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Introduction

Topological insulators are bulk insulators whose bands are characterized by a quantized number known as a topological invariant [1,2], which cannot change upon continuous transformations of the band structure. This topological property of the bands implies the presence of edge states at topological interfaces, which is protected by the topology of the surrounding bulk insulators [3,4,5,6,7,8,9,10]. Originally discovered in condensed matter systems, including Quantum-Hall [11,12,13,14,15,16,17,18,19] and Quantum Spin-Hall insulators [20,21,22,23], the concept of topological transport has recently been transposed to various elds of classical wave physics, including optics [24,25,26], acoustics [8,27,28,29], microwaves [12,30], and mechanics [31,32,33,34,9], where it represents a promising way to transport signals and concentrate energy in a robust, symmetry-protected way. While classical analogs of Chern insulators [35,28], quantum spin-Hall systems [36], and valley-Hall insulators [37,8,38,39,40] have been previously studied and demonstrated, prior arts have focused mainly on idealistic situations in which the dispersion of the host materials have been neglected or avoided. This drastic assumption, however, holds only for a small subset of the available physical platforms in which exploiting topological physics could have large practical implications. It does not hold, for instance, for water wave systems, which generally support highly dispersive surface waves [41]. Yet, controlling the energy carried by ocean waves, and forcing it to concentrate at a location where it can be harvested, would be a fascinating application of topological physics, providing topological edge modes are compatible with the highly dispersive character of these systems.

In this article, we demonstrate experimentally the relevance of topological physics in a classical wave system with strong dispersion, namely gravity-capillary waves at a water-air interface interacting with a water wave crystal. We use a stochastic method to obtain the dispersion relation in the crystal, using Bloch's theorem, and we design topological edge states based on valley conservation. Our measurements, based on direct imaging using a high-speed camera under stroboscopic illumination (see Fig. 1), demonstrate unambiguously the possibility of topological transport in systems with very strong dispersion, extending the reach of topological physics to a wealth of new physical platforms.

Theoretical and Experimental description

Gravity-capillary water waves are surface waves resulting from the balance of the potential energy of gravity forces and surface tension with the kinetic energy of a water column. As a result of body (volume) and interface (surface) contributions, their velocity is isotropic but inherently strongly dispersive and dependent on the water depth. In order to describe the propagation of gravity-capillary waves in the regime of small water elevation (as compared to the water depth), we consider the linear velocity potential theory for water waves [42,43,44]. In the absence of external forces, the vertical displacement (elevation) of the liquid-air interface η(x, y) satises the two-dimensional partial dierential equation

∇ • (c p c g ∇η) + κ 2 c p c g η = 0, (1) 
where c p is the phase velocity, c g is the group velocity, and κ is the wavenumber. A similar equation is satised by the horizontal part of the velocity potential [42]. We further recall that the dispersion relation between wavenumber and angular frequency ω for a horizontal liquid-air interface is given by

ω 2 = gκ(1 + d 2 c κ 2 ) tanh(κh), (2) 
where g is the gravitational acceleration, h is the water depth, and d c is the capillary length. The phase velocity is then

c p = ω κ = g κ (1 + d 2 c κ 2 ) tanh(κh) (3) 
and the group velocity is

c g = dω dκ = 1 2 + d 2 c κ 2 1 + d 2 c κ 2 + κh sinh(2κh) c p , (4) 
where the capillary length is given by d c = γ gρ , with γ the surface tension and ρ the mass density of the liquid.

Inside the articial crystal sample, Eq. ( 1) can be used to obtain Bloch waves and therefore band structures. Indeed, Eq. ( 1) can be recast as a Helmholtz equation for scalar waves in a dispersive medium

∇ • (A(ω)∇η) + ω 2 B(ω)η = 0, (5) 
with coecients A(ω) = c p c g and B(ω) = c g /c p depending explicitly on frequency. A Neumann boundary condition is considered at the interfaces between pillars and water, i.e. ∂η/∂n = 0, where n is the normal to the interface [42,43,44]. Bloch waves have the form η(x, y) = η k (x, y) exp(ık • r), with k the Bloch wavevector and η k the periodic part of the Bloch wave. Computing eigenvalues and eigenfunctions to obtain the Bloch waves of the crystal is not straightforward since the coecients of the equation depend on frequency. We use instead the stochastic excitation method proposed by Laude and Korotyaeva [45]. The method considers all possible values of frequency ω and Bloch wavevector k and observes the response of the system to a spatially random force distributed inside the unit-cell. The nite element implementation for Eq. ( 5) follows the prescriptions in Ref. [45]. A further diculty is that the model does not take into account certain interface eects between water and the solid pillars, including the formation of a meniscus as a result of capillary forces. As the distance between pillars is smaller than the wavelength [46], such eects can be approximated by using an eective dispersion relation (see Appendix). In practice, the eective value of the surface tension is adjusted according to experimental observations. The derived value, γ eff = 0.17 N•m -1 , is larger than the usual value for the unperturbed water-air interface, corresponding to an eective increase of the phase velocity inside the articial crystal. The phenomenological model for the articial crystal is thus composed of Eq. ( 5) together with the eective dispersion relation in Eq. ( 2) and Neumann boundary conditions at the pillars. We compute phononic band structures ω(k) along the boundary of the irreducible Brillouin zone (BZ) (namely the path Γ -K -M -Γ) as depicted in Fig. 2(a A good agreement between theory and experiment is observed. At a frequency of 22 Hz, inside the phononic band gap, incident waves are indeed reected by the crystalline insulator and form a standing wave pattern on the incident side, as illustrated in Fig. 2(c). Full wave numerics are obtained by solving Eq. ( 5) using the nite element method in Comsol Multiphysics at The experimental setup shown in Fig. 1 is composed of a 24 × 30 cm 2 water wave ripple tank illuminated by stroboscopic light synchronized with a straight paddle, operating at a frequency tunable between 10 and 75 Hz. Shadows caused by light refraction at the sinusoidally modulated water surface are formed onto a screen after reection o a mirror and are recorded with a camera. A typical experimental wave pattern is shown in Fig. 1(a), without any post-processing. The observed patterns are related to the local surface curvature (a bright fringe indicating a positive curvature and a local elevation of the water level). Hence, after image processing, we obtain a quantity proportional to the vertical elevation of the water surface. Crystal samples are fabricated with 3D additive printing in PLA and a typical sample is shown in Fig. 1(b).

Samples are composed of pillars that are higher than the water level (15 mm, whereas the water level without the crystal equals 7 mm). The experimental transmission for α = 30 • is shown as a function of frequency in Fig. 2(b) and is in fair agreement with theory. The experimental image in Fig. 2(d) conrms the strong phononic band gap reection near 22 Hz.

The 2D hexagonal crystal of rotated opaque triangles supports valley vortex Bloch waves carrying a quantized topological phase [37]. Actually, when α = 0 • , the plane crystallographic group or wallpaper group of the crystal is p31m, meaning that there are three 3-fold axes of rotation and three reection planes, two of which are images in a reection. When α = 0 • , the symmetry is reduced to that of wallpaper group p3, with only three 3-fold axes of rotation remaining ‡. The Bloch waves dening the phononic band gap follow the same p3 symmetry and show three vortices placed either in between the vertices of the triangles (Bloch waves K 1 , with valley topological phase +sgn(α)) or in between the sides of the triangles (Bloch waves K 2 , with valley topological phase -sgn(α)) [37]; see Fig. 6 of the Appendix for a representation of the K 1 and K 2 Bloch waves. Note that the vortex centers actually coincide with rotation centers of the crystal.

The crystal B of triangles rotated by -|α| is the image in a glide reection of axis

Ox and translation a/2 of the crystal A of triangles rotated by +|α|. This property can be exploited to construct a domain wall (DW) separating the two non equivalent chiral crystals A and B. As depicted in Fig. 3(a), the DW A-B with A placed above B is dierent from the DW B-A with B placed above A. Both DWs have the symmetry of the frieze group p11g. It was shown for classical non dispersive waves that the DWs support unidirectional edge waves [8]; here we show that the property remains true for dispersive water waves. Both the numerical result in Fig. 3(a) and the corresponding experiment in Fig. 3(b) show that a plane surface wave incident normally from the left is funneled to the right side for the A-B DW, but not for the B-A DW. The reason for this asymmetry is discussed below. The transmission through the topological waveguides was estimated and is presented in Fig. 3(c); again experiment and numerics agree fairly well. Videos of experimental and numerical water wave propagation along the DW are provided in the Supplemental Material.

The edge modes are obtained numerically using the stochastic excitation method, considering a super-cell encompassing 5 rows of each crystals A and B. The phononic band structures for DWs A-B and B-A are shown in Fig. 3(d-e). In each case a edge mode appears inside the phononic band gap, traversing it to connect the systems of bulk bands extending below and above. The A-B edge wave has a negative dispersion its group velocity is negative for positive wavenumbers, whereas the B-A edge wave has a positive dispersion. The insets in the gures show the modal distribution of both edge waves. It can actually be veried that the A-B edge wave is composed of K 1 valley vortex waves that are evanescent in the transverse direction. Conversely, the B-A edge ‡ For α = 30 • , the wallpaper group is p3m1, and there are three 3-fold axes of rotation and three reection planes intersecting at the rotation centers. wave is composed of K 2 evanescent valley vortex waves. As further discussed in the Appendix, the sign of the topological charge is in direct connection with the sign of the group velocity of the edge waves.

The possibility of coupling an externally incident plane wave with an edge wave of the domain wall can be evaluated by comparing their modal elds. We evaluate the following overlap integral

Ψ = | ∂Ω η 0 • η(x, y) dy| ∂Ω |η(x, y)| dy . (6) 
computed on the interface ∂Ω between the crystal and the incidence region. The resulting number, which varies between 0 and 1, measures the matching of the edge mode with a plane wave with amplitude η 0 = 1 along the interface ∂Ω. We found numerically that Ψ A-B ≈ 1 for the A-B DW, and that Ψ B-A ≈ 0.03 for the B-A DW. These numbers conrm the asymmetry of coupling of the normally incident plane wave to both edge modes. Furthermore, the overlap integral computed for all Bloch modes (see Appendix) conrms that transmission occurs only along DW A-B for all frequencies.

A DW waveguide making an angle of 30 • with respect to the direction of propagation was also fabricated and tested (see Fig. 4(a-b)). Again, theory and experiment agree and show that at the output interface a point-like source emission is obtained. Note that the 30 • -rotated DW is not purely of the A-B or B-A type and actually combines K 1 and K 2 vortex states to funnel surface waves. The 60 • -rotated DW shown in Fig. 4(c) is of the B-A type. Due to non normal incidence the K 2 vortex edge wave can be excited in this case. Finally, the Z shape DW of Fig. 4(d) combines a series of 120 • turns and is of the A-B type. However, the latter crystal has a very low connement and was thus only tested numerically.

Conclusion

To conclude, we performed an experimental demonstration of the existence of topological edge states guided a domain wall of a water wave crystal, in the intermediate regime of gravity-capillary waves. The edge states are a superposition of vortex waves carrying a quantized topological phase [37] and can be described by a classical analogy to the valley Hall eect [8,47,7]. A good qualitative agreement between theory and experiments was obtained, with the capillary eects at the interface between water and the crystal modeled via the use of an eective parameter. Our observations extend the reach of topological wave physics to a wide range of physical platforms containing highly dispersive media, not only water wave systems, but also elastic waves and plasmonics.

Appendix

We describe in more detail experimental methods, the eective dispersion relation, the phononic band structures, the overlap integral, and the vortex Bloch waves of the water wave crystals considered in this work.

Experimental methods

The experimental apparatus we use to observe and image water waves is shown in Figure 1. Light impinging from a frequency modulated source is steered at the interface between water and air, travels through the thin water tank and reaches the observation screen after reection o a mirror. A common phenomenological interpretation of the bright lines observed on the screen is to link them to the wave crests that act as cylindrical collecting lenses, while shades are linked with wave troughs that behave as diverging lenses. However, the situation is in general far more complex and the relationship between the pattern of light and shade on the screen and the ripple elevation above the average water surface level is not straightforward [48]. In fact, it should be described as the intersection of a three-dimensional caustics with the projection plane, taking into account blurring due to source extension and chromatic dispersion [49]. Still, this statement is mostly true for waves with strongly curved interfaces, that is for short wavelength and large amplitude [50], and for cases where we observe interaction of multiple waves [49]. In our case, with mostly very low wave amplitude in the crystal and beyond, the light and shade patterns are not signicantly aected by these limitations and bear direct link with the surface curvature, allowing to easily extract the signicant quantities of the ripples using image processing.

Eective dispersion relation

We consider waves propagating in linear, irrotational, and inviscid water. The velocity vector derives from a velocity potential as v = ∇Φ. For the geometry depicted in Figure 1 we can apply the method of separation of variables to write [42] 

Φ(x, y, z, t) = Re[φ(x, y) cosh(κ(z + h))e -ıωt ], (7) 
with the water-air interface at z = 0. With this device, the original three-dimensional problem is cast into a two-dimensional partial dierential equation (1) with Neumann boundary condition at the pillar-water interface. Without the pillar in the hexagonal unit cell, periodicity is articial and plane wave propagation is governed by the dispersion relation (2) with surface tension γ = 0.073 N•m -1 accounting for the water-air interface. The dispersion relation is plotted in Fig. 5(b) and can be rewritten γ eff =0.17 γ=0.073 with ρ = 1000 kg•m -3 and g = 9.81 m•s -1 . Under that form, the left-hand side accounting for the kinetic energy density density is balanced by the right-hand side accounting for the potential energy density. The potential energy has two contributions, from gravity and from surface tension. With the pillar in place, there is an additional surface contribution to the potential energy at the pillar-water interface. We do not attempt to model that contribution precisely, but assume that it has a form similar to the term for the water-air interface, and we remark that a positive surface tension must lead to an increase in the total potential energy for one unit cell of the crystal. Since the kinetic energy must match that increase for any solution of the Helmholtz equation, the phase velocity ω/κ must increase accordingly. The increase in phase velocity is determined experimentally by comparing the change in wavelength when the crystal is not in place and when it is. Considering the crystal without a band gap (α = 0 • ) and measuring the wavelength at a frequency of 20 Hz, we monitor the change in wavenumber in Fig. 5. We infer the eective value γ eff = 0.17 N•m -1 for our samples. Of course, that particular value depends on the crystal details, especially on the lling fraction, and should not be given a microscopic meaning. It is an eective parameter in the metamaterial sense, inferred for the unit cell of the crystal considered as a whole. As a result, Eqs. ( 2) and ( 5) of the main manuscript form a phenomenological model of the water wave crystal, sucient for qualitative comparison with experiment. It remains that obtaining a more precise three-dimensional model would be necessary for a quantitative analysis.

1 2 ρω 2 = 1 2 (ρgκ + γκ 3 ) tanh(κh), (8) 

Phononic crystal for water waves

The stochastic excitation method [45] is used to obtain the phononic band structure via nite element implementation of equation (5) in the main manuscript. This equation is for a scalar unknown eld, the elevation η(x, y), and has the form of a dispersive Helmholtz equation. The main diculty is that the coecients of the equation depend on frequency. The stochastic excitation method circumvents the diculty by xing The phononic band structures plotted in Fig. 6 show that the phononic band gap is initially closed when the angle of rotation of the triangular pillars is zero, α = 0 • . When α is increased or decreased, the phononic band appears symmetrically and gradually opens until its maximum value obtained for |α| = 30 • (see the lower row of the gure).

Vortex Bloch waves

Decisive information is obtained regarding the topological properties of the crystal by observing the Bloch waves belonging to the two bands dening the phononic band gap. The space group symmetry of the crystal is illustrated in Fig. 7 for dierent values of the angle of rotation α. The wallpaper group changes from p31m for α = 0 • to p3 for 0 • < |α| < 30 • , and to p3m1 for |α| = 30 • . Following Ref. [37], we display in Fig. 8 the Bloch waves K 1 and K 2 lying on the rst and the second band at the K point of the rst Brillouin zone for α = 30 • . Bloch wave K 1 follows the p3 symmetry. It mainly features three vortices centered in the region where vertices of the triangles are closest. Note that the direction of rotation of the vortices is opposite when the sign of α is reversed. They turn toward the left for positive α and toward the right for negative α. Bloch waves K 1 for ±α are images in a glide reection of axis Ox and translation by half the lattice constant (they are also images in glide reections rotated by 2π/3 and 4π/3).

Bloch wave K 2 also follows the p3 symmetry and features three vortices centered in the region where sides of the triangles are farther away. The direction of rotation of the vortices is opposite when the sign of angle α is reversed, and is the opposite of the direction of rotation of K 1 vortices. As in the case of K 1 Bloch waves, Bloch waves K 2 for ±α are images in a glide reection of axis Ox and translation by half the lattice constant (they are also images in glide reections rotated by 2π/3 and 4π/3).

Vortex edge waves propagating along a domain wall

Bloch edge waves are obtained by considering a supercell of type A-B (A above B) or B-A (B above A), as explained in the main text. The interest is mainly for their eld distribution for frequencies belonging to the phononic band gap. In this case, since the band gap is complete, they must be evanescent in the transverse direction, i.e. their amplitude decays exponentially away from the domain wall (DW). This is conrmed by the modal shapes shown in Fig. 9. The vortex Bloch waves K 1 and K 2 of Fig. 8 sit at the edges of the phononic band gap and are thus not evanescent. Because the eigenvalue problem is analytic in the complex plane as a function of the wavenumber k, we infer that the evanescent Bloch waves inside the band gap can be continuously deformed from the K 1 and K 2 Bloch waves. Since the edge waves are necessarily composed of such evanescent Bloch waves of the crystal, matched at the DW, the formation of the edge waves can be understood as a superposition of vortex Bloch waves. From the eld distributions in Fig. 9, we infer that the edge mode of the A-B DW is composed of K 1 evanescent Bloch waves and that the edge mode of the B-A DW is composed of K 2 evanescent Bloch waves. The Poynting vector arrows further conrm that the A-B DW mode propagates with opposite phase and group velocities, while the B-A DW mode propagates with phase and group velocities of the same sign.

Overlap integral

The overlap integral measuring the coupling with a normally incident plane wave can be computed for all Bloch waves of the DW supercells, similarly to the phononic band structures shown in Fig. 3(d-e). The result is shown in Fig. 10 for domain walls A-B and B-A. It can be clearly observed that the B-A DW mode cannot be exited by a plane wave. This can be intuitively understood from the odd and even nature of the A-B and B-A edge modes, shown in Fig. 9.

Figure 1 .

 1 Figure 1. Experimental setup for observation of topological gravity-capillary waves in a water wave crystal. (a) The crystal sample (green color) is placed in a water tank. A mechanical straight paddle is exciting vertical motion of the water surface at the same frequency as the stroboscopic illumination. A mirror is placed at 45 • below and reects the image on a diusive screen placed in front. (b) The hexagonal crystal is made of triangular pillars with a = 8 mm, b = 6.4 mm, and a variable orientation angle α (here α = 30 • ). (c) A typical 3D-printed crystal sample made of PLA (polylactic acid) is shown.

  ) for the geometry of Fig. 1(b). Phononic band structures are shown for an hexagonal crystal of triangular pillars with lattice constant a = 8 mm and b/a = 0.8. The phononic band gap extends from 18 to 23 Hz for α = 30 • , whereas the band gap closes for α = 0 • . The transmission through a nite crystal sample composed of 5 periods (α = 30 • ) is shown as a function of frequency in Fig. 2(b) for direction ΓK.

Figure 2 .

 2 Figure 2. Phononic properties of the water wave crystal of Fig. 1. (a) The dispersion relation is obtained as the response to a stochastic excitation [45] for a water level h = 7.3 mm and α = 30 o (the dispersion relation for α = 0 o is the red line). The inset represents the rst Brillouin zone (BZ). (b) The measured transmission of a plane wave through a 5 unit cell thick crystal slab (dotted line) is compared with the numerically computed transmission (solid line). (c) Numerical simulation of the reection of a plane wave at 22 Hz (inside the phononic band gap) on the crystal. (d) Experimentally recorded surface elevation at the same frequency. The boundaries of the crystal are indicated with dashed lines.

Figure 3 .

 3 Figure 3. Valley-selective excitation of water wave edge modes for two interfaces at β = 0 • . (a) Numerical simulation and (b) experimental measure of transmission at 22 Hz. (c) Quantitative comparison of the transmission for A-B and B-A interfaces in the experimental and numerical cases (over the full frequency range on the left and zoom on the bandgap region on the right), as well as the case of the domain B. Dots are used for experimentally measured points. Dispersion relations obtained for supercells for the interface B-A in (d) and A-B in (e).

Figure 4 .

 4 Figure 4. Water wave elds obtained for dierent geometries of interfaces at 22 Hz. (a) Numerical simulation and (b) experimental transmission of a 30 • interface. (c) Numerical simulation of a 60 • interface and (d) Numerical simulation of a zigzag shaped interface.

Figure 5 .

 5 Figure 5. Dispersion relation for water waves for a water level h = 7.3 mm.

Figure 6 .

 6 Figure 6. Computed dispersion relations obtained as the response to a stochastic excitation [45] for a water level h = 7.3 mm for α = 30 o in (a), α = 0 o in (b). In the lower row of panels, 5 dierent angles are used and only the Brillouin zone direction of interest, i.e. ΓK is depicted.

Figure 7 .

 7 Figure 7. Wallpaper groups for crystals with dierent values of rotation angle α. 3-fold rotation centers are indicated with red triangles; reection axes are indicated with dotted lines.

Figure 8 .

 8 Figure 8. Vortex Bloch waves at the K point of the rst Brillouin zone. The color scale is for the modulus of water elevation (normalized). The distribution of the Poynting vector is shown with arrows. Vortex Bloch waves K 1 and K 2 are shown for pillars rotated by either α = 30 • or α = -30 • .

Figure 9 .

 9 Figure 9. Domain wall vortex edge waves. The color scale is for the modulus of water elevation (normalized). The distribution of the Poynting vector is shown with arrows. The A-B domain wall is shown on the left and the B-A domain wall is shown on the right. Close-up views are provided in order to illustrate the distribution of the Poynting vector.

Figure 10 .

 10 Figure 10. Overlap integral for the B-A domain wall (left) and the A-B domain wall (right) versus wavenumber (horizontal axis) and frequency (vertical axis).
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