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Abstract

A non-overlapping domain decomposition method is proposed to solve large-scale finite element models for
the propagation of sound with a background mean flow. An additive Schwarz algorithm is used to split the
computational domain into a collection of sub-domains, and an iterative solution procedure is formulated in
terms of unknowns defined on the interfaces between sub-domains. This approach allows to solve large-scale
problems in parallel with only a fraction of the memory requirements compared to the standard approach
which is to use a direct solver for the complete problem. While domain decomposition techniques have
been used extensively for Helmholtz problems, this is the first application to aero-acoustics. The optimized
Schwarz formulation is extended to the linearized potential theory for sound waves propagating in a potential
base flow. A high-order finite element method is used to solve the governing equations in each sub-domain,
and well-designed interface conditions based on local approximations of the Dirichlet-to-Neumann map are
used to accelerate the convergence of the iterative procedure. The method is assessed on an academic test
case and its benefit demonstrated on a realistic turbofan engine intake configuration.

Keywords: Domain decomposition, Optimized Schwarz method, Flow acoustics, Transmission conditions,
High-order finite element, Turbofan intake

1. Introduction

Computational models predicting the propagation and radiation of noise from aeroengines remain a crucial
tool to support the acoustic design of various components of turbofan engines, an obvious example being the
optimization of acoustic liners on the nacelle of the engine [1]. Arguably the most widespread scheme for this
purpose is the linearized potential equation solved in the frequency domain with standard finite elements.
This approach forms the basis for commercial codes routinely used in industry. One of the main limitations
of this approach is the computational resources and time. The upper frequency limit that can be considered
is dictated by the memory available which represents the main bottleneck when solving large-scale finite
element models in the frequency domain.

Using a domain decomposition method allows to reduce significantly the memory requirements by splitting
the computational domain into sub-domains. A direct solver is used for each sub-domain, but the global
solution is obtained through an iterative procedure, thus reducing the amount of memory needed. This type
of method has been used extensively in classical acoustics [2, 3, 4, 5], or electromagnetism [6, 5, 7, 8], but this
paper presents the application of a non-overlapping domain decomposition approach to sound propagation
with a background mean flow. In this work the optimized Schwarz method is formulated for the linearized
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potential equation. The method is equivalent to the FETI-2LM approach (Finite Element Tearing and
Interconnecting - 2 Lagrange Multipliers) which was originally proposed for the Helmholtz equation [2]. In
each sub-domain the governing equation is solved using a high-order finite element method which allows to
further reduce the computational costs. The method is assessed on the scattering of a rigid cylinder in a
potential flow and then applied to a turbofan engine intake.

The paper is organized as follows. The linearized potential theory is described in the next section, followed
by a description of the domain decomposition framework where the equivalence between FETI and Schwarz-
type methods is clarified. The high-order finite element method is then presented in section 4, and examples
of results are given in section 5 to illustrate the benefit of the domain decomposition method compared to
the standard approach. The performance of different interface conditions is examined in order to improve the
efficiency of the iterative solver. Finally, three-dimensional parallel computations with a strong background
mean flow are shown in section 6.

2. Sound propagation model

We model the propagation of sound waves in a steady, potential base flow using the linearized potential
equation:

ρ0
D0

Dt

(
1

c20

D0φ

Dt

)
−∇ · (ρ0∇φ) = 0 , (1)

where D0/Dt = ∂/∂t+ u0 ·∇ represents the material derivative in the mean flow u0. The mean sound speed
and density are denoted by c0 and ρ0. With this propagation model the sound field is described by the scalar
potential φ from which the acoustic velocity is derived (u = ∇φ). The acoustic pressure is also recovered
using p = −ρ0D0φ/Dt. This model represents the convective effect of the flow on the sound field, but does
not include the refraction effect that would be induced by a sheared mean flow. It is however well suited for
applications such as the radiation of sound from turbofan intakes. The wave equation (1) is solved in the
frequency domain by assuming a e+iωt time dependence.

For the purpose of predicting noise radiation from aeroengines various boundary conditions should be
considered. The condition for hard-wall surfaces is a vanishing normal acoustic velocity: u · n = ∂φ/∂n = 0
where n is the outward-pointing normal. To describe an acoustically treated surface the Ingard-Myers
boundary condition is used [9]. It takes into account an infinitely thin boundary layer above the liner.
To represent the scattered field to infinity, Perfectly Matched Layers (PML) are implemented around the
boundary of the domain to absorb outgoing waves and remove spurious reflections [10, 11]. The PML can
also be used to generate a sound field entering the computational domain. This so-called ‘active’ PML is
used to define the sources of sound radiating from the engine, typically from the fan, which are generally
described in terms of acoustic duct modes.

The sound radiated to the far-field is computed using a Kirchhoff surface that allows to extrapolate the
near-field solution to the far-field. The Kirchhoff formulation assumes a uniform mean flow outside of the
control surface.

3. Non-overlapping domain decomposition

We now present how the domain decomposition method can be applied to solve equation (1). The
computational domain Ω is subdivided into non-overlapping sub-domains Ωi, with i = 1, . . . , Ns, where Ns

is the number of sub-domains. For brevity and clarity, the formulation will be presented for two domains i
and j, but the procedure extends to an arbitrary number of sub-domains.

The variational formulations associated with equation (1) written in sub-domains Ωi and Ωj read∫
Ωi

[
ρ0∇ψi ·∇φi −

ρ0

c20

D0ψi
Dt

D0φi
Dt

]
dΩ +

∫
∂Ωi

ψi

[
ρ0

c20

D0φi
Dt

(u0 · ni)− ρ0
∂φi
∂ni

]
dS = 0 , (2)

∫
Ωj

[
ρ0∇ψj ·∇φj −

ρ0

c20

D0ψj
Dt

D0φj
Dt

]
dΩ +

∫
∂Ωj

ψj

[
ρ0

c20

D0φj
Dt

(u0 · nj)− ρ0
∂φj
∂nj

]
dS = 0 , (3)
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where ψi and ψj are the test-functions associated to the fields φi and φj . The unit vectors ni and nj are the
outward-pointing normals to the boundaries ∂Ωi and ∂Ωj . The notation · represents the complex conjugate.
The sub-domains Ωi and Ωj share a common boundary interface denoted Γij . The terms involved on the
interface Γij are written as follows ∫

Γij

[
ψiBiφi + ψjBjφj

]
dΓ ,

where we have identified the boundary operator involved on Γij :

Biφi =
ρ0

c20

D0φi
Dt

(u0 · ni)− ρ0
∂φi
∂ni

= ρ0ik0Mni
φi + ρ0Mni

Mτi

∂φi
∂τi

+ ρ0

(
M2
ni
− 1
) ∂φi
∂ni

, (4)

and similarly for Bjφj . We have introduced the local Mach number M = ‖u0‖ /c0, the free-field wavenumber
k0 = ω/c0 and the unit tangential vectors τi and τj along ∂Ωi and ∂Ωj . The Mach numbers relative to
the normal ni and tangential τi components of the mean flow are denoted by Mni

and Mτi . Note that for
the Helmholtz equation (i.e. for a uniform quiescent medium) the boundary operators reduce to the usual
normal derivatives: Biφi = −ρ0∂φi/∂ni and Bjφj = −ρ0∂φj/∂nj .

Between the two domains we would like to impose the continuity of the unknown field φ and its normal
derivative ∂φ/∂n. Applying these two conditions directly in the variational formulations above results in
a model that is ill-conditioned, see [12, section 2.2.1] and [13, 14]. Optimized Schwarz methods provide a
well-defined formulation [5, 15].

Note that the FETI-2LM method [2] is equivalent to an optimized Schwarz method, the Lagrange mul-
tipliers in FETI-2LM playing the role of the interface unknowns defined in optimized Schwarz methods.
The latter further generalize the choice of the interface conditions by defining them at the continuous level,
while FETI has historically been designed at the algebraic level. In what follows, we will therefore use the
formalism of optimized Schwarz methods with general transmission conditions such as presented in [5].

3.1. Sub-domains coupling - transmission operators

To introduce a coupling between the two sub-domains, the last term in the boundary operator defined in
equation (4) is rewritten as follows:

ρ0

(
M2
ni
− 1
) ∂φi
∂ni

= ρ0

(
M2
ni
− 1
)
Siφi + Lj→iφj , (5a)

ρ0

(
M2
nj
− 1
) ∂φj
∂nj

= ρ0

(
M2
nj
− 1
)
Sjφj + Li→jφi , (5b)

where Li→j and Lj→i are the transmission operators that couple the two solutions φi and φj on the interface
Γi,j . The operators Si and Sj replace the ∂φ/∂n terms and act as non-reflecting operators for the domains Ωi
and Ωj . The optimal non-reflecting operators would be the Dirichlet-to-Neumann (DtN) maps associated to
the linearized potential equation for the complement of the sub-domains Ω\Ωi and Ω\Ωj [12]. The definition
and possible approximations of these DtN maps are detailed in the following section. By summing equations
(5a) and (5b), one obtains:

Li→jφi + Lj→iφj = ρ0

(
1−M2

ni

)
(Siφi + Sjφj) . (6)

3.2. Approximation of the DtN map

In a smooth domain Ω, the DtN map links the value of the field φ on a boundary Γ with its normal
derivative:

∂φ

∂n
= Sφ, on Γ. (7)

However, this operator is often non-local and is cumbersome to implement in a finite element strategy since it
would break the sparsity of the global matrix. The simplest approach is to use a zeroth order approximation of
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the DtN map for the linearized potential equation. It amounts to coupling the sub-domains via a Robin-type
boundary condition, i.e.:

Si = − ik0

1 +Mni

, on ∂Ωi, Sj = − ik0

1 +Mnj

, on ∂Ωj . (8)

Higher order local approximations could be derived through the theoretical framework of microlocal analysis
such as initiated in [16]. Preliminary analysis shows that the DtN operator for the linearized potential
equation is of the same nature as for Helmholtz problems and can be approximated by a first-order pseudo-
differential operator of square-root type. A detailed analysis of the DtN map and its approximations for the
linearized potential equation is currently under investigation and will be the topic of a future work. Let us
consider the second-order Taylor expansion of the square-root operator for a flat boundary. It reads:

Si = − ik0

1 +Mni

− i

2k0
∆Γ, on ∂Ωi, Sj = − ik0

1 +Mnj

− i

2k0
∆Γ, on ∂Ωj , (9)

where ∆Γ denotes the surface Laplace–Beltrami operator. These transmission operators or interface condi-
tions are valid in the high frequency limit for propagative modes. Contrary to the exact DtN map, the condi-
tions are now local and can be directly implemented using the available finite element matrices. Evanescent
modes can be damped by introducing a rotation angle α ∈ [0,−π] in the Taylor expansion, which corresponds
to rotating the branch-cut of the square-root operator away from the negative half-plane [17]. The zeroth
order condition (8) becomes

Sαi = −ik0

(
eiα/2 −Mni

1−M2
ni

)
, Sαj = −ik0

(
eiα/2 −Mnj

1−M2
nj

)
, (10)

and the second-order one (9) reads:

Sαi = −ik0

(
cos (α/2)−Mni

1−M2
ni

)
− i

e−iα/2

2k0
∆Γ, Sαj = −ik0

(
cos (α/2)−Mnj

1−M2
nj

)
− i

e−iα/2

2k0
∆Γ. (11)

The choice α = 0 corresponds to the damping of propagative modes whereas α = −π corresponds to
evanescent modes. This angle can be tuned in order to find an optimal balance between the damping of
propagative and evanescent modes.

3.3. Introduction of the interface unknowns

Two interface unknowns are introduced to represent the forcing generated by a sub-domain on its neigh-
bours. These dual variables are defined by

λj→i = Lj→iφj , λi→j = Li→jφi .

The boundary integrals from variational formulations (2) and (3) become:∫
Γij

ρ0ψi

[
ik0Mni

φi +Mni
Mτi

∂φi
∂τi

+
(
M2
ni
− 1
)
Siφi +

λj→i
ρ0

]
dΓ , (12)∫

Γij

ρ0ψj

[
ik0Mnj

φj +Mnj
Mτj

∂φj
∂τj

+
(
M2
nj
− 1
)
Sjφj +

λi→j
ρ0

]
dΓ . (13)

Since we have introduced two additional fields, defined only on Γij , we have to derive two supplementary
equations which are actually provided by (6):

λj→i + λi→j = ρ0

(
1−M2

ni

)
(Si + Sj)φi, on Γij , (14)

λj→i + λi→j = ρ0

(
1−M2

nj

)
(Si + Sj)φj , on Γij . (15)
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They are solved by using Galerkin formulations:∫
Γij

µj→iλj→i + µj→iλi→j dS −
∫

Γij

ρ0

(
1−M2

ni

)
µj→i (Si + Sj)φi dS = 0 , (16)

∫
Γij

µi→jλj→i + µi→jλi→j dS −
∫

Γij

ρ0

(
1−M2

nj

)
µi→j (Si + Sj)φj dS = 0 . (17)

One can now use the transmission operators Si and Sj to obtain a system of four Galerkin formulations to
discretize. For example, the second-order condition (9) applied to the interface formulation (16) gives:∫

Γij

µj→iλj→i + µj→iλi→j dS = −2ik0

∫
Γij

ρ0µj→iφi dS +
i

k0

∫
Γij

ρ0

(
1−M2

ni

)
∇Γµj→i ·∇Γφi dS, (18)

where ∇Γ denotes the gradient operator along the surface Γ. In deriving the above expression we have
assumed that there is no contribution from the contour term introduced by the integration by parts. We do
not use any particular treatment for cross-points or corners.

3.4. Interface problem

Discretizing the variational formulations using a finite element method (see section 4 for more details)
yields an algebraic system of the form:

Kiφi + BjiMijλj→i = fi , (19)

Kjφj + BijMijλi→j = fj , (20)

where the vector φi contains the Ni degrees of freedom for the solution in sub-domain Ωi. The vector
λj→i stores the Nij degrees of freedom for the Lagrange multiplier on the interface Γij . The sub-domain
matrices Ki contain the usual terms associated with the discrete form of the linearized potential equation.
The matrices Bij are boolean of size Nj ×Nij , while Mij designates the mass matrix. The right hand side
fi represents a source term such as an acoustic monopole or a modal source.

Similarly the additional variational formulations (16) and (17) yield

Mijλi→j + Mijλj→i + NijB
T
jiφi = 0 , (21)

Mijλi→j + Mijλj→i + NijB
T
ijφj = 0 , (22)

where Nij defines the terms associated with the interface condition. Equations (19) and (20) can be used to
eliminate the degrees of freedom φi in each sub-domain:

φi = K−1
i fi + K−1

i BjiMijλj→i , φj = K−1
j fj −K−1

j BijMijλi→j ,

where the LU factorization of the matrices Ki are calculated using a direct solver. The above expression
can then be used to eliminate the degrees of freedom φi from equations (21) and (22) to obtain the so-called
interface problem:[

Mij Mij + NijB
T
jiK

−1
i BijMij

Mij + NijB
T
ijK

−1
j BjiMij Mij

](
λj→i
λi→j

)
=

(
NijB

T
jiK

−1
i fi

NijB
T
ijK

−1
j fj

)
,

which involves only the degrees of freedom λj→i defined on the interfaces between sub-domains, and is
therefore of a much smaller size than the global system written for the primal variables φi.

It is possible to simplify the definition of the interface problem by defining λ̃j→i = Mijλj→i which leads
to: [

I I + NijB
T
jiK

−1
i Bij

I + NijB
T
ijK

−1
j Bji I

](
λ̃j→i
λ̃i→j

)
=

(
NijB

T
jiK

−1
i fi

NijB
T
ijK

−1
j fj

)
. (23)

This is exactly the discretization of a fixed point system resulting from the additive Schwarz domain decom-
position algorithm. It is solved iteratively using a Krylov method such as GMRES or ORTHODIR [18]. The
matrix on the left-hand side of equation (23) is not formed since for these iterative solvers one only has to
perform matrix-vector products. We note that the use of different interface conditions Si and Sj modify the
matrices Ki and Nij . It can be seen as a preconditioner for the iterative procedure.
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4. Adaptive High-Order Finite Elements

The domain decomposition formulation is discretized using a p-FEM high-order finite element method
[19, 20]. Each sub-domain Ωi is approximated by a tessellation of non-overlapping elements. On each element
the approximation of the solution φ(x, t) = Φ(x)eiωt is constructed as a linear combination of high-order shape
functions wn(x):

Φ(x) =

N∑
n=1

Φnwn(x) , (24)

where the degrees of freedom Φn are the complex coefficients of each shape function. The Lobatto shape
functions are used in this work [21]. There are four different types of shape functions. The standard linear
shape functions whose associated degrees of freedom are the values of the solution at the nodes of the elements.
Face and edge functions are defined on the corresponding geometrical entity. The fourth category are the
so-called ‘bubble’ shape functions which vanish on the boundary of each element. Apart from the linear
shape functions which are nodal all the others are modal because the associated degrees of freedom do not
correspond to the solution at specific points on the element. The integration on the reference element is done
by a tensorized Gauss-Legendre quadrature rule.

After calculating and assembling the matrices from all elements, one is left with a sparse linear system of
equations which is solved using a fast, parallel multi-frontal solver [22, 23].

There are several benefits in using the Lobatto shape functions. They have been shown to provide good
performance and conditioning [24]. Furthermore their ‘hierarchic’ nature implies that the shape functions at
order p form a subset of the shape functions at order p + 1. This reduces the assembling time of the global
sparse matrix when different shape function orders are used throughout the mesh. Another useful property
is that it is possible to eliminate the degrees of freedom associated with the bubble shape functions. This
technique, called static condensation, allows to reduce the size of the linear system before it is formed and
solved, hence reducing the memory footprint of the method.

With this method it is possible to adjust the order of interpolation in each element. This is particularly
useful for several reasons. Firstly, when applying the standard finite element method for problems with
strongly non-uniform flows it is necessary to refine the mesh in the region where the mean flow velocity is
high since the acoustic wavelength can be significantly reduced by the convective effect. Secondly, typical use
cases of these methods involves performing not one but several calculations each at a different frequency. One
has to generate several meshes to accommodate the different mesh resolution requirements for each frequency
which is time consuming for the user. Another option is to generate a single fine mesh capable of resolving
the complete range of frequencies, which drastically increases the time and computational resources needed
for the analysis.

The use of a variable polynomial order in each element provides a way to address these two issues. The
order is defined thanks to an a priori error indicator introduced in [19] and extended in [20] to the linearized
potential equation. The error is estimated on a single one-dimensional element based on the local mesh
resolution. The appropriate order is then selected from tabulated values for a prescribed target accuracy ET .
This simple a priori rule has shown to be robust and ensures that the numerical error on each element is
controlled in terms of the element size, frequency and flow properties. In this way, the mesh does not need to
be explicitly refined by the user, since the polynomial order will be automatically increased in region where
the flow velocity is high. When performing several calculations for a series of frequencies, there is no need
to prepare several meshes because the adaptive scheme will progressively increase the polynomial order for
high frequencies, thus ensuring that the same level of accuracy is achieved for all results.

5. Cylinder scattering in a potential flow

5.1. Verification

The test case used to validate the approach and implementation consists in the scattering of a point source
by a rigid cylinder. It is placed in a steady, two-dimensional, incompressible, inviscid and irrotational flow
such that far enough from the cylinder, the velocity V∞ is uniform and aligned with the x-axis. The expression
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of the velocity can be derived using the Laplace equation for its potential. In cylindrical coordinates (r, θ),
it is given by:

vr(r, θ) = V∞

(
1− R2

r2

)
cos θ , vθ(r, θ) = −V∞

(
1 +

R2

r2

)
sin θ ,

where R is the radius of the cylinder. The flow has zero velocities at the stagnation points (r = R and
θ = 0, 2π) and a maximum velocity corresponding to the upper and lower surface of the cylinder (r = R and
θ = π/2, 3π/2). In the computations performed here, the potential mean flow is prescribed analytically. The
speed of sound c0 and the density ρ0 are set to unity. We use R = 1, V∞ = −0.4. The resulting mean flow
direction and magnitude is plotted in Fig. 1.

The location and amplitude of the point source are (xs, ys) = (−R− 0.4, 0) and A = 1, respectively. The
acoustic field is solved on a square domain of dimension [−2R, 2R]× [−2R, 2R] containing the cylinder which
is centered at the origin. A hard wall boundary condition is imposed at the surface of the cylinder and a
perfectly matched layer is used to absorb the waves that may be reflected back into the numerical domain
[10]. An unstructured mesh of quadratic triangular elements is used to represent the computational domain
(see Fig. 1). The mesh is refined close to the surface of the cylinder. Compared to the typical mesh size h at
the outer boundary, the mesh size at the surface of the cylinder is set to h/3. The same refinement is used
around the point source where the solution is expected to be singular.

In the absence of analytic solution, we compare the solution obtained with the optimized Schwarz method
to the solution produced using the same mesh and a direct solver. The mesh is split into sub-domains thanks
to an automatic graph partitioner, namely the METIS library [25]. The polynomial order distribution used
for the hybrid and direct solvers are identical for a given problem.

Figure 1: Left: Example of partitioning of the discretized domain with Ns = 16 sub-domains. The physical and PML regions
are delimited by the red dashed line. Right: Magnitude of the mean flow velocity field around the cylinder.

The problem is considered at three different frequencies for a given number of sub-domains: ω = 10, 25
and 100 for a target accuracy of ET = 1% on the L2 error. The iterative procedure is stopped when the
interface residual reaches rI = 1e−8. Accounting for the convective effect induced by the mean flow, these
frequencies correspond respectively to wave number magnitudes of approximately 50, 125 and 500 in the
regions where the mean flow magnitude is the largest. For each frequency, the typical mesh size is chosen
such that the shortest wavelength at the surface of the cylinder is described by at least 6 nodes in order to
control the geometrical error.

The solutions in the domain are given in Fig. 2 for Ns = 9 sub-domains along with the real part of the
solutions at each frequency on the perimeter of the cylinder (at r = R). While large wavelengths are found in
the region downstream of the source, short creeping upstream waves are observed along the cylinder. We see
that there is an excellent agreement between the solutions, even at high frequency and in the most oscillatory
regions corresponding to θ = ±π/2.
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Figure 2: Example of numerical solutions obtained by domain decomposition for ω = 10, ω = 25 and ω = 100. Left: real part
of the pressure field. Right: directivity of the solution along the perimeter of the cylinder for Ns = 1 and Ns = 9.

5.2. Performance of the interface conditions

The performance of the different transmissions operators presented in section 3.2 are now compared for
a given set of numerical parameters. We want to study the accuracy of the operators Si and Sj compared to
the solution that would have been obtained by a direct solver. The resulting remaining error is referred to
as global residual. We define it as the average residual over the sub-domains volumic systems

rg =
1

Ns

Ns∑
i=1

‖Kiφi − fi‖2
‖fi‖2

, (25)

where ‖·‖2 refers to the Euclidian norm. The interface residual is always verified to decrease consistently,
but depends on the selected interface condition.
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In Fig. 3, the number of iterations required to reach a global residual of rg = 1e−6 is plotted as a
function of the rotation angle α. For both conditions of order 0 and 2, there is an angle for which the
number of iterations is minimal. Physically, this angle corresponds to the optimal balance between the
attenuation of propagative and evanescent modes hitting the interfaces. The global residual for the second-
order condition decreases faster than the zeroth order condition. This confirms that the DtN map is better
approximated thanks to a higher order Taylor expansion. The second-order condition equipped with the
optimal rotation angle further improves the approximation since the evanescent modes are captured. This
behaviour is confirmed by the eigenvalues distribution shown in Fig. 4. In fact, the second-order condition
drives away the eigenvalues that accumulate around zero real part, thus improving the conditioning of the
interface problem. The rotation angle plays a different role. It moves the eigenvalues lying on the unit
circle towards the point (1, 0), thus leading to a better clustering for the Krylov method. These eigenvalues
correspond to the evanescent modes on the sub-domain interfaces. Similar behaviour has been observed and
analyzed for Maxwell’s equations in [8].

However, the spreading of the eigenvalues in the complex plane suggests that the presented conditions
are only sub-optimal. In this case, the second-order condition (11) leads to a gain of a factor 4 in terms of
iterations compared to the Robin-type condition (8).

Figure 3: Left: Number of iterations required to reach rg = 1e−6 as a function of the rotation angle α. Right: evolution of the
global residual for the interface conditions of order 0 and 2. Numerical parameters: V∞ = −0.4, ω = 25, Ns = 8, h/R = 0.06
and ET = 0.5%.

(a) α = 0 (b) α = −π/2

Figure 4: Eigenvalues distribution for the interface problem for two rotation angles α. The numerical parameters are those of
Fig. 3.
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5.3. Scalability

We would like to examine now the performance of the method in view of industrial applications. The
robustness of the method with respect to the frequency and the number of sub-domains is analyzed for that
purpose. The so-called scalability results are gathered in Table 1.

One way to analyze the high frequency behaviour of the interface conditions is to keep the numerical error
under control through the frequency sweep. Let us consider the number of degrees of freedom per shortest
wavelength as defined in [26]:

d∗λ =
2πP

ωh
(1− |Mmax|) ,

where P is the polynomial order of the shape functions and Mmax the maximum value of the local Mach
number in the domain. In this section only, we fix the polynomial order of the elements. While the frequency
is increased in the experiments, we maintain a value of d∗λ = 5 by adjusting the mesh size. This strategy
allows to keep the interpolation and dispersion errors constant in the domain and to have a better control
on the pollution effect during the sweep.

Table 1 indicates that high oscillatory problems are more easily tackled by the second-order condition.
The number of iterations needed to reach rg = 1e−6 increases with the frequency by a faster rate for the
zeroth order condition than for the second-order one. As previously mentioned, this is the consequence of a
more accurate approximation of the DtN map. The optimal interface condition would converge independently
of the frequency. Improvements towards this goal have been achieved with Padé-type transmission boundary
conditions. They only require a small amount of additional cost [4]. The rotation angle acts on the evanescent
part of the spectrum and does not significantly affect the frequency scalability properties for both conditions
of order 0 and 2.

The number of sub-domains is then increased by fixing the other numerical parameters. The total number
of degrees of freedom on the interfaces N I

DOF is also reported. As expected from previous studies for
Helmholtz problems [15], the method does not scale with the number of sub-domains. This can be understood
since the information exchanged between the sub-domains is only local. The use of coarse grids or sweeping
preconditioners would help to retrieve some parallel efficiency by sharing global information [27].

Table 1: Number of iterations required to reach a global residual rg = 1e−6 for different number of sub-domains, frequencies
and interface conditions. Numerical parameters: V∞ = −0.4, d∗λ = 5, P = 4. O0: order 0, O2: order 2. The rotation angle is
set to −π/2 for the condition O2, α.

ω = 10 ω = 20 ω = 40

Ns N I
DOF O0 O2 O2, α N I

DOF O0 O2 O2, α N I
DOF O0 O2 O2, α

2 260 95 32 23 476 103 34 25 948 131 43 30
4 616 123 42 30 1016 129 43 30 1872 164 45 32
8 1320 126 48 34 2312 148 46 33 4728 170 50 36
16 2348 160 70 49 4276 172 69 47 8504 185 77 54
32 3698 179 89 62 6694 183 85 59 13426 195 92 62

6. Application to a realistic turbofan intake

6.1. The turbofan model

The proposed methodology is now applied to solve a problem of industrial relevance: the sound radiation
from a generic turbofan intake. Detailed information concerning this test case are available in Prinn [24] and
Mustafi [28]. This geometry was previously used to benchmark the performance of the a priori p-adaptive
strategy for flow acoustics in [20, 29].

We focus here on the approach and sideline flight configurations, used for the noise certification of aero-
engines. They differ from the Mach number at the fan face, being Mf = 0.22 for the approach case and
Mf = 0.55 for the sideline case. The conditions at infinity are as follows: sound speed c∞ = 340 m/s, density
ρ∞ = 1.2 kg/m3 and Mach number M∞ = u∞/c∞ = 0.25. The background mean flow used for the acoustic
simulation is shown in Fig. 3(c) of Ref. [20]. It was obtained using a potential, compressible, inviscid flow
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model. The input boundary condition consists in a single rotor-locked mode at the Blade Passing Frequency
(BPF) of the fan f = 1300 Hz. It is enforced by a surface integral on the fan plane boundary. Results are
presented here for the first radial mode with azimuthal order 24. The computational domain is a cylinder
of length 3.5 m and radius 2.5 m. A cylindrical Perfectly Matched Layer is used to efficiently model the
outgoing waves [11]. The mesh consists of conventional quadratic, 10-nodes, tetrahedral Lagrange elements,
with a characteristic length of h = 20 cm in the far-field and h = 4 cm close to the walls of the nacelle.
The adaptive procedure referred in Section 4 is applied to assign the orders in each element across the mesh
with a target accuracy of ET = 5% on the L2 error. The mesh is then split into Ns = 6 sub-domains using
the METIS library [25]. In order to take into account the element order distribution in the partitioning and
to guarantee a good repartition of the degrees of freedom between the different sub-domains, each element
is weighted with a factor p3

e, where pe designates the local element order. In the following computations,
the element orders range from p = 1 to p = 8 depending on the mean flow magnitude and the mesh size.
Figure 5 shows the elements order repartition and the location of the boundary conditions. The variation
of the element orders in the nacelle is mainly due to the mean flow magnitude contrast between the two
configurations.

(a) Approach (b) Sideline

Figure 5: Finite elements polynomial orders on the x-z plane. The physical and PML regions are delimited by the black dashed
line. The location of the input boundary condition is highlighted by the black solid line.

6.2. Numerical procedure and results

A parallel implementation of the ORTHODIR algorithm is used to solve iteratively the interface problem
(23). One MPI process is assigned to each sub-domain, and each MPI process is allocated to a separate node
on a HPC cluster with InfiniBand interconnect. The most computationally demanding task for each process
involves the LU factorization of the linear system for each sub-domain which is performed by the MUMPS
solver version 5.1.2 [22, 23]. In the sideline configuration, the largest matrix to factorize had roughly 1 million
degrees of freedom, which was factorized using 46 Gb of memory. The smallest matrix had 873 thousand
degrees of freedom and required 38 Gb of memory, which indicates a relatively good load balancing between
the different processes. The approach configuration required less resources, namely between 17 and 23 Gb
of memory. Table 2 summarizes the computational characteristics of the two simulations. The interface
problem contains for the approach and sideline cases respectively 48 684 and 50 024 Lagrange multipliers.

Table 2: Characteristics of the domain decomposition sub-domain matrices after static condensation. Minimum, maximum and
total data over the Ns = 6 sub-domains.

Configuration
Approach Sideline

min max total min max total

degrees of freedom 520 521 651 205 3 396 321 872 971 1 048 958 5 770 072
non-zeros 36 524 882 69 631 702 342 187 703 76 632 678 112 184 616 563 898 984

LU memory 17 Gb 23 Gb 117 Gb 34 Gb 46 Gb 241 Gb
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Figure 6 presents the real part of the acoustic potential for the two mean flow configurations. The mesh
is refined near the throat of the inlet where the Mach number exceeds 0.8 in the sideline configuration. This
induces a significant shortening of the waves in that region, which is well captured by the high-order adaptive
finite element model.

Figure 7 shows the interface residual of the iterative procedure for the zeroth and second-order interface
conditions. The second-order condition is equipped with a rotation angle of α = −π/2. The interface residual
to reach convergence is set to rI = 1e−8. The global residual defined in (25) is computed when the required
interface residual is reached. With the zeroth order condition, the approach and sideline configurations
converged respectively in 404 and 830 iterations to a global residual of 1.8e−7 and 1.1e−6. The iterations
reduce respectively to 109 and 435 to a global residual of 4.8e−9 and 5.7e−9 with the second-order condition.
The convergence speed up is more moderate in the sideline configuration. This can be attributed to the
strong mean flow variations in the computational domain that are only partially captured by the interface
conditions. Improved conditions should take into account the tangential components and derivatives of the
mean flow.

Nevertheless, the second-order condition speeds up the approach configuration by a factor 4.1 and the
sideline configuration by 1.9 in terms of iterations and computational time. It also improves the accuracy
of the solution in terms of global residual. With a simple modification of the zeroth order condition, the
second-order condition with the rotation branch-cut technique allows to physically act on the damping of
evanescent modes. This results in a lower number of iterations by an amount that is comparable to the gain
from an optimized second-order condition such as used in [15].

(a) Approach (b) Sideline

Figure 6: Real part of the acoustic potential obtained for the mode (24, 1) at the first BPF (f = 1300 Hz) for two static flow
configurations. The solutions were obtained with Ns = 6 sub-domains.

Finally we compare the benefit of the domain decomposition approach with the one currently used in the
industry, that is the inversion of the matrix formed by the discretization of the entire domain. This matrix
is given to a parallel version of MUMPS which splits the problem over 6 single-threaded MPI processes.
We note that the domain decomposition problem globally contains a slightly higher number of degrees of
freedom due to the creation of the interfaces unknowns. In the sideline configuration, the parallel version of
MUMPS split on 6 processes requires 105 Gb of memory per node for the factorization. On a single process,
the required memory increases to 440 Gb. It is respectively 2.3 and 9.6 times more than the memory needed
by the present domain decomposition technique for the factorization of the largest sub-domain matrix. With
an appropriate transmission condition, the iterative solver then adds around 1 Gb of memory and an amount
of computational time that is small compared to the factorization time of standard methods. The associated
computational costs are summarized in Table 3. This confirms the high benefit of domain decomposition
techniques for large-scale models and paves the way for the resolution of a new class of problems in flow
acoustics.
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(a) Approach (b) Sideline

Figure 7: Evolution of the interface residual for the interface conditions of order 0 and order 2 with rotation angle α = −π/2.

Table 3: Computational costs comparison between domain decomposition and standard methods for the sideline configuration.
Each MPI process is assigned to a single-thread of an AMD Bulldozer 6272 CPU at 2.1 GHz with 256 Gb of RAM.

DDM - O2,α DDM - O0 MUMPS MPI MUMPS

Memory (LU + ORTHODIR) 46 Gb + 0.9 Gb 46 Gb + 0.9 Gb 105 Gb 440 Gb
Time (LU + ORTHODIR) 1 h 52 m + 2 h 6 m 1 h 52 m + 4 h 6 m 22 h 40 m –

7. Conclusion

A non-overlapping domain decomposition method, based on the optimized Schwarz approach, has been
developed and verified for the simulation of sound with a background mean flow, namely the linearized
potential equation propagation model. It was shown that, through the choice of suitable interface unknowns
and conditions, it is possible to obtain a formulation that shares similar performance to the methods used
for the Helmholtz problems. While adaptive high-order finite elements enhance the computational efficiency
within the sub-domains, higher order interface conditions improve the performance and scalability of the
global iterative procedure. With a simple physical parameter, the proposed second-order condition has shown
to be more robust than the usual Robin-type condition and to perform as well as an equivalent optimized
condition. On a real scale application, it results in a gain of a factor up to four in terms of iterations and
computational time. Work is ongoing towards a better scalability of domain decomposition techniques with
respect to the frequency, mean flow and sub-domains.
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