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A New Structural Bump Foil Model With Application 
From Start-Up to Full Operating Conditions

This paper presents a new structural bump foil model that can handle all operating con-ditions from start-up to full speed. The model is 
based on a nonlinear contact algorithm with friction and gaps. The top foil is modeled as a curved beam while bump foil uses a coupled 
truss model. The model considers the gaps between the bump foil and the bearing casing, between the bump foil and the top foil and 
between the rotor and the top foil. Thus, any numerical interference between the rotor and the top foil is avoided. A mixed lubrication 
model is used for the thin film pressures. Following this algorithm, contact pressures appear if the film thickness is less than three times 
the equivalent roughness of the rotor and of the top foil. Fluid pressures are calculated from numerical solutions of Reynolds equation 
while contact pressures, if present, are calculated with the model of Greenwood and Williamson. The model is validated by 
comparisons with the experimen-tal results obtained for start-up operating conditions of a first-generation foil bearing of 38.1 mm 
diameter with static loads of 10–50 N. Theoretical predictions of the start-up torque and takeoff speed compare well with experimental 
results. It is also shown how manufacturing bump height errors can explain the differences between theoretical and experimental 
predictions. Further validations are presented for the same bearing operat-ing at high speeds (30, 45, and 55 krpm) and heavy static 
loads (up to 200 N). The calcu-lated minimum film thickness and attitude angle are compared with experimental data from the 
literature. 

Introduction

Aerodynamic foil bearings represent a technology that has pro-
ven advantages for supporting and guiding high-speed rotors of
low and average power rotating machinery. One of the advantages
is that they operate with a gas that can be either air or the process
fluid. The power loss is then less than in ball bearings. The second
advantage is that foil bearings, due to their compliant structure,
may damp dynamic vibrations. This is an important point because
the gas film has poor damping characteristics. The compliant foil
structure is therefore one of the key points of this technology.

There are several types of foil bearing structures but the most
widespread is the bump foil bearing made of a corrugated foil
with bumps and a smooth top foil [1] (Fig. 1). The corrugated foil
acts as a spring. The top foil collects the pressures in the thin gas
film and transmits the load to the bumps. The relative displace-
ments between the foils and the contact friction forces bring the
desired damping.

Calculating the pressures in the thin gas film is not a difficult
point, but modeling the foil structure has proved to be problem-
atic. Indeed, the numerous published models distinguish them-
selves mainly through the model used for the compliant foil
structure [2].

The first category of models uses a Winkler foundation descrip-
tion of the corrugated foil [3–8]. The interactions between bumps
are neglected and the uniformly distributed stiffness of the foils is
described by a simple formula. This category of models cannot
predict energy dissipation; therefore, additional viscous damping
[4] or structural loss [5] was added. These models are attractive
because they are easy to implement and lead to quite rapid
algorithms.

The top foil was discarded in the first models because it was
correctly anticipated that it had a negligible stiffness compared to
the corrugated foil. However, it was subsequently taken into
account with finite elements [9–15] and it was shown how sagging
between bumps may occur.

A second category of models went even further and discretized
both the corrugated and top foils with structural finite elements,
either as beams [16,17] or shells [18–20]. Interaction between
bumps was naturally included. Coulomb friction was taken into
account by using bookkeeping algorithms for the different stick-
slip states of the contacts [16,17], or by using penalty [18,20] or
Lagrange multipliers algorithms [19].

Fig. 1 The first-generation bump foil bearing
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The next natural step was the use of nonlinear elasticity com-
mercial codes for modeling the foils [21–24]. The results pre-
sented in Ref. [24] were the first to show the close-loose state of
contacts during operation. The impact of the manufacturing errors
of the compliant structure on the journal bearing characteristics
was also underlined.

The structural model introduced in Ref. [25] can be situated
between the first and second category of models. Each bump was
modeled by a system of trusses. These trusses were assembled in
a finite element like manner to obtain the stiffness matrix of
the corrugated foil. The interaction between bumps was fully con-
sidered. The friction between the top and the bump foil was con-
sidered by using a regularized Coulomb law. However, the
stiffness of the top foil was discarded. Similar structural models
were next developed and some of them included the stiffness of
the top foil [26–30].

Compared to the models of the second category, the model in
Ref. [25] had the advantage of less computational effort. There-
fore, it was recently extended for taking into account close-loose
contacts between the foils, the bearing sleeve, and the rotor [31].
The top foil stiffness and an additional degree-of-freedom (DOF)
per bump were added. Specific contact mechanics algorithms
were employed [32]: the normal contact forces were calculated by
using an augmented Lagrange multipliers (ALM) algorithm while
a penalty method dealt with friction forces. The close-loose gap
between the top foil and the rotor (i.e., the radial clearance of the
bearing) was dealt with a penalty method and was a monolithic
part of the solution. The new model and the employed numerical
algorithms are detailed in Ref. [31]. Arghir and Benchekroun [31]
present the results for the stiffness of the whole compliant struc-
ture obtained by pushing the rotor against the bearing. The influ-
ence of the bump height manufacturing errors and the
interpretation given to the radial clearance of the bearing are also
discussed in Ref. [31].1

This work presents the coupling of the new foil bearing struc-
tural model from Ref. [31] with the compressible air film. A
mixed lubrication model is used for taking into account very small
film thicknesses. Results are presented for both start-up and high
speed/high static load operating conditions. The impact of bump
height manufacturing errors on the start-up characteristics (start-
up torque and lift-off speed) is also discussed. All the theoretical
results compare well with experimental data from the literature
[33,34], thus proving the capacity of the model to encompass all
operating conditions.

The Foil Bearing Model

The bearing model is based on a structural model of the compli-
ant foils and on the compressible thin film Reynolds equation
adapted for taking into account the mixed lubrication regime.

The Structural Model of the Compliant Foils. The structural
model of the compliant foils is depicted in Fig. 2 and it is the cru-
cial part of the bearing model. The model is two-dimensional
(2D) because it discards the variations of the elastic characteristics
in the axial direction of the journal bearing.

Each bump has four DOF. For example, in Fig. 2, the DOF of
the left bump are ub;1, ub;2, ub;3, and ub;4 and the DOF of the right
bump are ub;5, ub;6, ub;7, and ub;8.

The top foil is discretized with nodes having only a transversal
displacement. Each top foil node corresponds to a bump.

The model considers three gaps

� The gap between the top foil and the bump foil

gt;i ¼ g0 t;i � ut;i þ ub;1þ2 i�1ð Þ � 0 (1)

� The gap between the rotor and the top foil

gr;i ¼ ri þ ut;i � 0 (2)

� The gap between the bump foil and the sleeve

gb;i ¼ g0b;i � ub;2þ2 i�1ð Þ � 0 (3)

where ri ¼ Cr þ xr coshi þ yr sinhi, hi is measured in counter
clockwise direction from the welding point (Fig. 1) and
i ¼ 1…nb.

The top foil is modeled as a curved beam with the plate correc-
tion. The corrugated foil is modeled by series of interacting
springs that reproduce the coupled elastic behavior of the bumps.
Both structural models are two-dimensional, i.e., the elasticity in
the axial direction is not considered. The stiffness matrices of the
top and bump foil were detailed in Ref. [31]. For clarity, they are
also resumed in Appendices A and B.

The potential energy of the elastic foil structure is

P ¼
1

2
ub

TKbub þ
1

2
ut

TKtut (4)

As indicated in Eqs. (1)–(3), the noninterference condition
imposes non-negative values of the gap functions. If the gap func-
tions (1)–(3) are positive, then the contacts are open, while if they
are zero, then the contacts are closed. In this latter case, normal
and tangential (friction) forces must be considered in the contacts.
This is mathematically expressed by the Signorini–Moreau condi-
tions [32]

gi � 0; Fn;i � 0; giFn;i ¼ 0 (5)

These constraints are included into the potential energy of the
foil structure by using the augmented Lagrange multipliers
method for the normal forces and the penalty method for the con-
tacts between the rotor and the top foil and for the friction forces

PALM ¼
1

2
ub

TKbub þ
1

2
ut

TKtutþ
XNcntct

i¼1

�kigi þ
1

2
eALMg

2
i

� �

þ
1

2

XNRotor

i¼1

erg
2
r;i þ

1

2

XNstick

i¼1

ef ub;i � u
0ð Þ
b;i

� �2

�
XNslip

i¼1

f�kisign _ub;ið Þ
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Ff ;i

ub;i � u
0ð Þ
b;i

� �

(6)

The augmented Lagrange multiplier �ki is iteratively updated
following Uzawa algorithm [32]

�k
nþ1ð Þ

i ¼ �k
nð Þ
i þ eALMg

nþ1ð Þ
i (7)

The equations obtained by minimizing the potential energy
yield

Fig. 2 The degrees-of-freedom and the gaps of the compliant
structure

1Paper of Ref. [31] is available upon request.
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Kb þ Lbb½ �4nb;4nb Lbt½ �4nb;nb
Ltb½ �nb;4nb Kt11 þ Ltt½ �nb;nb

� �
ubf g4nb
ut1f gnb

	 


¼
Fbf g4nb
Ft1f gnb

	 


(8)

alternatively, with notations that are more compact

Kbt1ubt1 ¼
Fb

Ft1

	 


(9)

Kbt1 ¼
Kb þ Lbb Lbt

Ltb Kt11 þ Ltt

� �

(10)

ubt1 ¼
ub
ut1

	 


(11)

where the coupling matrices Lbb; Ltb ¼ LT
bt; Ltt and the vectors

Fb, Ft1 contain the penalties and the Lagrange multipliers needed
for dealing with contacts. For example, for a corrugated foil with
only one bump, these matrices and vectors write

Lbb ¼ DIAG

ef ISTICKt

eALM
ef ISTICKb

eALM

8

>>><

>>>:

9

>>>=

>>>;

Lbt ¼

0

�eALM
0

0

2

6
6
6
4

3

7
7
7
5
¼ LT

tb

Ltt ¼ eALM þ er

Fb ¼

ef u
0ð Þ
b;1ISTICKt þ f�ktsign _ub;1ð Þ ISTICKt � 1ð Þ

��k t � eALMg0t

ef u
0ð Þ
b;3ISTICKb þ f�kbsign _ub;3ð Þ ISTICKb � 1ð Þ

�kb þ eALMg0b

8

>>>>><

>>>>>:

9

>>>>>=

>>>>>;

Ft1 ¼ �kt þ eALMg0t � err

(12)

The system of Eq. (9) is nonlinear because Fb and Ft1

contain the friction forces. The system is solved by using a
Newton–Raphson algorithm that was given in Ref. [31]. A regu-
larized Coulomb friction law is used for stabilizing this algorithm.

Finally, the global contact algorithm consists of three embed-
ded loops and its flow chart is depicted in Fig. 3.

The Thin Film Flow Model for Mixed Lubrication. The thin
film flow is governed by Reynolds equation for a compressible
fluid. For an isothermal flow regime, this writes

@

@x

~Ph3

12l

@P

@x

 !

þ
@

@z

~Ph3

12l

@P

@z

 !

¼
RX

2

@ ~Phð Þ

@x
þ
@ ~Phð Þ

@t
(13)

where x ¼ Rh. The boundary conditions are

P ¼ Pext at h ¼ 0; z ¼ 0; and z ¼ L (14)

The Reynolds equations are discretized by using the finite
volume method on a rectangular mesh with equally spaced grids
[35]. The resulting discretized equations are nonlinear due to the
presence of ~P on left-hand side of Eq. (13). The system is then
solved by using the Newton–Raphson method. The numerical
solution is stabilized by “upwinding” the ~P pressures in Eq. (13).

Solving only Eq. (13) supposes that full lubrication conditions
are met in the thin film flow. This is the case if h=req � 7, where

req ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2R þ r2t
p

is the combined standard deviation of the rotor

and of the top foil roughness.
However, the film thickness in foil bearings can be very low

and contacts between asperities may arise. In this case, the bearing
operates under local mixed lubrication regime. This is true when
1 � �heq � 3 and contact pressures must be added to the fluid film
pressures calculated by solving Eq. (13).

Two other operating conditions must also be underlined.

� If �heq � 1, then the contact pressure between the asperities is
large and the dissipated energy is very high. Operating condi-
tions under this regime will rapidly damage the foil bearing
because the foil structure cannot efficiently evacuate the gen-
erated heat.

� If 3 � �heq � 7; there are no contacts between the roughness
asperities. Nevertheless, the height of the thin filmmust consider
the roughness profile of the two surfaces. This may be done by
correcting the Reynolds equation (13) with flow factors [36].

The contact pressures were deduced by using the model of
Greenwood and Williamson [37] given in Appendix C. Contact
pressures are calculated in every discretization cell of the
Reynolds equation where the condition 1 � �heq � 3 holds

Pcntct ¼
4

3
gR þ gtð ÞEeq

ffiffiffi

b
p

ð1

h

ys � hð Þ3=2F ysð Þdys (15)

Fluid and contact pressures are integrated over the rotor and the
top foil surface. For the rotor, this yields

FX ¼

ð2p

0

ðL

0

P� Pext þ Pcntctð Þ coshRdhdz

� f

ð2p

0

ðL

0

Pcntct sinhRdhdz (16)

FY ¼ �

ð2p

0

ðL

0

P� Pext þ Pcntctð Þ sinhRdhdz

þ f

ð2p

0

ðL

0

Pcntct coshRdhdz (17)

For the top foil, the pressures are averaged over the bearing
length because the structural model is two-dimensional

Pavrg ¼
1

L

ðL

0

Pþ Pcntctð Þdz (18)

The radial force applied on the top foil is

FPi ¼ Pavrg � Pext

� 

R hiþ1=2 � hi�1=2

� 

L (19)

The torque on the rotor and on the top foil can also be
calculatedFig. 3 Pseudocode of the contact algorithm
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Cz;R=t ¼

ð2p

0

ðL

0

sx;R=t þ fPcntct

� 

Rdhdz (20)

where sx;R=t is the rotor/top foil shear stress in the circumferential
direction [38].

The two-dimensional structural model with the axially averaged
pressure is the strongest simplifying assumption used in the pres-
ent approach. It will be underlined further in this paper the impact
that it has on the results.

Coupling the Structural Model With Reynolds Equation. In
the previous work [31], the discretization nodes of the top foil
coincided with the bumps. This discretization was sufficient for
simple loading cases, when the rotor was pushed into the stator.
However, the numerical solution of the Reynolds equation
requires a finer mesh in the circumferential direction. For exam-
ple, if a foil journal bearings has between nb¼ 20…30 bumps, the
number of discretization points in the circumferential direction for
the Reynolds equation, nx, is at least the double. In the same time,
the contact algorithm requires a stiffness matrix of the top foil
with a clear distinction between points where contact may occur
(i.e., the top of the bumps) and the rest. A stiffness matrix for the
top foil is then generated by using Eq. (B1) and for the points cor-
responding to the bumps, nb, and to the discretization points of
the Reynolds equation, nx. The calculation of the stiffness matrix
requires the discretization nodes organized with increasing cir-
cumferential coordinate starting from the welding (Fig. 1) in
clockwise direction. The stiffness matrix of the top foil, Kt, will
be square and of dimension nbþ nx. The matrix is then reorgan-
ized by making distinction between the DOF of the top foil associ-
ated with the bumps, ut1;i¼1…nb, were contacts may occur and the
DOF associated with the discretization nodes of the Reynolds
equation, ut2;i¼1…nx

Kt½ �nbþnx;nbþnx ¼
Kt;11½ �nb;nb Kt;12½ �nb;nx
Kt;21½ �nx;nb Kt;22½ �nx;nx

" #

(21)

The total potential energy of the structure with gaps and con-
tacts given by Eq. (6) must also include the degrees of the free-
dom of the top foil introduced by the Reynolds equation
discretization nodes, ut2 and the mechanical work of the pressure
forces Fp1 and Fp2 acting on the top foil. The nonlinear system of
equations obtained by minimizing the total potential energy of the
structure with contacts and friction writes

Kb þ Lbb½ �4nb;4nb Lbt½ �4nb;nb 0½ �4nb;nx

Ltb½ �nb;4nb Kt11 þ Ltt½ �nb;nb Kt12½ �nb;nx

0½ �nx;4nb Kt21½ �nx;nb Kf 22½ �nx;nx

2

6
6
4

3

7
7
5

ubf g4nb
ut1f gnb
ut2f gnx

8

><

>:

9

>=

>;

¼

Fbf g4nb
Ft1 þ Fp1f gnb

Fp2f gnx

8

><

>:

9

>=

>;

(22)

moreover, with notations that are more compact

Kbt1 Lt12

Lt21 Kt22

� �
ubt1
ut2

	 


¼
Fbt1

Fp2

	 


(23)

Lt21 ¼ 0 Kt21

� �
¼ Lt12

T; Kt12 ¼ Kt21
T (24)

Fbt1 ¼
Fb

Ft1 þ Fp1

	 


(25)

The vector ubt1 contains all the displacements of the bumps and
the displacements of the top foil related to bumps. The vector ut2
contains the displacements of the top foil corresponding to the

discretization nodes of the Reynolds equation. Both vectors are
deduced by solving the system of Eq. (23)

Kbt1 � Lt12K
�1
t22Lt21

� 


ubt1 ¼ Fbt1 � Lt12K
�1
t22Fp2 (26)

ut2 ¼ K�1
t22 Fp2 � Lt21ubt1ð Þ (27)

The system of Eq. (26) for calculating ubt1 is nonlinear because
Fb and Ft1 in Fbt1 contain the friction forces. The solution algo-
rithm is identic to the one used in Ref. [31] for solving Eq. (9)
and depicted in Fig. 3. This is possible because the terms intro-
duced in Eq. (26) by considering the DOFs of the top foil in the
discretization nodes of the Reynolds equation, Lt12K

�1
t22Lt21 and

Lt12K
�1
f22Fp2 are constant, linear terms.

The displacements of the top foil in the discretization nodes of
the Reynolds equation are then obtained by simply solving the lin-
ear system (27). They are then added to the gas film thickness

h ¼ r þ ut ¼ Cr þ xr coshþ yr sinhþ ut (28)

that is exactly the gap function (2). The contact algorithm thus
ensures that the rotor and the top foil cannot interfere.

The calculation of the film thickness follows an iterative proce-
dure with under-relaxation

h nþ1ð Þ ¼ h nð Þ þ rhfilm h �ð Þ � h nð Þð Þ (29)

where h �ð Þ is the film thickness given by Eq. (28). The whole
algorithm is described in Fig. 4.

Results

Two kinds of results are presented for depicting the predictive
capacity of the model: start-up and full operating conditions under
a heavy steady load. The geometry of the first-generation foil
bearing used in all calculations is given in Fig. 1, Table 1, and
Fig. 5.

Start-Up Analysis. The start-up is modeled as a succession of
steady operating conditions with given rotation speed and steady
load. Acceleration effects are neglected. The calculations are per-
formed for rotation speeds starting from 10 rpm, i.e., very close to
zero. In this case, the rotor is in contact with the top foil and
mixed lubrication conditions prevail over the entire contact zone.
The velocity is gradually increased and the extent of the mixed
lubrication zone will decrease while the compressible gas film
starts to separate the rotor from the top foil. This situation is
depicted in Figs. 6 and 7.

Fig. 4 Pseudocode of the global foil bearing algorithm

Table 1 Foil bearing characteristics

Bearing axial length, L 38.1mm Young modulus, E 214GPa
Rotor radius, R 19.05mm Poisson coefficient, � 0.29
Radial clearance, Cr 31.8 lm Bump pitch, pb 4.572mm
No. of bumps, nb 26 Bump width, 2l0 3.556mm
Foil thickness, eb¼ et 0.102mm Bump height, hb 0.508mm
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Figure 6 depicts the rotor torque versus the rotational speed for
a static load Wx¼ 30 N (Wy¼ 0) and a radial clearance of
31.8lm. Three values of the torque are depicted: the torque due
to the contact between the asperities of the rotor and the top foil
surface, the fluid torque and the total torque. The contact torque is
rapidly decreasing with the rotation speed and becomes zero when
a full gas film supports the rotor. The fluid torque increases very
slowly with the rotation speed and the total torque inherits the
characteristics of both the contact and the fluid torque. The maxi-
mum value of the total torque is the start-up (or break-away) tor-
que. Its value is entirely due the contact forces. The speed when
the contact torque vanishes is the lift-off (or start-up) speed.

Figure 7 depicts the power loss, i.e., the torque in Fig. 6 multi-
plied by the rotation speed. The lift-off speed corresponds to the
minimum of the power loss variation versus the rotation speed. It
can be seen that, exactly as in measurements, the variations of the
power loss enable a more accurate reading of the lift-off speed
than the torque variation.

The circumferential variations of the rotor/top foil film thick-
ness, of the contact pressure, and of the fluid pressure for a static
load of 30N are depicted from Figs. 8 to 10. The sagging of the
top foil between bumps and its effects on the contact and on the
fluid pressure are clearly visible. The upper limit of the mixed
lubrication regime, i.e., h ¼ 3req, is depicted with a dotted line in
Fig. 8. The X¼ 2000 rpm lift-off speed of the case depicted in
Figs. 8–10 corresponds to the limit when h � 3req and all contact
pressures are zero.

Fig. 5 Geometry of the bump

Fig. 6 Rotor torque versus rotation speed during start-up
(Wx5 30 N, Cr5 31.8lm, f5 0.25)

Fig. 7 Power and torque versus speed during start-up
(Wx5 30 N, Cr5 31.8lm, f 5 0.25)

Fig. 8 Rotor/top foil film thickness circumferential variation
(Wx5 30 N, Cr5 31.8lm, f5 0.25)

Fig. 9 Contact pressure circumferential variation (Wx5 30 N,
Cr531.8 lm, f5 0.25)

Fig. 10 Fluid pressure circumferential variation (Wx5 30 N,
Cr531.8 lm, f5 0.25)
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Figures 11 and 12 depict the contact torque and the total power
loss during start-up for different static loads. As expected, the
start-up torque and the lift-off velocity increase with the static
load.

In Fig. 13, the calculated start-up torque is compared to the
measurements from Ref. [33]. Friction coefficients f¼ 0.25 and
0.3 were used in calculations. It can be seen that calculations fol-
low exactly the measured curved and the values obtained with a
friction coefficient f¼ 0.3 are very close to experiments.

Figure 14 depicts the comparison between the theoretical lift-
off speed calculated with Cr¼ 31.8lm and values measured in
Ref. [33]. The results of measurements made by Ruscitto et al. in
Ref. [34] for the same bearing are also presented. The theoretical
values are lower and increase more rapidly with the static load

than measurements. The friction coefficient used in calculations
(0.25 and 0.3) has no impact on the lift-off speed.

Any theoretical model can be suspected of inaccuracies but the
discrepancies shown in Fig. 14 may also indicate that the geomet-
rical characteristics of the foil bearings tested in Ref. [33] were
not exactly the ones given in Table 1. It is known that the radial
clearance of the foil bearing is a parameter that is difficult to mea-
sure. Ruscitto et al. [34] proposed a method based on static load-
ing tests that were further made popular by Rubio and San Andr�es
[5]. The method is based on the interpretation of static load/dis-
placement curve and is systematically used because, up to now, it
is the only reliable way of experimentally estimating the radial
clearance. However, the values reported in the literature for the
foil bearing described in Table 1 may be quite different.

Fig. 12 Total power loss versus speed during start-up for dif-
ferent static loads (Cr5 31.8lm, f5 0.25)

Fig. 13 Start-up torque versus static load (Cr531.8lm)

Fig. 14 Lift-off speed versus static load (Cr5 31.8lm)

Fig. 15 Total torque versus rotation speed for Cr531.8lm and
10lm (Wx5 30 N, f5 0.25)

Fig. 11 Contact torque versus speed during start-up for differ-
ent static loads (Cr5 31.8lm, f5 0.25)

Fig. 16 Power loss versus rotation speed for Cr531.8lm and
10lm (Wx5 30 N, f5 0.25)
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Calculations where then made with a value of 10lm of the radial
clearance.

Figure 15 shows the comparison between the torques calculated
with radial clearances of 31.8lm and 10lm. The value of the
start-up torque increased very slightly when the radial clearance
decreased from 31.8lm to 10lm but the lift-off speed was almost
divided by two. This result shows that a small radial clearance
favors the pressure generation in the thin film (the “oil wedge”
effect) and therefore the creation of lift with increasing rotation
speed. In the meantime, the radial clearance is of less importance
for the start-up torque because this latter parameter depends on
the static load, on the stiffness of the compliant foil structure and
on the rotor/top foil friction coefficient.

Figure 16 depicts the comparisons between the power losses
calculated with radial clearances of 31.8lm and 10lm. The bear-
ing with Cr¼ 10lm necessitates a lower power for start-up, but
operates with a slightly larger power loss after lift-off.

Impact of Bump Height Manufacturing Errors. The compli-
ant structure of foil bearing is always affected by manufacturing
errors. It is, however, not realistic to replace the design value of
the radial clearance by another constant for considering these
errors. The authors showed in Ref. [24] that manufacturing errors
of the height of the bump foil lead to a circumferential variation
of the radial clearances that is different from the theoretical con-
stant value. Six different random bump height distributions were
analyzed in Ref. [24]. Among them, the case designed as “h3” had
the highest static foil stiffness and the case “h4” had the lowest
static foil stiffness.2 These two cases are now analyzed for start-
up conditions.

Their bump height distributions are depicted in Fig. 17 for two
values of the standard deviation, rhb ¼ 10lm and rhb ¼ 20lm
(the average value of the bump height is the design value,
hb¼ 508 lm).

Figures 18 and 19 show the torque and the power loss
calculated for h3 bump heights errors distribution with a standard
deviation rhb¼ 10 lm (i.e., 2% of hb) and for a design radial
clearance Cr¼ 31.8lm. It can be seen that the torque and the
power loss variations for bump height errors have different varia-
tions compared to the error free bearing. In the case with bump
height errors, the contact torque becomes null for a lift-off speed
of 17 krpm, i.e., eight times higher than the value of 2 krpm calcu-
lated for the error free case.

Figure 20(a) compares the contact power losses obtained for
the error distribution h3 but with two values of the standard devia-
tion, 10lm and 20lm. It can be seen that for rhb¼ 20lm there is
a permanent contact between the rotor and the top foil; the lift-off
speed can, therefore, not be identified.

Results obtained with h4 error distribution are depicted in
Fig. 20(b). This distribution has a static stiffness lower than the
distribution h3. The contact power losses for h4 have similar
maximum values. A lift-off speed can be identified in all cases. Its
value is 2 krpm for the error-free case, 3.5 krpm and 10 krpm for

Fig. 17 Bump height distribution errors (Cr5 31.8lm)

Fig. 18 Torque of the bearing without errors and with h3 bump
height errors (rhb5 10lm, Cr5 31.8lm, Wx5 30 N, f50.25)

2Other bump height error distributions than the six cases analyzed in Ref. [24]

may show lower or higher static foil stiffness.
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the cases with rhb¼ 10 lm and 20 lm, respectively. These results
show that a foil bearing with a softer foil structure has better lift-
off characteristics than a stiffer foil structure.

These numerical results show the importance of considering the
manufacturing errors of the foils when calculating the start-up and
lift-off characteristics of these bearings. They also explain the
quite different results reported in the literature for the foil bearing
with the characteristics given in Table 1. Nevertheless, these are
only trends. The manufacturing errors require a more systematic,
statistical analysis for quantitatively describing their impact.

High Speeds and Heavy Load Results. The experimental
results of Ruscitto et al. [34] enable verification of the theoretical
model for high speeds (30 krpm, 45 krpm, and 55.5 krpm) and
high static loads (up to 150N and 190N).

Ruscitto et al. used a floating bearing-type test rig. It consisted
of a rigid, hollow rotor guided by two ball bearings and entrained
by an air turbine. The foil bearing was floating mounted between

the two bearings. The static load was applied directly on the cas-
ing of the floating foil bearing. Two inductive proximity probes
measured the relative displacements of the foil bearing relative to
the rotor. An additional proximity probe was mounted in the hol-
low rotor and was used together with a slip ring for measuring the
air film thickness. Different foil bearing were tested. One of the
bearings had exactly the geometrical characteristics given in

Fig. 20 Comparison of the contact power loss for the bearing
without errors and with h3 (a) and h4 (b) bump height errors
(rhb5 10lm and 20lm, Cr531.8lm,Wx530 N, f5 0.25)

Fig. 21 Circumferential variation of the film thickness (X5

30 krpm, Cr5 31.8lm, Wx5 134 N)

Fig. 22 Minimum film thickness versus static load for three
rotation speeds (30 krpm, 45 krpm, and 55 krpm)

Fig. 19 Comparison of the power loss for the bearing without
errors and with h3 bump height errors (rhb5 10lm,
Cr531.8 lm, Wx5 30 N, f5 0.25)
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Table 1, another bearing had a radial clearance of 57lm, and
other two bearings had an L/D¼ 0.5 with Cr¼ 31.8lm and
57lm. Ruscitto et al. measured the radial clearance from static
loading measurements. As explained previously, the radial clear-
ance is assimilated with the measured dead-band clearance.

In this work, calculations were made only for the bearing with
L/D¼ 1. Figure 21 depicts the circumferential variation of the
film thickness for X¼ 30 krpm, Cr¼ 31.8lm, Wx¼ 134 N. The
theoretical results compare very well with Ruscitto’s measure-
ments (Fig. VII-20 of Ref. [34]) in the zone of minimum film
thickness.

Figure 22 depicts the minimum film thickness for different
static loads and three rotation speeds (30 krpm, 45 krpm, and 55.5
krpm). Ruscitto’s measurements were performed both in the mid-
plane and in the end-plane of the bearing. The present calculations
were performed with the 31.8lm radial clearance reported by
Ruscitto et al. and with the 10lm radial clearance used in
Ref. [13] for the same comparisons. The calculated results make
no distinction between the film thickness at the bearing mid and
end planes because the structural model is two-dimensional and
uses the axially averaged pressures to calculate the load applied
on the top foil. Thus, the theoretical film thickness has an axially
constant value.

Figure 22 shows the impact of the radial clearance on the
axially averaged minimum film thickness. For low and moderate
loads, the values calculated with Cr¼ 10 lm are lower while
for high static loads the value of the radial clearance had a neg-
ligible impact. Also for high loads, the calculated results
slightly underestimate the measured minimum film thickness.
The differences increase with increasing rotation speed but this
can be due to different causes. Indeed, it was repeatedly
reported in the literature that the foil bearing with L/D¼ 1
shows at least X/2 subsynchronous if not unstable vibrations
when the rotation speed approaches 30 krpm. This threshold is
increased with increasing the static load but it is probable that
vibrations, at least of synchronous origin, affected the results of
very high speed tests. By the way, Ruscitto et al. always
report in Ref. [34] a dynamic shaft orbit that increases with the
rotation speed from 5 lm to 13lm.

Figure 23 depicts the attitude angle versus the static load. The
values calculated with a radial clearance of 10lm show a very
light variation with the static load, especially for the highest rota-
tion speed.

This is not the case for the results obtained with Cr¼ 31.8lm
that decreased clearly with the static load. For X¼ 30 krpm and
45 krpm, the values measured by Ruscitto et al. lie between the
theoretical results while for X¼ 55.5 krpm, they are closer to the
values calculated with Cr¼ 31.8lm.

All the theoretical results show a reasonable agreement with
measurements. It must be underlined that these tests represent dif-
ficult operating conditions for a foil bearing of this size because
the static loads are extremely large. Moreover, the minimum film
thickness of a foil bearing is very difficult to measure due to its
compliance. The values reported by Ruscitto et al. are very low,
sometimes lower than 5 lm. One should have in mind that the
upper limit of the mixed lubrication regime for this bearing was
considered to be close to 3req¼ 2.1 lm so very close to the values
depicted in Fig. 22.

It should be also underlined that the largest differences between
the calculated and the measured results appear at lower static
loads. The differences for large values of the static loads are sys-
tematic smaller. This is due to the simplified 2D model of the foil
structure loaded by axially averaged pressures. The model is close
to reality for high static loads when the film thickness is very
small and the axial pressure field is almost flat. For low and mild
static loads, the axial pressure field is parabolic and the approxi-
mation of an axially averaged pressure deforming the foil struc-
ture can be questioned. However, the assumption of an axially
averaged pressure is coherent with the 2D model of the foil struc-
ture. It is the price for obtaining a theoretical model that

necessitates less computational time than a full nonlinear finite
element approach as used in Ref. [24].

Summary and Conclusions

The model presented in this work is able to deal with all
operating conditions of aerodynamic foil bearings, from start-up
to high speed and high static loadings. This ability comes from
modeling the foils and the rotor as a structure with close-loose
gaps. Contact algorithms are then able to solve the noninterfer-
ence conditions. Considering the local radial clearance as a gap
submitted to Signorini–Moreau contact conditions avoids any
interference between the rotor and the top foil. The rotor/top
foil gap is always a positive distance. If this gap is less than
3req (i.e., three times the standard deviation of the combined
roughness of the rotor and top foil), then the thin film flow is
dealt with as a mixed lubrication problem. This enabled the
calculation of the start-up torque that compared very well with
experimental data.

Another advantage of describing the foils as a structure with
gaps is the possibility of modeling manufacturing errors. The
ambiguous concept of radial clearance of foil bearings can thus be
explained. Results obtained for the takeoff speed show that the
manufacturing errors lead to its increase and may even disable the
development of a complete air film.

Fig. 23 Attitude angle versus static load for three rotation
speeds (30 krpm, 45 krpm, and 55 krpm)
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Results obtained for high rotation speeds and high static loads
proved the capability of the foil bearing model to deal with all
operating conditions.
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Nomenclature

Cr ¼ design radial clearance, m
e ¼ foil thickness, m
E ¼ Young modulus of elasticity, Pa
f ¼ friction coefficient

F, F ¼ force and force vector, N
F ¼ Gaussian probability distribution
g ¼ gap, m
h ¼ film thickness, m
�h ¼ dimensionless film thickness, �h ¼ h=req
hb ¼ bump height, m
K ¼ stiffness matrix, N/m

k1,…, k4 ¼ stiffness of the truss model, N/m
L ¼ bearing length, m
L ¼ matrix, N/m
l0 ¼ bump half width, m
n ¼ number of iterations in Eqs. (7) and (29)
N ¼ number of contacts
nb ¼ number of bumps of the corrugated foil
nx ¼ number of circumferential discretization points

P, ~P ¼ pressure, Pa
pb ¼ bump pitch, m
r ¼ distance between the rotor and the undeformed top

foil, m
R ¼ bearing radius, m

rhfilm ¼ relaxation coefficient in Eq. (29)
S or sij ¼ elasticity matrix of the top foil, m/N

u; u ¼ displacement and displacement vector, m
Wx;y ¼ static load, N
x, y ¼ Cartesian coordinates
X, Y ¼ axes of the Cartesian coordinates system
ys ¼ parameters of the Gaussian probability

distribution
b ¼ roughness radius, m
e ¼ penalty parameter, N/m
g ¼ roughness surface density, m�2

h ¼ angular coordinate, rad
�k ¼ augmented Lagrange multiplier, N
l ¼ dynamic viscosity, Pa�s
� ¼ Poisson coefficient
P ¼ potential energy, j
r ¼ standard deviation, m
X ¼ rotation speed, rad/s

Subscripts

ALM ¼ augmented Lagrange multiplier
avrg ¼ average

b ¼ bottom
cntct ¼ contact

eq ¼ equivalent
ext ¼ external ambient
f ¼ friction

i, j ¼ bump number
n ¼ normal
p ¼ pressure
R ¼ rotor
t ¼ top foil
0 ¼ initial value

Appendix A

The Structural Model of the Bump Foil. The bumps of the
corrugated foil are modeled as an unwrapped structure of interacting
springs. Figure 24 depicts this model for a foil with two bumps. The
model is two-dimensional because the elasticity in the axial direction
is not considered. Each bump has four DOF and the stiffness of
springs is deduced by using Castigliano’s relations. The procedure
was detailed in Ref. [25] for bumps with three DOF (ub,4 and ub,8
were not considered) and was extended in Ref. [31] for four DOF.

The stiffness of the corrugated foil is written by superposing
individual bump stiffness and coupling matrices. For example for
a corrugated foil with two bumps, this yields

K2b ¼
K4 þ Kb þ K3 KT

c

Kc Kb þ K3

� �

(A1)

Kb ¼

2k1c
2 0 �k1c

2 �k1sc

0 2k1s
2 �k1sc �k1s

2

�k1c
2 �k1sc k2 þ k1c

2 k1cs

�k1sc �k1s
2 k1cs k1s

2

2

6
6
6
4

3

7
7
7
5

(A2)

Kb ¼

�k3 0 �k1c
2 k1cs

0 0 k1cs �k1s
2

0

0

0

0

�k2
0

0

0

2

6
6
4

3

7
7
5

(A3)

K3=4 ¼

k3=4 0 0 0

0 0 0 0
0

0

0

0

0

0

0

0

2

6
6
4

3

7
7
5

(A4)

The extension of Eq. (A1) to an arbitrary number of bump is
immediate.

Appendix B

The Structural Model of the Top Foil. The top foil is mod-
eled by using a circular (curved) beam with the plate correction.
The variation of its elastic characteristics in the axial direction is
discarded. The elasticity matrix of the top foil is obtained with
Bresse relations

�si;j ¼

coshi sinhj

2
�
hj cos hi � hj

� 


2
; if hj � hi

coshj sinhi

2
�
hi cos hj � hi

� 


2
; otherwise

8

>><

>>:

(B1)

si;j ¼
R3

Le3=12

1� �2

E
�si;j; hi; hj > 0; i; j ¼ 1…nb [ nx (B2)

where the angle h is measured from the welding (Fig. 1) in clock-
wise direction. The stiffness matrix of the top foil is Kt ¼ S�1.

Fig. 24 The elastic model of the bump foil
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Appendix C

The Greenwood and Williamson Contact Model. The model
considers the contact between a virtual flat, rigid surface, and an
elastic surface carrying the cumulated roughness of the rotor and
of the top foil (Fig. 25).

The equivalent elasticity modulus of this surface is

Eeq ¼
1� �R

2

ER

þ
1� �t

2

Et

� ��1

(C1)

The local film thickness is the distance between the virtual flat
surface and the average plane of the surface carrying the cumu-
lated roughness. The height of the asperities measured from the
average plane is ys. Asperities with a height larger than the local
film thickness will be in contact with the virtual flat surface and
will generate contact forces. The asperities are supposed to be
spheres of the same radius b. Following Hertz theory, the contact
force for a single asperity

FHrtz ¼
4

3
E�eq

ffiffiffi

b
p

ys � hð Þ3=2 (C2)

The total number of roughness on a discretization cell of the
Reynolds is

Nasp ¼ gR þ gtð ÞA (C3)

Greenwood and Williamson suppose that the roughness height
follows a Gaussian probability distribution, F . In this case, the
force from all contact asperities in a discretization cell is

Fasp ¼ Nasp

ð1

h

FHrtzF ysð Þdys

¼
4

3
NaspEeq

ffiffiffi

b
p

ð1

h

ys � hð Þ3=2F ysð Þdys (C4)

A good approximation of the Gaussian probability distribution
is:

F ysð Þ ¼
35

32c7
c2 � y2s

� 
3
; if � c � ys � c

F ysð Þ ¼ 0 otherwise (C5)

where c ¼ 3req. The integral in Eq. (C4) can then be analytically
calculated.

The characteristics of the contact surfaces used in this work are
given in Table 2.
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