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Abstract: The paper deals with arrays of numerous power conversion cells, associated in series
and/or in parallel to build larger step up or step down direct current (DC)/DC isolated converters.
The work focuses on the impact of the spread and distribution of the conversion cell characteristics on
the characteristics and performance of the power converter array (PCA). Based on a characterization
protocol, about 130 conversion standard cells (CSC) are characterized and classified from a statistical
point of view. Three families are defined and representatives are chosen and implemented in various
configurations, in open and closed loop control, to analyze the impact of their spread characteristic
over the global converter, the PCA. The paper is based on an extended practical set up and protocols,
all described in details. Guidelines on CSCs implementation with respect to their dispersion are
provided at the end on the paper.

Keywords: power converter array; dc to dc converters; conversion standard cells; statistical analysis;
multicell converters; characterization

1. Introduction

Power electronics converters arrays are gaining more interest because of their multiple advantages
thanks to voltage and current ratings distribution over several conversion cells [1,2]. Basically, a power
converter array (PCA) is built from the association in series or in parallel of several converter cells,
allowing to scale up voltage and/or current ratings, to distribute voltage, current and losses over
several conversion subsystems, but also to interleave control and filtering [3]. PCAs are different
from the inter-cell of multi-level converters such as in [4—6] in the way the conversion cells remain
far more independent. In addition, matrices of converters bring the opportunity to use standardized
subsystems such as in power electronics building blocs (PEBB) [7,8]. Most of the time converter
arrays, also called multi-cell converters, are made from a few conversion cell units. Power converter
arrays can also be made from numerous conversion subsystems, for example with tens of conversion
cells [9]. In such a way, complexity rises and standardization, together with integration (monolithic
and hybrid), are used to overcome reliability issues [10]. Integration is used to increase reliability by
relying on advanced and collective manufacturing platforms. In such a way, monolithic integration
can be used to aggregate all active parts, including if possible, power transistors in a single device to
reduce interconnects and assembly issues [11]. Hybrid integration is considered for the assembly of
heterogeneous components in conversion sub modules such as Integrated Power Electronics Modules
(IPEM) [12] for the same benefits. Both solutions are offering standardized and reliable parts that may
balance converter complexity. For this, conversion standard cells (CSCs) are designed, produced and
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qualified to be used several times afterwards in many different PCAs, with the objective not to modify
them. In such a way, higher yield is obtained, the supply chain may be optimized and the design cycle
can be reduced as presented in [13,14]. Nonetheless, CSCs remain to be produced in quantities and
tolerances on components and manufacturing process will keep introducing a spread in characteristics
and performances at the CSC level. These characteristic and performance dispersions may as well affect
voltage and/or current distribution over the PCA, leading to uneven distribution losses and possibly
poor performance levels as for example in the case of photovoltaic (PV) panels [15]. To overcome this,
extensive control is usually implemented leading to extra complexity and cost. The main objective of
the paper is to investigate, on a precise case study, first the distribution of the characteristics at CSC
level and then how this propagates to the PCA level. This paper does not aim to produce a generic
analysis. It aims to introduce a qualification procedure. It is carried out on a specific technology frame
and does not pretend the analysis can be fully transferred to any other case study.

In such a way, the paper is based on existing CSCs that are first characterized. A large set of
devices are tested and classified before being implemented in PCAs in various configurations. From
the whole analysis, it is expected to see which conditions may be necessary and how to handle the
thermal management of CSC that are not fully operated at the same operating point. The whole
analysis only considers a steady state operation. The impact of CSC characteristics spread in PCA
dynamic responses to a reference step or input voltage variation or load step or any other operating
point variation is not studied in this paper [16].

The paper describes first the CSC under study and its electrical characteristics. Then the paper
focuses on the characterization of an industrial batch of CSCs to point out the fact that although they
are all manufactured in the same batch (same architecture, same components from the same supply
chain ... ), they exhibit differences in operation. In particular, the CSCs are classified and a relation is
defined between CSCs characteristics and the critical components involved in the dispersion of CSCs.
Out of a production batch of 250 CSCs, about 130 are tested in specific conditions and statistics are
provided. Representative samples are extensively characterized before being used and implemented
in multiple PCA configurations.

For that, three CSC families are defined and used to build several configurations in order to
observe the impact of CSC dispersion on the characteristics and performance of PCA. A design of
experiment (DOE) is proposed. Only open loop control is considered at this stage of the study. In such
a way, the paper only provides an analysis that is suitable for steady state operation when PCAs are
operated in a closed loop. As a consequence the paper is not addressing the impact of component
dispersion on dynamic responses to disturbance or reference change when the PCA is working in
closed loop. This is left to another study. The impact on voltage and current distribution is analyzed
carefully, together with loss distribution and global efficiency. The paper ends with a set of guidelines
in terms of CSC dispersion.

2. Setting up the Experiment

The work is based on arrays of standardized conversion cells that are associated at their input and
output either in series or in parallel [17]. In such a way, almost any active transformation ratio can
be achieved using the same CSC. CSCs integrate a decoupling between input and output terminals,
a magnetic HF transformer in our case, such that any ISOP, IPOS and ISOS (respectively input
series/output parallel, input parallel/output series and input series/output series) configuration can be
implemented as illustrated in the Figure 1a [13]. The produced PCA can be made out of numerous
CSCs, arranged in one configuration to form groups, the groups being able to be associated in the same
or another configuration and so forth and so on until the global PCA meets the specification of the
application. In this PCA design process, the only parameters that can be adjusted are the number of
CSCs and the way they are interconnected in the PCA to fulfill specifications. The CSCs cannot be
modified or adapted in order to maintain their yield high and to minimize rework at CSC levels. In
our technology frame, CSC are assembled on a motherboard on which are implemented the power
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interconnections according to the desired configuration. Only motherboards are “customized” to
receive power jumpers from one design to another. In such a way, step up or step down PCA with a
large transformation ratio can be implemented and also voltage and current scaling is possible. In
most cases, literature reports that control techniques are required in some configurations to account
for CSCs voltage, current or power flow unbalances [18] CSCs considered in this work are all the
same. They are DC to DC isolated converters based on a dual active bridge (DAB) topology, recalled in
Figure 1b. Only this single architecture is studied in this paper. Each CSC includes all power devices,
transistors, transformers, inductors and capacitors but also the gate drivers and the auxiliary supplies.
Characteristics of a CSC are listed in Table 1. MOSFETs are used in each H bridge and a HF transformer
with unity transformation ratio is used, together with an AC link inductor. The two H bridges are
switching at the same f;;, frequency with 0.5 duty cycle to produce AC square waveforms. The two AC
waveforms are phase shifted of « to control power flow. Capacitors are placed on both sides of the HF
transformer, in the AC link loop, to block the DC part of the not purely AC waved voltage by the full
bridge. Otherwise, a DC voltage would be applied that would lead to the HF transformer magnetizing
inductance saturation. Opto-couplers are also included on both sides of the DAB converter to receive
the control signals for each H bridge. No specific control is implemented at the CSC level. In such
a converter, power flow is very sensitive to AC link component values as shown in Equation (1).
Especially, the AC link inductor value is a critical parameter in the Equation (1) where Pygusferred 1s the
power flow level from primary side to secondary side, V;, and V,,; are respectively, the input and
output DC bus voltages, Lac is the AC link inductor, fs;, is the switching frequency and « is the phase
shift angle between the primary side H bridge produced AC waveform and the secondary-side H
bridge produced by the AC waveform. This makes the DAB converter a very suitable case study to
investigate the impact of CSC component dispersion on PCA characteristics and performance.

Vin* Vout
Lac * fsw

Ptransferred = 0((1 - 20() 1
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Figure 1. (a) Input series/output parallel (ISOP), input parallel/output series (IPOS) and input
series/output series (ISOS) configuration illustration, (b) topology of a dual active bridge (DAB) converter.
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Table 1. Main characteristics of a single CSC and the PCA introduced as an illustration.

. . Input Input Output Output .
Configuration Voltage Current  Voltage Current Power  Weight Volume
sg;%e Single 20V 5A 20V 5A 100 W 19g 0.015L
PCA IPOS 20V 90 A 320V 5A 1.8 kW 490¢g 091L

Step up or step down PCA can be built from associations of several or even numerous CSCs
to achieve a very large active transformation ratio. In Figure 2 below are shown a picture of three
CSCs and a picture of a PCA, made with 16 CSCs associated in an IPOS configuration, distributed
in columns (x4), lines (x2) and boards (x2). It can be seen that two mother boards receive the CSC
and a third PCB is used to complete the PCA configuration, collecting currents of paralleled CSC
inputs and associating groups of CSCs in series at their outputs. The characteristics of the CSCs
used in this work and the PCA presented as an illustration are summarized in Table 1 below. As
can be seen in the picture, CSCs are physically stand-alone subsystems, manufactured on their own
PCB. The implementation of the PCA is carried out with a mother board on which are soldered and
interconnected CSCs. Termination standard cells are added on the edges of lines and columns of the
array of CSCs in order to collect current and to implement the desired configuration. The PCA is
designed to operate at full current of 5A under forced air cooling and down to half load under natural
cooling. Since the whole characterization work is carried out under natural cooling test conditions,
power flow will be limited. This implementation approach is very convenient for rapid prototyping
where only mother boards are adapted from one PCA specification to another. In such a way, many
CSCs can be produced at once and then implemented in various configurations.

Figure 2. Picture of a single conversion standard cell (CSC) based on the DAB topology (left), picture of

a power converter array (PCA), made with 16 CSCs, arranged in 4 columns, 2 lines and 2 boards (right).

This CSC has been designed exclusively with components available off the shelf, with regular
dispersion constraints. The CSC has been optimized at best, with the objective to reach reasonable
efficiency and power density levels, in order to be representative of a real design case. No component
selection has been made prior to manufacturing to remove the one too far from the median characteristics.
Table 2 summarizes the main components to be used, together with their main characteristics and their
known dispersion, when available, coming from datasheet.
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Table 2. DAB converter component list. Includes the main value for the components and their
dispersion range, when available.

Component Value Fonction Main Parameter Tolerance (%)
Transformer POElZOPL._ 241300 nH Galvanic Insulation L; Max1m1’1m
leakage inductor Value
XEL4030-301MEC|400 nH Alternating current (AC) .
Inductors inductor link complement inductor Lac +/-20
Capacitor 20 uF20V AC link de.couphng C +/-20
capacitor
Capacitor 20 UE30'V Input/Output filter C +/=20
capacitor
MOSFET SiSA10DN 5 mQ 30 V Power transistors RDSon +20

The most representative characteristic curves of the DAB converter are the relation between
efficiency and current rating (i.e., power level) and the relation between efficiency and the input,
output voltage difference. Both of them have been plotted for the CSC that has been described and are
provided as an example for one of them in Figure 3. As can be seen, the DAB converter efficiency is
greatly affected by these two parameters. From these characterizations, one can easily understand that
CSC dispersion may rapidly introduce operating point dispersion leading to performance dispersion.
The important issue is then to see how dispersion levels are going to affect PCA converter performances.
The following section introduces the characterization method used to qualify about 130 CSCs out
of 250 devices manufactured from the same batch. Characterization results are then displayed and
samples are selected to further analyze the distribution impact of CSCs when implemented in PCA.

0,96

Y Vin=20V 0,96 Vin= 19V
0,95 o e, Flaa ¥ —
. [ %o Vou=19.5V L 0% s % p-3sw
- 0,94 7 o, ©'0,94 g
2 0,93 : * g o093 | * .
= ® =
3;3 0,92 : = 0,92
0,91 ® 0,91
0,9 0,9
a) 0 50 100 150 b) 0,85 0,95 1,05 1,15
Power (W) Vour/ Vin

Figure 3. Two typical characteristics of DAB converter efficiency. (a) efficiency versus output current,
(b) efficiency versus input, output voltage difference. Other operating point parameters available in
the figure.

3. Characterization of First Batch of Conversion Standard Cells (CSCs)

A test bench has been specifically developed in order to be able to implement fast and reproducible
tests. The results are summarized in a graphical form to ease analysis. From that, three families of
three CSCs are selected and further characterized and analyzed. This section details these steps.

3.1. Experimental Setup

CSCs have been designed to be assembled and interconnected on motherboards as presented in
the previous section. This approach is very convenient for rapid prototyping. In addition, this is also
very convenient for rapid testing and characterization on a socket board. A specific board has been
designed to carry out the CSCs testing and characterization. Figure 4 below presents a picture of the
PCB-based test board used for characterization, together with all the instrumentation required. In this
test board, CSCs are not soldered as it is the case with the PCA shown in Figure 2. They are installed in
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a specific socket arrangement. Only natural air cooling can be implemented in a reproducible way.
As a result CSCs will only be tested at up to half power. Since the socket may introduce additional
resistance, a kelvin point measurement is implemented in order to measure accurately the input voltage
applied to the CSCs and its output voltage without including the possible voltage drops that the sockets
electrodes may add. Input and output voltage and currents are measured. Each CSC is supplied with
the same DC source and strictly under the same voltage rating. The CSCs are loaded with a resistor that
is strictly kept constant. The CSCs are controlled with a microcontroller that produces strictly the same
switching frequency and the same phase shift between primary and secondary side driving signals.

P14 PTL

oot (@ (@om r Voltage

| j  measurements

CSC connections

il
Mj,‘}mu

'WMs

eocw(@ @]

-'a]“.‘-i
Figure 4. Picture of the characterization board, together with the instrumentation required to carry out
CSC testing.

Three different operating conditions were tested and are listed in Table 3 below. These testing
conditions have been selected when CSC characteristics are either very sensitive or in the opposite
way when they are not. This sensitivity is visible in the efficiency and electrical operating point in the
curves in Figure 3. Specifically it can be seen that with a V,/V;, ratio lower than 0.95 the efficiency
becomes significantly sensitive to variations of V,,/V,. The same conclusion can be drawn for power.

Table 3. Description of the three operating points used to characterize each single CSC.

Output Voltage

Operation Point (Considering 15Vinput)

Power Rating

N°1 13V 20W
N°2 145V 20W
N°3 145V 40W

Three different points were considered to cover all operating regions. Operating point 1 considers
a large input output voltage difference (large sensitivity) under a low power rating (large sensitivity).
In this operating point, the efficiency level is very sensitive to power flow or voltage difference as
can be seen in Figure 3. Similarly, operating point 2 considers a low input output voltage difference
(low sensitivity) under a low power rating (large sensitivity). Operating point 3 considers a low
input output voltage difference (low sensitivity) under 40 W power rating (low sensitivity). Of course
more and/or different operating points could have been selected but this would have enlarged testing
duration since the 130 CSCs are all tested for those three operating points. Especially a last operating
point could have been selected at maximum power. This has not been implemented because it requires
forced air cooling and the test bench was not implemented at first to operate under forced air cooled in
a reproducible way. That characterization is left for complementary investigation.
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From this characterization procedure, two parameters were specifically observed: the output
voltage mismatch among cells and the CSCs efficiency mismatch. These two parameters were selected
because they are very relevant of the converter operating point as a function of components values
and parasitics. Especially, as introduced above in Equation (1), the AC link inductor has a significant
impact on the converter operating point.

3.2. Characterization Results and First Analysis

Figure 5a below presents the distributions of the output voltage levels for over 130 tested CSCs
under the conditions described in Table 3. The measured voltages are, therefore, close to the desired
voltage in Table 3: the difference is due to the disparity in the value of the components. It is possible to
represent the distribution of each test by normalizing the voltages by the ratio between the measured
voltage and the theoretical voltage. This theoretical voltage V,,: 4 nex represents the output voltage
expected depending on the test N° X (presented in Table 3). It is the output voltage of CSC for
components with no disparity.

80
60
—N"1 N°2 N°3
40
20 ¥

0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04
(a) \/ou‘o’r VOuI:_Eh_N°X

Occurence

80
60
40
20

—N"1 N°2 N°3

Occurence

0 _— E—
88 89 90 91 92 93 94 95 96 97

(b) Efficiency (%)

®N°1
94 N2
Spdaltwese N3

12.5 13 13.5 14 14.5 15

Efficiency (%)
N

Output voltage (V)

—_
]
—

Figure 5. Statistic distributions of CSCs. (a) distribution of output voltage (b) distribution of efficiency
rating (c) distribution of efficiency versus output voltage level for the three test campaigns.

As can be seen, the distributions look like regular Gaussian curves, which is an expected and
satisfactory result. Figure 5b introduces the distribution of the efficiency of the 130 tested CSCs. The
curves are also Gaussian. Figure 5c shows the distribution of efficiency according to the output voltage
of each cell over the three tests. This graph explains the lower standard deviation of Test 2 from Test 3,
as the yield values found in Test 2 are of a horizontal tendency. This results in a “narrow” Gaussian
distribution compared to Tests 1 and 3. This also reflects the presence of a maximum efficiency at the
point of operation of Test 2: at the maximum, the efficiency on each side of the Gaussian decreases only
slightly as shown in Figure 3b.
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This clearly shows that the two observed quantities (output voltage and efficiency) are probably
influenced by the same parameters.

From this first characterization process, it can be seen that the manufactured CSCs are not operating
strictly in the same way and that their operating points are distributed over quite a wide range. In
series and parallel associations, this operating point distribution may have an impact on the converter
overall performances but also voltage and current balance over the CSCs. It is very important that the
uneven distribution of constraints may produce local mismatch in heat production. Provision may
have to be considered in order to account for that. The objective of this work is to investigate further
this issue. For that, it has been decided to select a set of three CSCs representative of three extreme
quintile, the first one (name A), the middle one (named B) and the last one (named C). “A quintile”
represents CSCs on the far left of curve of 5-a while “B quintile” represents CSCs is in the middle (top)
of the Gaussian. “C quintile”, on the other hand, represents CSCs on the far right of the Gaussian;
3 X 3 CSCs have been further characterized in order to find precisely the relationship between their
behavior and their physical implementation. This is addressed in the following subsection.

3.3. Further Characterization Process

The 3 x 3 CSCs have been further characterized in the following way. Each CSC is named CSCy,,,
where the y variable represents the family letter (A, B and C) and the z variable represents the number
(1, 2 and 3) of the CSC in that family. Before proceeding further, it is important to clarify that the family
number is not related to the test number presented in Table 2. The same CSCs from quintile A, B or C
are implemented in Tests 1, 2 and 3: Quintiles A, B and C are the same (in terms of CSCs) regardless of
the test presented in Table 2. As an example of this: a CSC that falls within the scope of the “A quintile”
for test number 1 (at the far left of the blue line in Figure 5 will also be in the “A quintile” for Tests 2
and 3 (at the far left of the orange and grey lines).

Their AC link impedance have been accurately measured and plotted with an impedance analyzer
and their respective R-L-C equivalent circuits have been derived. The results are provided in Figure 6
and Table 4. The measurements were carried out shorting, on the secondary side the middle points of
the output H bridge and measuring the AC link impedance between the middle point terminals of
the input H bridge. In such a way, all components of the AC link are included in the characterization,
including the way they are implemented. This gives the opportunity to look after the AC link inductor
and capacitor at the same time, but also to include the series resistance of the AC link, greatly made out
of all components and the way they are implemented. Since inductors and capacitors in this measure
are expected to be significant, little care was taken in the way the measure were done. In the opposite
way, a very special care was carried out to avoid disturbing the series resistance measure during the
characterization process.

10%¢

e
CSC N°209
N°209 Experimental RLC Model

L. C - f
AC Llcukugc AC g £
_rvzr:\_| .o | S
=100k . Bl E
AC LM || £ \ -
a [ \
) 107! 1 \//
-2 L I L i
10103 10* 10° 108 107
b) Frequency (Hz)

Figure 6. (a) One AC link branch impedance characterization for the 3 X 3 CSCs on impedance analyzer
(Keysight E4990A) (b) One on the impedance plot versus frequency (only one curve is provided since
they are superposed due to only small differences.
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Table 4. R-L-C component values for the equivalent circuit of the 3 X 3 CSCs.

N° CSC Output Voltage 1 (%) Lcsc (nH) C (uF) R (mQ)) Designation CSCy,,

209 12.82 91.1 702 7.6 64 CSCcp
59 12.83 91.16 691 7.6 66 CSCcp
106 12.88 91.31 691 7.6 65 CSCcj3
83 13.04 91.81 680 7.6 62 CSCp 1
81 13.09 92.6 658 7.6 66 CSCg
86 13.07 91.7 660 7.6 70 CSCg3
131 13.26 92.02 640 7.6 65 CSCa 1
177 13.30 92.24 653 7.6 65 CSCap
139 13.33 92.26 651 7.6 65 CSCa3

The AC link impedance characterization is quite representative of what could be expected with
the series association of inductors and capacitors. In the lower part of the spectrum, above 10 kHz, one
can recognize the impedance of a capacitor, with its negative slope while above 100 kHz, the inductor
impedance is dominant up to some resonant frequency in the range of 4 Mhz. In such a way, capacitors
are well designed to stop the DC component while the inductor is clearly dominant at the converter
switching frequency (250 kHz). Please note that the behavior below 10 kHz is due to the presence of the
magnetizing inductance Ly;. That component has a greater impedance than the secondary capacitor
that prevent the secondary side from being totally shorted out.

Table 4 above provides the output voltage of the CSC for Test 1 together with the parameters
extracted from the AC link impedance characterization. Looking at Table 4, one can see that the most
relevant parameter is the AC Link inductor (named Lcgc) with a dispersion up to 10%. The series
resistance is also not fully stable with a dispersion up to 13%. On the other side, the AC link capacitor is
invariant, always equals to 7.6 uF, quite close from two 20 uF capacitors in associated in series. One can
see that the main parameter that varies from one CSC to the other is the AC link equivalent inductor
value (named Lcgc). This value is in fact the sum of the actual AC link inductor value, supposedly
300 nH with the leakage inductance of the HF magnetic transformer, supposed to be equal to 400 nH.
As it is well known, parasitics such as leakage inductance are parameters difficult to control. The
correlation of the equivalent inductor value with the distribution of the operating for each CSC is
plotted in Figure 7. One can see very well that there is a good match between the two. The same work
has been done with the series resistance in order to see if there is a correlation. Below are provided the
most representative results in Figure 7.

As expected, the spread in the inductor value of the AC link of the DAB converter is playing a
very important role in its operating point distribution. The right-hand graphs in Figure 7 shows that
there is no dependence on the resistance of the AC link. The last two graphs in Figure 7 show the
relationship between the couples (R, jink; Efficiency) and (Lac 1ink; Efficiency). It is possible to find a
correlation between inductance and efficiency in the same way as previously with the output voltage.
On the other hand, resistance is not related to efficiency. At operation points N° 2 and N° 3, the same
conclusions are given for resistance. Indeed, since the yield gap is very small for these tests (<0.2%), it
is not possible to have sufficiently precise measurements to conclude on trends: this is why theses
curves are not shown here. This leads to the conclusion that AC link inductance variation is the most
weighted parameter in the operating point of a network. This sensitive parameter makes the DAB
converter a very good candidate to investigate how its component value distribution may affect the
networking of CSCs in ISOP, IPOS and ISOS configuration. This is investigated in the following section.
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Figure 7. Correlation curves between AC link equivalent inductor value and CSC output voltage and
efficiency and equivalent resistor versus output voltage.

4. Analysis of Input Series/Output Parallel (ISOP), Input Parallel/Output Series (IPOS) and Input
Series/Output Series (ISOS) Configurations

Behavior of ISOP, IPOS and ISOS configurations with respect to CSC dispersion is going to be
reported in this section. As introduced, the set of 3 X 3 CSCs characterized above is considered for
that. Several CSC configurations are going to be implemented in a specific test bench before to be
compared. First of all, IPOS configuration will be tested with many CSCs arrangements in both open
and closed loop operations. Then most relevant configurations will be also tested in ISOP and ISOS
configuration to see if there is any additional information to gather. Testing is based on a second
specific motherboard, fully instrumented, to be able to sense all voltages and all currents on each CSC.
A specific design of experiment is developed to cover a wide range of configurations but not all of
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them. The observed parameters are the PCA voltage and current distribution over the CSCs and the
converter total losses. These observed parameters will be compared to that of the respective CSCs
implemented in each experiment.

4.1. Design of Experiment

The design of experiment has to answer the following criteria. It must be representative of a large
set of possible CSC arrangement while remaining concise in volume. In this part, one must understand
“arrangement” but the relative positions that each of the CSC families are occupying in the association.
The number of CSCs implemented in each test must remain reasonable but representative enough.

Three families of 3 CSCs have been selected from the 3 extremes quintiles (explained in Section 3.2)
in the Gaussian distribution and have been further characterized. Each CSC is named CSCy,z, where
the y variable represents the family letter (A, B and C) and the z variable represents the number of the
CSC in that family (1, 2 and 3). With 9 CSCs, arrangements above 360k are still possible. This is not
possible and the experiment must be narrowed.

Table 5 below describes the design of experiment that has been defined. For each test, 3 sub tests
are carried out using 3 sets of CSCs in order to confirm observations. Basically, each CSC family is
implemented to highlight the impact of paired CSCs over the distribution range. Only open loop
control is investigated in this paper. Then, family mixes are tested. At first, one extreme quintile CSC
is introduced in the association. Then one CSC of each family is tested. Finally, respective position of
CSCs are changed in order to investigate if the CSC position has an impact. Table 5 does not includes
all measurements obtained in order to save some space in the article but also to concentrate data and
ease comparisons.

Table 5. Design of experiment with 3 x 3 CSC families.

Arrangement of y,z

Configuration (CSCy,) on Test Bench Configuration Arrangement of CSCs on Test Bench
Bl B2 B3 Bl B2 B3
Al A2 A3 Al A2 A3
C1 c2 c3 C1 c2 C3
IPOS C1 c2 Al ISOP C1 c2 Al
C1 Al A2 C1 Al A2
C1 Bl Al C1 Bl Al
Bl C1 Al Bl C1 Al
Bl B2 B3 Electrical Input Output
Al A2 A3 Test Voltage Voltage Current
C1 c2 C3 N°1 15V 13V 15A
1505 C1 c2 Al N° 2 15V 139V 22A
C1 Al A2
C1 B1 Al
B1 C1 Al

4.2. Bench and Mother Board for Plug and Play ISOP/IPOS/ISOS Configuration Testing

In order to associate and interconnect from the electric point of view the cells presented above to
see the impact of the disparity of the components, a test bench has been designed. The test bench used
in this test was designed for the balancing test campaign for from 2 up to 5 cells. A mother board was
designed to enable any configuration and to ease arrangements. It is presented in Figure 8. This one
can implement different configurations (ISOP, IPOS, ISOS) by soldering components not presented in
this article. The characteristics are as follows:

e  From 2 up to 5 CSCs can be implemented and fully instrumented;
e Any configuration (IPOS, ISOP, ISOS);



Electronics 2019, 8, 917 12 of 20

e  Each cell is instrumented with the same input and output voltage and current measurements
device (shunt and kelvin measurements);

o  Always the same measurement device are used for the whole experiment and it is always used to
measure the same parameters;

e  Possibility to apply the same driver signals to the arrangement or possibility to differentiate all
of them.

Figure 8. CSCs in front of test bench. Experimental setup test bench.

Extreme care was applied to minimize the impact of the mother board. Especially the electrical
interconnection among the CSC are carried out with large current rating jumpers, offering very low
equivalent resistance (less than 1 m() per jumper). Since CSCs are associated on their DC sides, the
parasitic inductance of these jumpers has not been considered and further characterized. Indeed, only
open loop and steady state operations are considered in this work, where current flowing through
jumpers is almost purely DC. As a consequence it is assumed that the inductive contribution of
interconnects among CSCs can be neglected. Also, the CSCs are not soldered on the mother board in
order to enable and ease the implementation of many arrangement with the same families. For that
a specific socket pattern was developed in order to receive the CSC. The impact of such a electrical
contact has been carefully checked. The equivalent series resistance of the socket was measured several
time over the experiments and remained close to 2 m(). The relatively stable value of the resistance,
applied in series with all CSC implemented on the board, offers a limited impact. Without being totally
negligible, it was not possible to improve further our test bench without a significant complexity in
terms of implementation.

All voltage and current (kelvin point on shunt) measurements are carried out with the same
5 digits multi-meters in order to make relative comparison possible. For example, multi-meter 1
always measures CSC input voltage, and so on and so forth. Only up to 3 or 5 CSCs are tested on this
bench in order to keep identical the measurements devices and to avoid difficult calibration among
measurements devices. This approach, combined with care and methodology, ensures reproducible as
well as comparable measurement.

The tests followed the experimental design defined in Table 5. This test was realized in two
operating points that are closed to Test 1 and Test 3. Only the main result are shown in this section.

4.3. Experimental Results

Many different studies and analysis can be carried out with the CSC batch that has been produced
and characterized. In the following section we are reporting on the very first observations that have
been done in a tentative way to illustrate in the most accessible approach.
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4.3.1. Electrical Balance Operating Point

In Figure 9 below, a first set of arrangement testing in IPOS configuration is provided. Several
arrangements of 3 CSCs from various families are tested. The letter at the bottom of each test describes
the arrangement with respect to the family name. Since it does not add a significant complement,
the number of the CSC within the family is not depicted here to optimize the amount of data made
available. Each CSC in the arrangement has a color code: blue colors corresponds to the first CSC in
the network, green, the second one and yellow the third one. Dark colors counts for input voltage
whereas light colors stands for output voltage level. 7 arrangements are displayed. For example, in
arrangement number 4, CSC number 2 is coming from family C and has an input voltage of 14.94 V
and an output voltage of 12.71V.
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Figure 9. Voltage balance in CSCs depending on association at operating point N° 1 in IPOS config.

In the IPOS configuration, input voltage is fixed by the supply and is equal for all CSCs
implemented. In this configuration, for all arrangement, there is a quite good correspondence between
the behavior of the CSC when it is implemented alone and when it is implemented into a network. No
matter the arrangement and the family, there is almost no issue observed in this configuration. Only a
little increase in tendencies can be observed.

When the ISOP configuration is implemented, the input voltage is no more fixed. It is now the
output voltage that is made common to all CSCs due to the selected configuration. In an open loop, R
load primary to secondary phase shift are fixed, together with the total input voltage, equal to 45 V.
In that case, the output voltage is left free to stabilize at any voltage level, as well as the CSC input
voltages that only constraint is that the sum must remain equal to 45 V.

As long as arranged CSCs are coming from the same family, only little variation is observed.
When family is mixed, a clear observation can be made. The output voltage becomes dependent on
the distribution of the families. Basically it can be simplified saying that the output voltage becomes
the averaged voltage function of the number of CSC coming from each family. Considering that a
family is defined by an identical output voltage, then the output voltage is defined by the Equation (2).
Equation (2) can be applied to all the balance voltages in Figure 10.

ig* VoutAAA +ig* VoutBBB +icx* Voutccc
Vout = 3 (2)

ix: number of X family CSC, Voury,y: Output voltage for XXX arrangement.

Apart from this observation, the ISOP configuration is also quite resilient to CSC
characteristic dispersion.

In the ISOS configuration presented in Figure 11, neither the input voltage of each CSC nor their
respective output voltage are fixed. Only the total voltage at the input must be equal to the supply. The
total output voltage is left free to reach any level. Only R load, phase shift and total input voltage are
fixed in this test. In this configuration, the dispersion introduced by the CSCs is significantly magnified.
As reported in the literature [19], ISOS configuration is really more sensitive to component tolerance.
In the proposed case study, all tendencies are respected but magnified. This means that closed loop
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control could be implemented at converter levels and that there is no need here to implement dedicated
control to each CSC. This comment remains to be validated with tests under closed loop control which
has not been implemented at this stage of the study.
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Figure 10. Voltage balance in CSCs depending on association at operating point N° 1 in ISOP config.
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Figure 11. Voltage balance in CSCs depending on association at operating point N° 1 in ISOS config.

Apart from these considerations, comments applicable to the three tests can be made. It has
been observed that, in the tested conditions, no matter the configuration, the relative position of a
fixed set of CSCs within the arrangement has no observable influence on the global behavior of the
global converter.

It appears that quintile classification is good enough to say that devices that are contained within
the same quintile will behave properly no matter the configuration implemented or tested.

In order to complete the study, an electrical test of point N° 2 (Table 5) was carried out. This is done
at higher power but with a lower input-output voltage delta. Figure 12 shows the SIPO association on
point N° 2. The same conclusions can be drawn as above.
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Figure 12. Voltage balance in CSCs depending on association at operating point N° 2 in ISOP config.
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4.3.2. Losses Aspect of Power Converter Array (PCA)

Figure 13 shows, with several graphs, the distribution of losses in each cell according to the
arrangement for the IPOS and ISOP configurations. Red colors correspond to IPOS configuration
whereas blue colors correspond to the ISOP configuration. For example, the first set of three bars in red
colors in Figure 13 represent the losses in each CSC for a configuration of 3 associated CSCs in IPOS.
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Figure 13. Losses in CSCs depending on association at operating point N° 2 in IPOS and ISOP.
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Overall, it is possible to see that losses are balanced as soon as the cells are from the same family
while these losses are naturally more unbalanced in the case of a family mix. It is necessary to specify
again that only one command is sent for the 3 CSCs and that the regulation is not done at the cell
level. This imbalance is induced by output voltage variations which has a great impact on effiency and,
therefore, losses as shown in Figure 3.

This deviation necessarily leads to a temperature rise that can be critical, as shown in the following
thermal photos in Figure 14.

RB2C

28,2°C 264°C

Figure 14. ISOP configuration of CSCp 1 CSCp o CSCyp 3 (left) and CSCc 1 CSCc CSCe 3 (right) in
same electrical configuration for electrical Test 2.

On the thermal image above, a difference in the overall temperature of the cells according to their
family is clearly visible. In Figure 14, it is possible to measure up to 5 °C deviation over the same
configuration if the cells are in extreme quintile (3 “C” CSCs or 3 “A” CSCs). For arrangements with
mixed families, a more significant deviation can occur and bring a cell to a critical temperature as
shown in Figure 15. Some other arrangements and configurations which are not part of electrical Tests
1 and 2 presented in Table 5 have showed that it can reach 10 °C deviation on two CSCs on the same
PCA. This phenomenon is illustrated in Figure 15. These observations should obviously be taken into
consideration while designing the thermal cooling system.
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1000

282°C

Figure 15. Thermal image of ACA arrangement for the following operating point of Vin = 45 V; Vout =
13.7 V; Pout = 90 W.

4.3.3. Full Comparison of a PCA of CAA Family CSCs and a 5 CSCs ISOS Configuration

This part is investigating at first if three identical CSCs coming from a family mix may operate
in a different manner depending on the configuration. The 3 CSCs are, from left to right, coming
from family CAA. This choice is purely arbitrary, the goal being to see if there is a clear impact of the
configuration on CSC behavior. The study provides, in Table 6, for each configuration (IPOS/ISOP/ISOS)
the operating point of each cell and Figure 16, a thermal image of the PCA for each configuration.

Table 6. Measures at CSC level of various PCA configurations with the same CAA arrangement.

CSC1 CSC2 CSC3
Test Vin Vout n Vin Vout n Vin Vout n

X-IPOS 1511V 1378V 94.8% 1510V 139V 94.6% 1513V 1398V 95.6%
Y-ISOP 1524V 1396V 92.7% 15.04V 1396V 93.5% 1493V 1390V 93.4%
Z-ISOS 1557V 1429V 95.1% 1487V 1363V 94.1% 1486V 1362V 95.5%

932°C

26,6 “C

Figure 16. Thermal images of various PCA configurations with the same CAA arrangement.

These observations bring to light that ISOP configuration seems to be the worst case in terms of
losses and efficiency. This result hides the important fact that CSCs operating points are significantly
different due to absence of fixed voltage reference at the CSC input terminals. In such a way, CSCs are
moving away from the optimal operating point, lowering their efficiency. This observation, which is
valid for this case, may not always apply. Nonetheless, it shows that there are operating points that are
leading to significant increase of losses.

Second, the "weakest” CSC, understanding the cell with the lowest efficiency, remains the same
no matter the configuration. This phenomenon is magnified due to the geographically positioned CSC
in the middle always being warmer.

A second study shows a case study with 5 CSCs in ISOS configuration only. Until now, there were
no results for 5 CSCs. Table 7 shows the voltage and current distributions by cell for the following
arbitrary family arrangement from left to right: BBCBA. This arrangement is representative of reality



Electronics 2019, 8, 917 17 of 20

because, as shown in Figure 5, there are few CSCs in family C and A which are coming from the
extreme quintiles.

Table 7. PCA of 5 BBCBA CSCs configured in ISOS.

Test CSC1: B CSC2: B CSC3: C CSC4: B CSC5: A

1 (%) Vin Vout Vin Vout Vin Vout Vin Vout Vin Vout
94.8 1495V 1349V 1494V 1348V 1511V 13,67V 1522V 1375V 1469V 1326V

Several things can be noticed in Table 7 and Figure 17. The voltages of the first two CSCs (CSC1
and CSC2) of the B family are stable. CSC4 of family B does not have the same set of tensions This
phenomenon is still under investigation. CSCs C and A have higher and lower voltages, respectively,
than the tests done in the previous parts. On the thermal part, we notice that the external CSCs
benefit from a lower temperature due to their peripheral placement. CSC2, CSC3 and CSC4 have
the same temperature as shown in Figure 1 while they have a different electrical operating point as
shown in Table 7. It can therefore be concluded that the disparity of the components during the ISOS
configuration is smoothed at the thermal level but remains strong at the electrical level. Despite the
differences in the electrical operating points of the CSCs, thermal images allow us to conclude that
the placement of the CSC has a significant influence on its thermal equilibrium point. Nonetheless,
Figure 17 that the CSCs dispersion remains visible since the CSC at the middle of the array is colder
than its direct neighbors. A relative impact of CSCs dispersion versus their physical position in the
array could be considered in a future work.

M1 82,6°C

M2 91.1°C
M3 89.8°C
M4 90.1°C

Mb5 80.9°C

245°C

Figure 17. Thermal image of ISOS BBCBA arrangement with the following parameters Vin = 75 V; Vout
=67.5V,; Pout = 150 W.

4.4. Discussion of Main Results

Regarding the CSC batch characterization, it is important to highlight a few observations:

First of all, manufactured after a significant industrialization process, the CSCs remain slightly
unpaired. This is mostly due to components that are provided by suppliers with tolerances. In our very
specific example, CSCs are manufactured on PCBs and are all made out of off the shelf components with
regular tolerances between 1% to 20%. Of course, the converter remains sensitive to the components’
main parameters. It appears, as a first result that the AC link inductor in DAB based topology is
the most significant and critical component. Its sensitivity can be mathematically proven based on
Equation (1). The tolerance on its value induces a tolerance on the whole DAB converter in terms
of operating point, including CSC efficiency level. From that, it becomes important to frame the
component tolerance such that it remains within good limits according to its application. In the case of
the DAB converter, the tolerance on the total AC inductor introduces a large enough tolerance on the
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converter performances that it needs further investigations. Especially, in the presented case, CSCs
being networked, it becomes critical to evaluate the impact of the converter operating point tolerance
other an array of CSCs.

Regarding CSCs networks, some additional comments can be drawn:

Several CSC family arrangements have been implemented and characterized in three different
configurations. ISOP, IPOS and ISOS were tested specifically because they are the three configuration
for which a voltage unbalance among CSCs is possible either at the input or at the output terminals.
These tests have been carried out at first in order to investigate how associations of CSCs with different
voltage operating points would behave from that point of view. As a reminder, only an open loop was
tested in this paper because closed loop control, although being impacted by cell imbalances, is not the
purpose of this study.

Analyzing the results above, several comments can be made. First of all, the CSC operating point
dispersion clearly affect the input and/or output voltage balance among cells. Paired CSCs have a
more favorable behavior no matter the configuration. When arrangement involves CSCs from various
families, their characteristic dispersion is mainly confirmed or even enhanced which may become an
issue. Voltage imbalances induce efficiency unbalances. The total losses coming from the converter
association are always higher than the sum of the losses gathered at cell levels for their expected
operating point. This may have a significant impact on thermal management at the cell level.

In particular, it has been observed that in ISOP and ISOS configurations, the individual CSC
behavior mismatches are enhanced by the network association. In fact, this is happening whenever the
input voltage of the CSC is not fixed by the implementation. On the other side, IPOS configuration is
very resilient to CSC characteristic tolerances.

From this analysis several options can be foreseen:

Provision must be taken while designing the thermal cooling. Considering the technology
considered in this work, the PCB based CSCs are cooled down with air flow. With natural air cooling,
CSCs’ current rating may have to be reduced to account for operating point variability and consecutive
losses mismatches. With forced air cooling, increasing the air speed may compensate the losses
mismatch among CSCs.

Since a functional testing is carried out after batch production, this test could include a short
characterization of the meaning full operating point. The paper has clearly highlighted the relation
between the component tolerance and their impact on converter operation and more specifically the
output voltage with respect to all other parameter constant.

The functional test could be used to sort CSCs in quintile or even decile. In such a way, PCAs
could be produced from paired CSCs, levering up voltage and current balancing among cells no matter
the configuration.

The functional test could be used to remove CSCs that are too much out of a reasonable tolerance.
For that, a good tradeoff between the tolerance window and the yield has to be found in order to
remain reasonable from a cost point of view. Figure 18 below presents an illustration of that process.

50
40
30
20
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0
0,96 0,97 0,98 0,99 1 1,01 1,02 1,03 1,04

Vout/vin

Limits Qutput Voltage

Occurence

Figure 18. Illustration of window tolerance out of which CSC are declared out of the spec and removed
from the supply chain.
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If sorting CSCs ends up to be too much unproductive or costly, another option is to work on
the tolerance of the most critical components, probably the HF transformer and possibly the AC link
additional inductor. Working on these two devices, sorting or selecting them could be a first option less
costly than the whole CSC. Of course, this would require developing a test routine to sort components
according to the leakage inductance for the HF transformer and the value of the inductor as far as
the Lac inductor is concerned. Also, a specific work with the supplier could be carried at design and
technological levels in order to narrow the tolerance on the components.

5. Conclusions

The paper has presented the first analysis carried out on the impact of component tolerance on
arrays of power conversion cells. Based on over 130 samples, a characterization process has been
carried at CSC level in order to identify the most critical components from an experimental point of
view. Based on a classification, the impact of component tolerance on CSC operating points when
implemented in various configurations ISOP, IPOS and ISOS has been investigated. It has been shown
that when CSC input voltage is not imposed on CSCs, their behavior mismatches are enhanced. From
this, several guidance notes are provided in a tentative to minimize the impact of component tolerance
on the implementation of a PCA. The analysis is valid for the topology used in this work and the
technology and components used also and they are not generalized at this stage of the study. It is
mainly the methodology that is reported. Some interesting results and comments are provided to
guide future PCA implementation.
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