{H}$), $6.02(\mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{dd}, J=11.0,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H})$ $5.12(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{t}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{dd}, J=6.4,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.32$ $(\mathrm{dd}, J=9.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{dd}, J=9.6,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{dqd}, J=10.1,6.9,4.6 \mathrm{~Hz}$, $1 \mathrm{H}), 1.97(\mathrm{dqdm}, J=9.2,6.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.65(\mathrm{qdm}, J=6.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.01(\mathrm{~d}, J=$ $\left.6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.98\left(\mathrm{t}, J=7.8 \mathrm{~Hz}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 0.98\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.91(\mathrm{~s}$, $\left.9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 0.90\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.64\left(\mathrm{q}, J=7.8 \mathrm{~Hz}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 0.10(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 0.09\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100.5 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=134.1(\mathrm{CH}), 132.5(\mathrm{CH})$, $129.0(\mathrm{CH}), 117.4\left(\mathrm{CH}_{2}\right), 77.1(\mathrm{CH}), 75.0(\mathrm{CH}), 41.9(\mathrm{CH}), 40.4(\mathrm{CH}), 35.8(\mathrm{CH}), 25.9$ $\left(3 \mathrm{CH}_{3}\right), 18.8\left(\mathrm{CH}_{3}\right), 18.4(\mathrm{C}), 15.0\left(\mathrm{CH}_{3}\right), 13.4\left(\mathrm{CH}_{2}\right), 11.9\left(\mathrm{CH}_{3}\right), 7.0\left(3 \mathrm{CH}_{3}\right), 5.5$ $\left(3 \mathrm{CH}_{2}\right),-3.8\left(2 \mathrm{CH}_{3}\right)$; IR (Film) $v=2950,2930,2877,2857,1461,1097,1028,1005$, $836 \mathrm{~cm}^{-1}$; elemental analysis calcd (\%) for $\mathrm{C}_{25} \mathrm{H}_{51} \mathrm{IO}_{2} \mathrm{Si}_{2}$: C 52.98 , H 9.07 ; found: C 53.17, H 9.25.
(S)-3-Benzyloxy-2-methyl-propanal (44): Benzyl alcohol (20.0 g, $184.9 \mathrm{mmol}, 1.0$ equiv) was added to a suspension of $\mathrm{NaH}(60 \%$ in mineral oil, $0.740 \mathrm{~g}, 18.5 \mathrm{mmol}, 0.1$ equiv) in anhydrous ether (45 mL) over 30 min at $20^{\circ} \mathrm{C}$ The mixture was stirred for 1 h and cooled to $0{ }^{\circ} \mathrm{C}$. Trichloroacetonitrile (distilled) ($20.5 \mathrm{~mL}, 204.5 \mathrm{mmol}, 1.09$ equiv.) was then introduced over 10 min . After 1.5 h the solution was concentrated with the water-bath temperature maintained below $40^{\circ} \mathrm{C}$. The residue was treated with a mixture of pentane $(150 \mathrm{~mL})$ and methanol $(0.6 \mathrm{~mL})$, stirred at $20^{\circ} \mathrm{C}$ for 30 min , and filtered through a pad of celite. Concentration gave the trichloroimidate (44.0 g) as yellow oil, which was used without further purification.

A solution of methyl (S)-(+)-3-hydroxy-2-methylpropionate $\mathbf{1 4}(10 \mathrm{~mL}, 90.2 \mathrm{mmol}, 1.0$ equiv) in an anhydrous mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ cyclohexane $(1: 2,120 \mathrm{~mL})$ was cooled to 0 ${ }^{\circ} \mathrm{C}$ and treated with crude trichloroimidate $(27.3 \mathrm{~g}, 108.1 \mathrm{mmol}, 1.2$ equiv) and triflic acid ($800 \mu \mathrm{~L}, 9.0 \mathrm{mmol}, 0.1$ equiv) over 10 min . After 3 h , the mixture was warmed to $20{ }^{\circ} \mathrm{C}$ and stirred for 40 h . The solution was filtered through a pad of celite and concentrated. The residue was purified by chromatography on silica gel (cyclohexane/ethyl acetate $90: 10$) to give 15.8 g (84% yield) of (S)-3-benzyloxy-2-methyl-propionic acid methyl ester as a yellow oil. RN: 74924-27-9; ${ }^{1} \mathrm{H}$ NMR (400.0 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.37-7.27(\mathrm{~m}, 5 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{dd}, J=9.3,1.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.49(\mathrm{dd}, J=9.3,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{qdd}, J=7.1,4.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.18(\mathrm{~d}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100.5 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=175.3(\mathrm{C}), 138.1(\mathrm{C}), 128.3(2 \mathrm{CH})$, $127.6(2 \mathrm{CH}), 127.5(\mathrm{CH}), 73.0\left(\mathrm{CH}_{2}\right), 71.9\left(\mathrm{CH}_{2}\right), 51.7\left(\mathrm{CH}_{3}\right), 40.1(\mathrm{CH}), 13.9\left(\mathrm{CH}_{3}\right)$; MS (GC, EI, CH4): $m / z: 208,176,148,121,107,102,91,85,79,65,51$.

A solution of the above compound ($15.8 \mathrm{~g}, 75.8 \mathrm{mmol}, 1.0$ equiv) in anhydrous THF $(50 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$ and slowly added to a solution of $\mathrm{LiAlH}_{4}(1 \mathrm{M}$ in THF, 68 $\mathrm{mL}, 68.2 \mathrm{mmol}, 0.9$ equiv) over 10 min , warmed gradually to $20^{\circ} \mathrm{C}$, and stirred for 3 h . The reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and quenched by addition of water $(11 \mathrm{~mL}), 15$ \% $\mathrm{NaOH}(9 \mathrm{~mL})$, and water $(11 \mathrm{~mL})$. The resultant mixture was treated with MgSO_{4}, filtered, and the solvent removed under reduced pressure. The residue was then purified by chromatography on silica gel (cyclohexane/ethyl acetate 90:10 to 80:20) to give 12.9 g (94 \% yield) of (S)-3-benzyloxy-2-methylpropan-1-ol as an orange oil. RN: 63930-49 $4 ;{ }^{1} \mathrm{H}$ NMR ($400.0 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.38-7.27(\mathrm{~m}, 5 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 3.64-3.53(\mathrm{~m}$,
$3 \mathrm{H}), 3.42$ (dd, $J=9.1,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{dd}, J=6.7,4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 2.13-2.00(\mathrm{~m}$ $1 \mathrm{H}), 0.88\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=137.9(\mathrm{C})$, $128.4(\mathrm{CH}), 127.7(2 \mathrm{CH}), 127.6(2 \mathrm{CH}), 75.4\left(\mathrm{CH}_{2}\right), 73.3\left(\mathrm{CH}_{2}\right), 67.8\left(\mathrm{CH}_{2}\right), 35.5(\mathrm{CH})$, $13.4\left(\mathrm{CH}_{3}\right)$; MS (GC, EI, $\left.\mathrm{CH}_{4}\right): m / z: 180,161,120,107,91,79,65,51$.

To a solution of IBX ($36.2 \mathrm{~g}, 129.4 \mathrm{mmol}, 2.2$ equiv) in DMSO $\left(400 \mathrm{~mL}\right.$) at $20^{\circ} \mathrm{C}$ was added the preceding alcohol $(10.6 \mathrm{~g}, 58.8 \mathrm{mmol}, 1.0$ equiv) in DMSO $(50 \mathrm{~mL})$. The mixture was stirred for 3 h , and then cooled to $0{ }^{\circ} \mathrm{C} . \mathrm{H}_{2} \mathrm{O}$ was added and the solution was filtered through a pad of celite and then diluted with diethyl ether. The organic layer was washed with water (5 X), brine (2 X), dried over MgSO_{4} and the solvent removed under reduced pressure. The crude (S)-3-benzyloxy-2-methyl-propanal 44 was used without further purification ($10.1 \mathrm{~g}, 96 \%$ yield). (44): RN: 79027-28-4; ${ }^{1} \mathrm{H}$ NMR (400.0 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=9.65(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.19(\mathrm{~m}, 5 \mathrm{H}), 4.45(\mathrm{~s}, 2 \mathrm{H})$, 3.62-3.55 (m, 2H), 2.63-2.55 (m, 1H), $1.05\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100.5 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=203.9(\mathrm{C}), 137.9(\mathrm{C}), 128.4(2 \mathrm{CH}), 127.8(2 \mathrm{CH}), 127.7(\mathrm{CH}), 73.5$ $\left(\mathrm{CH}_{2}\right), 70.0\left(\mathrm{CH}_{2}\right), 46.7(\mathrm{CH}), 10.6\left(\mathrm{CH}_{3}\right)$; MS (GC, EI, $\left.\mathrm{CH}_{4}\right): m / z: 209,108,91,79,63$, 51.
(2S,3S,4S)-1-Benzyloxy-2,4-dimethyl-hex-5-en-3-ol (45): To a solution of freshly sublimed potassium tert-butoxide $(9.77 \mathrm{~g}, 87.1 \mathrm{mmol}, 1.55$ equiv) in THF $(130 \mathrm{~mL})$ at $78{ }^{\circ} \mathrm{C}$ was slowly added to a solution of trans-2-butene (26 mL) in THF (25 mL); n-BuLi (1.6 M in hexane, $55 \mathrm{~mL}, 87.8 \mathrm{mmol}, 1.55$ equiv) was then added and the yellow mixture was stirred at $-78^{\circ} \mathrm{C}$ for 5 min and at $-45^{\circ} \mathrm{C}$ for 20 min . The resulting orange solution was cooled to $-78{ }^{\circ} \mathrm{C}$, and a solution of $(-)-B-$ diisopinocamphenylmethoxyborane ($25.1 \mathrm{~g}, 79.3 \mathrm{mmol}, 1.4$ equiv) in 46 mL of diethyl ether was added over ca. 15 min . The resulting white solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 40 min . Boron trifluoride etherate $(12.6 \mathrm{~mL}, 102.0 \mathrm{mmol}, 1.8$ equiv) was added followed after 5 min by addition of a solution of aldehyde $44(10.1 \mathrm{~g}, 56.7 \mathrm{mmol}, 1.0$ equiv) in THF (25 mL). The resulting solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 5 h . The reaction was then quenched by addition of aqueous $\mathrm{NaOH}(2.5 \mathrm{~N}, 66 \mathrm{~mL})$ followed by aqueous $\mathrm{H}_{2} \mathrm{O}_{2}(30 \%, 20 \mathrm{~mL})$. The acetone-dry ice bath was then removed, and the mixture was heated at $45{ }^{\circ} \mathrm{C}$ for 45 min . The cloudy solution was cooled to $20{ }^{\circ} \mathrm{C}$, diluted with diethyl ether $(45 \mathrm{~mL})$, washed with brine, dried over MgSO_{4}, filtered and the solvent was removed under reduced pressure. The crude residue was purified by chromatography (cyclohexane/ethyl acetate $100: 0$ to $90: 10$) to give 11.0 g (83% yield) of 45 and 1.27 g (9% yield) of its 3,4-bis epi diastereomer (92% overall yield, ee 100 \%, de 90:10). (45): $[\alpha]_{\mathrm{D}}^{20}=+12.1\left(c=5.5, \mathrm{CHCl}_{3}\right) ; \mathrm{RN}: 106357-28-2 ;{ }^{1} \mathrm{H}$ NMR (400.0 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.27-7.22(\mathrm{~m}, 5 \mathrm{H}), 5.72(\mathrm{ddd}, J=18.8,10.6,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.07-5.01$ $(\mathrm{m}, 2 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H}), 3.50(\mathrm{dd}, J=8.9,5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.55-3.42(\mathrm{~m}, 2 \mathrm{H}), 2.48-2.40(\mathrm{~m}$, $1 \mathrm{H}+\mathrm{OH}), 1.92-1.87(\mathrm{~m}, 1 \mathrm{H}), 0.90\left(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.88(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}$, CH_{3}); ${ }^{13} \mathrm{C}$ NMR ($100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=141.8(\mathrm{CH}), 138.2(\mathrm{C}), 128.3(2 \mathrm{CH}), 127.5$ $(3 \mathrm{CH}), 115.6\left(\mathrm{CH}_{2}\right), 75.5(\mathrm{CH}), 74.7\left(\mathrm{CH}_{2}\right), 73.4\left(\mathrm{CH}_{2}\right), 41.9(\mathrm{CH}), 34.9(\mathrm{CH}), 15.1$ $\left(\mathrm{CH}_{3}\right), 9.8\left(\mathrm{CH}_{3}\right)$; MS (GC, EI): $m / z: 234,215,187,107,91,79$; IR (Film) $v=2868$, 1074, 1110, $997 \mathrm{~cm}^{-1}$. (3,4-bis epi isomer of 45): RN: 106357-29-3; ${ }^{1} \mathrm{H}$ NMR (400.0 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.31-7.18(\mathrm{~m}, 5 \mathrm{H}), 5.83$ (ddd, $\left.J=18.1,9.6,8.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.97$ (m, $2 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H}), 3.54-3.44(\mathrm{~m}, 2 \mathrm{H}), 3.32-3.30(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.21(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.81$ $(\mathrm{m}, 1 \mathrm{H}), 1.54(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 1.03\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.82(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}$, CH_{3}); ${ }^{13} \mathrm{C}$ NMR ($100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=139.7(\mathrm{CH}), 137.7(\mathrm{C}), 128.4(2 \mathrm{CH}), 127.7$ $(2 \mathrm{CH}), 127.6(\mathrm{C}), 115.2\left(\mathrm{CH}_{2}\right), 79.7(\mathrm{CH}), 75.4\left(\mathrm{CH}_{2}\right), 73.4\left(\mathrm{CH}_{2}\right), 41.0(\mathrm{CH}), 36.2$ $(\mathrm{CH}), 17.7\left(\mathrm{CH}_{3}\right), 13.8\left(\mathrm{CH}_{3}\right)$

(2S,3R,4R,5S)-1-Benzyloxy-2,4-dimethyl-5,6-epoxy-hexan-3-ol (46)

(2S,3R,4R,5R)-1-Benzyloxy-2,4-dimethyl-5,6-epoxy-hexan-3-ol (47): To a solution of $\mathrm{VO}(\mathrm{acac})_{2}(12 \mathrm{mg}, 0.042 \mathrm{mmol}, 2 \mathrm{~mol} \%)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ were added olefin $45\left(500 \mathrm{mg}, 2.13 \mathrm{mmol}, 1.0\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ and t-BHP (solution 5 M in decane, $640 \mu \mathrm{~L}, 3.20 \mathrm{mmol}, 1.5$ equiv). The temperature was maintained for 20 min and the reaction mixture was stirred overnight at $20^{\circ} \mathrm{C}$. The reaction mixture was partitioned between diethyl ether and a saturated aqueous solution of ammonium chloride and extracted with diethyl ether. The organic layer was washed with brine, dried over MgSO_{4}, filtered and the solvent removed under reduced pressure. The residue was purified by chromatography on silica gel (cyclohexane/ethyl acetate 90:10) to give 374 mg (70% yield) of $\mathbf{4 6}, 42 \mathrm{mg}$ (8% yield) of its C5 isomer 47 (78 \% overall yield, selectivity $9: 1$) and 110 mg of starting material 45 (22 \% recovered yield). (46): $[\alpha]_{\mathrm{D}}^{20}=+0.82\left(c=0.7, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.25-7.16(\mathrm{~m}, 5 \mathrm{H})$, $4.48(\mathrm{~s}, 2 \mathrm{H}), 3.72-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.50(\mathrm{dd}, J=8.9,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{dd}, J=8.9,5.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.92-2.87(\mathrm{~m}, 1 \mathrm{H}), 2.84(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 2.64(\mathrm{t}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{dd}, J=4.6$, $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.94-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.43-1.29(\mathrm{~m}, 1 \mathrm{H}), 0.84\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.80$ $\left(\mathrm{d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=138.2(\mathrm{C}), 128.2(2 \mathrm{CH})$, $127.4(3 \mathrm{CH}), 76.1(\mathrm{CH}), 74.2\left(\mathrm{CH}_{2}\right), 73.2\left(\mathrm{CH}_{2}\right), 55.5(\mathrm{CH}), 44.8\left(\mathrm{CH}_{2}\right), 39.0(\mathrm{CH})$, $35.2(\mathrm{CH}), 12.4\left(\mathrm{CH}_{3}\right), 9.4\left(\mathrm{CH}_{3}\right)$; IR (Film) $v \square=3471,2968,2862,1653,1559,1541$, 1496, 1461, 1453, 1410, 1365, 1310, 1258, 1205, 1103, 987, $886 \mathrm{~cm}^{-1}$; MS (GC, EI) $m / z: 250\left(\mathrm{M}^{+\bullet}\right), 248,232,217,201,187,177,160,148,141,123,115,107,91,79,65$, 55; elemental analysis calcd (\%) for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3}$: C 71.97, H 8.86; found: C 71.78, H 9.06. (47): ${ }^{1} \mathrm{H}$ NMR $\left(400.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.37-7.19(\mathrm{~m}, 5 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H}), 3.67-3.63(\mathrm{~m}$, $1 \mathrm{H}), 3.50(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.89(\mathrm{ddd}, J=6.9,3.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{dd}, J=4.3,3.9$ $\mathrm{Hz}, 1 \mathrm{H}), 2.64(\mathrm{dd}, J=4.3,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.86-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.43(\mathrm{~m}, 1 \mathrm{H}), 0.87(\mathrm{~d}, J$ $\left.=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.86\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $137.9(\mathrm{C}), 128.4(2 \mathrm{CH}), 127.7(2 \mathrm{CH}), 127.5(\mathrm{CH}), 75.3\left(\mathrm{CH}_{2}\right), 73.4\left(\mathrm{CH}_{2}\right), 55.9(\mathrm{CH})$,
$47.6\left(\mathrm{CH}_{2}\right), 38.9(\mathrm{CH}), 34.7(\mathrm{CH}), 13.1\left(\mathrm{CH}_{3}\right), 9.3\left(\mathrm{CH}_{3}\right)$; MS (GC, EI): m/z: $250\left(\mathrm{M}^{+0}\right)$, 209, 189, 177, 160, 142, 123, 108, 91, 79, 65, 55.
(2S,3R,4S,5S)-1-Benzyloxy-2,4-dimethyl-oct-7-en-3,5-diol (48): To a solution of vinyl bromide ($1 \mathrm{~mL}, 13.8 \mathrm{mmol}, 4.8$ equiv) in diethyl ether $(20 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was slowly added t-BuLi ($1.7 \mathrm{M}, 16.3 \mathrm{~mL}, 27.7 \mathrm{mmol}, 9.6$ equiv). The temperature was maintained for 10 min and then the mixture was stirred for 2 h at $20^{\circ} \mathrm{C}$. In a second flask CuCN ($620 \mathrm{mg}, 6.9 \mathrm{mmol}, 2.4$ equiv) was introduced and purged (3 times). THF $(10 \mathrm{~mL})$ was added and the resulting suspension was cooled to $-78^{\circ} \mathrm{C}$. The freshly prepared solution of vinyl lithium was then slowly added, and the resulting yellow solution was stirred at $-20^{\circ} \mathrm{C}$ for 25 min . The solution was cooled to $-78^{\circ} \mathrm{C}$ and the epoxide 46 ($722 \mathrm{mg}, 2.88 \mathrm{mmol}, 1.0$ equiv) in THF (10 mL) was added. The resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ overnight. A 25% aqueous ammonia solution was added and the resulting biphasic solution was stirred vigorously until the aqueous layer turned night blue The organic layer was washed with brine, dried over MgSO_{4}, filtered and the solvent removed under reduced pressure. The residue was purified by chromatography on silica gel (cyclohexane/ethyl acetate 70:30) to give $\mathbf{4 8}$ ($692 \mathrm{mg}, 86 \%$ yield). (48): ${ }^{1} \mathrm{H}$ NMR ($400.0 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.28-7.16(\mathrm{~m}, 5 \mathrm{H}), 5.82(\mathrm{tdd}, J=14.4,10.5,7.9 \mathrm{~Hz}$ $1 \mathrm{H}), 5.24-5.18(\mathrm{~m}, 2 \mathrm{H}), 4.60(\mathrm{~s}, 2 \mathrm{H}), 4.15(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 4.05(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 3.70-3.66$ $(\mathrm{m}, 1 \mathrm{H}), 3.61(\mathrm{dt}, J=7.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.50-3.44(\mathrm{~m}, 2 \mathrm{H}), 2.3-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.06(\mathrm{dt}, J$ $=15.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.93-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.05(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}$ CH_{3}), $0.85\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=137.8(\mathrm{C})$, $134.9(\mathrm{CH}), 128.2(2 \mathrm{CH}), 127.5(2 \mathrm{CH}), 127.4(\mathrm{CH}), 117.1\left(\mathrm{CH}_{2}\right), 78.1(\mathrm{CH}), 75.1$ $\left(\mathrm{CH}_{2}\right), 75.0(\mathrm{CH}), 73.2\left(\mathrm{CH}_{2}\right), 40.0(\mathrm{CH}), 38.8\left(\mathrm{CH}_{2}\right), 34.9(\mathrm{CH}), 12.4\left(\mathrm{CH}_{3}\right), 9.1\left(\mathrm{CH}_{3}\right) ;$ IR (Film) $v=3371,2957,2886,1653,1636,1559,1454,1206,1097,1028,983,911$ cm^{-1}; MS (GC, EI): $m / z: 253,219,190,179,160,145,129,118,107,91,80,69,57,55$ elemental analysis calcd (\%) for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{3}$: C 73.34, H 9.41; found: C 72.69, H 9.15.
(4S,5S,6R,7S)-4,6,8-Tris-(tert-butyldimethylsilyloxy)-5,7-dimethyl-oct-1-ene (49): To a night blue solution of lithium metal ($124 \mathrm{mg}, 17.9 \mathrm{mmol}, 1.0$ equiv) in liquid ammonia and anhydrous THF $(10 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added the benzyl product 48 (500 $\mathrm{mg}, 1.79 \mathrm{mmol}, 1.0$ equiv) in dry THF (10 mL). The reaction mixture was stirred at -78 ${ }^{\circ} \mathrm{C}$ for 1 h . Then the solution was quenched by addition of solid $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~g})$ and the ammonia was allowed to evaporate by permitting the reaction to warm to $20{ }^{\circ} \mathrm{C}$. A saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ was then added and the aqueous layer was extracted with ethyl acetate. The organic layer was washed with brine, dried over MgSO_{4}, filtered and the solvent removed under reduced pressure. The crude ($2 S, 3 R, 4 S, 5 S$)-2,4-dimethyl-oct-7-ene-1,3,5-triol compound was used without further purification in the next step (300 mg): ${ }^{1} \mathrm{H}$ NMR $\left(400.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.69(\mathrm{ddt}, J=$ $14.2,8.2,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.10-5.06(\mathrm{~m}, 2 \mathrm{H}), 4.75(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 4.08(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 3.79-$ $3.75(\mathrm{~m}, 1 \mathrm{H}), 3.68-3.55(\mathrm{~m}, 3 \mathrm{H}), 2.29-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.08$ (quint, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.81$ $1.76(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.54(\mathrm{~m}, 1 \mathrm{H}), 0.86\left(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.70(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=134.5(\mathrm{CH}), 118.1\left(\mathrm{CH}_{2}\right), 78.5(\mathrm{CH}), 75.8$ $(\mathrm{CH}), 67.3\left(\mathrm{CH}_{2}\right), 40.2(\mathrm{CH}), 39.4\left(\mathrm{CH}_{2}\right), 36.0(\mathrm{CH}), 12.5\left(\mathrm{CH}_{3}\right), 8.6\left(\mathrm{CH}_{3}\right)$; MS $(\mathrm{GC}$ EI): m/z: 188, 171, 161, 142.

To a solution of the preceding triol ($200 \mathrm{mg}, 1.06 \mathrm{mmol}, 1.0$ equiv) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL) at $0^{\circ} \mathrm{C}$ were added 2,6-lutidine ($1.1 \mathrm{~mL}, 9.56 \mathrm{mmol}, 9.0$ equiv) and TBSOTf (1.1 $\mathrm{mL}, 4.78 \mathrm{mmol}, 4.5$ equiv). The reaction mixture was stirred at $20^{\circ} \mathrm{C}$ for 3 h , then quenched by addition of a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with brine, dried over MgSO_{4}, filtered and the solvent removed under reduced pressure. The residue was purified by chromatography on silica gel (cyclohexane/ethyl acetate 98:2) to give the title compound 49 ($560 \mathrm{mg}, 99$ \% yield). (49): $[\alpha]_{\mathrm{D}}^{20}=-2.70\left(c=1.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 5.79 (dd, $J=17.5,10.1,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.04-4.97(\mathrm{~m}, 2 \mathrm{H}), 3.89(\mathrm{dt}, J=8.2,4.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.77(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{dd}, J=9.2,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.23$ $2.02(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.74(\mathrm{~m}, 2 \mathrm{H}), 0.86\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 0.85\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 0.84(\mathrm{~d}, J=$ $\left.7.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.83\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 0.80\left(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.00(\mathrm{~s}, 6 \mathrm{H}$, $\left.2 \mathrm{CH}_{3}\right),-0.02\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right),-0.05\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $136.2(\mathrm{CH}), 116.4\left(\mathrm{CH}_{2}\right), 72.1(\mathrm{CH}), 72.0(\mathrm{CH}), 66.1\left(\mathrm{CH}_{2}\right), 43.7(\mathrm{CH}), 38.7(\mathrm{CH}), 36.6$ $\left(\mathrm{CH}_{2}\right), 26.3\left(3 \mathrm{CH}_{3}\right), 25.9\left(3 \mathrm{CH}_{3}\right), 25.3\left(3 \mathrm{CH}_{3}\right), 18.3(\mathrm{C}), 18.2,(\mathrm{C}), 18.1(\mathrm{C}), 10.6\left(\mathrm{CH}_{3}\right)$, $10.0\left(\mathrm{CH}_{3}\right),-2.9\left(2 \mathrm{CH}_{3}\right),-3.4\left(\mathrm{CH}_{3}\right),-4.1\left(\mathrm{CH}_{3}\right),-4.2\left(\mathrm{CH}_{3}\right),-4.3\left(\mathrm{CH}_{3}\right)$; IR (Film) $v=2955,2930,2886,2858,1645,1472,1388,1361,1254,1069,1044,1005,912,833$ cm^{-1}; MS (GC, EI): $m / z: 474\left(\mathrm{M}^{+\bullet}-t\right.$-Bu), 433, 391, 357, 341, 317, 259, 243, 225, 185 $169,147,131,115,89,73,55$; elemental analysis calcd (\%) for $\mathrm{C}_{28} \mathrm{H}_{62} \mathrm{O}_{3} \mathrm{Si}_{3}:$ C 63.33 , H 11.77; found: C 63.12, H 11.98 .
(2S)-3-(tert-Butyldimethylsilyloxy)-2-methyl-propanal (50): To a solution of commercial methyl-(S)-(+)3-hydroxy-2-methylpropionate $\mathbf{1 4}(3.70 \mathrm{~g}, 31.3 \mathrm{mmol}, 1.0$ equiv) in dry DMF (30 mL) were added imidazole ($6.70 \mathrm{~g}, 98.4 \mathrm{mmol}, 3.0$ equiv) and tert-butyldimethylsilyl chloride ($7.06 \mathrm{~g}, 47 \mathrm{mmol}, 1.5$ equiv). After 3 h at $20^{\circ} \mathrm{C}$ the mixture was quenched with a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and diluted with diethy ether. The organic layer was washed with water and brine, dried over MgSO_{4}, filtered, and the solvent removed under reduced pressure. The crude residue was purified by chromatography on silica gel (cyclohexane/diethyl ether 100:0 to 90:10) to give 6.80 g (94% yield) of ($2 S$)-methyl-3-(tert-butyldimethylsilyloxy)-2-methyl propanoate as a colourless oil. RN: $93454-85-4 ;{ }^{1} \mathrm{H}$ NMR ($400.0 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.78$ ($\mathrm{dd}, J=9.6$, $6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.66(\mathrm{dd}, J=9.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{qdd}, J=6.9,6.9$, $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.14\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.88\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 0.04\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$

NMR (100.5 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=175.4(\mathrm{C}), 65.3\left(\mathrm{CH}_{2}\right), 51.3\left(\mathrm{CH}_{3}\right), 42.6(\mathrm{CH}), 25.8$ $\left(3 \mathrm{CH}_{3}\right), 18.3(\mathrm{C}), 13.5\left(\mathrm{CH}_{3}\right),-5.5\left(2 \mathrm{CH}_{3}\right)$; IR (Film) $v=2930,2885,2858,1744,1472$, 1436, 1389, 1362, 1257, 1199, 1176, 1098, 837, 777, $668 \mathrm{~cm}^{-1}$; MS (GC, CI, NH 3): m / z $250\left(\mathrm{MH}^{+}+\mathrm{NH}_{3}\right), 233\left(\mathrm{MH}^{+}\right), 201,175,132,106,91$.

To a solution of (S)-3-(tert-butyldimethylsilyloxy)-2-methyl-propionic acid methyl ester $\left(5.50 \mathrm{~g}, 23.7 \mathrm{mmol}, 1.0\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ at $-35{ }^{\circ} \mathrm{C}$ was added diisobutylaluminium hydride (1 M solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 50.0 \mathrm{~mL}, 50.0 \mathrm{mmol}$, 2.1 equiv) The solution was stirred 30 min at $-20^{\circ} \mathrm{C}$. Then the mixture was quenched by addition of 10% aqueous NaOH solution (55 mL of water, 5.50 g of $\mathrm{NaOH}, 137.5 \mathrm{mmol}, 5.8$ equiv). The mixture was allowed to warm to $20^{\circ} \mathrm{C}$ and then diluted with diethyl ether The organic layer was washed with water and brine, dried over MgSO_{4}, filtered and the solvent removed under reduced pressure. The crude residue was purified by chromatography on silica gel (cyclohexane /diethyl ether 80:20 to 50:50) to give 4.46 g (92% yield) of (2S)-3-(tert-butyldimethylsilyloxy)-2-methyl-propan-1-ol as a colourless oil. RN: $112057-64-4{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400.0 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.76$ (dd, $J=9.6$, $4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.66$ (ddd, $J=11.2,7.0,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{ddd}, J=11.2,7.8,3.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.55(\mathrm{dd}, J=9.6,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{dd}, J=7.0,3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 1.95(\mathrm{ddqdd}, J=8.2$, $7.8,6.9,4.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.91\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 0.83\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.08(\mathrm{~s}, 6 \mathrm{H}$, $\left.2 \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ RMN $\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=68.9\left(\mathrm{CH}_{2}\right), 68.5\left(\mathrm{CH}_{2}\right), 36.9(\mathrm{CH}, \mathrm{C}-2)$, $25.8\left(3 \mathrm{CH}_{3}\right), 18.1(\mathrm{C}), 13.0\left(\mathrm{CH}_{3}\right),-5.6\left(2 \mathrm{CH}_{3}\right)$; IR (Film) $v=3354,2955,2857,1472$, 1389, 1361, 1258, 1090, 1040, 939, 836, 775, $667 \mathrm{~cm}^{-1} ;$ MS (GC, CI, NH3): m/z: 222 $\left(\mathrm{MH}^{+}+\mathrm{NH}_{3}\right), 205\left(\mathrm{MH}^{+}\right), 132,92,76,74$.

To a solution of oxalyl chloride (1.8 mL , $21.4 \mathrm{mmol}, 1.2$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ at $55^{\circ} \mathrm{C}$ was added DMSO ($3.1 \mathrm{~mL}, 42.9 \mathrm{mmol}, 2.4$ equiv). This was followed 5 min late with the addition via cannula of a solution of the preceding alcohol ($3.65 \mathrm{~g}, 17.9 \mathrm{mmol}$, 1.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The resulting slurry was stirred for 1 h at $-55^{\circ} \mathrm{C}$. Then triethylamine ($12.5 \mathrm{~mL}, 89.3 \mathrm{mmol}, 5.0$ equiv) was added. The solution was warmed to $20^{\circ} \mathrm{C} 5 \mathrm{~min}$ later and stirred for an additional hour at $20^{\circ} \mathrm{C}$. The solution was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{~mL})$ and washed with 90 mL of ice-cold $1 M \mathrm{HCl}$ and 90 mL of water. These phases were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(180 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over MgSO_{4}, filtered and the solvent removed under reduced pressure. The crude (S)-3-(tert-butyldimethylsilyloxy)-2-methyl-propanal $\mathbf{5 0}$ was used without further purification ($3.40 \mathrm{~g}, 94 \%$ yield). (50): RN: 104701-87-3; ${ }^{1} \mathrm{H}$ NMR $\left(400.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.86(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{dd}, J=9.6,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.66$ (dd, $J=9.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.66 (qddd, $J=6.9,6.9,6.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.14(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.88\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right.$) , $0.04\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $204.7(\mathrm{C}), 63.4\left(\mathrm{CH}_{2}\right), 48.8(\mathrm{CH}), 25.8\left(3 \mathrm{CH}_{3}\right), 18.2(\mathrm{C}), 10.3\left(\mathrm{CH}_{3}\right),-5.5\left(2 \mathrm{CH}_{3}\right)$; IR (Film) $v=2956,2930,2885,2858,1737,1472,1389,1362,1256,1100,1033,838$, 771, $668 \mathrm{~cm}^{-1}$; MS (GC, CI, NH_{3}): $m / z: 220\left(\mathrm{MH}^{+}+\mathrm{NH}_{3}\right), 203\left(\mathrm{MH}^{+}\right), 145,132,115$, 106, 91, 76, 74.
(1Z,3S,4S,5S)-6-(tert-Butyldimethylsilyloxy)-1-((N,N-diisopropyl)carbamoyloxy)-
3,5-dimethyl-hex-1-en-4-ol (51): To a quick stirred solution of the (E)-crotyl diisopropylcarbamate ($7.80 \mathrm{~g}, 39.2 \mathrm{mmol}, 2.0$ equiv) and (-)-sparteine $(9.50 \mathrm{~g}, 40.4$ mmol, 2.1 equiv) in pentane (36 mL) and cyclohexane (6 mL) at $-78^{\circ} \mathrm{C}$, was added a solution of $n-\operatorname{BuLi}(1.37 M$ in hexanes, $30.6 \mathrm{~mL}, 41.9 \mathrm{mmol}, 2.1$ equiv), and after 10 min white crystals appeared. After 3 h of crystallization at $-78^{\circ} \mathrm{C}$, a pre-cooled $\left(-40^{\circ} \mathrm{C}\right)$ solution of titanium tetraisopropoxide $\left(\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}, 34.7 \mathrm{~mL}, 117.6 \mathrm{mmol}, 6.0\right.$ equiv) in pentane (30 mL) was quickly added via cannula to the reaction mixture of lithio carbamate which became limpid and turned orange. After 1 h at $-78^{\circ} \mathrm{C}$ aldehyde $\mathbf{5 0}$ $(3.96 \mathrm{~g}, 19.6 \mathrm{mmol}, 1.0$ equiv) in pentane $(10 \mathrm{~mL})$ was slowly added to the orange solution, and the mixture was stirred for 3 h at $-78^{\circ} \mathrm{C}$. The solution was then poured into a mixture of diethyl ether (250 mL)-aqueous hydrochloric acid solution ($0.5 \mathrm{~N}, 250$ mL). After extraction with diethyl ether, the organic layer was washed with brine, dried over MgSO_{4}, filtered and the solvent removed under reduced pressure. The residue was purified by chromatography on silica gel (cyclohexane/ethyl acetate $95: 5$ to $70: 30$) to give 4.30 g (58% yield) of the title compound $\mathbf{5 1}$ and its 3,4-bis epi diastereomer (de 95:5). (51): $[\alpha]_{\mathrm{D}}^{20}=+20.1\left(c=1.0, \mathrm{CHCl}_{3}\right) ; \mathrm{H} \operatorname{RMN}\left(400.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.13$ (d, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{dd}, J=9.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.11(\mathrm{bs}, 1 \mathrm{H}), 3.82-3.70(\mathrm{bs}$, $1 \mathrm{H}), 3.71$ (d, $J=4.6 \mathrm{~Hz}, 2 \mathrm{H}$), $3.54(\mathrm{dt}, J=8.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.86 (ddq, $J=9.6,8.2,6.9$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.69 (d, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 1.84$ (qtd, $J=6.9,4.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}$), $1.28-1.10$ $\left(\mathrm{m}, 12 \mathrm{H}, 4 \mathrm{CH}_{3}\right), 0.97\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.94\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.90(\mathrm{~s}$, $9 \mathrm{H}, 3 \mathrm{CH}_{3}$), $0.08\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right) ;{ }^{3} \mathrm{C}$ RMN ($100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=153.0(\mathrm{C}), 135.9$ $(\mathrm{CH}), 113.9(\mathrm{CH}), 77.0(\mathrm{CH}), 68.0\left(\mathrm{CH}_{2}\right), 47.0(\mathrm{CH}), 45.2(\mathrm{CH}), 36.6(\mathrm{CH}), 34.0(\mathrm{CH})$, $26.0\left(3 \mathrm{CH}_{3}\right), 21.6\left(2 \mathrm{CH}_{3}\right), 20.5\left(2 \mathrm{CH}_{3}\right), 18.3(\mathrm{C}), 17.4\left(\mathrm{CH}_{3}\right), 9.4\left(\mathrm{CH}_{3}\right),-5.50\left(2 \mathrm{CH}_{3}\right) ;$ IR (Film) $v=3493,2959,2930,2858,1708,1472,1439,1370,1304,1290,1256,1211$, 1156, 1134, 1092, 1061, $837 \mathrm{~cm}^{-1}$; MS (GC, EI): m/z: 344 ($\mathrm{M}^{+\bullet}-t$-Bu), 326, 302, 228, $212,199,184,145,128,115,86,73$; elemental analysis calcd (\%) for $\mathrm{C}_{21} \mathrm{H}_{43} \mathrm{NO}_{4} \mathrm{Si}: \mathrm{C}$ 62.80, H 10.79, N 3.49; found: C 62.61, H 10.87, N 3.35. (3,4-bis epi) isomer of 51): ${ }^{1} \mathrm{H}$ NMR ($400.0 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.07(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{dd}, J=9.6,6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.25-4.05(\mathrm{bs}, 1 \mathrm{H}), 4.20(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 3.85-3.67(\mathrm{bs}, 1 \mathrm{H}), 3.75(\mathrm{dd}, J=10.1,4.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.60(\mathrm{dd}, J=10.1,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.47$ (dd, $J=8.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.85$ (ddq, $J=$ $9.6,8.7,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.77$ (dqdd, $J=9.4,6.9,4.1,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.33-1.19(\mathrm{~m}, 12 \mathrm{H}$, $\left.4 \mathrm{CH}_{3}\right), 1.14\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.90\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 0.76\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 0.09 (s, 6H, $2 \mathrm{CH}_{3}$); ${ }^{3} \mathrm{C}$ NMR ($100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=153.5$ (C), 135.1 (CH), 111.5 $(\mathrm{CH}), 80.5(\mathrm{CH}), 69.5\left(\mathrm{CH}_{2}\right), 46.9(\mathrm{CH}), 45.5(\mathrm{CH}), 38.1(\mathrm{CH}), 33.5(\mathrm{CH}), 25.9\left(3 \mathrm{CH}_{3}\right)$, $21.6\left(2 \mathrm{CH}_{3}\right), 20.5\left(2 \mathrm{CH}_{3}\right), 18.3(\mathrm{C}), 18.2\left(\mathrm{CH}_{3}\right), 13.2\left(\mathrm{CH}_{3}\right),-5.5\left(2 \mathrm{CH}_{3}\right)$.
(2S,3S,4S)-1-(tert-Butyldimethylsilyloxy)-2,4-dimethyl-hex-5-en-3-ol (52): To a solution of carbamate $\mathbf{5 1}\left(500 \mathrm{mg}, 1.24 \mathrm{mmol}, 1.0\right.$ equiv) and $\mathrm{Ni}(\mathrm{acac})_{2}(32 \mathrm{mg}, 0.12$ mmol, $10 \mathrm{~mol} \%$) in THF (5 mL) at $20{ }^{\circ} \mathrm{C}$ was slowly added a solution of isopropylmagnesium chloride in THF ($1.55 \mathrm{M}, 8.0 \mathrm{~mL}, 12.4 \mathrm{mmol}, 10$ equiv). After stirring for 12 h , a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added, and the reaction mixture was extracted with diethyl ether. The combined organic layers were washed with water and brine, dried over MgSO_{4}, filtered and the solvent removed under reduced pressure. The crude residue was purified by chromatography on silica gel (cyclohexane/ethyl acetate $98: 2$ to $85: 15$) to give the title compound 52 ($162 \mathrm{mg}, 50 \%$ yield). (52): RN: $106296-58-6 ;{ }^{1} \mathrm{H}$ NMR ($400.0 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.84$ (ddd, $J=16.5$ $10.5,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{dd}, J=16.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{dd}, J=10.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.74$ (dd, $J=9.8,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.71$ (dd, $J=9.8,5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.55 (ddd, $J=8.7,2.3,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.89(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 2.27(\mathrm{ddq}, J=8.7,8.2,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{qddd}, J=$ $6.9,5.0,4.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.95\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 0.90\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 0.07(\mathrm{~s}$, $6 \mathrm{H}, 2 \mathrm{CH}_{3}$), ${ }^{13} \mathrm{C}$ NMR ($100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=142.3(\mathrm{CH}), 115.3\left(\mathrm{CH}_{2}\right), 77.2(\mathrm{CH})$, $68.8\left(\mathrm{CH}_{2}\right), 42.0(\mathrm{CH}), 36.1(\mathrm{CH}), 26.0\left(3 \mathrm{CH}_{3}\right), 18.4(\mathrm{C}), 16.9,9.5\left(2 \mathrm{CH}_{3}\right),-5.4\left(\mathrm{CH}_{3}\right)$, $5.5\left(\mathrm{CH}_{3}\right)$.
(2E,4S,5S,6S)-N-Methyl-N-methoxy-7-(tert-butyldimethylsilyloxy)-4,6-dimethyl-5-hydroxy-hept-2-enamide (53): To a cooled $\left(-78^{\circ} \mathrm{C}\right)$ solution of $51(1.05 \mathrm{~g}, 2.61 \mathrm{mmol}$, 1.0 equiv) and a few amount of Sudan III in 50 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was bubbled a stream of ozone until the pink solution became colourless. The solution was treated with triphenylphosphine ($686 \mathrm{mg}, 2.61 \mathrm{mmol}, 1.0$ equiv) and the mixture was allowed to warm to $20^{\circ} \mathrm{C}$ for 2 h . The solvent was removed under reduced pressure and the residue was purified by chromatography on silica gel (cyclohexane/ethyl acetate $90: 10$ to 60:40) to give 590 mg (87% yield) of ($2 R, 3 R, 4 S$)-5-(tert-butyldimethylsilyloxy)-2,4-dimethyl-3-hydroxy-pentanal. RN: 209251-54-7; ${ }^{1} \mathrm{H}$ NMR ($400.0 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.83$ (d, $J=$ $2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{dt}, J=9.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{dd}, J=9.8,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{dd}, J=$ $9.8,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 2.52(\mathrm{dqd}, J=9.6,7.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.77$ (qddd, $J=6.9,4.3,3.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.01\left(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.98(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{CH}_{3}$), $0.90\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right.$), 0.08 ($\mathrm{s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $205.9(\mathrm{CH}), 75.4(\mathrm{CH}), 67.8\left(\mathrm{CH}_{2}\right), 49.7(\mathrm{CH}), 35.8(\mathrm{CH}), 26.0\left(3 \mathrm{CH}_{3}\right), 18.3(\mathrm{C}), 10.6$ $\left(\mathrm{CH}_{3}\right), 9.4\left(\mathrm{CH}_{3}\right),-5.5\left(2 \mathrm{CH}_{3}\right)$.

To a suspension of sodium hydride (powder, 60% in oil, $763 \mathrm{mg}, 19.1 \mathrm{mmol}, 2.0$ equiv) in dry THF (80 mL) at $0{ }^{\circ} \mathrm{C}$ was added dropwise a solution of commercial diethyl N-methoxy- N-methylphosphonoacetamide ($3.9 \mathrm{~mL}, 19.1 \mathrm{mmol}, 2.0$ equiv). The solution was stirred at $20{ }^{\circ} \mathrm{C}$ for 1 h (until hydrogen evolution was not observed). The solution was cooled to $0{ }^{\circ} \mathrm{C}$, and the preceding aldehyde ($2 R, 3 R, 4 S$)-5-(tert-butyldimethylsilyloxy)-2,4-dimethyl-3-hydroxy-pentanal ($2.48 \mathrm{~g}, 9.52 \mathrm{mmol}, 1.0$ equiv) in dry THF (20 mL) was added dropwise. 5 min later, the mixture was allowed to warm to $20^{\circ} \mathrm{C}$ for 1 h and quenched by addition of a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The aqueous layer was separated and extracted with diethyl ether (2 x). The combined organic phases were washed with water and brine, dried over MgSO_{4}, filtered and the solvent removed under reduced pressure. The crude residue was purified by chromatography on silica gel (cyclohexane/ethyl acetate 70:30 to 40:60) to give 53 $\left(2.83 \mathrm{~g}, 86 \%\right.$ yield) as a pale yellow oil. (53): $[\alpha]_{\mathrm{D}}^{20}=-3.3\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400.0 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.99(\mathrm{dd}, J=15.6,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.76(\mathrm{dd}, J=9.8,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.69(\mathrm{dd}, J=6.4,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.68$ (dd, $J=9.8,5.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.24\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.84(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 2.50(\mathrm{dqd}, J=8.7,6.9$, $6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.82$ (qddd, $J=7.3,5.0,5.0,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.01\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $0.96\left(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.90\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 0.09\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100.5 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=167.0(\mathrm{C}), 150.9(\mathrm{CH}), 119.1(\mathrm{CH}), 77.3(\mathrm{CH}), 68.6\left(\mathrm{CH}_{2}\right), 61.8$ $\left(\mathrm{CH}_{3}, \mathrm{CH}_{3}\right), 40.9(\mathrm{CH}), 36.2(\mathrm{CH}), 32.4\left(\mathrm{CH}_{3}\right), 26.0\left(3 \mathrm{CH}_{3}\right), 18.3(\mathrm{C}), 16.6\left(\mathrm{CH}_{3}\right), 9.5$ $\left(\mathrm{CH}_{3}\right),-5.5\left(2 \mathrm{CH}_{3}\right)$; IR (Film) $v=3444,2958,2930,2857,1650,1627,1471,1417$, $1385,1255,1093,1004,850 \mathrm{~cm}^{-1}$; MS (GC, EI): $m / z: 288\left(\mathrm{M}^{+\bullet}-t\right.$-Bu), 267, 246, 227, 203, 187, 172, 145, 115, 89, 75, 55; elemental analysis calcd (\%).for $\mathrm{C}_{17} \mathrm{H}_{35} \mathrm{NO}_{4} \mathrm{Si}: \mathrm{C}$ 59.09 , H 10.21, N 4.05 ; Found: C 58.95, H 10.28, N 3.94.
(2S,4S,5S,6R)-2-\{6-(2-(tert-Butyldimethylsilyloxy)-1-methyl ethyl)-5-methyl-2-phenyl-1,3-dioxinan-4-yl\}-N-methoxy- N-methyl-acetamide (54): To a solution of compound 53 ($300 \mathrm{mg}, 0.87 \mathrm{mmol}, 1.0$ equiv) and freshly distilled benzaldehyde ($97 \mu \mathrm{~L}, 0.96 \mathrm{mmol}$, 1.1 equiv) in dry THF (9 mL) at $0^{\circ} \mathrm{C}$ was added KHMDS (0.5 M solution in toluene, $175 \mu \mathrm{~L}, 87.5 \mu \mathrm{~mol}, 0.1$ equiv) and the obtained yellow solution was stirred for 15 min . This sequence (addition of KHMDS/stirring) was repeated twice and the solution was quenched by addition of a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The organic layer was washed with water and brine, dried over MgSO_{4}, filtered and the solvent removed under reduced pressure. The crude residue was purified by flash chromatography on silica gel (cyclohexane/ethyl acetate $95: 5$ to $50: 50$) to give 54 ($311 \mathrm{mg}, 79 \%$ yield) as a pale yellow oil. (54): $[\alpha]_{\mathrm{D}}^{20}=+21.9\left(c=0.6, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta=$ 7.46-7.43 (m, 2H), 7.36-7.29 (m, 3H), 5.58 (s, 1H), 4.12 (ddd, $J=10.0,9.6,3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.74(\mathrm{dd}, J=9.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{dd}, J=9.6,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 3.50 (dd, $J=9.6,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 2.92(\mathrm{dd}, J=15.6,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.64$ (dd, J $=15.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\mathrm{dqdd}, J=9.2,6.9,5.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{ddq}, J=10.0,9.8$ $6.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.90\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.89\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 0.85(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 0.03\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.2(\mathrm{C}), 139.1(\mathrm{C})$, $128.4(\mathrm{CH}), 128.0(2 \mathrm{CH}), 126.1(2 \mathrm{CH}), 100.0(\mathrm{CH}), 80.3(\mathrm{CH}), 79.2(\mathrm{CH}), 65.0\left(\mathrm{CH}_{2}\right)$, $61.6\left(\mathrm{CH}_{3}\right), 36.7\left(\mathrm{CH}_{2}\right), 36.0(\mathrm{CH}), 35.4(\mathrm{CH}), 32.2\left(\mathrm{CH}_{3}\right), 26.0\left(3 \mathrm{CH}_{3}\right), 18.4(\mathrm{C}), 12.0$ $\left(\mathrm{CH}_{3}\right), 9.8\left(\mathrm{CH}_{3}\right),-5.3\left(2 \mathrm{CH}_{3}\right)$; IR (Film) $v=2956,2930,2857,1666,1483,1403,1387$,

1256, 1149, 1090, 1029, $837 \mathrm{~cm}^{-1}$; MS (GC, EI): m/z: 394 (${ }^{+}-t$-Bu), 330, 288, 258 , $243,221,199,185,172,145,115,89,75$, 55 ; elemental analysis calcd (\%) for $\mathrm{C}_{24} \mathrm{H}_{41} \mathrm{NO}_{5} \mathrm{Si}$: C 63.82 , H 9.15, N 3.10; Found: C 63.79, H 9.21, N 3.01 .
(2S,4S,5S,6R)-2-\{6-(2-(tert-Butyldimethylsilyloxy)-1-methyl ethyl)-5-methyl-2-phenyl-1,3-dioxinan-4-yl\}-acetaldehyde (55): To a solution of Weinreb amide 54 $\left(1.50 \mathrm{~g}, 3.32 \mathrm{mmol}, 1.0\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added diisobutylaluminium hydride (1 M solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 10.0 \mathrm{~mL}, 9.96 \mathrm{mmol}, 3.0$ equiv). The yellow solution was stirred at $-78^{\circ} \mathrm{C}$ for 1 h . Then the mixture was quenched by addition of ethyl acetate (15 mL). The mixture was allowed to warm to $20^{\circ} \mathrm{C}$ and a solution of Rochelle's salt ($17.0 \mathrm{~g}, 60.2 \mathrm{mmol}, 18.1$ equiv, in 20 mL water) was added. The mixture was stirred at $20^{\circ} \mathrm{C}$ for 2 h and the organic layer was extracted with diethyl ether (2 x). The combined organic extracts were washed with brine, dried over MgSO_{4}, filtered and the solvent removed under reduced pressure. The crude residue was purified by chromatography on silica gel (cyclohexane/ethyl acetate 95:5 to 80:20) to give $\mathbf{5 5}$ $\left(1.21 \mathrm{~g}, 93 \%\right.$ yield) as a pale yellow oil. (55): $[\alpha]_{\mathrm{D}}^{20}=+12.3\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400.0 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.83$ (dd, $\left.J=2.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.48-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.40-$ $7.31(\mathrm{~m}, 3 \mathrm{H}), 5.58(\mathrm{~s}, 1 \mathrm{H}), 4.07(\mathrm{ddd}, J=9.6,7.8,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{dd}, J=10.6,1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.66(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{dd}, J=9.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{ddd}, J=10.5$, $3.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{ddd}, J=10.5,7.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{dqdd}, J=9.2,7.3,6.0,1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 1.78$ (ddq, $J=10.6,9.6,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.90\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 0.90(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.88\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.04\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $(100.5 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=201.6(\mathrm{C}), 138.6(\mathrm{C}), 128.7(\mathrm{CH}), 128.2(2 \mathrm{CH}), 126.1(2 \mathrm{CH}), 100.3(\mathrm{CH})$, $80.1(\mathrm{CH}), 77.4(\mathrm{CH}), 64.9\left(\mathrm{CH}_{2}\right), 47.0\left(\mathrm{CH}_{2}\right), 36.6(\mathrm{CH}), 35.1(\mathrm{CH}), 26.0\left(3 \mathrm{CH}_{3}\right), 18.4$ (C), $11.8\left(\mathrm{CH}_{3}\right), 9.7\left(\mathrm{CH}_{3}\right),-5.3\left(2 \mathrm{CH}_{3}\right)$; IR (Film) $v=2955,2929,2882,2856,1728$, 1471, 1462, 1402, 1256, 1101, 1073, 1029, $837 \mathrm{~cm}^{-1}$; MS (GC, EI): m/z: 335 ($\mathrm{M}^{+\bullet}-t$ $\mathrm{Bu}), 281,263,243,229,211,199,185,171,157,145,131,115,101,89,75$.
(2S,4R(1S),5S,6S(2S,5S,6R,7S,8Z))-4-(2-(tert-Butyldimethylsilyloxy)-1-methyl ethyl-1-yl)-6-\{5,7-dimethyl-2-hydroxy-6-((methoxymethyl)oxy)-9-tributylstannyl-dec-8-en-3-yn-1-yl\}-5-methyl-2-phenyl-1,3-dioxinan (56)
(2S,4R(1S),5S,6S(2R,5S,6R,7S,8Z))-4-(2-(tert-Butyldimethylsilyloxy)-1-methyl ethyl-1-yl)-6-\{5,7-dimethyl-2-hydroxy-6-((methoxymethyl)oxy)-9-tributylstannyl-dec-8-en-3-yn-1-yl\}-5-methyl-2-phenyl-1,3-dioxinan (57): Coupling Reaction between B fragment (32) and C aldehyde (55): To a solution of alkyne 32 ($305 \mathrm{mg}, 0.62 \mathrm{mmol}, 2.5$ equiv) in THF $(3 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added a solution of t-BuLi $(1.5 \mathrm{M}$ in pentane, $295 \mu \mathrm{~L}, 0.44$ mmol, 1.98 equiv). The resulting mixture was stirred for 30 min at $-78{ }^{\circ} \mathrm{C}$ then a solution of aldehyde 55 ($100 \mathrm{mg}, 0.25 \mathrm{mmol}, 1.0$ equiv) in THF (1 mL) was slowly added. After stirring for 3 h at $0^{\circ} \mathrm{C}$, a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added and the reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layers were washed with water and brine, dried over MgSO_{4}, filtered and the solvent removed under reduced pressure. The residue was purified by chromatography on silica gel (cyclohexane/Et $\mathrm{E}_{2} \mathrm{O}$ 98:2 to 80:20) to furnish 30 mg (14% yield) of the title compound 56, its diastereomer $57\left(74 \mathrm{mg}, 34 \%\right.$ yield) and the starting aldehyde $55\left(14 \mathrm{mg}, 14 \%\right.$ yield). (56): $[\alpha]_{\mathrm{D}}^{20}=$ - $1.33\left(c=0.64, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR ($400.0 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.49-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.39-$ $7.30(\mathrm{~m}, 3 \mathrm{H}), 5.97\left(\mathrm{dq}, J=9.6,1.4 \mathrm{~Hz}, J_{1_{\mathrm{H} .}-17_{\mathrm{Sn}}}=J_{1_{\mathrm{H}-1}-19_{\mathrm{Sn}}}=132.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.59(\mathrm{~s}$, $1 \mathrm{H}), 4.80(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.70-4.67(\mathrm{ddd}, J=7.8,7.3,2.7$ $\mathrm{Hz}, 1 \mathrm{H}$), 4.03 (ddd, $J=10.1,10.1,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{dd}, J=10.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.69$ (dd, $J=9.6,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{dd}, J=9.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.23(\mathrm{dd}, J=$ $5.9,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 2.77(\mathrm{qdd}, J=6.9,5.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.24$ (dqd, $J=9.6,6.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.12$ (ddd, $J=14.6,7.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.10$ (dddm, $J=$ $9.2,6.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{ddd}, J=14.6,10.1,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.89\left(\mathrm{~d}, J=1.4 \mathrm{~Hz}, J_{1_{\mathrm{H}}}\right.$ $\left.117_{\mathrm{sn}}=J_{1_{\mathrm{H}-119 \mathrm{~S}_{\mathrm{n}}}}=44.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.76(\mathrm{ddq}, J=10.1,10.1,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.54-1.43$ (m, $6 \mathrm{H}, 3 \mathrm{CH}_{2}$), 1.33-1.29 (sext, $J=7.8 \mathrm{~Hz}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}$), $1.22\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$), $1.02\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.0-0.81\left(\mathrm{~m}, 18 \mathrm{H}, 4 \mathrm{CH}_{3}+3 \mathrm{CH}_{2}\right), 0.89\left(\mathrm{~s}, 3 \mathrm{CH}_{3}\right), 0.81(\mathrm{~d}$, $\left.J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.04\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=143.9$ $\left(\mathrm{CH}, J^{13 \mathrm{C}-117 \mathrm{Sn}}=J^{13 \mathrm{C}-119 \mathrm{Sn}}=26.8 \mathrm{~Hz}\right), 138.6\left(\mathrm{C}, J_{13 \mathrm{C}-117 \mathrm{Sn}}=J_{13 \mathrm{C}-119 \mathrm{~S}_{\mathrm{s}}}=385.3 \mathrm{~Hz}\right)$, $137.7(\mathrm{C}), 128.3(\mathrm{CH}), 127.9(2 \mathrm{CH}), 125.7(2 \mathrm{CH}), 99.8(\mathrm{CH}), 98.1\left(\mathrm{CH}_{2}\right), 87.0(\mathrm{CH})$, $85.5(\mathrm{C}), 82.5(\mathrm{C}), 80.1(\mathrm{CH}), 79.6(\mathrm{CH}), 64.7\left(\mathrm{CH}_{2}\right), 60.0(\mathrm{CH}), 59.6\left(\mathrm{CH}_{3}\right), 42.2(\mathrm{CH}$, $\left.J{ }_{13 \mathrm{C}-117_{\mathrm{Sn}}}=J{ }_{13 \mathrm{C}-119 \mathrm{~S}_{\mathrm{S}}}=30.6 \mathrm{~Hz}\right), 42.1\left(\mathrm{CH}_{2}\right), 36.4(\mathrm{CH}), 34.7(\mathrm{CH}), 30.0(\mathrm{CH}), 29.1$ $\left(3 \mathrm{CH}_{2}, J_{13 \mathrm{C}-117 \mathrm{sn}}=J_{13 \mathrm{C}-119 \mathrm{~S}_{\mathrm{s}}}=19.1 \mathrm{~Hz}\right), 27.3\left(3 \mathrm{CH}_{2}, J_{13 \mathrm{C}-117 \mathrm{~S}_{\mathrm{sn}}}=J_{13 \mathrm{C}-119 \mathrm{~S}_{\mathrm{sn}}}=57.5 \mathrm{~Hz}\right)$, $26.7\left(\mathrm{CH}_{3}, J^{13 \mathrm{C} .117 \mathrm{~s}_{\mathrm{n}}}=J_{13 \mathrm{C} .119 \mathrm{~S}_{\mathrm{n}}}=44.1 \mathrm{~Hz}\right), 25.8\left(3 \mathrm{CH}_{3}\right), 18.6\left(\mathrm{CH}_{3}\right), 18.1(\mathrm{C}), 16.6$ $\left(\mathrm{CH}_{3}\right), 13.6\left(3 \mathrm{CH}_{3}\right), 11.5\left(\mathrm{CH}_{3}\right), 9.8\left(3 \mathrm{CH}_{2}, J^{13 \mathrm{C}-117 \mathrm{~S}_{\mathrm{n}}}=313.4 \mathrm{~Hz}, J^{13 \mathrm{C}-119 \mathrm{~S}_{\mathrm{n}}}=327.8\right.$ $\mathrm{Hz}), 9.5\left(\mathrm{CH}_{3}\right),-5.5\left(2 \mathrm{CH}_{3}\right)$; IR (Film) $v=2956,2928,2855,2360,2341,1594,1455$, 1404, 1375, 1255, 1149, 1095, 1050, 836, 775, 695, 663, $661 \mathrm{~cm}^{-1}$; elemental analysis calcd (\%) for $\mathrm{C}_{46} \mathrm{H}_{82} \mathrm{O}_{6} \mathrm{SiSn}$: C 62.93, H 9.41; found: C 63.10, H 9.55. (57): ${ }^{1} \mathrm{H}$ NMR $\left(400.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.47-7.24(\mathrm{~m}, 2 \mathrm{H}),, 7.39-7.30(\mathrm{~m}, 3 \mathrm{H}), 6.00(\mathrm{dq}, J=9.6,1.4$ $\left.\mathrm{Hz}, J_{1_{\mathrm{H}}-17_{\mathrm{Sn}}}=J_{1_{\mathrm{H}}-119_{\mathrm{Sn}}}=137.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.53(\mathrm{~s}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.77-$ $4.70(\mathrm{~m}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.78-3.65(\mathrm{~m}, 3 \mathrm{H}), 3.49(\mathrm{dd}, J=9.6,6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.26(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 2.74$ (qdd, $J=6.9,5.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{dqd}, J=9.6,6.9,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{ddd}, J=13.7$, $6.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.06-1.96(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2), 1.90\left(\mathrm{~d}, J=1.4 \mathrm{~Hz}, J_{1_{\mathrm{H}}-117_{\mathrm{Sn}}}=J_{1_{\mathrm{H}}-119_{\mathrm{Sn}}}=42.6\right.$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.80-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.45\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 1.32(\mathrm{sext}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H}$, $\left.3 \mathrm{CH}_{2}\right), 1.21\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.00\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.00-0.86(\mathrm{~m}, 18 \mathrm{H}$, $\left.4 \mathrm{CH}_{3}+3 \mathrm{CH}_{2}\right), 0.90\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 0.82(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.04\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=144.2(\mathrm{CH}), 138.7(\mathrm{C}), 137.8(\mathrm{C}), 128.7(\mathrm{CH}), 128.2$ $(2 \mathrm{CH}), 126.0(2 \mathrm{CH}), 100.5 .1(\mathrm{CH}), 98.3\left(\mathrm{CH}_{2}\right), 87.4(\mathrm{CH}), 85.7(\mathrm{C}), 82.5(\mathrm{C}), 81.7$ $(\mathrm{CH}), 80.4(\mathrm{CH}), 65.0\left(\mathrm{CH}_{2}\right), 61.8(\mathrm{CH}), 56.3\left(\mathrm{CH}_{3}\right), 42.3(\mathrm{CH}), 41.2\left(\mathrm{CH}_{2}\right), 36.7(\mathrm{CH})$,
$35.2(\mathrm{CH}), 30.3(\mathrm{CH}), 29.3\left(3 \mathrm{CH}_{2}, J_{13 \mathrm{C}-117_{\mathrm{sn}}}=J_{13 \mathrm{C}-119 \mathrm{~S}_{\mathrm{Sn}}}=20.1 \mathrm{~Hz}\right), 27.6\left(3 \mathrm{CH}_{2}, J^{13 \mathrm{C}-}\right.$ $\left.{ }_{117} \mathrm{~s}_{\mathrm{sn}}=J_{13{ }^{\mathrm{C}}-119_{\mathrm{Sn}}}=57.5 \mathrm{~Hz}\right), 27.3\left(\mathrm{CH}_{3}, J_{13 \mathrm{C} .117 \mathrm{sn}}=J_{13 \mathrm{C}-119_{\mathrm{Sn}}}=46.0 \mathrm{~Hz}\right), 26.1\left(3 \mathrm{CH}_{3}\right)$, $18.8\left(\mathrm{CH}_{3}\right)$, $18.5(\mathrm{C}), 16.5\left(\mathrm{CH}_{3}\right), 13.9\left(3 \mathrm{CH}_{3}\right)$, $11.9\left(\mathrm{CH}_{3}\right), 10.1\left(3 \mathrm{CH}_{2}, J{ }_{13 \mathrm{c}-117 \mathrm{Sn}}=\right.$ $\left.312.5 \mathrm{~Hz}, J_{13 \mathrm{C}-119 \mathrm{Sn}}=329.8 \mathrm{~Hz}\right), 9.8\left(\mathrm{CH}_{3}\right),-5.5\left(2 \mathrm{CH}_{3}\right)$.

Reduction of ynone $\mathbf{5 8}$ (vide infra): To a solution of compound $\mathbf{5 8}$ ($3.6 \mathrm{~g}, 4.1 \mathrm{mmol}, 1.0$ equiv) in THF (20 mL) at $-30^{\circ} \mathrm{C}$ were added a solution of (S)-CBS-oxazaborolidine in toluene ($1 \mathrm{M}, 8.22 \mathrm{~mL}, 8.22 \mathrm{mmol}, 2.0$ equiv) and $\mathrm{BH}_{3} . \mathrm{Me}_{2} \mathrm{~S}$ (2 M in THF, 10.3 mL , $20.5 \mathrm{mmol}, 5.0$ equiv). The resulting mixture was stirred for 2 h at $-30^{\circ} \mathrm{C}$ then quenched with EtOH and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layers were washed with water and brine, dried over MgSO_{4}, filtered and the solvent removed under reduced pressure. The residue was purified by chromatography on silica gel (cyclohexane/AcOEt 95:5 to 70:30) to give the title compound 56 ($6.88 \mathrm{~g}, 95 \%$ yield).

Compound 57 was also obtained by énantiosélective reduction of ynone 58: To a solution of ynone $\mathbf{5 8}\left(75 \mathrm{mg}, 0.085 \mathrm{mmol}, 1.0\right.$ equiv) in THF (0.5 mL) at $-30^{\circ} \mathrm{C}$ were added a solution of (R)-CBS-oxazaborolidine in toluene ($1 \mathrm{M}, 171 \mu \mathrm{~L}, 0.171 \mathrm{mmol}, 2.0$ equiv) and $\mathrm{BH}_{3} . \mathrm{Me}_{2} \mathrm{~S}$ (2 M in THF, $214 \mu \mathrm{~L}, 0.43 \mathrm{mmol}, 5.0$ equiv). The resulting mixture was stirred for 2 h at $-30^{\circ} \mathrm{C}$ then quenched with EtOH and extracted with $\mathrm{Et}_{2} \mathrm{O}$ The organic layers were washed with water and brine, dried over MgSO_{4}, filtered and the solvent removed under reduced pressure. The residue was purified by chromatography on silica gel (cyclohexane/AcOEt 95:5 to 70:30) to give 63 mg (90% yield) of 57 .
(\boldsymbol{R})-Mandelate ester of 56: To a solution of compound $\mathbf{5 6}(40 \mathrm{mg}, 0.045 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ at $20^{\circ} \mathrm{C}$ were successively added $(R)-(-)$-methoxyphenylacetic acid ($15 \mathrm{mg}, 0.091 \mathrm{mmol}, 2.0$ equiv), DCC ($9.5 \mathrm{mg}, 0.091 \mathrm{mmol}, 2.0$ equiv) and DMAP ($2 \mathrm{mg}, 0.022 \mathrm{mmol}, 0.4$ equiv). The resulting mixture was stirred for 12 h at $20^{\circ} \mathrm{C}$ then quenched with a saturated aqueous NaHCO_{3} solution and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layers were washed with water and brine, dried over MgSO_{4}, filtered and the solvent removed under reduced pressure. The residue was purified by chromatography on silica gel (cyclohexane/AcOEt 95:5 to 70:30) to give 29 mg (63% yield) of the title compound. ((\boldsymbol{R})-Mandelate ester of 56): $[\alpha]_{\mathrm{D}}^{20}=-29.5\left(c=0.52, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.50-7.47(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 6 \mathrm{H}), 6.01(\mathrm{dq}, J=9.6,1.4$ $\left.\mathrm{Hz}, J_{1_{\mathrm{H}-117} \mathrm{~S}_{\mathrm{n}}}=J_{1_{\mathrm{H}-1}-19_{\mathrm{Sn}}}=131.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.83(\mathrm{dt}, J=11.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~d}, J=6.9$ $\mathrm{Hz}, 1 \mathrm{H}), 4.78(\mathrm{~s}, 1 \mathrm{H}), 4.74(\mathrm{~s}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.46(\mathrm{dd}, J=9.2,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.25(\mathrm{t}, J=5.5 \mathrm{~Hz}$ $1 \mathrm{H}), 3.24(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{qdd}, J=6.9,5.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{td}, J=9.6,1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.18(\mathrm{dqd}, J=9.6,6.9,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{ddd}, J=11.9,11.5,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $1.90\left(\mathrm{~d}, J=1.4 \mathrm{~Hz}, J_{1_{\mathrm{H}-117} \mathrm{Sn}_{\mathrm{n}}}=J_{1_{\mathrm{H}-119}}=42.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.87(\mathrm{dqd}, J=9.2,6.9,5.5$ $\mathrm{Hz}, 1 \mathrm{H}), 1.73$ (ddd, $J=11.9,9.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.53-1.44\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 1.45-1.42(\mathrm{~m}$, $1 \mathrm{H}), 1.32$ (sext, $\left.J=7.8 \mathrm{~Hz}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 1.16\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.98(\mathrm{~d}, J=6.9$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.94\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 0.95-0.90\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 0.90\left(\mathrm{~m}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 0.81$ (d, $\left.J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.52\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.06(\mathrm{~s}, 3 \mathrm{H}$ CH_{3}); ${ }^{13} \mathrm{C}$ NMR ($100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.4(\mathrm{C}), 144.2(\mathrm{CH}), 138.8(\mathrm{C}), 137.7$ (C, J ${ }^{13 \mathrm{C}-117 \mathrm{~s}_{\mathrm{n}}=} J_{13 \mathrm{C}-119 \mathrm{~S}_{\mathrm{n}}}=384.0 \mathrm{~Hz}$), $137.0(\mathrm{C}), 129.0(\mathrm{CH}), 128.9(2 \mathrm{CH}), 128.3(\mathrm{CH}), 128.0$ $(2 \mathrm{CH}), 127.6(2 \mathrm{CH}), 125.9(2 \mathrm{CH}), 99.0(\mathrm{CH}), 98.3\left(\mathrm{CH}_{2}\right), 88.3(\mathrm{C}), 85.2(\mathrm{CH}), 82.3$ $(\mathrm{CH}),(\mathrm{C}), 79.6(\mathrm{CH}), 76.7(\mathrm{CH}), 65.1\left(\mathrm{CH}_{2}\right), 60.1(\mathrm{CH}), 57.3\left(\mathrm{CH}_{3}\right), 56.3\left(\mathrm{CH}_{3}\right), 42.0$ $(\mathrm{CH}), 39.5\left(\mathrm{CH}_{2}\right), 36.7(\mathrm{CH}), 34.8(\mathrm{CH}), 30.3(\mathrm{CH}), 29.4\left(3 \mathrm{CH}_{2}, J_{13 \mathrm{C}_{-}-11 \mathrm{~S}_{\mathrm{sn}}}=J_{13 \mathrm{C}_{\mathrm{C}}-119_{\mathrm{Sn}}}=\right.$ $19.2 \mathrm{~Hz}), 27.5\left(3 \mathrm{CH}_{2}, J_{13 \mathrm{C}-117 \mathrm{sn}}=J_{13 \mathrm{C}-119 \mathrm{Sn}}=57.5 \mathrm{~Hz}\right), 27.4\left(\mathrm{CH}_{3}, J_{13 \mathrm{C}-117 \mathrm{Sn}}=J_{13 \mathrm{C}-119 \mathrm{sn}}\right.$ $=42.6 \mathrm{~Hz}), 26.1\left(3 \mathrm{CH}_{3}\right), 18.5(\mathrm{C}), 18.2\left(\mathrm{CH}_{3}\right), 16.3\left(\mathrm{CH}_{3}\right), 13.9\left(3 \mathrm{CH}_{3}\right), 11.5\left(\mathrm{CH}_{3}\right)$, $10.1\left(3 \mathrm{CH}_{2}\right), 9.8\left(\mathrm{CH}_{3}\right),-5.3\left(\mathrm{CH}_{3}\right),-5.2\left(\mathrm{CH}_{3}\right)$; IR (Film) $v=2956,2871,2855,1759$, 1454, 1462, 1166, 1152, 1114, 1102, $1031 \mathrm{~cm}^{-1}$; elemental analysis calcd (\%) for $\mathrm{C}_{55} \mathrm{H}_{90} \mathrm{O}_{8} \mathrm{SiSn}$: C 64.38 , H 8.84; found: C 64.15, H 9.02 .
(S)-Mandelate ester of 56: To a solution of compound $\mathbf{5 6}(40 \mathrm{mg}, 0.045 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ at $20^{\circ} \mathrm{C}$ were successively added $(S)-(+)$-methoxyphenylacetic acid ($15 \mathrm{mg}, 0.091 \mathrm{mmol}, 2.0$ equiv), DCC ($9.5 \mathrm{mg}, 0.091 \mathrm{mmol}, 2.0$ equiv) and DMAP ($2 \mathrm{mg}, 0.022 \mathrm{mmol}, 0.4$ equiv). The resulting mixture was stirred for 12 h at $20^{\circ} \mathrm{C}$ then quenched with a saturated aqueous NaHCO_{3} solution and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layers were washed with water and brine, dried over MgSO_{4}, filtered and the solvent removed under reduced pressure. The residue was purified by chromatography on silica gel (cyclohexane/AcOEt 95:5 to 70:30) to give 25 mg (62% yield) of the title compound. ((S)-Mandelate ester of 56): $[\alpha]_{\mathrm{D}}^{20}=-1.40\left(c=0.60, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.51-7.47(\mathrm{~m}, 4 \mathrm{H}), 7.37-7.27(\mathrm{~m}, 6 \mathrm{H}), 6.00(\mathrm{dq}, J=9.6,1.8$ $\left.\mathrm{Hz}, J_{1_{\mathrm{H}-117_{\mathrm{s}}}}=J_{1_{\mathrm{H}}-119_{\mathrm{Sn}}}=134.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.82(\mathrm{ddd}, J=11.0,2.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~s}$, $1 \mathrm{H}), 4.84(\mathrm{~s}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{dd}, J=9.6$, $9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{dd}, J=9.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.49-3.46(\mathrm{~m}, 1 \mathrm{H}), 3.46\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.40$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), $3.19(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{ddd}, J=11.9,10.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{qdd}$, $J=7.3,5.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.31$ (ddd, $J=11.9,11.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{dqd}, J=9.6,6.9$, $5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{mdqd}, J=9.2,6.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.88\left(\mathrm{~d}, J=1.4 \mathrm{~Hz}, J_{1_{\mathrm{H}}-117_{\mathrm{Sn}}}=J_{1_{\mathrm{H}}}\right.$ $\left.119 \mathrm{~S}_{\mathrm{n}}=42.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.84(\mathrm{ddd}, J=11.5,11.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.61-1.60(\mathrm{~m}, 1 \mathrm{H})$, $1.56-1.43\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 1.31\left(\right.$ sext, $\left.J=7.8 \mathrm{~Hz}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 1.10(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}$, CH_{3}), $0.93\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.94\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 0.93-0.89\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 0.89$ $\left(\mathrm{t}, 9 \mathrm{H}, J=7.3 \mathrm{~Hz}, 3 \mathrm{CH}_{3}\right), 0.84\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.72\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}_{2} \mathrm{CH}_{3}\right)$, $0.05\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.8(\mathrm{C}), 144.2\left(\mathrm{CH}, J_{13 \mathrm{C}-117 \mathrm{sn}}\right.$ $\left.=J{ }_{13 \mathrm{C}}{ }^{1119 \mathrm{~S}_{\mathrm{n}}}=28.8 \mathrm{~Hz}\right), 138.8(\mathrm{C}), 137.7(\mathrm{C}), 136.4(\mathrm{C}), 128.8(\mathrm{CH}), 128.7(2 \mathrm{CH})$, $128.3(\mathrm{CH}), 128.0(2 \mathrm{CH}), 126.9(2 \mathrm{CH}), 125.9(2 \mathrm{CH}), 99.4(\mathrm{CH}), 98.2\left(\mathrm{CH}_{2}\right), 88.4(\mathrm{C})$, $85.2(\mathrm{CH}), 83.1(\mathrm{CH}), 83.0(\mathrm{C}), 80.0(\mathrm{CH}), 79.0(\mathrm{CH}), 65.1\left(\mathrm{CH}_{2}\right), 61.3(\mathrm{CH}), 57.5$
$\left(\mathrm{CH}_{3}\right), 56.2\left(\mathrm{CH}_{3}\right), 42.0(\mathrm{CH}), 39.1\left(\mathrm{CH}_{2}\right), 36.7(\mathrm{CH}), 35.1(\mathrm{CH}), 30.3$ (CH), 29.3 $\left(3 \mathrm{CH}_{2}, J_{13{ }^{1}-117 \mathrm{sn}}=J_{13 \mathrm{C}-119 \mathrm{Sn}_{\mathrm{n}}}=18.2 \mathrm{~Hz}\right), 27.6\left(3 \mathrm{CH}_{2}, J_{13 \mathrm{C}-117_{\mathrm{sn}}}=J_{13 \mathrm{C}-119_{\mathrm{Sn}}}=57.5 \mathrm{~Hz}\right)$, $27.6\left(\mathrm{CH}_{3}\right), 26.1\left(3 \mathrm{CH}_{3}\right), 18.5(\mathrm{C}), 18.3\left(\mathrm{CH}_{3}\right), 16.2\left(\mathrm{CH}_{3}\right), 13.9\left(3 \mathrm{CH}_{3}\right), 11.7\left(\mathrm{CH}_{3}\right)$, $10.0\left(3 \mathrm{CH}_{2}, J_{13 \mathrm{C}-117 \mathrm{sn}}=325.9, J_{13 \mathrm{C} .119 \mathrm{~S}_{\mathrm{n}}}=312.5 \mathrm{~Hz}\right), 9.8\left(\mathrm{CH}_{3}\right),-5.3\left(\mathrm{CH}_{3}\right),-5.2\left(\mathrm{CH}_{3}\right) ;$ IR (Film) $v=2955,2855,1755,1456,1464,1155,1098,1074,1031 \mathrm{~cm}^{-1}$; elemental analysis calcd (\%) for $\mathrm{C}_{55} \mathrm{H}_{90} \mathrm{O}_{8} \mathrm{SiSn}$: C 64.38, H 8.84; found: C 64.70, H 9.26.
(\boldsymbol{R})-Mandelate ester of 57: To a solution of compound $\mathbf{5 7}(100 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at $20^{\circ} \mathrm{C}$ were successively added $(R)-(-)$-methoxyphenylacetic acid ($38 \mathrm{mg}, 0.23 \mathrm{mmol}, 2.0$ equiv), DCC ($47 \mathrm{mg}, 0.23 \mathrm{mmol}, 2.0$ equiv) and DMAP (3 $\mathrm{mg}, 0.022 \mathrm{mmol}, 0.2$ equiv). The resulting mixture was stirred for 12 h at $20^{\circ} \mathrm{C}$ then quenched with a saturated aqueous NaHCO_{3} solution and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layers were washed with water and brine, dried over MgSO_{4}, filtered and the solvent removed under reduced pressure. The residue was purified by chromatography on silica gel (cyclohexane/AcOEt 95:5 to 70:30) to give 89 mg (79% yield) of the title compound. ((R \boldsymbol{R}-Mandelate ester of 57): $[\alpha]_{\mathrm{D}}^{20}=+1.76\left(c=1.44, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.50-7.47(\mathrm{~m}, 4 \mathrm{H}), 7.39-7.30(\mathrm{~m}, 6 \mathrm{H}), 6.00(\mathrm{dq}, J=9.6,1.4$ $\left.\mathrm{Hz}, J_{1_{\mathrm{H}-117 \mathrm{~S}_{\mathrm{n}}}}=J_{1_{\mathrm{H}-1199_{\mathrm{n}}}}=132.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.71(\mathrm{ddd}, J=9.6,5.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{~s}$, $1 \mathrm{H}), 4.72(\mathrm{~s}, 1 \mathrm{H}), 4.70(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.74-3.65(\mathrm{~m}, 2 \mathrm{H})$, $3.50(\mathrm{dd}, J=9.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.45-3.39(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.29(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 3.19(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{qdd}, J=6.9,5.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.22-2.08(\mathrm{~m}, 3 \mathrm{H})$,
 $1.67(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.46\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 1.32\left(\mathrm{sext}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 1.10(\mathrm{~d}, J=$ $\left.7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.97-0.87\left(\mathrm{~m}, 15 \mathrm{H}, 3 \mathrm{CH}_{2}+3 \mathrm{CH}_{3}\right), 0.94(\mathrm{~d}, J=$ not calculated, 3 H,$$ CH_{3}), $0.90\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 0.86\left(\mathrm{~d}, J=\right.$ not calculated, $3 \mathrm{H}, \mathrm{CH}_{3}$), $0.81(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 0.05\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.3(\mathrm{C}), 144.2(\mathrm{CH}, J$ $\left.{ }^{13} \mathrm{C}-117_{\mathrm{Sn}}=J_{13 \mathrm{C}-119_{\mathrm{Sn}}}=30.6 \mathrm{~Hz}\right), 138.8(\mathrm{C}), 137.5\left(\mathrm{C}, J_{13 \mathrm{C}-117_{\mathrm{Sn}}}=J_{13 \mathrm{C}-119_{\mathrm{Sn}}}=371.8 \mathrm{~Hz}\right)$, $135.9(\mathrm{C}), 128.6(\mathrm{CH}), 128.5(2 \mathrm{CH}), 128.4(\mathrm{CH}), 128.0(2 \mathrm{CH}), 127.4(2 \mathrm{CH}), 125.9$ $(2 \mathrm{CH}), 99.8(\mathrm{CH}), 98.0\left(\mathrm{CH}_{2}\right), 89.3(\mathrm{C}), 84.9(\mathrm{CH}), 82.5(\mathrm{CH}), 80.2(\mathrm{C}), 79.2(\mathrm{CH})$, $78.3(\mathrm{CH}), 64.9\left(\mathrm{CH}_{2}\right), 63.4(\mathrm{CH}), 57.3\left(\mathrm{CH}_{3}\right), 56.1\left(\mathrm{CH}_{3}\right), 42.3\left(\mathrm{CH}, J_{13 \mathrm{C}-117 \mathrm{~s}_{\mathrm{n}}}=J_{13 \mathrm{C}}\right.$. $\left.{ }_{119} 9_{\mathrm{sn}}=32.6 \mathrm{~Hz}\right), 38.4\left(\mathrm{CH}_{2}\right), 36.6(\mathrm{CH}), 34.8(\mathrm{CH}), 30.3(\mathrm{CH}), 29.2\left(3 \mathrm{CH}_{2}, J_{13 \mathrm{C} .117_{\mathrm{sn}}}=J\right.$
 $\left.=J{ }_{13}{ }^{\mathrm{C}} .119 \mathrm{~S}_{\mathrm{s}}=46.0 \mathrm{~Hz}\right), 25.9\left(3 \mathrm{CH}_{3}\right), 18.4(\mathrm{C}), 18.3\left(\mathrm{CH}_{3}\right), 15.8\left(\mathrm{CH}_{3}\right), 13.7\left(3 \mathrm{CH}_{3}\right)$, $11.5\left(\mathrm{CH}_{3}\right), 9.9\left(3 \mathrm{CH}_{2}, J_{13 \mathrm{C}-117 \mathrm{~S}_{\mathrm{s}}}=313.4 \mathrm{~Hz}, J_{13 \mathrm{C}-119 \mathrm{~S}_{\mathrm{n}}}=327.8 \mathrm{~Hz}\right), 9.7\left(\mathrm{CH}_{3}\right),-5.5$ $\left(\mathrm{CH}_{3}\right),-5.4\left(\mathrm{CH}_{3}\right)$; IR (Film) $v=2955,2871,2855,1758,1462,1455,1250,1149$, 1102, 1031, 1002, 837, $698 \mathrm{~cm}^{-1}$; elemental analysis calcd (\%) for $\mathrm{C}_{55} \mathrm{H}_{90} \mathrm{O}_{8} \mathrm{SiSn}: \mathrm{C}$ 64.38, H 8.84; found: C 64.22, H 9.12.
(S)-Mandelate ester of $\mathbf{5 7}$: To a solution of compound $\mathbf{5 7}(100 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at $20^{\circ} \mathrm{C}$ were successively added (S)-(-)-methoxyphenylacetic acid ($38 \mathrm{mg}, 0.23 \mathrm{mmol}, 2.0$ equiv), DCC ($47 \mathrm{mg}, 0.23 \mathrm{mmol}, 2.0$ equiv) and DMAP (3 $\mathrm{mg}, 0.022 \mathrm{mmol}, 0.2$ equiv). The resulting mixture was stirred for 12 h at $20^{\circ} \mathrm{C}$ then quenched with a saturated aqueous NaHCO_{3} solution and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layers were washed with water and brine, dried over MgSO_{4}, filtered and the solvent removed under reduced pressure. The residue was purified by chromatography on silica gel (cyclohexane/AcOEt 95:5 to 70:30) to give 81 mg (72% yield) of the title compound. ((S)-Mandelate ester of 57): $[\alpha]_{\mathrm{D}}^{20}=+22.0\left(c=1.38, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400.0 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.46-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.29(\mathrm{~m}, 6 \mathrm{H}), 6.00(\mathrm{dq}, J=9.6,1.8$ $\left.\mathrm{Hz}, J_{1_{\mathrm{H}-117_{\mathrm{Sn}}}}=J_{1_{\mathrm{H}}-119_{\mathrm{Sn}}}=133.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.71(\mathrm{ddd}, J=10.0,4.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{~s}$, $1 \mathrm{H}), 4.76(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}),, 4.73(\mathrm{~s}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.72-3.61(\mathrm{~m}, 3 \mathrm{H})$, $3.49(\mathrm{dd}, J=9.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.24(\mathrm{dd}, J=5.5$, $5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.73$ (qdd, $J=6.9,5.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{qdd}, J=9.6,6.9,5.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.06(\mathrm{td}, J=10.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.90\left(\mathrm{~d}, J=1.8 \mathrm{~Hz}, J_{1_{\mathrm{H}-17 \mathrm{Sn}_{\mathrm{s}}}=J_{1_{\mathrm{H}}}, ~}\right.$ $\left.{ }_{119} 9_{\mathrm{Sn}}=42.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.81(\mathrm{ddd}, J=13.7,10,0,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.65-1.64(\mathrm{~m}, 1 \mathrm{H})$, $1.53-1.46\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 1.33\left(\right.$ sext, $\left.J=7.3 \mathrm{~Hz}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 1.19(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 1.00\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.97-0.86\left(\mathrm{~m}, 15 \mathrm{H}, 3 \mathrm{CH}_{2},+3 \mathrm{CH}_{3}\right), 0.90\left(\mathrm{~s}, 3 \mathrm{CH}_{3}\right)$, $0.84\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.74\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.04\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$
 138.7 (C), 137.7 (C), 135.9 (C), 128.6 (CH), 128.5 (2 CH), 128.3 (CH), 127.9 (2CH), $127.2(2 \mathrm{CH}), 125.9(2 \mathrm{CH}), 99.7(\mathrm{CH}), 98.0\left(\mathrm{CH}_{2}\right), 89.2(\mathrm{C}), 85.1(\mathrm{CH}), 82.3(\mathrm{CH}), 80.1$ (C), $78.9(\mathrm{CH}), 78.5(\mathrm{CH}), 65.8\left(\mathrm{CH}_{2}\right), 65.1(\mathrm{CH}), 57.3\left(\mathrm{CH}_{3}\right), 56.1\left(\mathrm{CH}_{3}\right), 42.3(\mathrm{CH}, J$ $\left.{ }^{13}{ }^{\mathrm{C}-117_{\mathrm{Sn}}}=J{ }^{13} \mathrm{C}-119_{\mathrm{Sn}}=31.6 \mathrm{~Hz}\right), 38.2\left(\mathrm{CH}_{2}\right), 36.5(\mathrm{CH}), 34.6(\mathrm{CH}), 30.3(\mathrm{CH}), 29.2$ $\left(3 \mathrm{CH}_{2}, J^{13 \mathrm{~B}_{\mathrm{C}}-117_{\mathrm{Sn}}}=J_{13 \mathrm{C}-119 \mathrm{~S}_{\mathrm{n}}}=19.2 \mathrm{~Hz}\right), 27.7\left(3 \mathrm{CH}_{2}, J_{13 \mathrm{C}-117_{\mathrm{Sn}}}=J_{13 \mathrm{C}-119_{\mathrm{Sn}}}=57.4 \mathrm{H}\right)$, $27.4\left(\mathrm{CH}_{3}, J_{13 \mathrm{C} .117 \mathrm{~s}_{\mathrm{sn}}}=J_{13 \mathrm{C}-119 \mathrm{Sn}}=40.2 \mathrm{~Hz}\right), 25.9\left(3 \mathrm{CH}_{3}\right), 18.6\left(\mathrm{CH}_{3}\right), 18.2(\mathrm{C}), 16.1$ $\left(\mathrm{CH}_{3}\right)$, $13.7\left(3 \mathrm{CH}_{3}\right), 11.6\left(\mathrm{CH}_{3}, \mathrm{CH}_{3}-4\right), 9.9\left(3 \mathrm{CH}_{2}, J_{13 \mathrm{C} .117 \mathrm{sn}}=314.4 \mathrm{~Hz}, J^{13} \mathrm{c}-119 \mathrm{Sn}=\right.$ $331.6 \mathrm{~Hz}), 9.6\left(\mathrm{CH}_{3}\right),-5.5\left(2 \mathrm{CH}_{3}\right)$; IR (Film) $v=2955,2928,2871,2855,1757,1454$, 1250, 1165, 1148, 1102, 1073, 1031, 1003, 837, $698 \mathrm{~cm}^{-1}$; elemental analysis calcd (\%) for $\mathrm{C}_{55} \mathrm{H}_{90} \mathrm{O}_{8} \mathrm{SiSn}$: C 64.38 , H 8.84; found: C 64.61, H 8.99.
(2S,4R(1S),5S,6S(5S,6R,7S,8Z))-4-(2-(tert-Butyldimethylsilyloxy)-1-methyl ethyl-1-yl)-6-\{5,7-dimethyl-6-((methoxymethyl)oxy)-9-tributylstannyl-2-one-dec-8-en-3-yn-1-yl\}-5-methyl-2-phenyl-1,3-dioxinan (58): Coupling reaction using t-BuLi - To a solution of alkyne 32 ($215 \mathrm{mg}, 0.44 \mathrm{mmol}, 2.0$ equiv) in THF (3 mL) at $-78{ }^{\circ} \mathrm{C}$ was added a solution of $t-\mathrm{BuLi}$ (1.5 M in pentane, $295 \mu \mathrm{~L}, 0.44 \mathrm{mmol}, 1.98$ equiv). The resulting mixture was stirred for 30 min at $-78^{\circ} \mathrm{C}$ then a solution of amide $54(100 \mathrm{mg}, 0.22$ mmol, 1.0 equiv) in THF (1 mL) was slowly added. After stirring for 3 h at $0^{\circ} \mathrm{C}$, a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added and the reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layers were washed with water and brine, dried over MgSO_{4}, filtered and the solvent removed under reduced pressure. The residue was purified by
chromatography on silica gel (cyclohexane/Et $\mathrm{t}_{2} \mathrm{O} 98: 2$ to $80: 20$) to furnish 156 mg (81% yield) of the title compound 58 .

Coupling reaction using n-BuLi - Preparation of n-BuLi in diethyl ether - In a 500 mL four-necked flask equipped with a thermometer, a mechanical stirrer and a dropping funnel under argon containing 100 mL of dry diethyl ether were introduced small pieces of lithium (wire containing $0.5-1 \% \mathrm{Na}, 4.3 \mathrm{~g}, 619 \mathrm{mmol}, 2.48$ equiv). With the stirre started, 30 drops of a n-butylbromide ($27 \mathrm{~mL}, 250 \mathrm{mmol}, 1.0$ equiv) solution in diethyl ether (50 mL) were added from the dropping funnel. After a few min the solution became slightly cloudy and bright spots appeared on the lithium. The reaction mixture was then cooled to $-10^{\circ} \mathrm{C}$ by immersing in a $-30{ }^{\circ} \mathrm{C}$ nitrogen-acetone bath. The remainder of the n-butylbromide solution was added over 20 min while keeping the internal temperature below $-10{ }^{\circ} \mathrm{C}$. After the addition was complete, the reaction mixture was allowed to warm up gradually to $0^{\circ} \mathrm{C}$ then $10^{\circ} \mathrm{C}$ with stirring during 1.5 h . The pale blue solution was then filtered while transferred to a flask via cannula, titrated with standard method ($1.23 \mathrm{M}, 74 \%$ yield) and kept under argon at $4{ }^{\circ} \mathrm{C}$.

To a solution of alkyne 32 ($1.7 \mathrm{~g}, 3.5 \mathrm{mmol}$, 2.0 equiv) in THF (25 mL) at $-40^{\circ} \mathrm{C}$ was added a solution of $n-\mathrm{BuLi}^{2} \mathrm{Et}_{2} \mathrm{O}(1.23 \mathrm{M}, 2.8 \mathrm{~mL}, 3.44 \mathrm{mmol}, 1.98$ equiv). The resulting mixture was stirred for 50 min at $-40^{\circ} \mathrm{C}$ then a solution of amide $\mathbf{5 4}(789 \mathrm{mg}$, $1.75 \mathrm{mmol}, 1.0$ equiv) in THF (12 mL) was slowly added. After stirring for 1 h at $0^{\circ} \mathrm{C}$, a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added and the reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layers were washed with water and brine, dried over MgSO_{4}, filtered and the solvent removed under reduced pressure. The residue was purified by chromatography on silica gel (cyclohexane/ $\mathrm{Et}_{2} \mathrm{O} 98: 2$ to $80: 20$) to furnish the title compound 58 ($1.22 \mathrm{~g}, 81 \%$ yield). (58): $[\alpha]_{\mathrm{D}}^{20}=+13.4\left(c=0.94, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.43-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.34(\mathrm{~m}, 3 \mathrm{H}), 5.92(\mathrm{dq}, J=6.9,1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.54(\mathrm{~s}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{ddt}, J=$ $9.6,6.4,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.73$ (dd, $J=9.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{dd}, J=9.6,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.5$ (dd, $J=9.6,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.27(\mathrm{dd}, J=6.4,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{qd}, J=$ $6.9,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.22(\mathrm{dqd}, J=9.6,6.9,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.98$ (dddm, $J=9.2,5.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.88\left(\mathrm{~d}, J=1.4 \mathrm{~Hz}, J_{1_{\mathrm{H}}-117 \mathrm{~S}_{\mathrm{n}}}=J_{1_{\mathrm{H}}-119_{\mathrm{Sn}}}=41.2 \mathrm{~Hz}, 3 \mathrm{H}\right.$ $\left.\mathrm{CH}_{3}\right), 1.72$ (ddq, $\left.J=9.6,9.6,6.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.54-1.43\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 1.32($ sext, $J=7.3$ $\left.\mathrm{Hz}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 1.24\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.00\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.95-0.87$ $\left(\mathrm{m}, 27 \mathrm{H}, 7 \mathrm{CH}_{3}+3 \mathrm{CH}_{2}\right), 0.80\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.04\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=185.3$ (C), $143.4(\mathrm{CH}), 138.8(\mathrm{C}), 138.7(\mathrm{C}), 128.4(\mathrm{CH})$, $128.0(2 \mathrm{CH}), 126.0(2 \mathrm{CH}), 99.9(\mathrm{CH}), 98.3\left(\mathrm{CH}_{2}\right), 96.5(\mathrm{C}), 85.2(\mathrm{CH}), 83.0(\mathrm{C}), 80.3$ $(\mathrm{CH}), 78.2(\mathrm{CH}), 65.0\left(\mathrm{CH}_{2}\right), 56.4\left(\mathrm{CH}_{3}\right), 49.5\left(\mathrm{CH}_{2}\right), 42.8\left(\mathrm{CH}, J_{13 \mathrm{C}-117_{\mathrm{sn}}}=J_{13_{\mathrm{C}}-119_{\mathrm{Sn}}}=\right.$ $30.6 \mathrm{~Hz}), 36.7(\mathrm{CH}), 35.0(\mathrm{CH}), 30.8(\mathrm{CH}), 29.4\left(3 \mathrm{CH}_{2}\right), 27.5\left(\mathrm{CH}_{3}+3 \mathrm{CH}_{2}, J_{13 \mathrm{C} .117 \mathrm{~s} \text { sn }}\right.$ $=J{ }_{13 \mathrm{C}-119 \mathrm{~s}_{\mathrm{n}}}=58.4 \mathrm{~Hz}$), $26.0\left(3 \mathrm{CH}_{3}\right), 18.4(\mathrm{C}), 17.8\left(\mathrm{CH}_{3}\right), 17.1\left(\mathrm{CH}_{3}\right), 13.8\left(3 \mathrm{CH}_{3}\right)$, $11.9\left(\mathrm{CH}_{3}\right), 10.1\left(3 \mathrm{CH}_{2}, J^{13}{ }_{\mathrm{C}-117 \mathrm{sn}}=313.4 \mathrm{~Hz}, J^{13} \mathrm{C}_{\mathrm{C}-119} \mathrm{~S}_{\mathrm{s}}=328.8 \mathrm{~Hz}\right), 9.7\left(\mathrm{CH}_{3}\right),-5.2$ $\left(2 \mathrm{CH}_{3}\right)$; IR (Film) $v=2956,2855,2212,1678,1465,1403,1376,1345,1255,1215$ 1147, 1092, 1032, 837, 758, $699 \mathrm{~cm}^{-1}$; elemental analysis calcd (\%) for $\mathrm{C}_{46} \mathrm{H}_{80} \mathrm{O}_{6} \mathrm{SiSn}$: C $63.08, \mathrm{H}, 9.21$; found: C 63.18, H 9.32
($2 S, 4 R(1 S), 5 S, 6 S(2 S, 5 S, 6 R, 7 S, 8 Z)$)-4-(2-(tert-Butyldimethylsilyloxy)-1-methyl ethyl-1-yl)-6-\{5,7-dimethyl-2,6-bis((methoxymethyl)oxy)-9-tributylstannyl-dec-8-en-3-yn-1-yl\}-5-methyl-2-phenyl-1,3-dioxinan (59): To a solution of compound 56 ($6.88 \mathrm{~g}, 7.84$ mmol, 1.0 equiv), dimethylaminopyridine ($192 \mathrm{mg}, 1.57 \mathrm{mmol}, 0.2$ equiv) and TBAI ($290 \mathrm{mg}, 0.784 \mathrm{mmol}, 0.1$ equiv) in dried $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(35 \mathrm{~mL}\right.$) at $0{ }^{\circ} \mathrm{C}$ were added diisopropylethylamine ($34.1 \mathrm{~mL}, 196 \mathrm{mmol}, 20$ equiv) and MOMCl ($5.95 \mathrm{~mL}, 78.4$ $\mathrm{mmol}, 10$ equiv). After stirring for 12 h at $20^{\circ} \mathrm{C}$, the reaction was quenched with a saturated aqueous NaHCO_{3} solution of and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layers were washed with brine, dried over MgSO_{4}, filtered and the solvent was removed under reduced pressure. The residue was purified by chromatography on silica gel (cyclohexane/AcOEt $95: 5$ to 80:20) to give the title compound $59(6.2 \mathrm{~g}, 86 \%$ yield) as a yellow oil. (59): $[\alpha]_{\mathrm{D}}^{20}=-17.2\left(c=1.52, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400.0 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $7.49-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.30(\mathrm{~m}, 3 \mathrm{H}), 6.00\left(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}, J_{1_{\mathrm{H}}-117 \mathrm{sn}}=J_{1_{\mathrm{H}}-119 \mathrm{Sn}}=\right.$ 133.7 Hz), $5.51(\mathrm{~s}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.82-4.78(\mathrm{~m}, 1 \mathrm{H}), 4.78(\mathrm{~d}, J=6.9 \mathrm{~Hz}$ $1 \mathrm{H}), 4.70(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.75-3.67(\mathrm{~m}, 3 \mathrm{H}), 3.51(\mathrm{dd}, J=$ $9.6,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.24(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{qd}$, $J=6.9,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.28-2.18(\mathrm{dqd}, J=9.6,6.9,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.28-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.04$
 $1.66-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.45\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 1.33\left(\mathrm{sext}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 1.18(\mathrm{~d}$ $\left.J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.98\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.98-0.85\left(\mathrm{~m}, 18 \mathrm{H}, 4 \mathrm{CH}_{3}+3 \mathrm{CH}_{2}\right)$, $0.89\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 0.81\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.05\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100.5 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=144.2\left(\mathrm{CH}, J_{13 \mathrm{C}-117 \mathrm{sn}}=J_{13 \mathrm{C}-119 \mathrm{Sn}_{\mathrm{n}}}=29.7 \mathrm{~Hz}\right), 139.1(\mathrm{C}), 137.5(\mathrm{C})$, $128.3(\mathrm{CH}), 128.0(2 \mathrm{CH}), 125.8(2 \mathrm{CH}), 99.6(\mathrm{CH}), 98.1\left(\mathrm{CH}_{2}\right), 93.6\left(\mathrm{CH}_{2}\right), 87.7(\mathrm{C})$, $85.3(\mathrm{C}), 80.1(\mathrm{C}), 80.0(\mathrm{CH}), 77.6(\mathrm{CH}), 65.0\left(\mathrm{CH}_{2}\right), 61.0(\mathrm{CH}), 56.1\left(\mathrm{CH}_{3}\right), 55.5$ $\left(\mathrm{CH}_{3}\right), 42.0(\mathrm{CH}), 39.9\left(\mathrm{CH}_{2}\right), 36.6(\mathrm{CH}), 35.2(\mathrm{CH}), 30.2(\mathrm{CH}), 29.2\left(3 \mathrm{CH}_{2}, J_{13 \mathrm{C}-117 \mathrm{si}}\right.$
 $\left.{ }_{117}{ }_{\mathrm{Sn}}=J{ }^{13}{ }_{\mathrm{C}} .111_{\mathrm{Sn}}=53.6 \mathrm{~Hz}\right), 25.9\left(3 \mathrm{CH}_{3}\right), 18.5\left(\mathrm{CH}_{3}\right), 18.3(\mathrm{C}), 16.3\left(\mathrm{CH}_{3}\right), 13.7$ $\left(3 \mathrm{CH}_{3}\right), 11.6\left(\mathrm{CH}_{3}\right), 9.9\left(3 \mathrm{CH}_{2}, J^{13} \mathrm{C}_{-117} \mathrm{sn}=313.4 \mathrm{~Hz}, J^{13}{ }^{\mathrm{C}-119 \mathrm{~S}_{\mathrm{sn}}}=327.8 \mathrm{~Hz}\right), 9.6\left(\mathrm{CH}_{3}\right)$, $-5.4\left(2 \mathrm{CH}_{3}\right)$; IR (Film) $v=2956,2928,2380,2341,1456,1402,1375,1350,1250$, 1158, 1098, 1015, 920, 837, 775, 690, $663 \mathrm{~cm}^{-1}$; elemental analysis calcd (\%) for $\mathrm{C}_{48} \mathrm{H}_{86} \mathrm{O}_{7} \mathrm{SiSn}$: C 62.53 , H 9.40; found: C 62.33 , H 9.59 .
($2 S, 4 R(1 R), 5 S, 6 S(2 S, 3 Z, 5 S, 6 R, 7 S, 8 Z)$)-4-(2-Methoxycarbonyl-1-methyl ethyl-1-yl)-6-\{5,7-dimethyl-9-iodo-2,6-bis((methoxymethyl)oxy)-deca-3,8-dien-1-yl\}-5-methyl-2-
phenyl-1,3-dioxinan (60): To a solution of compound 59 ($100 \mathrm{mg}, 0.108 \mathrm{mmol}, 1.0$ equiv) in THF (1 mL) at $0{ }^{\circ} \mathrm{C}$ were added $500 \mu \mathrm{~L}$ of a HF. pyridine stock solution (prepared from commercial HF.pyridine $2 \mathrm{~mL} /$ pyridine $4 \mathrm{~mL} / \mathrm{THF} 10 \mathrm{~mL}$). After stirring for 4 h at $20^{\circ} \mathrm{C}$, the resulting mixture was quenched with a saturated aqueous NaHCO_{3} solution and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layers were washed with brine, dried over MgSO_{4}, filtered and the solvent removed under reduced pressure. The residue was purified by chromatography on silica gel (cyclohexane/AcOEt 70:30 to 40:60) to give the ($2 S, 4 R(1 S), 5 S, 6 S(2 S, 5 S, 6 R, 7 S, 8 Z)$)-4-(2-hydroxy-1-methyl ethyl-1 yl)-6-\{5,7-dimethyl-2,6-bis((methoxymethyl)oxy)-9-tributylstannyl-dec-8-en-3-yn-1yl $\}$-5-methyl-2-phenyl-1,3-dioxinan ($84 \mathrm{mg}, 96 \%$ yield). $[\alpha]_{\mathrm{D}}^{20}=-35.9(c=1.19$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.46-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.33(\mathrm{~m}, 3 \mathrm{H}), 6.01$ $\left(\mathrm{dq}, J=9.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}, J_{1_{\mathrm{H}-117 \mathrm{Sn}}}=J_{1_{\mathrm{H}-119 \mathrm{sn}}}=132.8 \mathrm{~Hz}\right), 5.58(\mathrm{~s}, 1 \mathrm{H}), 5.02(\mathrm{~d}, J=6.9$ $\mathrm{Hz}, 1 \mathrm{H}), 4.79(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.59(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.83-3.73(\mathrm{~m}, 4 \mathrm{H}), 3.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.24$ (t, $J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{qd}, J=6.9,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.28-2.23(\mathrm{dqd}, J=9.6,6.9,5.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.28-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.06-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.89\left(\mathrm{~d}, J=1.4 \mathrm{~Hz}, J_{1_{\mathrm{H}}-117_{\mathrm{sn}}}=J_{1_{\mathrm{H}-119 \mathrm{~S}_{\mathrm{n}}}}=\right.$ $43.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 1.89-1.85 (m, 1H), 1.83 (dqd, $\left.J=6.9,6.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.49-1.38$ (m, $6 \mathrm{H}, 3 \mathrm{CH}_{2}$), 1.37-1.28 (sext, $J=7.3 \mathrm{~Hz}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}$), 1.18 (d, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), $1.43\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.03\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.02-0.88\left(\mathrm{~m}, 15 \mathrm{H}, 3 \mathrm{CH}_{2}\right.$ $\left.+3 \mathrm{CH}_{3}\right), 0.85\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=144.1$ $(\mathrm{CH}), 138.5(\mathrm{C}), 137.5(\mathrm{C}), 128.5(\mathrm{CH}), 128.1(2 \mathrm{CH}), 125.7(2 \mathrm{CH}), 99.9(\mathrm{CH}), 98.0$ $\left(\mathrm{CH}_{2}\right), 93.6\left(\mathrm{CH}_{2}\right), 87.7(\mathrm{C}), 85.2(\mathrm{CH}), 83.5\left(\mathrm{CH}^{\circ} \mathrm{CH}_{2}\right), 80.3(\mathrm{C}), 77.5\left(\mathrm{CH}\right.$ or $\left.\mathrm{CH}_{2}\right)$, $66.7\left(\mathrm{CH}\right.$ or $\left.\mathrm{CH}_{2}\right), 60.9(\mathrm{CH}), 56.1\left(\mathrm{CH}_{3}\right), 55.4\left(\mathrm{CH}_{3}\right), 41.9\left(\mathrm{CH}, J_{13 \mathrm{C} .117_{\mathrm{sn}}}=J_{13 \mathrm{c}_{\mathrm{C}} .119_{\mathrm{Sn}}}=\right.$ $34.4 \mathrm{~Hz}), 39.8\left(\mathrm{CH}_{2}\right), 35.5(\mathrm{CH}), 35.3(\mathrm{CH}), 30.1(\mathrm{CH}), 29.2\left(3 \mathrm{CH}_{2}, J_{13 \mathrm{C}-117 \mathrm{sn}}=J_{13 \mathrm{C}}\right.$
 $\left.{ }^{13} \mathrm{C}-119_{\mathrm{sn}}=46.0 \mathrm{~Hz}\right), 18.5\left(\mathrm{CH}_{3}\right), 16.3\left(\mathrm{CH}_{3}\right), 13.6\left(3 \mathrm{CH}_{3}\right), 11.5\left(\mathrm{CH}_{3}\right), 9.8\left(3 \mathrm{CH}_{2}, J_{13}{ }_{\mathrm{C}}\right.$ ${ }_{117 \mathrm{sn}}=314.4 \mathrm{~Hz}, J_{13 \mathrm{c}-119 \mathrm{sn}}=327.8 \mathrm{~Hz}$,), $9.5\left(\mathrm{CH}_{3}\right)$; IR (Film) $v=3380$, 2956, 2927 , 2872, 2852, $15901454,1436,1376,1351,1154,1098,1029,699 \mathrm{~cm}^{-1}$; elemental analysis calcd (\%) for $\mathrm{C}_{42} \mathrm{H}_{72} \mathrm{O}_{7} \mathrm{Sn}$: C 62.46, H 8.98 ; found: C 62.58, H 9.00.

To a solution of the preceding alcohol ($3.3 \mathrm{~g}, 4.05 \mathrm{mmol}, 1.0$ equiv) in dried $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 mL) were added BAIB ($1.44 \mathrm{~g}, 4.46 \mathrm{mmol}, 1.1$ equiv) and TEMPO ($160 \mathrm{mg}, 0.81$ mmol, 0.2 equiv). After stirring for 3 h at $20^{\circ} \mathrm{C}$, a $1 \mathrm{M} \mathrm{Na} 2 \mathrm{~S}_{2} \mathrm{O}_{3}$ solution was added, and the reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layers were washed with a saturated aqueous NaHCO_{3} solution, brine, dried over MgSO_{4}, filtered and the solvent was removed under reduced pressure. The crude $(2 S, 4 R(1 R), 5 S, 6 S(2 S, 5 S, 6 R, 7 S, 8 Z))-4$ (2-formyl-1-methyl ethyl-1-yl)-6-\{5,7-dimethyl-2,6-bis((methoxymethyl)oxy)-9-tributylstannyl-dec-8-en-3-yn-1-yl\}-5-methyl-2-phenyl-1,3-dioxinan was used without further purification for the next step. ${ }^{1} \mathrm{H}$ NMR $\left(400.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.80(\mathrm{~s}, 1 \mathrm{H})$, $7.42-7.32(\mathrm{~m}, 5 \mathrm{H}), 6.00\left(\mathrm{dq}, J=8.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}, J_{1_{\mathrm{H}} .117_{\mathrm{sn}}}=J_{1_{\mathrm{H}} .119_{\mathrm{Sn}}}=135.1 \mathrm{~Hz}\right), 5.59$ $(\mathrm{s}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.80-4.76(\mathrm{~m}, 1 \mathrm{H}), 4.78(\mathrm{~d}, ~, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}),, 4.69(\mathrm{~d}$, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{dd}, J=10.1,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{ddd}, J=$ $9.6,9.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.23(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.72$ (qd, $J=7.3,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{qd}, J=6.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.28-2.18(\mathrm{dqd}, J=8.2,6.9,5.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.28-2.18(\mathrm{~m}, 1 \mathrm{H}), 1.89\left(\mathrm{~d}, J=1.4 \mathrm{~Hz}, J_{1_{\mathrm{H}}-117_{\mathrm{Sn}}}=J_{1_{\mathrm{H}}-119 \mathrm{~S}_{\mathrm{Sn}}}=41.2 \mathrm{~Hz}, 3 \mathrm{H}\right.$, CH_{3}), 1.89-1.84 (m, 1H), $1.84(\mathrm{ddq}, J=10.1,9.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.51-1.44(\mathrm{~m}, 6 \mathrm{H}$, $3 \mathrm{CH}_{2}$), 1.33 (sext, $\left.J=7.3 \mathrm{~Hz}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 1.23\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.19(\mathrm{~d}, J=7.3$ $\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), $0.99\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.96-0.88\left(\mathrm{~m}, 15 \mathrm{H}, 3 \mathrm{CH}_{2}+3 \mathrm{CH}_{3}\right), 0.90$ (d, $J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=204.0(\mathrm{C}), 144.0\left(\mathrm{CH}, J_{13 \mathrm{C} .117 \mathrm{sn}}\right.$ $\left.=J_{13 \mathrm{C} .1199_{\mathrm{s}}}=32.6 \mathrm{~Hz}\right), 137.9(\mathrm{C}), 137.2(\mathrm{C}), 128.0(2 \mathrm{CH}), 127.3(\mathrm{CH}), 125.6(2 \mathrm{CH})$, $99.6(\mathrm{CH}), 98.0\left(\mathrm{CH}_{2}\right), 94.2\left(\mathrm{CH}_{2}\right), 87.7(\mathrm{C}), 86.2(\mathrm{CH}), 80.6(\mathrm{CH}), 80.2(\mathrm{C}), 77.0(\mathrm{CH})$, $60.7(\mathrm{CH}), 56.1\left(\mathrm{CH}_{3}\right), 55.4\left(\mathrm{CH}_{3}\right), 47.2(\mathrm{CH}), 41.9\left(\mathrm{CH}, J_{13 \mathrm{C} .117 \mathrm{~S}_{\mathrm{s}}}=J_{13 \mathrm{C} .119 \mathrm{~S}_{\mathrm{n}}}=34.4\right.$ $\mathrm{Hz}), 39.7\left(\mathrm{CH}_{2}\right), 34.9(\mathrm{CH}), 30.1(\mathrm{CH}), 29.1\left(3 \mathrm{CH}_{2}, J{ }_{13} 3_{\mathrm{C}-117 \mathrm{~S}_{\mathrm{n}}}=J{ }_{13 \mathrm{c}_{\mathrm{C}}-119 \mathrm{~S}_{\mathrm{n}}}=21.0 \mathrm{~Hz}\right)$, $27.3\left(3 \mathrm{CH}_{2}, J_{13 \mathrm{C}-117 \mathrm{sn}}=J_{13 \mathrm{C}-119 \mathrm{Sn}}=57.4 \mathrm{~Hz}\right), 27.2\left(\mathrm{CH}_{3}, J_{13 \mathrm{C}-117 \mathrm{Sn}_{\mathrm{s}}}=J_{13 \mathrm{C}-119 \mathrm{Sn}_{\mathrm{S}}}=46.0\right.$ $\mathrm{Hz})$, $18.4\left(\mathrm{CH}_{3}\right), 16.3\left(\mathrm{CH}_{3}\right), 13.6\left(3 \mathrm{CH}_{3}\right), 13.5\left(\mathrm{CH}_{3}\right), 9.8\left(3 \mathrm{CH}_{2}\right), 6.8\left(\mathrm{CH}_{3}\right)$.

Chlorite oxidation - To a solution of the preceding aldehyde $(3.26 \mathrm{~g}, 4.05 \mathrm{mmol}, 1.0$ equiv) in t-butanol (245 mL) and 2- methyl-2-butene (55 mL) was added a solution of NaClO_{2} ($549 \mathrm{mg}, 6.07 \mathrm{mmol}, 1.5$ equiv) and $\mathrm{NaH}_{2} \mathrm{PO}_{4}(729 \mathrm{mg}, 6.07 \mathrm{mmol}, 1.5$ equiv) in $\mathrm{H}_{2} \mathrm{O}(21 \mathrm{~mL})$. After stirring for 1 h at $20{ }^{\circ} \mathrm{C}$, the same quantity of NaClO_{2} and $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ solution was added. The resulting mixture was stirred for 1 h then quenched by addition of a 0.1 N HCl solution and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layers were washed with brine, dried over MgSO_{4}, filtered and the solvent removed under reduced pressure. The crude ($2 S, 4 R(1 R), 5 S, 6 S(2 S, 5 S, 6 R, 7 S, 8 Z)$)-4-(2-carboxy-1-methyl ethyl-1 yl)-6-\{5,7-dimethyl-2,6-bis((methoxymethyl)oxy)-9-tributylstannyl-dec-8-en-3-yn-1-yl\}-5-methyl-2-phenyl-1,3-dioxinan was used in the next step without further purification.

Jones oxidation - To a solution of the preceding alcohol $(2 S, 4 R(1 S), 5 S, 6 S(2 S, 5 S, 6 R, 7 S, 8 Z)$)-4-(2-hydroxy-1-methyl ethyl-1-yl)-6-\{5,7-dimethyl-2,6-bis((methoxymethyl)oxy)-9-tributylstannyl-dec-8-en-3-yn-1-yl\}-5-methyl-2-phenyl-1,3-dioxinan ($84 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv) in acetone $(1 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was slowly added (drop to drop) a solution of CrO_{3} in sulfuric acid ($2.66 \mathrm{M}, 790 \mu \mathrm{~L}, 0.20$ mmol, 2.0 equiv). After stirring for 15 min at $0^{\circ} \mathrm{C}$ the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$, brine, dried over MgSO_{4} and the solvent was removed under reduced pressure. The crude acid derivative (74 mg) was directly used in the next step without further purification. ${ }^{1} \mathrm{H}$ NMR (400.0 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=7.43-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 3 \mathrm{H}), 6.00\left(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, J_{1_{\mathrm{H}-117 \mathrm{Sn}}}=J\right.$ $\left.{ }^{1}{ }_{\mathrm{H}-119 \mathrm{Sn}}=133.3 \mathrm{~Hz}\right), 5.54(\mathrm{~s}, 1 \mathrm{H}), 5.02(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H})$,
4.80-4.78 (m, 1H), $4.69(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{dd}, J=10.1,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~d}, J=$ $6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{td}, J=9.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}),, 3.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.23(\mathrm{t}$, $J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{qd}, J=6.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{qd}, J=6.9,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.20$ (dqd, $J=8.2,6.4,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.22-2.18(\mathrm{~m}, 1 \mathrm{H}), 1.89\left(\mathrm{~s}, J_{1_{\mathrm{H}-117 \mathrm{Sn}}}=J_{1_{\mathrm{H}-119 \mathrm{Sn}}}=42.6\right.$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.89-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.64(\mathrm{ddq}, J=10.1,9.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.53-1.42(\mathrm{~m}$, $\left.6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 1.31\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.30\left(\mathrm{sext}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 1.17(\mathrm{~d}, J$ $\left.=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.98\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.94-0.85\left(\mathrm{~m}, 18 \mathrm{H}, 3 \mathrm{CH}_{2}+4 \mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C} \mathrm{NMR}\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=178.0(\mathrm{C}), 144.2\left(\mathrm{CH}, J_{13 \mathrm{C}-117 \mathrm{Sn}}=J_{13 \mathrm{C}-119 \mathrm{Sn}}=29.0\right.$ $\mathrm{Hz}), 138.2(\mathrm{C}), 137.6(\mathrm{C}), 128.5(\mathrm{CH}), 128.1(2 \mathrm{CH}), 125.7(2 \mathrm{CH}), 99.7(\mathrm{CH}), 98.1$ $\left(\mathrm{CH}_{2}\right), 93.7\left(\mathrm{CH}_{2}\right), 88.0(\mathrm{C}), 85.3(\mathrm{CH}), 81.8(\mathrm{CH}), 80.0(\mathrm{C}), 77.0(\mathrm{CH}), 61.0(\mathrm{CH}), 56.2$ $\left(\mathrm{CH}_{3}\right), 55.5\left(\mathrm{CH}_{3}\right), 42.1(\mathrm{CH}), 40.7(\mathrm{CH}), 39.8\left(\mathrm{CH}_{2}\right), 35.5(\mathrm{CH}), 30.2(\mathrm{CH}), 29.2$ $\left(3 \mathrm{CH}_{2}, J^{13 \mathrm{C}-117 \mathrm{Sn}}=J^{13{ }_{\mathrm{C}}-119 \mathrm{Sn}}=19.2 \mathrm{~Hz}\right), 27.3\left(3 \mathrm{CH}_{2}, J^{13 \mathrm{C}-117 \mathrm{Sn}}=J^{13 \mathrm{C}-119 \mathrm{Sn}}=57.4 \mathrm{~Hz}\right)$, $27.2\left(\mathrm{CH}_{3}, J^{13 \mathrm{C}-117 \mathrm{Sn}}{ }^{1} J^{13 \mathrm{C}_{-}{ }^{119}{ }_{\mathrm{Sn}}}=36.4 \mathrm{~Hz}\right), 18.6\left(\mathrm{CH}_{3}\right), 16.4\left(\mathrm{CH}_{3}\right), 15.2\left(\mathrm{CH}_{3}\right), 13.7$ $\left(3 \mathrm{CH}_{3}\right), 11.5\left(\mathrm{CH}_{3}\right), 9.9\left(3 \mathrm{CH}_{2}, J^{13 \mathrm{C}_{-}-117 \mathrm{Sn}}=310.6 \mathrm{~Hz}, J^{13}{ }^{1} \mathrm{C}^{-119}{ }_{\mathrm{Sn}}=331.8 \mathrm{~Hz}\right)$.

To a solution of the preceding acid ($3.3 \mathrm{~g}, 4.05 \mathrm{mmol}, 1.0$ equiv) in benzene (160 mL)/ $\mathrm{MeOH}(45 \mathrm{~mL}$) was added a (trimethylsilyl)diazomethane solution (2 M in hexane, 4.05 $\mathrm{mmol}, 1.0$ equiv) until a yellow tint persisted. The resulting mixture was stirred 15 min then concentrated in vacuum. The residue was purified by chromatography on silica gel (cyclohexane/AcOEt 90:10 to $80: 20$) to give the $(2 S, 4 R(1 R), 5 S, 6 S(2 S, 5 S, 6 R, 7 S, 8 Z)$)-4 (2-methoxycarbonyl-1-methyl ethyl-1-yl)-6-\{5,7-dimethyl-2-hydroxy-2,6-bis((methoxymethyl)oxy)-9-tributylstannyl-dec-8-en-3-yn-1-yl\}-5-methyl-2-phenyl-1,3-dioxinan ($2.32 \mathrm{~g}, 69 \%$ yield over 3 steps). $[\alpha]_{\mathrm{D}}^{20}=-34.5\left(c=0.96, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400.0 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.45-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.31(\mathrm{~m}, 3 \mathrm{H}), 6.00(\mathrm{dq}, J=9.6$ $\left.1.8 \mathrm{~Hz}, J^{{ }^{1}-1{ }^{117} \mathrm{Sn}}{ }^{2} J_{1_{\mathrm{H}-}{ }^{-119} \mathrm{~S}_{\mathrm{Sn}}}=132.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.55(\mathrm{~s}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.81-4.77(\mathrm{~m}, 1 \mathrm{H}), 4.79(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=6.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.05(\mathrm{dd}, J=10.5,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{ddd}, J=9.6,9.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.23(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{qd}, J=$ $7.3,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{qd}, J=6.9,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.17(\mathrm{dqd}, J=9.6,6.9,5.5 \mathrm{~Hz}$ $1 \mathrm{H}), 2.30-2.17(\mathrm{~m}, 1 \mathrm{H}), 1.89\left(\mathrm{~d}, J=1.8 \mathrm{~Hz}, J_{1_{\mathrm{H}-117 \mathrm{Sn}}}=J_{1_{\mathrm{H}-119 \mathrm{Sn}}}=42.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.87-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.75(\mathrm{ddq}, J=10.5,9.6,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.57-1.51\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 1.37$ (sext, $\left.J=7.3 \mathrm{~Hz}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 1.24\left(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.19(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}$ $\left.\mathrm{CH}_{3}\right), 1.00-0.80\left(\mathrm{~m}, 15 \mathrm{H}, 3 \mathrm{CH}_{2}+3 \mathrm{CH}_{3}\right), 0.85\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=174.8(\mathrm{C}), 144.4\left(\mathrm{CH}, J_{13 \mathrm{C}-117 \mathrm{Sn}}=J_{13 \mathrm{C}-119 \mathrm{Sn}}=27.8 \mathrm{~Hz}\right), 138.6$ $(\mathrm{C}), 137.7\left(\mathrm{C}, J^{13}{ }^{13}-117 \mathrm{Sn}=J{ }_{13 \mathrm{C}-119 \mathrm{Sn}}=369.0 \mathrm{~Hz}\right), 128.6(\mathrm{CH}), 128.5(2 \mathrm{CH}), 125.8$ $(2 \mathrm{CH}), 99.7(\mathrm{CH}), 98.2\left(\mathrm{CH}_{2}\right), 93.8(\mathrm{CH}), 87.9(\mathrm{C}), 85.4(\mathrm{C}), 82.2(\mathrm{CH}), 80.5(\mathrm{C}), 77.0$ $(\mathrm{CH}), 61.1(\mathrm{CH}), 56.2\left(\mathrm{CH}_{3}\right), 55.7\left(\mathrm{CH}_{3}\right), 52.1\left(\mathrm{CH}_{3}\right), 42.2\left(\mathrm{CH}, J^{13}{ }_{\mathrm{C}-117 \mathrm{Sn}}=J_{13 \mathrm{C}-119 \mathrm{Sn}}=\right.$ $42.6 \mathrm{~Hz}), 41.1(\mathrm{CH}), 39.9\left(\mathrm{CH}_{2}\right), 35.8(\mathrm{CH}), 30.3(\mathrm{CH}), 29.4\left(3 \mathrm{CH}_{2}, J_{13 \mathrm{C}-117 \mathrm{Sn}}=J^{13 \mathrm{C}-}\right.$ $\left.{ }^{119} 9_{\mathrm{Sn}}=19.2 \mathrm{~Hz}\right), 27.6\left(3 \mathrm{CH}_{2}, J^{13{ }_{\mathrm{C}}-117 \mathrm{Sn}}=J^{13 \mathrm{C}-119 \mathrm{Sn}}=57.4 \mathrm{~Hz}\right), 27.4\left(\mathrm{CH}_{3}, J_{13 \mathrm{C}-117 \mathrm{Sn}}=J\right.$ $\left.{ }^{13}{ }_{\mathrm{C}-119 \mathrm{~S}_{\mathrm{n}}}=44.1 \mathrm{~Hz}\right), 18.7\left(\mathrm{CH}_{3}\right), 16.5\left(\mathrm{CH}_{3}\right), 13.8\left(3 \mathrm{CH}_{3}\right), 11.6\left(\mathrm{CH}_{3}\right), 10.0\left(3 \mathrm{CH}_{2}, J^{13 \mathrm{C}}\right.$ ${ }_{117}{ }_{\mathrm{Sn}}=312.4 \mathrm{~Hz}, J{ }^{13}{ }_{\mathrm{C}-119 \mathrm{Sn}}=327.8 \mathrm{~Hz}$), $9.3\left(\mathrm{CH}_{3}\right)$; IR (Film) $v=2955$, 2927, 2872, $2853,1745,1454,1403,1349,1375,1207,1154,1110,1029,700 \mathrm{~cm}^{-1}$; elemental analysis calcd (\%) for $\mathrm{C}_{43} \mathrm{H}_{72} \mathrm{O}_{8} \mathrm{Sn}$: C 61.80, H 8.68; found: C 61.92, H 8.83

To a solution of the preceding ester ($200 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{AcOEt}(2.5 \mathrm{~mL}$) was added PtO_{2} ($20 \mathrm{mg}, 0.088 \mathrm{mmol}, 0.35$ equiv). The resulting suspension was stirred for 12 h at $20^{\circ} \mathrm{C}$ under H_{2} atmosphere then filtered and the solvent was removed under reduced pressure. The crude $(2 S, 4 R(1 R), 5 S, 6 S(2 S, 3 Z, 5 S, 6 R, 7 S, 8 Z)$)-4-(2-methoxycarbonyl-1-methyl ethyl-1-yl)-6-\{5,7-dimethyl-2,6-bis((methoxymethyl)oxy) 9-tributylstannyl-deca-3,8-dien-1-yl\}-5-methyl-2-phenyl-1,3-dioxinan was used without further purification in the next step. ${ }^{1} \mathrm{H}$ NMR $\left(400.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.49-7.44$ (m, $2 \mathrm{H}), 7.35-7.29(\mathrm{~m}, 3 \mathrm{H}), 5.93\left(\mathrm{dq}, J=8.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}, J_{1_{\mathrm{H}-117 \mathrm{Sn}}}=J_{1_{\mathrm{H}-119 \mathrm{Sn}}}=136.0 \mathrm{~Hz}\right)$ $5.60(\mathrm{~s}, 1 \mathrm{H}), 5.55(\mathrm{t}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{dd}, J=10.5,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{dd}, J=$ $10.1,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~s}, 2 \mathrm{H}), 4.49(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.05$ $(\mathrm{dd}, J=10.1,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{dd}, J=10.1,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.32(\mathrm{~s}$ $6 \mathrm{H}, 2 \mathrm{CH}_{3}$), $3.14(\mathrm{dd}, J=6.9,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.85-2.79(\mathrm{qd}, J=6.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.85-$ 2.79 (dqd, $J=10.9,6.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{dqd}, J=8.2,6.9,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-1.91(\mathrm{~m}$, $1 \mathrm{H}), 1.85\left(\mathrm{~d}, J=1.4 \mathrm{~Hz}, J_{1_{\mathrm{H}-117 \mathrm{Sn}}}=J_{1_{\mathrm{H}-119 \mathrm{Sn}}}=42.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.70-1.60(\mathrm{~m}, 2 \mathrm{H})$, $1.51-1.44\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 1.32\left(\mathrm{sext}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 1.23(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 0.98\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.94\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.92-0.82(\mathrm{~m}, 18 \mathrm{H}$, $\left.3 \mathrm{CH}_{2}+4 \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100.5 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=174.8(\mathrm{C}), 144.7(\mathrm{CH}), 138.7(\mathrm{CH})$, $137.3(\mathrm{C}), 136.5(\mathrm{C}), 129.0(\mathrm{CH}), 128.2(\mathrm{CH}), 127.9(2 \mathrm{CH}), 125.7(2 \mathrm{CH}), 99.5(\mathrm{CH})$, $97.9\left(\mathrm{CH}_{2}\right), 93.1\left(\mathrm{CH}_{2}\right), 86.3(\mathrm{CH}), 82.2(\mathrm{CH}), 77.3(\mathrm{CH}), 66.2(\mathrm{CH}), 56.1\left(\mathrm{CH}_{3}\right), 55.2$ $\left(\mathrm{CH}_{3}\right), 51.9\left(\mathrm{CH}_{3}\right), 41.0(2 \mathrm{CH}), 39.1\left(\mathrm{CH}_{2}\right), 35.9(\mathrm{CH}), 35.8(\mathrm{CH}), 29.2\left(3 \mathrm{CH}_{2}, J_{13 \mathrm{C}}\right.$ $\left.{ }^{117}{ }_{\mathrm{Sn}}=J^{13 \mathrm{C}-119 \mathrm{Sn}}=19.2 \mathrm{~Hz}\right), 27.4\left(3 \mathrm{CH}_{2}, J^{13 \mathrm{C}_{\mathrm{C}}-117 \mathrm{Sn}}{ }^{1}=J^{13 \mathrm{C}-119 \mathrm{Sn}} 1=57.5 \mathrm{~Hz}\right), 27.2\left(\mathrm{CH}_{3}, J\right.$ $\left.{ }^{13}{ }_{\mathrm{C}-117 \mathrm{Sn}}=J{ }^{13}{ }_{\mathrm{C}-119 \mathrm{Sn}_{\mathrm{s}}}=42.2 \mathrm{~Hz}\right), 17.7\left(\mathrm{CH}_{3}\right), 15.6\left(\mathrm{CH}_{3}\right), 14.2\left(\mathrm{CH}_{3}\right), 13.7\left(3 \mathrm{CH}_{3}\right), 11.6$ $\left(\mathrm{CH}_{3}\right), 9.9\left(3 \mathrm{CH}_{2}, J^{13 \mathrm{C}-117 \mathrm{Sn}}{ }^{2}=313.4 \mathrm{~Hz}, J_{13 \mathrm{C}-119 \mathrm{Sn}}=326.8 \mathrm{~Hz}\right)$.

To a solution of the preceding compound ($168 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (4 mL) at $0^{\circ} \mathrm{C}$ was added over 30 min an iodine solution ($48 \mathrm{mg}, 0.19 \mathrm{mmol}, 0.98$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(16 \mathrm{~mL})$. The resulting solution was immediately added with a $1 M \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution and the organic phase was then concentrated under reduced pressure. The residue was taken up with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{ml})$ and a 0.7 M KF solution $(600 \mu \mathrm{~L})$. After stirring for 3 h at $20^{\circ} \mathrm{C}$, the solution was filtered and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layers were washed with brine, dried over MgSO_{4}, filtered and the solvent was removed under reduced pressure. The residue was purified by chromatography on silica gel (cyclohexane/Et $\mathrm{E}_{2} \mathrm{O}$ 80:20 to 50:50) to give the title compound 60 ($96 \mathrm{mg}, 71 \%$ yield for 2 steps). (60): $[\alpha]_{\mathrm{D}}^{20}=+3.70\left(c=0.78, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $=7.49-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.30(\mathrm{~m}, 3 \mathrm{H}), 5.60(\mathrm{t}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{~s}, 1 \mathrm{H}), 5.28(\mathrm{t}$,
$J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{dq}, J=8.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.83$ (ddd, $J=10.5,9.2,1.8 \mathrm{~Hz}, 1 \mathrm{H})$ 4.72 (d, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~s}, 2 \mathrm{H}), 4.51(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{dd}, J=10.1,3.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.84(\mathrm{dd}, J=9.6,9.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.35\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 3.26$ (t, $J=5.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.86-2.78 (dqd, $J=10.5,6.9,5.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.86-2.78 (qd, $J=6.9,3.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.47$ (dqd, $J=8.2,6.9,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.36\left(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.99(\mathrm{ddm}$, $J=11.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{ddq}, J=10.1,9.6,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.72-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{~d}$, $\left.J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.08\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.96\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.89$ (d, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=174.8(\mathrm{C}), 138.8(\mathrm{C})$, 137.9 (C), $135.8(\mathrm{CH}), 129.4(\mathrm{CH}), 128.2(2 \mathrm{CH}, 127.9(2 \mathrm{CH}), 125.7(\mathrm{CH}), 100.4(\mathrm{CH})$, $99.4\left(\mathrm{CH}_{2}\right), 97.9(\mathrm{C}), 93.1\left(\mathrm{CH}_{2}\right), 85.6(\mathrm{CH}), 82.1(\mathrm{CH}), 77.6(\mathrm{CH}), 66.1(\mathrm{CH}), 56.1$ $\left(\mathrm{CH}_{3}\right), 55.2\left(\mathrm{CH}_{3}\right), 51.9\left(\mathrm{CH}_{3}\right), 43.9(\mathrm{CH}), 41.0(\mathrm{CH}), 39.2\left(\mathrm{CH}^{2}\right.$ or $\left.\mathrm{CH}_{2}\right), 35.7(\mathrm{CH})$, $35.3\left(\mathrm{CH}_{3}\right), 33.6\left(\mathrm{CH}^{2} \mathrm{CH}_{2}\right), 18.4\left(\mathrm{CH}_{3}\right), 14.7\left(\mathrm{CH}_{3}\right), 11.7\left(\mathrm{CH}_{3}\right), 9.2\left(\mathrm{CH}_{3}\right)$; IR (Film) $v=3428,2952,2928,2880,2821,1744,1454,1435,1398,1207,1152,1090,1045$ cm^{-1}. elemental analysis calcd (\%) for $\mathrm{C}_{31} \mathrm{H}_{47} \mathrm{IO}_{8}$: C 55.19, H 7.02 ; found: C $55.31, \mathrm{H}$ 7.15.

(2S,4R(1R),5S,6S(2S,3Z,5S,6R,7S,8Z,11S,12R,13S,14S,15S,16Z))-4-(2-

 Methoxycarbonyl-1-methyl ethyl-1-yl)-6-\{12-(tert-butyldimethylsilyloxy)-5,7,9,11,13,15-hexamethyl-2,6-bis((methoxymethyl)oxy)-14-(triethylsilyloxy)-nonadeca-3,8,16,18-tetraen-1-yl\}-5-methyl-2-phenyl-1,3-dioxinan (61): In a 100 mL two-necked round-bottomed flask under argon at $20^{\circ} \mathrm{C}$ was introduced 9 -BBN dimer $(5.0 \mathrm{~g}, 20.5 \mathrm{mmol}, 1.0$ equiv), and then THF (25 mL). Freshly distilled MeOH (1.8 mL , $45.1 \mathrm{mmol}, 2.2$ equiv) was slowly added. A strong H_{2} degassment was observed. The reaction mixture was stirred for 30 min after the end of addition and then THF was distilled out. The crude $9-\mathrm{MeOBBN}$ was finally distilled under reduced pressure ($2-5$ mbar; bp: $63-65^{\circ} \mathrm{C} /$ litt: 12 mmHg ; bp: $80-82^{\circ} \mathrm{C}$) to give $9-\mathrm{MeOBBN}$ as a colourless oil ($5.6 \mathrm{~g}, 92 \%$ yield).To a solution of the alkyliodide $\mathbf{4 3}$ ($145 \mathrm{mg}, 0.26 \mathrm{mmol}, 1.8$ equiv) in $\mathrm{Et}_{2} \mathrm{O}(3.7 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ was rapidly added t-BuLi (1.5 M in pentane, $355 \mu \mathrm{~L}, 0.53 \mathrm{mmol}$, 3.8 equiv); 2 min later were added $9-\mathrm{MeOBBN}$ (1 M in hexane, $602 \mu \mathrm{~L}, 0.60 \mathrm{mmol}, 4.3$ equiv) then THF (3.7 mL). The resulting mixture was stirred 10 min at $-78^{\circ} \mathrm{C}$ and allowed to warm to $20^{\circ} \mathrm{C}$ during 1 h 15 min ; an aqueous $3.5 \mathrm{M} \mathrm{Cs}_{2} \mathrm{CO}_{3}$ solution was then added $(220 \mu \mathrm{~L}$, $0.77 \mathrm{mmol}, 5.5$ equiv), followed by the addition of the vinyliodide $\mathbf{6 0}(96 \mathrm{mg}, 0.14$ mmol, 1.0 equiv) in DMF (3.7 mL). Finally $\mathrm{PdCl}_{2} \mathrm{dppf}(12 \mathrm{mg}, 0.014 \mathrm{mmol}, 0.10$ equiv) and triphenylarsine ($7 \mathrm{mg}, 0.021 \mathrm{mmol}, 0.12$ equiv) were added, and the resulting dark solution was stirred at $20^{\circ} \mathrm{C}$ for 16 h . After extraction with $\mathrm{Et}_{2} \mathrm{O}$, the organic layers were washed with brine, dried over MgSO_{4}, filtered and the solvent removed under reduced pressure. The residue was purified by chromatography on silica gel (cyclohexane/ $\mathrm{Et}_{2} \mathrm{O} 80: 20$ to $60: 40$) to give the title compound 61 ($87 \mathrm{mg}, 60 \%$ yield). (61): $[\alpha]_{\mathrm{D}}^{20}=+13.8\left(c=0.90, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.47-7.44$ (m, 2H), 7.35-7.30 (m, 3H), 6.57 (ddd, $J=16.9,11.0,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{dd}, J=11.0$, $10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{~s}, 1 \mathrm{H}), 5.54(\mathrm{dd}, J=11.9,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{t}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.20(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{dd}, J=10.5,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H})$, 4.97 (d, $J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{dd}, J=11.0,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.54(\mathrm{~s}, 2 \mathrm{H}), 4.50(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{dd}, J=10.1,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{dd}, J=$ $10.1,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.55(\mathrm{dd}, J=6.9,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{dd}, J=4.6$, $4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.07(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.91-2.76$ $(\mathrm{m}, 3 \mathrm{H}), 2.54(\mathrm{dqd}, J=10.1,6.4,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.08-1.55(\mathrm{tq}, J=10.1,6.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.08-1.55(\mathrm{~m}, 6 \mathrm{H}), 1.55\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.22\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.06-0.83(\mathrm{~m}$, $\left.8 \mathrm{CH}_{3}\right), 0.91\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 0.68\left(\mathrm{q}, J=7.8 \mathrm{~Hz}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 0.63(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 0.07\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=174.8(\mathrm{C}), 138.8(\mathrm{C})$, $136.8(\mathrm{CH}), 134.4(\mathrm{CH}), 132.3(\mathrm{C}), 132.1(\mathrm{CH}), 130.4(\mathrm{CH}), 128.9(3 \mathrm{CH}), 128.2(\mathrm{CH})$, $127.9(2 \mathrm{CH}), 125.8(\mathrm{CH}), 117.4\left(\mathrm{CH}_{2}\right)$, $99.6(\mathrm{CH}), 97.8\left(\mathrm{CH}_{2}\right), 92.5\left(\mathrm{CH}_{2}\right), 86.9(\mathrm{CH})$, $82.2(\mathrm{CH}), 78.0(\mathrm{CH}), 77.0(2 \mathrm{CH}), 66.4(\mathrm{CH}), 56.0\left(\mathrm{CH}_{3}\right), 55.2\left(\mathrm{CH}_{3}\right), 51.9\left(\mathrm{CH}_{3}\right), 41.9$, $41.0,40.3,39.0,36.2,35.8,35.3,35.0,34.4\left(7 \mathrm{CH}, 2 \mathrm{CH}_{2}\right), 26.9\left(3 \mathrm{CH}_{3}\right), 23.1\left(\mathrm{CH}_{3}\right)$, 18.5 (C), 18.5, 17.4, 16.5, 14.2, 11.6, 11.3, $9.3\left(7 \mathrm{CH}_{3}, \mathrm{CH}_{3}-2\right), 7.2\left(3 \mathrm{CH}_{3}\right), 5.7\left(3 \mathrm{CH}_{2}\right)$, $3.1\left(\mathrm{CH}_{3}\right),-3.2\left(\mathrm{CH}_{3}\right)$; IR (Film) $v=3383,2957,2931,2878,2857,2821,2359,2340$, 1747, 1733, 1657, 1455, 1462, 1435, 1396, 1374, 1328, 1252, 1143, 1094, 1045, 919 , $835,772,739,701 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z: \mathrm{C}_{56} \mathrm{H}_{98} \mathrm{O}_{10} \mathrm{NaSi}_{2}$: calculated 1009.6591; found 1009.6591.

Discodermolide 1: To a solution of compound $61(53 \mathrm{mg}, 0.054 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{MeOH}(6.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added p-toluene sulfonic acid ($3 \mathrm{mg}, 0.015 \mathrm{mmol}, 0.28$ equiv). After stirring for 1 h at $0^{\circ} \mathrm{C}$, triethylamine was added to the reaction mixture (0.3 equiv) and the solvent removed under reduced pressure. The residue was purified by chromatography on silica gel (cyclohexane/AcOEt, $95: 5$ to $70: 30$) to give the $(2 S, 4 R(1 R), 5 S, 6 S(2 S, 3 Z, 5 S, 6 R, 7 S, 8 Z, 11 S, 12 R, 13 S, 14 S, 15 S, 16 Z)$)-4-(2-methoxycarbonyl-1-methyl ethyl-1-yl)-6-\{12-(tert-butyldimethylsilyloxy) 5,7,9,11,13,15-hexamethyl-14-hydroxy-2,6-bis((methoxymethyl)oxy)-nonadeca-3,8,16,18-tetraen-1-yl\}-5-methyl-2-phenyl-1,3-dioxinan ($36 \mathrm{mg}, 77 \%$ yield). $[\alpha]_{\mathrm{D}}^{20}=+$ $11.0\left(c=0.90, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.47-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.33-$ $7.30(\mathrm{~m}, 3 \mathrm{Hr}), 6.64(\mathrm{ddd}, J=16.9,11.0,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{dd}, J=11.0,10.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.59(\mathrm{~s}, 1 \mathrm{H}), 5.54(\mathrm{dd}, J=11.0,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{dd}, J=10.5,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.23$ (dd, $J=10.1,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~d}$, $J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{dd}, J=10.1,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~s}, 2 \mathrm{H})$, $4.50(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{dd}, J=10.5,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.74$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.63(\mathrm{dd}, J=5.5,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.33\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 3.35-3.33(\mathrm{~m}, 1 \mathrm{H})$, $3.09(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.86-2.75(\mathrm{dqd}, J=11.0,7.3,5.5 \mathrm{~Hz}, 1 \mathrm{H}, 2.86-2.75(\mathrm{~m}, 2 \mathrm{H})$,
2.54 (dqd, $J=10.1,6.4,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{t}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-1.71(\mathrm{~m}, 4 \mathrm{H}), 1.58$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), $1.65-1.55(\mathrm{ddq}, J=10.5,9.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.65-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 1 \mathrm{H}$, OH), 1.22 (d, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 1.01 (d, $\left.J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.96(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{CH}_{3}$), $0.95-0.91\left(\mathrm{~m}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 0.91\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 0.87\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $0.70\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.10\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 174.8 (C), 138.8 (C), $137.0(\mathrm{CH}), 134.7(\mathrm{CH}), 132.7$ (C), 132.1 (CH), 131.1 (CH), $130.0(\mathrm{CH}), 129.1(\mathrm{CH}), 128.2(2 \mathrm{CH}), 127.9(2 \mathrm{CH}), 125.8(\mathrm{CH}), 118.5\left(\mathrm{CH}_{2}\right), 99.6$ $(\mathrm{CH}), 97.9\left(\mathrm{CH}_{2}\right), 93.2\left(\mathrm{CH}_{2}\right), 86.8(\mathrm{CH}), 82.0(\mathrm{CH}), 79.0(\mathrm{CH}), 77.8(\mathrm{CH}), 76.7(\mathrm{CH})$, $66.4(\mathrm{CH}), 56.1\left(\mathrm{CH}_{3}\right), 55.3\left(\mathrm{CH}_{3}\right), 51.9\left(\mathrm{CH}_{3}\right), 41.1,39.1,38.0,36.7,36.3,35.9,35.3$, 34.7, $34.4\left(7 \mathrm{CH}, 2 \mathrm{CH}_{2}\right), 26.3\left(3 \mathrm{CH}_{3}\right), 23.3\left(\mathrm{CH}_{3}\right), 18.5(\mathrm{C}), 17.6,17.1,16.4,13.4,11.7$, 9.5, $9.3\left(7 \mathrm{CH}_{3}\right),-3.1\left(\mathrm{CH}_{3}\right),-3.6\left(\mathrm{CH}_{3}\right)$; IR (Film) $v=2377,2957,2929,2883,2857$, 1591, 1462, 1434, 1395, 1257, 1153, 1093, 1036, $874 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z $\mathrm{C}_{50} \mathrm{H}_{84} \mathrm{O}_{10} \mathrm{NaSi}$: calculated 895.5726; found: 895.5721.

To a solution of the preceding alcohol ($114 \mathrm{mg}, 0.13 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL) was added trichloroacetylisocyanate ($16 \mu \mathrm{l}, 0.14 \mathrm{mmol}, 1.05$ equiv). After stirring for 15 min at $20^{\circ} \mathrm{C}$, the resulting mixture was concentrated in vacuum and the residue taken up in $\mathrm{MeOH}(13 \mathrm{~mL}) . \mathrm{K}_{2} \mathrm{CO}_{3}(99 \mathrm{mg}, 0.71 \mathrm{mmol}, 5.5$ equiv) was added and the resulting solution was stirred 1 h 15 min then concentrated in vacuum and extracted with AcOEt. The organic layers were washed with water, brine, dried over MgSO_{4}, filtered and the solvent removed under reduced pressure. The residue was purified by chromatography on silica gel (cyclohexane/AcOEt 90:10 to 50:50) to give the ($2 S, 4 R(1 R), 5 S, 6 S(2 S, 3 Z, 5 S, 6 R, 7 S, 8 Z, 11 S, 12 R, 13 S, 14 S, 15 S, 16 Z)$)-4-(2-methoxycarbonyl-1-methyl ethyl-1-yl)-6-\{12-(tert-butyldimethylsilyloxy)-14 (carbamoyloxy)-5,7,9,11,13,15-hexamethyl-2,6-bis((methoxymethyl)oxy)-nonadeca-3,8,16,18-tetraen-1-yl $\}$-5-methyl-2-phenyl-1,3-dioxinan ($76 \mathrm{mg}, 64 \%$ yield) as a pale oil. $[\alpha]_{\mathrm{D}}^{20}=+17.4\left(\mathrm{c}=0.80, \mathrm{CHCl}_{3}\right.$); ${ }^{1} \mathrm{H}$ NMR ($400.0 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.50-7.44$ (m , $2 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 3 \mathrm{H}), 6.60(\mathrm{dt}, J=16.9,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{dd}, J=11.0,10.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.58(\mathrm{~s}, 1 \mathrm{H}), 5.58-5.52(\mathrm{~m}, 1 \mathrm{H}), 5.53(\mathrm{dd}, J=12.8,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{dd}, J=$ $11.0,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.28-5.18(\mathrm{~m}, 3 \mathrm{H}), 5.14(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=10.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.82(\mathrm{dd}, J=10.1,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.74-4.70(\mathrm{~m}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.54$ $(\mathrm{s}, 2 \mathrm{H}), 4.50(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{dd}, J=10.1,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{dd}, J=9.6,9.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.43(\mathrm{dd}, J=4.6,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.32\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 3.06(\mathrm{t}, J$ $=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{dqd}, J=10.5,6.9,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.83-2.79(\mathrm{qdm}, J=7.3,5.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.81(\mathrm{dqd}, J=10.1,6.9,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{dqd}, J=10.1,6.4,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-$ $1.79(\mathrm{~m}, 5 \mathrm{H}), 1.74-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.57\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.25\left(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.01$ (d, $\left.J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.94-0.85\left(\mathrm{~m}, 12 \mathrm{H}, 4 \mathrm{CH}_{3}\right), 0.91\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 0.73(\mathrm{~d}, J=6.9$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 174.9 (C), 156.9 (C), 138.8 (CH), 137.0 (C), 133.6 (CH), 132.5 (CH), 132.1 (C), 130.1 $(\mathrm{CH}), 129.8(\mathrm{CH}), 129.0(\mathrm{CH}), 128.2(\mathrm{CH}), 127.9(2 \mathrm{CH}), 125.8(2 \mathrm{CH}), 117.9\left(\mathrm{CH}_{2}\right)$, $99.7(\mathrm{CH}), 97.8\left(\mathrm{CH}_{2}\right), 93.2\left(\mathrm{CH}_{2}\right), 86.9(\mathrm{CH}), 82.1(\mathrm{CH}), 78.8(\mathrm{CH}), 77.0(2 \mathrm{CH}), 66.4$ $(\mathrm{CH}), 56.0\left(\mathrm{CH}_{3}\right), 55.2\left(\mathrm{CH}_{3}\right), 51.9\left(\mathrm{CH}_{3}\right), 41.2(\mathrm{CH}), 39.2\left(\mathrm{CH}_{2}\right), 37.8(\mathrm{CH}), 36.3$ $(\mathrm{CH}), 35.9\left(\mathrm{CH}_{2}\right), 35.3(\mathrm{CH}), 35.1(\mathrm{CH}), 34.4(\mathrm{CH}), 29.7(\mathrm{CH}), 26.2\left(3 \mathrm{CH}_{3}\right), 23.0$ $\left(\mathrm{CH}_{3}\right), 18.5(\mathrm{C}), 18.5\left(\mathrm{CH}_{3}\right), 17.5,16.5,11.7,10.1\left(4 \mathrm{CH}_{3}\right), 13.7\left(\mathrm{CH}_{3}\right), 9.4\left(\mathrm{CH}_{3}\right),-3.3$ $\left(\mathrm{CH}_{3}\right),-3.6\left(\mathrm{CH}_{3}\right)$;. IR (Film) $v=3359,2981,2930,2884,2857,1728,1598,1455$, 1435, 1395, 1363, 1326, 1258, 1214, 1146, 1094, 1035, 836, 773, $757 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z: \mathrm{C}_{51} \mathrm{H}_{85} \mathrm{O}_{11} \mathrm{NaSi}$: calculated 938.5784; found 938.5793 .

To a solution of the preceding compound ($14 \mathrm{mg}, 0.015 \mathrm{mmol}, 1.0$ equiv) in THF (1.5 $\mathrm{mL})$ was added $\mathrm{HCl}(4 \mathrm{~N}, 1.5 \mathrm{~mL})$. The resulting mixture was stirred 72 h at $20^{\circ} \mathrm{C}$ then added with solid NaHCO_{3} and extracted 3 times with AcOEt. The organic layers were washed with water, brine, dried over MgSO_{4}, filtered and the solvent was removed under reduced pressure. The residue was purified by chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 95: 5\right.$ to $\left.90: 10\right)$ to give the title compound (+)-discodermolide 1 (6.2 $\mathrm{mg}, 70 \%$ yield) as a white solid. (1): $[\alpha]_{\mathrm{D}}^{20}=+16.2(c=1.0, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (400.0 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.61(\mathrm{ddd}, J=16.9,11.0,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.53(\mathrm{dd}, J=11.0,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{dd}, J=11.0,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{dd}, J=11.0$, $10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=11.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.79-4.70(\mathrm{~m}, 4 \mathrm{H}), 4.63(\mathrm{ddd}, J=10.1,8.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{t}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.28(\mathrm{dd}, J=5.0,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{dd}, J=8.9,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{dqd}, J=10.5,6.9$, $3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{~m}, 1 \mathrm{H}), 2.70(\mathrm{qd}, J=7.3,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.61-2.54(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OH}), 2.58$ $(\mathrm{m}, 1 \mathrm{H}), 2.00-1.81(\mathrm{~m}, 4 \mathrm{H}+2 \mathrm{OH}), 1.72-1.60(\mathrm{~m}, 3 \mathrm{H}+\mathrm{OH}), 1.64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.32$ (d, $\left.J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.08\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.01\left(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 0.98 (d, $J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}-$), $0.98\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.95(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 0.83\left(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=174.3(\mathrm{C})$, 157.4 (C), $134.5(\mathrm{CH}), 133.8(\mathrm{CH}), 133.6$ (C), $133.0(\mathrm{CH}), 132.2(\mathrm{CH}), 130.1(\mathrm{CH})$, $129.8(\mathrm{CH}), 118.1\left(\mathrm{CH}_{2}\right), 79.1(\mathrm{CH}), 78.8(\mathrm{CH}), 77.7(\mathrm{CH}), 75.7(\mathrm{CH}), 73.4(\mathrm{CH}), 64.5$ $(\mathrm{CH}), 43.4(\mathrm{CH}), 41.1\left(\mathrm{CH}_{2}\right), 37.5(\mathrm{CH}), 36.4(\mathrm{CH}), 35.9\left(\mathrm{CH}_{2}\right), 35.6(\mathrm{CH}), 35.0(\mathrm{CH})$, $33.2(\mathrm{CH}), 30.0(\mathrm{CH}), 23.6\left(\mathrm{CH}_{3}\right), 18.6\left(\mathrm{CH}_{3}\right), 17.7\left(\mathrm{CH}_{3}\right), 16.1\left(\mathrm{CH}_{3}\right), 16.0\left(\mathrm{CH}_{3}\right), 13.9$ $\left(\mathrm{CH}_{3}\right), 12.9\left(\mathrm{CH}_{3}\right), 9.3\left(\mathrm{CH}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400.0 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta=6.69$ (ddd, $J=16.9$, $11.0,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{dd}, J=10.5,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{dd}, J$ $=10.5,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{dd}, J=11.0,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~d}$, $J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.15-5.04(\mathrm{~m}, 2 \mathrm{H}), 4.98(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{dd}, J=8.2,4.1$ $\mathrm{Hz}, 1 \mathrm{H},), 4.56-4.41(\mathrm{~m}, 2 \mathrm{H}), 3.64(\mathrm{t}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{dd}, J=7.3,3.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.16-3.14(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OH}), 3.09(\mathrm{dd}, J=6.9,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.67-2.56(\mathrm{~m}, 3 \mathrm{H}+\mathrm{OH}), 2.35-$ $2.10(\mathrm{~m}, 4 \mathrm{H}+\mathrm{OH}), 1.90-1.45(\mathrm{~m}, 3 \mathrm{H}), 1.59\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.21(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}$, CH_{3}), $1.03\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.01\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.97(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.90\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.82\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.75(\mathrm{~d}, J=5.9$ $\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($100.5 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta=174.7(\mathrm{C}), 158.3(\mathrm{C}), 134.0(\mathrm{CH})$,
$133.8(\mathrm{CH}), 133.7(\mathrm{CH}), 133.2(\mathrm{CH}), 131.1(\mathrm{CH}), 130.5(\mathrm{CH}), 118.1\left(\mathrm{CH}_{2}\right), 79.7(\mathrm{CH})$, $79.2(\mathrm{CH}), 77.4(\mathrm{CH}), 75.9(\mathrm{CH}), 73.1(\mathrm{CH}), 63.3(\mathrm{CH}), 44.0(\mathrm{CH}), 42.1\left(\mathrm{CH}_{2}\right), 38.4$ $(\mathrm{CH}), 37.1(\mathrm{CH}), 36.5\left(\mathrm{CH}_{2}\right), 36.2(\mathrm{CH}), 36.1(\mathrm{CH}), 34.4(\mathrm{CH}), 34.2(\mathrm{CH}), 23.3\left(\mathrm{CH}_{3}\right)$, $19.7\left(\mathrm{CH}_{3}\right), 18.1\left(\mathrm{CH}_{3}\right), 17.6\left(\mathrm{CH}_{3}\right), 15.8\left(\mathrm{CH}_{3}\right), 15.6\left(\mathrm{CH}_{3}\right), 13.1\left(\mathrm{CH}_{3}\right), 9.2\left(\mathrm{CH}_{3}\right)$; HRMS (ESI): m / z : calcd for $\mathrm{C}_{33} \mathrm{H}_{55} \mathrm{O}_{8} \mathrm{NNa}$: $616.3820\left[M^{+}+\mathrm{Na}\right]$; found 616.3816.

Acknowledgements

We thank Sanofi-Aventis for a fellowship for E. d. L.. Technical support from Paris XI University (Châtenay-Malabry and Orsay centers) is gratefully acknowledged (elemental analysis and high-resolution mass spectrometry).
[1] a) S. P. Gunasekera, R. E. Longley, R. A. Isbrucker, J. Nat. Prod. 2002, 65, 1830-1837; b) S. P. Gunasekera, M. Gunasekera, R. E. Longley, G. K. Schulte, J. Org. Chem. 1991, 56, 1346; c) S. P. Gunasekera, G. K. Paul, R. E. Longley, R. A. Isbruker, S. A. Pomponi, J. Nat. Prod. 2002, 65, 1643-1648.
[2] a) A. Canales, R. Matesanz, N. M. Gardner, J. M. Andreu, I. Paterson, J. F. Diaz, J. Jimenez-Barbero, Chem. Eur. J. 2008, in press; b) V. M. Sánchez-Pedregal, K Kubicek, J. Meiler, I. Lyothier, I. Paterson, T. Carlomagno, Angew. Chem. Int. Ed. 2006, 45, 7388-7394; c) S. Xia, C. S. Kenesky, P. V. Rucker, A. B. Smith III, G. A. Orr, S. B. Horwitz, Biochemistry 2006, 45, 11762-11775; d) S. Honore, K. Kamath, D. Braguer, L. Wilson, C. Briand, M. A. Jordan, Mol. Cancer Ther. 2003, 2, 1303-1311; e) L. He, G. A. Orr, S. B. Horwitz, Drug Discovery Today 2001, 6, 1153-1164; f) L. He, H. Y. Chia-Ping, S. B. Horwitz, Mol. Cancer Ther 2001, $1,3-10$; g) L. A. Martello, M. J. LaMarche, L. He, T. J. Beauchamp, A. B. Smith, III, S. B. Horwitz, Chem. Biol. 2001, 8, 843-855; h) M. Kalesse, ChemBioChem. 2000, l, 171-175; i) E. ter Haar, R. J. Kowalski, E. Hamel, C. M. Lin, R. E. Longley, S. P. Gunasekera, H. S. Rosenkranz, B. W. Day, Biochemistry 1996, 35, 243-250; j) R. Balachandran, E. ter Haar, M. J. Welsh, S G. Grant, B. W. Day, Anti-Cancer Drugs 1998, 9, 67-76.
[3] a) G. S. Huang, L. Lopez-Barcons, B. S. Freeze, A. B. Smith III, G. L. Goldberg, S. B. Horwitz, H. M. McDaid, Clin. Cancer. Res. 2006, 12, 298-304; b) L. A Martello, H. M. McDaid, D. L. Regl, C.-P. H. Yang, D. Meng, T. R. R. Pettus, M. D. Kaufman, H. Arimoto, S. J. Danishefsky, A. B. Smith III, S. B. Horwitz, Clin. Cancer. Res. 2000, 6, 1978-1987.
[4] V. M. Sanchez-Pedregal, K. Kubicek, J. Meiler, I. Lyothier, I. Paterson, T. Calomagno, Angew., Int. Ed., 2006, 47, 7388-7394.
[5] Total synthesis: a) J. B. Nerenberg, D. T. Hung, P. K. Somers, S. L. Schreiber, J. Am. Chem. Soc. 1993, 115, 12621-12622; b) D. T. Hung, J. B. Nerenberg, S. L. Schreiber, J. Am. Chem. Soc. 1996, 118, 11054-11080; c) A. B. Smith III, Y Qiu, D. R. Jones, K. Kobayashi, J. Am. Chem. Soc. 1995, 117, 12011-12012; d) A. B. Smith III, T. J. Beauchamp, M. J. LaMarche, M. D. Kaufman, Y. Qiu, H. Arimoto, D. R. Jones, K. Kobayashi, J. Am. Chem. Soc. 2000, 122, 8654-8664, and references therein; e) S. S. Harried, G. Yang, M. A. Strawn, D. C. Myles, J. Org. Chem. 1997, 62, 6098-6099; f) S. S. Harried, C. P. Lee, G. Yang, T. I. H. Lee, D. C Myles, J. Org. Chem. 2003, 68, 6646-6660; g) J. A. Marshall, Z.-H Lu, B. A. Johns, J. Org. Chem. 1998, 63, 817-823; h) J. A. Marshall, B. A. Johns, J. Org. Chem. 1998, 63, 7885-7892; i) I. Paterson, G. J. Florence, K. Gerlach, J. P. Scott, Angew. Chem. Int. Ed. 2000, 39, 377-380; j) I. Paterson, G J. Florence, Eur. J. Org. Chem. 2003, 2193-2208; k) I. Paterson, I. Lyothier, J. Org. Chem. 2005, 70, 5494-5507, and references therein; 1) A. Arefolov, J. S. Panek, J. Am. Chem. Soc. 2005, 127, 5596-5603, and references therein. For a review of the total synthesis prior to 2003 see: I. Paterson, G. J. Florence, Eur. J. Org. Chem. 2003, 12, 2193-2208. For recent reviews on syntheses and analog design and activity see: S. J. Shaw, Mini-Reviews in Medicinal Chemistry, 2008, 8, 276-284. A. B. Smith III, B. S. Freeze, Tetrahedron 2008, 64, 261-298. G. J. Florence, N. M. Gardner, I. Paterson, Nat. Prod. Rep. 2008, 25, 342-375.
[6] a) S. J. Mickel, D. Niederer, R. Daeffler, A. Osmani, E. Kuesters, E. Schmid, K. Schaer, R. Gamboni, W. Chen, E. Loeser, F. R. Kinder, Jr., K. Konigsberger, K. Prasad, T. M. Ramsey, O. Repič, R.-M. Wang, G. Florence, I. Lyothier, I. Paterson, Org. Process Res. Dev. 2004, 8, 122-130, and the four precedent papers; b) S. J. Mickel, R. Daeffler, W. Prikoszovich, Org. Process Res. Dev. 2005, 9, 113-120; c) O. Loiseleur, G. Koch, J. Cercus, F. Schürch, Org. Process Res. Dev. 2005, 9, 259-271.
[7] a) A. Mita, C. Lockhart, T. L. Chen, K. Bocinski, J. Curtright, W. Cooper, L. Hammond, M. Rothenberg, E. Rowinsky, S. Sharma, J. Clin. Oncol. 2004 22 (14S - ASCO Annual Meeting Proceedings, Post-Meeting Edition), abstract 2025.
[8] Preliminary communication: E. de Lemos, F. H., Porée, A. Commerçon, J.-F Betzer, A. Pancrazi, J. Ardisson, Angew. Chem. Int. Ed. 2007, 46, 1917-1921.
[9] a) D. Hoppe, Angew. Chem. 1984, 96, 930-946; Angew. Chem., Int. Ed. Engl. 1984, 23, 932-948; b) D. Hoppe, O. Zschage, Angew. Chem. 1989, 101, 67-69;

Angew. Chem., Int. Ed. Engl. 1989, 28, 69-71; c) D. Hoppe, O. Zschage Tetrahedron 1992, 48, 8389-8392.
$[10]$ a) V. Fargeas, P. Le Ménez, I. Berque, J. Ardisson, A. Pancrazi, Tetrahedron 1996, 52, 6613-6634; b) I. Berque, P. Le Ménez, P. Razon, C. Anies, A. Pancrazi, J. Ardisson, A. Neuman, T. Prangé, J.-D. Brion, Synlett 1998, 11321134; c) I. Berque, P. Le Ménez, P. Razon, A. Pancrazi, J. Ardisson, J.-D. Brion, Synlett 1998, 1135-1137; d) I. Berque, P. Le Ménez, P. Razon, J. Mahuteau, J.-P. Férézou, A. Pancrazi, J. Ardisson, J.-D. Brion, J. Org. Chem. 1999, 64, 373-381.
$[11]$ D. Hoppe, T. Hense, Angew. Chem. Int. Ed. 1997, 36, 2282-2316.
[12] F.-H. Porée, A. Clavel, J.-F. Betzer, A. Pancrazi, J. Ardisson, Tetrahedron Lett. 2003, 44, 7553-7556.
$[13]$ a) P. Fritsch, Liebigs Ann. Chem. 1894, 279, 319-323; b) W. P. Buttenberg, Liebigs Ann. Chem. 1894, 279, 324-337; c) H. Wiechell, Liebigs Ann. Chem. 1894, 279, 337-344; For reviews see : d) M. Braun, Angew. Chem. Int. Ed. 1998, 37, 430-451; e) R. Knorr, Chem. Rev. 2004, 104, 3795-3849.
[14] a) G. Stork, K. Zhao, Tetrahedron Lett. 1989, 30, 2173-2174; b) J. Chen, T. Wang, K. Zhao, Tetrahedron Lett. 1994, 35, 2827-2828.
[15] a) 41% yield with $85: 15$ Z/E ratio. A. B. Smith III, Y. Qiu, D. R. Jones, K. Kobayashi, J. Am. Chem. Soc. 1995, 117, 12011-12012; H. Arimoto, M. D. Kaufman, K. Kobayashi, Y. Qiu, A. B. Smith III, Synlett 1998, 765-767; b) 46% yield with 90:10 Z/E ratio. A. B. Smith III, T. J. Beauchamp, M. J. LaMarche, M. D. Kaufman, Y. Qiu, H. Arimoto, D. R. Jones, K. Kobayashi, J. Am. Chem. Soc. 2000, 122, 8654-8664; c) 40% yield with $70: 30$ to 90:10 ZIE ratio was obtained with small amounts of reduced product arising from the non-iodinated ylide. J. A. Marshall, B. A. Johns, J. Org. Chem. 1998, 63, 7885-7892; d) C. Francavilla, W. Chen, F. R. Kinder, Jr. Org. Lett. 2003, 5, 1233-1236.
[16] T. Fujisawa, Y. Kurita, M. Kawashima, T. Sato, Chem. Lett. 1982, 1641-1642.
$[17] \quad$ a) P. Kocienski, S. Wadman, K. Cooper, J. Am. Chem. Soc. 1989, 111, 23632365; b) P. Kocienski, C. Barber, Pure Appl. Chem. 1990, 62, 1933-1940. c) P. Kocienski in Organic Synthesis via Organometallics, Proceeding of the Fourth Symposium in Aachen, July 15-18 1992; E. Enders, H.-J. Eds; Verlag Wiesbaden: Germany, 1992.
[18] P. Le Ménez, J.-D. Brion, J.-F. Betzer, A. Pancrazi, J. Ardisson, S ynlett 2003, 955-958.
$[19]$ a) T. Iversen, D. R. Bundle, J. Chem. Soc., Chem. Commun. 1981, 1240-1241; b) N. Nakajima, K. Horita, R. Abe, O. Yonemitsu, Tetrahedron Lett. 1988, 29 , 4139-4142; c) L. C. Diaz, G. Z. Melgar, L. S. A. Luciana, Tetrahedron Lett. 2005, 46, 4427-4431.
[20] P.L. Anelli, C. Biffi, F. Montanari, S. Quici, J. Org. Chem. 1987, 52, 2559-2562.
[21] D. J. Clarke, R.S. Robinson, Tetrahedron 2002, 58, 2831-2837.
[22] D. Enders, M. Kroll, G. Raabe, J. Runsink, Angew. Chem. Int. Ed. 1998, 37, 1673-1675.
[23] J. Wiemann, L. T. Thuan, Bull. Soc. Chim. Fr., 1958, 199-203.
[24] C. Botteghi, G. Consiglio, G. Ceccarelli, and A. Stefani, J. Org. Chem. 1972, 37, 1835-1837.
[25] L. Keller, F. Dumas, J. d'Angelo, Eur. J. Org. Chem. 2003, 2488-2497.
[26] J.-P. Ducoux, P. Le Menez, N. Kunesch, E. Wenkert, J. Org. Chem. 1993, 58, 1290-1292.
[27] E. J. Corey, M. A. Letavic, J. Am. Chem. Soc. 1995, 117, 9616-9617.
[28] P. Le Ménez, J.-D. Brion, N. Lensen, E. Chelain, A. Pancrazi, J. Ardisson, Synthesis 2003, 2530-2534.
[29] A. J. Mancuso, S.-L. Huang, D. Swern, J. Org. Chem. 1978, 43, 2480-2482.
[30] J. R. Parikh, W. v. E. Doering, J. Am. Chem. Soc. 1967, 89, 5505-5507.
[31] E .J. Corey, J. W. Suggs, Tetrahedron Lett. 1975, 16, 2647-2650.
[32] S. V. Ley, J. Norman, W. P. Griffith, S.P. Marsden, Synthesis 1994, 639-666.
$[33]$ a) M. Frigerio, M. Santagostino, Tetrahedron Lett. 1994, 35, 8019-8022; b) M. Frigerio, M. Santagostino, S. Sputore, G. Palmisano, J. Org. Chem. 1995, 60, 7272-7276.
[34] K. Narasaka, A. Morikawa, K. Saigo, T. Mukaiyama, Bull. Chem. Soc. Jpn. 1977, 50, 2773-2776.
[35] J. A. Marshall, W. Y. Gung, Tetrahedron 1989, 45, 1043-1052.
[36] A. De Mico, R. Margarita, L. Parlanti, A. Vescovi, G. Piancatelli, J. Org. Chem 1997, 62, 6974-6977.
[37] J. Chan, T.F. Jamison, J. Am. Chem. Soc. 2004, 126, 10682-10691.
$[38]$ a) B.M. Trost, J.L. Belletire, S. Godleski, P.G. McDougal, J.M. Balkovec, J.J. Baldwin, M.E. Christy, G.S. Ponticello, S.L. Varga, J.P. Springer, J. Org. Chem. 1986, $51,2370-2374$; b) J.M. Seco, E. Quiñoá, R. Riguera, Chem. Rev. 2004, 104, 17-117.
$[39]$ a) G. E. Keck, D. E. Abbott, Tetrahedron Lett. 1984, 25, 1883-1886; b) Y. Yamamoto, H. Yatagai, Y. Ishihara, N. Maeda, K. Maruyama, Tetrahedron 1984, 40, 2239-2246; c) G. E. Keck, K. A. Savin, N. K. Cressman, D. E. Abbott, J. Org. Chem. 1994, 59, 7889-7896.
[40] a) H. C. Brown, K. S. Bhat, J. Am. Chem. Soc. 1986, 108, 5919-5923; b) H. C. Brown, K. S. Bhat, R. S. Randad J. Org. Chem. 1989, 54, 1570-1576.
[41] J. Mulzer, H. M. Kirstein, J. Buschmann, C. Lehmann.; P. Luger, J. Am. Chem. Soc. 1991, 113, 910-923.
[42] S. D. Rychnovsky, D. J. Skalitzky, Tetrahedron Lett. 1990, 31, 945-948.
[43] H. Normant, Bull. Soc. Chim. Fr. 1957, 728-733.
[44] T. H. Black, T. S. McDermott, G. A. Brown, Tetrahedron Lett. 1991, 32, $6501-$ 6502.
[45] a) H. Neumann, D. Seebach, Tetrahedron Lett. 1976, 17, 4839-4842; b) W. F. Bailey, J. J. Patricia, J. Organomet. Chem. 1988, 352, 1-46. c) M. E. Jung, J. A. Hagenah, J. Org. Chem. 1987, 52, 1889-1902.
$[46]$ a) B. Kang, S. Chang, Tetrahedron 2004, 60, 7353-7359; b) H. Takahata, Y. Banba, H. Ouchi, H. Nemoto, Org. Lett. 2003, 5, 2527-2529.
[47] S.-I. Murahashi, J. Organomet. Chem. 2002, 653, 27-33.
$[48] \quad$ a) P. J. Garegg, B. Samuelsson, J. Chem. Soc., Perkin Trans. 1 1980, $2866-$ 2869; b) E. J. Corey, S. G. Pyne, W.-G. Su, Tetrahedron Lett. 1983, 24, 48834886.
[49] E.D. Mihelich, K. Daniels, D.J. Eickhoff, J. Am. Chem. Soc. 1981, 103, 76907692.
[50] A. H. Hoveyda, D. A. Evans, G. C. Fu, Chem. Rev. 1993, 93, 1307-1370.
[51] B.H. Lipshutz, J. Kozlowski, R.S. Wilhelm, J. Am. Chem. Soc. 1982, 104, 23052307.
[52] J. Cossy, S. BouzBouz, A.H. Hoveyda, J. Organomet. Chem. 2001, 634, 216 221; T.M. Trnka, R.H. Grubbs, Acc. Chem. Res. 2001, 34, 18-29. S.J. Connon, S. Blechert, Angew. Chem. Int. Ed. 2003, 42, 1900-1923.
$[53]$ a) P. Kocienski, N.J. Dixon, Synlett 1989, 52-54; b) R.W. Hoffmann, V. Giesen, M. Fuest, Liebigs Ann. Chem. 1993, 629-639.
[54] D.A. Evans, J.A. Gauchet-Prunet, J. Org. Chem. 1993, 58, 2446-2453.
[55] D.A. Evans, B.W. Trotter, P.J. Coleman, B. Côté, L.C. Dias, H.A. Rajapakse, A.N. Tyler, Tetrahedron 1999, 55, 8671-8726.
$[56]$ a) A. Mengel, O. Reiser, Chem. Rev. 1999, 99, 1191-1223. b) M.T. Reetz, K. Kesseler, A. Jung, Tetrahedron Lett. 1984, 25, 729-732. c) D.A. Evans, J.L. Duffy, M.J. Dart, Tetrahedron Lett. 1994, 35, 8537-8540.
[57] R.G. Jones, H. Gilman, Org. React. 1951, 6, 339-366.
$[58] \quad$ a) E. J. Corey, R. K. Bakshi, S. J. Shibata, J. Am. Chem. Soc. 1987, 109, 55515553; b) E. J. Corey, C. J. Helal, Angew. Chem. Int. Ed. 1998, 37, 1986-2012. c) B. M. Trost, J. L. Gunzner, O. Dirat, Y. H. Rhee, J. Am. Chem. Soc. 2002, 124, 10396-10415
[59] J. A. Marshall, G. M. Schaaf, J. Org. Chem. 2003, 68, 7428-7432.
[60] P. Kocovsky, Tetrahedron Lett. 1986, 27, 5521-5524

Received: ((will be filled in by the editorial staff)) Revised: ((will be filled in by the editorial staff)) Published online: ((will be filled in by the editorial staff))

[^0]: [a] [a] Dr E. de Lemos, Dr. F.-H. Porée, Dr. A. Bourin, Dr. J. Barbion, Dr V. Agouridas, Dr. M.-I. Lannou, Dr. J.-F. Betzer, Dr. A. Pancrazi, Prof. J. Ardisson
 Université Paris Descartes, CNRS UMR 8638, Faculté de Pharmacie
 4 av de l'Observatoire, 75270 Paris Cedex (France)
 E-mail: janick.ardisson@univ-paris5.frs
 [b] Dr A. Commerçon
 Département des Sciences Chimiques, Chimie des Produits Naturels, Sanofi-Aventis, Centre de Recherche de Vitry-Alfortville Faculté de Pharmacie

 13 Quai Jules Guesde, 94403 Vitry-sur-Seine Cedex (France)
 ((If supporting information is submitted, please include the following line: Supporting information for this article is available on the WWW under http://www.chemeurj.org/ or from the author.))

