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Abstract

In this work, we deal with the QR factorization of block-tridiagonal
matrices, where the blocks are dense and rectangular. This work is moti-
vated by a novel method for computing geodesics over Riemannian man-
ifolds. If blocks are reduced sequentially along the diagonal, only limited
parallelism is available. We propose a matrix permutation approach based
on the Nested Dissection method which improves parallelism at the cost
of additional computations and storage. We provide a detailed analysis of
the approach showing that this extra cost is bounded. Finally, we present
an implementation for shared memory systems relying on task parallelism
and the use of a runtime system. Experimental results support the con-
clusions of our analysis and show that the proposed approach leads to
good performance and scalability.

1 Introduction
In this work, we deal with the solution of linear least squares problems where
the system matrix is block-tridiagonal. By this we mean that our matrices have
a block structure with c block-rows and c block-columns and along block-row k
we only have nonzeroes in block-columns k−1 and k+1 as depicted in Figure 1.
The blocks are assumed to be dense and rectangular of size m× n with m > n.

In a LAPACK-like QR factorization where sub-diagonal coefficients are elim-
inate by means of Householder reflections column-by-column in the natural or-
der, only limited parallelism is available because of the lack of update opera-
tions (i.e., application of the Householder reflections to the trailing submatrix)
stemming from the potentially narrow bandwidth and because each elimination
step depends on the previous. Even the use of tiled [9] or communication-
avoiding [12] approaches can barely improve the situation especially when c is
high and m as well as n is small. By choosing a different order for reducing the
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Figure 1: A block-tridiagonal matrix.

matrix columns, which essentially amounts to permuting the matrix columns,
it is possible to achieve better parallelism; this, however, generates additional
fill-in — coefficients that are zero in the original matrix and are turned into
nonzeroes by the factorization — which is responsible for an increase in the
operation count and the storage. We propose an approach that computes this
permutation by applying the Nested Dissection method to the compressed ma-
trix graph. This allows us to identify groups of blocks that can be reduced
independently; this first phase is followed by a reduction step that deals with
the blocks that are at the interface of the groups. Although the structure and
value of the R factor only depends on column permutations, the structure of
the Q factor and, consequently, the overall cost of the factorization greatly de-
pend on the order in which coefficients are annihilated within each column or,
more generally, on row permutations. Taking this into account, we propose an
approach that aims at reducing the operational complexity, especially in the re-
duction phase which involves communications. We provide a detailed analysis
of the operational and memory cost showing that the overhead depends on how
many nested dissection levels are used but is bounded by a modest constant.
Finally, we present a parallel implementation for shared memory systems. This
is based on the use of task parallelism where the whole workload is represented
on the form of a Directed Acyclic Graph (DAG) of tasks which is automatically
created and scheduled by a runtime system. This implementation is achieved
using features of the qr_mumps software which rely on the StarPU runtime sys-
tem. Experimental results obtained with this implementation shows that the
proposed method achieves good performance and scalability on a 36 cores sys-
tem and has the potential to perform even better on large-scale distributed
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memory systems.

1.1 Motivation
One of the key challenges in machine learning (ML) is to learn (i.e., estimate) a
representation of data that is suitable for a given task [5]. Learned representa-
tions for supervised ML tasks, such as classification and regression, are optimal
only for specific tasks. In contrast, representations for unsupervised ML tasks,
such as data exploration, are concerned with the underlying structure governing
the observed data.

It has been shown in [16, 3] that an effective approach for unsupervised
ML involves treating the learned representation as a Riemannian manifold. An
unfortunate implication, however, is that vector space operations are no longer
applicable. Instead, Riemannian counterparts, such as logarithm and exponen-
tial maps take the place of subtraction and addition operations. Also, geodesics
in their role as generalizations of line segments in Euclidean space become promi-
nent. Just as a segment of a line is the shortest distance connecting two distinct
points, a geodesic on a Riemannian manifold is a smooth parametric curve that
is a local length minimizer connecting any two distinct points. Additionally, a
point moving along a geodesic does not experience acceleration in the tangent
direction, i.e., the velocity has a constant magnitude.

Consider now an n-dimensional manifold embedded in m-dimensional Eu-
clidean space (with m > n) described by the parametric map

y : Rn → Rm.

A rather simple and intuitive strategy for determining a geodesic given any two
distinct points on a Riemannian manifold requires working with the discretized
version of a smooth parametric curve. It is then possible to model the curve as
a series of connected linear elastic springs. A spring force f ∈ Rm is related to
the end points y(xi), y(xj) ∈ Rm of a curve segment by f = K (y(xj)− y(xi)),
in which x ∈ Rn and K is the identity matrix representing the stiffness. Even
though the springs are linear in nature, the parameterization introduces poten-
tial nonlinearity. Imposing boundary conditions (constituting the given points)
on the assembled block tridiagonal (total) stiffness matrix as well as force vector,
a system of equations can be solved for the unknown curve points yielding the
stable equilibrium of the spring assemblage and geodesic. If a system of non-
linear equations has to be tackled, which is the working assumption, Newton’s
method or a variation of Newton’s method is a popular choice. In each iteration
of Newton’s method, the solution of an overdetermined system of linear equa-
tions featuring a full-rank Jacobian is sought as a trial step. QR factorization
of the Jacobian is very much desirable as the conditioning of the problem is not
subject to unnecessary degradation.
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1.2 Related work
Our work can be related to the factorization of banded, (block) bi or tridiagonal
matrices. Most of the approaches presented in the literature draw parallelism
from cyclic reduction [19], wrap-around [17], partitioning methods or minor
variants thereof; these techniques amount to identifying independent sets of
computations that allow for reducing multiple (block) columns at once at the
cost of additional computations due to fill-in. The method we propose in this
work relies on the use of nested dissection (see Sections 2.1 and 2.2) and, essen-
tially, leads to permutations that are equivalent to those computed with cyclic
reduction or wrap-around; because nested dissection relies on graph theory, we
believe it provides a clearer framework that allows for a better understanding
and analysis of parallelism and fill-in.

Early work on the QR factorization of square tridiagonal systems by Givens
rotations is proposed by Sameh and Kuck [24]. Computations are organized
in two stages. In the first diagonal blocks are reduced independently; this in-
troduces fill-in at the interface of contiguous diagonal blocks which is reduced
in the second stage. These ideas eventually lead to the definition of spike [23,
21] algorithm for the LU factorization of banded matrices. This approach was
also used by Berry and Sameh [6] to compute the parallel LU factorization
of block-tridiagonal, diagonally dominant (i.e., they do not require pivoting)
matrices.

Arbenz and Hegland [2] propose a method for the stable solution of (peri-
odic) square banded linear systems. The factorization is achieved in two phases
assuming that the original matrix is permuted into standard form (i.e., lower-
banded periodic) through a circular shift; this permutation introduces some un-
necessary fill-in. In the first phase, a partitioning of the matrix (which amounts
to a dissection step) and block-columns associated with the resulting parts are
reduced independently. This leads to a periodic block-bidiagonal system which
is reduced in parallel using cyclic reduction. They discuss both the LU and
QR factorization although mostly focus on the first. Note that the QR factor-
ization of square, periodic block-bidiagonal systems through cyclic reduction is
also addressed by Hegland and Osborne [18]

None of the aforementioned approaches consider the case of overdetermined
systems; this has non-trivial implications because when a block-column is re-
duced, some coefficients along the corresponding pivotal block-row remain which
have to be reduced. Also, all of these methods only draw parallelism from the
matrix permutation or partitioning whereas our approach exploits multiple lev-
els of parallelism as described in Section 3.

All of the methods referenced, including ours, are, in essence, specialized
multifrontal methods [13]. Algebraic multifrontal methods for the QR factor-
ization of sparse matrices have been proposed in the literature by Amestoy, Duff,
and Puglisi [1], Davis [11] and Buttari [8], for instance. These methods and the
corresponding tools are designed for generic sparse matrices; although they can
obviously be used for solving block-tridiagonal systems, they may not be the
best suited tools. Indeed, unlike common sparse matrices, our block-tridiagonal
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systems may be relatively dense in the beginning (multiple thousands of coeffi-
cients per row) and fill up moderately during the factorization (see Section 2.4).
As a result, algebraic sparse multifrontal solvers may suffer from the excessive
overhead due to the handling of the coefficients of the original matrix based on
indirect addressing. Clearly, these methods could be extended to efficiently han-
dle block matrices; this is the object of future work. Additionally, multifrontal
methods involve explicit assembly of frontal matrices which can be avoided in
our case due to the simple, regular structure of the data (see Section 2.3). Fi-
nally, in sparse multifrontal solvers, frontal matrices are typically reduced using
a LAPACK-like factorization which does not fully take into account their pos-
sibly sparse nature as explained in Section 2.3.

2 Algorithm
In this section we describe our approach to parallelize the QR factorization of a
block-tridiagonal matrix. Our description and analysis will rely on the theory
of sparse matrix factorizations. The necessary theoretical background is briefly
described in the next section; we refer the reader to the cited documents for a
detailed discussion of this topic.

2.1 Preliminaries
As it is commonly done in the literature [10, 8], our symbolic analysis of the QR
factorization of a sparse matrix relies on the equivalence between the R factor of
a real matrix A and the Cholesky factor of the normal equations B = ATA. As
a result of this equivalence, the QR factorization of a sparse matrix A follows
the same computational pattern as the Cholesky factorization of B. This can
be modeled using the adjacency graph of B defined as a graph G(B) = (V, E)
whose vertex set V = {1, 2, ..., cn} includes the unknowns of B and edge set
E = {(i, j) ∀ bi,j ̸= 0} includes an edge for each nonzero coefficient of B. In our
case, the symmetry of B implies that if (i, j) is in E , then so is (j, i), and therefore
we will only represent one of these edges; such a graph is called undirected.

It is possible to use the adjacency graph to model the Cholesky factorization
of B. Specifically we can build a sequence of graphs G(B) = G0(B),G1(B), ...,Gcn−1(B),
called elimination graphs, such that Gk(B) is the adjacency graph of the trailing
submatrix after elimination of variables 1, 2, ..., k. Elimination graph Gk(B) is
built from Gk−1(B) by removing node k as well as all its incident edges and by
updating the connectivity of the remaining nodes: for any two nodes i and j
that are neighbors of k, we have to add an edge connecting them if it does not
exist already. One such edge, called a fill edge, models the occurrence of a new
fill-in coefficient.

A sparse factorization can achieve better parallelism than a dense one be-
cause sparsity implies that the elimination of one unknown does not affect all
the uneliminated ones but only part of them. The dependencies between vari-
ables are represented by the so-called directed filled graph which corresponds to
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Figure 2: Compressed graph for the normal equations B = ATA. The label
inside nodes show the unknown number which, in this case, corresponds to the
order in which unknowns are eliminated.

the original graph G(B) plus all the fill edges; in this graph an edge (i, j) is
directed from i to j if j is eliminated after i and expresses the fact that j de-
pends on i. Because many of the dependencies expressed by the filled graph are
redundant, its transitive reduction is computed to obtain the smallest complete
set of dependencies; this results in a tree graph called an elimination tree. The
elimination tree plays a central role in sparse matrix factorizations [20] because
it dictates the order in which the unknowns can be eliminated: any order that
follows a topological (i.e., bottom-up) traversal of the tree leads to the same
result. A consequence of this fact is that nodes belonging to different branches
are independent and can, thus, be eliminated in parallel. Nodes of the elimi-
nation tree are commonly amalgamated into supernodes containing nodes that
share the same neighbors in the filled graph and can thus be eliminated at once;
the resulting amalgamated tree is commonly referred to as an assembly tree.

Nested Dissection is a method introduced by George [15] to reduce the com-
plexity of sparse factorizations. The basic step of this method is based on the
idea of computing a separator S of a graph G; this is defined as a subset of
nodes which splits the graph into two non-connected subgraphs G1 and G2. If
the nodes in S are eliminated last, no fill-in is possible between the nodes of G1

and those of G2 because of the Rose, Tarjan and Lueker theorem [22]. This gen-
erally reduces the overall amount of fill-in and improves parallelism because the
nodes of G1 can be eliminated independently, and, thus in parallel, than those
of G2. Nested Dissection applies this procedure recursively until subgraphs of a
given minimum size are achieved. The resulting tree of separators matches the
assembly tree.

2.2 A Nested Dissection based approach
Because our matrices are made of dense blocks, our analysis can focus on the
compressed graph where a node represents all the unknowns in a block-column
and an edge represents a set of edges that connect all the unknowns in one block-
column to all those in another block-column. Figure 2 shows the compressed
graph for the normal equations B = ATA; this can be easily derived knowing
that bi,j ̸= 0 if there exist a row k in A such that ak,i ̸= 0 and ak,j ̸= 0. Because
all the columns (rows) within a block-column (block-row) are indistinguishable,
we will use the term “column” (“row”) to refer to a block-column (block-row).
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A few observations can be made about this graph. First, regardless of the
order in which unknowns are eliminated, some fill-in will appear in R. In fact,
although block-row k of A only has nonzero blocks in block-columns k − 1 and
k+1, R will also have a nonzero block in block-column k+2; these fill-in blocks
are represented by the horizontal edges in Figure 2. Second, if unknowns are
eliminated in the natural order, no additional fill-in is introduced in R by the
factorization. This is because, upon elimination of node k, its neighbors are
already connected to each other. Third, the transitive reduction of the graph
in Figure 2 leads to a linear graph, i.e., a tree with a single branch which does
not provide any opportunities for parallelism.

Nested dissection can be used to improve parallelism as briefly explained in
the previous section. One level of dissection can be applied by choosing, for
example, the two middle nodes as a separator as shown in the top graph of
Figure 3, where the nodes have been re-labeled to match the elimination order.
This leads to the tree shown in the bottom left part of the same figure. This tree
has two separate branches which can be traversed in parallel. It must be noted
that the order in which the nodes on the right of the separator are visited is
reversed with respect to the original one; as a result, in this case, no additional
fill-in is added because the nodes are eliminated starting at both ends of the
graph.

Additional parallelism can be achieved by recursively applying this bisection
step. Figure 3 shows two levels of nested dissection lead to a tree with four
parallel branches. It must be noted, though, that in this case some fill-in is
generated when processing the nodes in the two middle branches; for example,
upon elimination of node 7, three fill edges appear to connect nodes 8, 9, 29
and 30 to each other, as described in the elimination graph procedure presented
in the previous section. With additional levels of nested dissection, a moderate
increase in the fill-in happens as a result of more nodes being processed in
internal branches rather than the two outer ones; this will be quantified shortly.

The nested dissection method is commonly used for reducing the complexity
of a sparse factorization. In our case, although it is very effective in improv-
ing parallelism, it increases the overall cost of the factorization both in terms
of flop count and memory consumption. Consequently, operations have to be
scheduled carefully to keep this overhead as low as possible and a model of the
factorization complexity as a function of the number of nested dissection levels l
must be computed to understand whether a suitable compromise between these
two parameters can be found. This is the objective of the next section.

2.3 Node elimination
Our QR factorization algorithm can be roughly described as a method which
runs in c steps, c being the number of block-columns, where at step k all the
nonzero blocks in column k are annihilated except one which is, instead, reduced
to a triangle; as a result of this column reduction we obtain one block-row of the
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Figure 3: The effect of one and two levels of nested dissection on the compressed
graph of the normal equations.

global R factor. The annihilation of a block not only involves its block-row but
also a second one which we refer to as pivotal row; if, for example, the blocks are
of size 1× 1, this can be achieved by a Givens rotation. In our case, because we
are dealing with dense blocks of potentially large size, Householder reflections
will be used instead because they heavily rely on Level-3 BLAS operations
and, therefore, can achieve much higher performance on modern processors; the
LAPACK library provides the basic operations to achieve these transformations
which are presented below. As a result of a block annihilation in column k,
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the structure of both the involved rows in columns k + 1, . . . , c will be equal
to the union of their prior structures. This implies that some fill-in may be
introduced by the transformation; additionally this fill-in depends on which
pivotal row is chosen to annihilate a block. It must be noted that different
pivotal sequences always lead to the same (numerically) R factor which only
depends on column permutations; as a consequence, different pivotal sequences
only have an effect on the Q factor. Several strategies were proposed in the
past for choosing pivotal sequences that reduce the fill-in; the approach that
we adopted in our work relates to the variable pivoting technique proposed by
Gentleman [14] for the QR factorization of sparse matrices by means of Givens
rotations; this can be summed up as a method where, when an entry in position
(i, k) has to be annihilated, a pivotal row j is chosen such that its structure is
as close as possible to that of row i.

Our algorithm can be implemented using the geqrt, gemqrt, tpqrt and
tpmqrt elementary operations which are available in the LAPACK library. The
first of these, geqrt, computes the QR factorization of a rectangular block; the
second, gemqrt, updates a block by applying the Q matrix (or its transpose)
resulting from a geqrt operation; the third, tpqrt, computes the QR factor-
ization of a matrix formed by a triangular block on top of a pentagonal one (in
our case it will only be either rectangular or triangular); the fourth, tpmqrt,
updates a couple of blocks by applying the Q matrix (or its transpose) resulting
from a tpqrt operation. Without loss of generality, we assume that the num-
ber of rows in a block is at least twice the number of columns, i.e., m ≥ 2n;
therefore, each block can be logically split into three parts with the third being,
possibly, empty: the first containing rows 1, . . . , n, the second containing rows
n+1, . . . , 2n and the third containing rows 2n+1, . . . ,m. We will refer to these
parts using a bitmap: for example A3 denotes the first and second parts of a
block A. The algorithm will be described using the following notation:

• GE(Bu
i,j): corresponds to reducing part u of the block in row i and column

j through a geqrt operation and updating all the corresponding blocks in
row i using gemqrt operations;

• TP (Bu
i,j , B

v
k,j): corresponds to annihilating part v of the block in position

(k, j) using part u of the block in position (i, j) through a tpqrt operation
and updating the corresponding blocks along rows i and k with tpmqrt
operations.

An example of the use of this notation is provided in Figure 4.
At each node of the tree, one column of the matrix is reduced (two for nodes

associated with separators). The nodes of the tree can be classified into four
different types: leaf, chain, separator and root nodes. The first corresponds
to the nodes that are at the lowest level of the tree (e.g., nodes 7 or 15 in the
bottom-right tree of Figure 3); the second corresponds to nodes in the sequential
branches associated with the subdomains resulting from nested dissection (e.g.,
node 12 or 20 in Figure 3); the third corresponds to nodes belonging to some
separator (e.g., node (13, 14) in Figure 3); the fourth is the root node of the
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GE(B7
1,1) TP (B1

1,1, B
7
2,1)

Figure 4: Example showing the use of the notation used to describe pivotal
sequences. The data modified at each step are shown with a fill pattern.

tree. For each type, a different pivotal sequence is used; moreover, for each
type, nodes belonging to the two outer branches need some special treatment,
as explained below. For the sake of readability, here we only provide the pivotal
sequence for a chain node because this is where most of the computations are
done assuming c ≫ 2l; the other node types are discussed in the appendix.

Reducing a column k associated with one of these nodes affects blocks in
columns k, k + 1, k + 2 and columns a1 and a2 associated with the separator
that the chain is moving away from and rows k + 1 and a1. For example, when
node 8 in Figure 3 (bottom-right) is visited, it is connected to nodes 9, 10, 29 and
30 (because node 7 has been previously eliminated) which explains why these
columns are concerned by its elimination. Note also that when node k is visited,
block-rows k and a1 and block-columns k, k + 1, a1 and a2 have been already
updated upon processing of nodes that are lower in the same branch; this leads
to the particular structure which is illustrated in the left part of Figure 5. The
pivotal sequence that we use on chain node k is:

GE(B7
k+1,k), TP (B1

k,k, B
1
k+1,k), GE(B7

k+1,k+1),

TP (B1
k+1,k+1, B

2
k,k+1), GE(B6

k+1,k+2), TP (B2
k+1,k+2, B

2
k,k+2),

TP (B1
a1,a1

, B2
k,a1

), TP (B1
a1,a1

, B4
k+1,a1

),

TP (B2
a1,a2

, B2
k,a2

), TP (B2
a1,a2

, B4
k+1,a2

).

These operations transform the blocks shown in the left part of Figure 5 into
those shown in the right part of the same figure. After these transformations,
the blocks in row k (highlighted in red in the figure) are in their final state and
will not be updated anymore; the blocks in rows k + 1 and a1 will, instead, be
updated in the parent node. Finally, the blocks that are grayed out end up in
the H matrix that implicitly represents Q by means of the Householder vectors;
these are also in their final state will not be modified anymore. This process
closely resembles the QR multifrontal method [1, 11, 8] where the structure that
gathers all the coefficients concerned by the reduction of one column is called a
multifrontal matrix. It must be noted, however, that in the multifrontal method,
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say one and for all that by row (column) we mean block-row (block-column)



a1

k

k+1
k k+

1

k+
2

a 1 a 2

a1

k

k+1

k k+
1

k+
2

a 1 a 2

Figure 5: The blocks concerned by the operations at chain node k. Their
structure before and after the processing of the node are shown in the left and
right parts of the figure, respectively. The green dashed line shows the difference
between inner and outer chain nodes.

frontal matrices are explicitly assembled by copying coefficients into a dense
matrix data structure; these copies can be extremely costly due to the large
size of blocks. Additionally, the multifrontal method can only take advantage
of the zeroes in the bottom-left part of frontal matrices (this is referred to as
“Strategy 3” in the work of Amestoy, Duff, and Puglisi [1]) whereas, through the
use of variable pivoting, our approach can avoid more unnecessary computations.
Note that the two outer chains advance from one end of the graph towards the
center and, therefore, they do not move away from any separator. As a result
only columns k, k + 1 and k + 2 and rows k and k + 1 are concerned by the
elimination of the nodes therein; this is illustrated with a green dashed line in
Figure 5. Consequently, the last four operations in the pivotal sequence above
need not be executed on these nodes.

2.4 Complexity
The cost of the elementary operations that are used in our method are reported
in Table 1. For the tpqrt and tpmqrt operations, two cases are reported: the
first (in the middle column) where the bottom block is a rectangle of size p× n
and the second (in the right column) where the bottom block is a triangle of
size n × n. Note that, p is a generic block-row size and, in the algorithm of
the previous section, it does not necessarily correspond to the row size m of
an entire block but the part that is actually concerned by the operation. The
number of columns, instead, will always be equal to n (the block column size)
which is assumed to be the same for all blocks.

Summing up the values in Table 1 for the operations of the pivotal sequence
from the previous section yields the value in row two, column three of Table 2.
For a node in an outer chain, the cost, reported in row and column two, is lower
because fewer operations are needed as explained in the previous section. In the
top rows of the table we also report the operational complexity of all the other
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geqrt 2n2(p− n/3) tpqrt 2pn2 tpqrt∗ 2n3/3
gemrt 2n2(2p− n) tpmqrt 4pn2 tpmqrt∗ 2n3

Table 1: Operational complexity of the elementary operations. p corresponds
to the number of rows in a block that are concerned by the operation.

Outer Middle
Leaf Flo = 32mn2 − 16n3 Flm = 86mn2 − 100n3/3

Chain Fco = 18mn2 − 2n3/3 Fcm = 42mn2 − 2n3/3
Separator Fso = 34mn2 − 10n3/3 Fsm = 98mn3 − 10n3/3

Root Fro = 8mn2 Frm = 16n3/3

Leaf Mlo = mn+5mn Mlm = 4mn+ 2n2+9mn
Chain Mco = 2n2+3mn Mcm = 2mn+ 2n2+3mn

Separator Mso = 3n2 Msm = 12n2

Root Mro = 2mn Mrm = 0

Table 2: Flops (top) and storage (bottom) count at each node of the tree. Each
value in the top part is computed as a sum of the complexity of the elementary
operations reported in Table 1 over the corresponding pivotal sequence. Each
value in the bottom part is computed as the difference between the structure of
blocks before and after processing the corresponding node.

node types and we refer the reader to the appendix for details of the related
pivotal sequences. With a slight abuse of notation, we denote “outer root” the
root of the tree for the case l = 0 and “middle root” the tree root for the case
l > 0.

By the same token, it is possible to compute the amount of memory (in
number of coefficients) consumed at each node type, reported in the bottom
part of Table 2; this is made of the blocks coming from the original matrix
(highlighted in red in the table) plus the fill-in generated during the processing
of the node (for example, for chain nodes this can be computed as the difference
between the right and left parts of Figure 5).

Summing up the values in Table 2 for all the nodes of the tree leads to the
overall cost of the factorization, which is
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C(c, l > 0) = (2l − 2)Clm + 2Clo % leaf nodes
+

(
2l − 2

) (
c+2
2l

− 3
)
Ccm + 2

(
c+2
2l

− 3
)
Cco % chain nodes

+
(
2l − 2− 2(l − 1)

)
Csm + 2(l − 1)Cso % separator nodes

+ Crm % root node

C(c, l = 0) = Clo % leaf nodes
+ (c− 3)Cco % chain nodes
+ Cro. % root node

(1)
In the above formula, C can be replaced with either F or M leading to,

respectively, the overall flop count or the overall memory consumption.
In this formula, for the case where no nested dissection is used (i.e., l = 0),

the root node corresponds to the penultimate chain node where the last two
block-columns of the matrix are reduced.

Figure 6 shows how the relative cost of the factorization, respectively F(c, l)/F(c, 0)
and M(c, l)/M(c, 0), varies for different problem sizes and different levels of
nested dissection for the case where m = 2n; it is possible to see that, for
growing values of l and c, these curves converge to, respectively, Fcm/Fco and
Mcm/Mco because for l = 0 the tree is essentially made of a single outer chain,
whereas for large l and c values the vast majority of computations are done in
nodes belonging to middle chains. For growing values of m, these two ratios
converge, respectively, to 2.33 and 1.66.

Other pivotal sequences can be used on each node type. Finding an optimal
pivotal sequence is an extremely challenging task due to its combinatorial na-
ture. The sequence(s) proposed above, however aim at achieving as many oper-
ations as possible within the chains which can be processed in an embarrassingly
parallel fashion; indeed all the operations in separator nodes only involve parts
of blocks that are of size n × n (either square or triangular; see the appendix
for further details). This is likely to reduce the relative weight of the reduction
phase associated with the top part of the tree where communications happen.

3 A solver with multiple levels of parallelism
In this section, we describe how an actual parallel implementation of the de-
scribed algorithm was achieved. However, we only address a version for shared
memory systems (e.g., single node, multicore machines).

As explained, our method relies on four basic kernels which are used to
achieve the pivotal sequences described in Section 2.3 and in the appendix.
Although these kernels are available in the LAPACK library, we have chosen to
rely on their implementation in the qr_mumps library. This software implements
a sparse multifrontal solver based on the QR factorization; as such it relies on
dense linear algebra operations for processing frontal matrices. Among others,
qr_mumps provides an implementation of the geqrt, gemqrt operations; to these
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Figure 6: Relative number of floating point operations (top) and memory con-
sumption (bottom) with respect to the case where no nested dissection based
permutation is used for the case m = 2n.

we have added an implementation of the tpqrt and tpmqrt ones (see below for
the details).

One immediate advantage of this choice is that, in qr_mumps these opera-
tions are efficiently parallelized. As a result some parallelism can be achieved
within each node of the tree and, thus, even in the case where no nested dis-
section permutation is used. The parallelization of these operations relies on
tiled algorithms [9] (also referred to as communication avoiding): blocks are
divided into square tiles of size b × b which are eliminated by means of block
Householder transformations according to different schemes [7] which aim at
improving concurrency by reducing unnecessary synchronizations and commu-
nications. Our implementation of the tpqrt and tpmqrt operations relies on the
same approach and uses a tile elimination scheme which is referred to as Sameh-
Kuck by Bouwmeester et al. [7]: the tiles in the trapezoidal block (remember
that we only consider the two special cases where the trapezoidal degenerates
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to a triangle or a rectangle) along a column are eliminated one after the other
starting from the top using the corresponding diagonal tile in the triangular
block.

qr_mumps relies on task based parallelism for the implementation of these
methods. The workload is represented in the form of a Directed Acyclic Graph
(DAG) where nodes are elementary operations (e.g., elimination of a tile) and
edges are the dependencies among them; this representation allows for very
quick access to all the available concurrency at any moment during the ex-
ecution and for using very dynamic and asynchronous execution approaches.
qr_mumps achieves task based parallelism through the use of a runtime system,
namely StarPU [4], which provides a programming interface for defining the
DAG and a scheduling engine for tracking the status of the DAG and triggering
the execution of ready tasks on the available processing units. StarPU provides
a programming API based on the Sequential Task Flow (STF) model (some-
times also referred to as superscalar). In this model, a master thread submits
tasks to the runtime specifying how each of them accesses the data (whether
in read or write mode); based on this information and the tasks submission
order, the runtime can automatically define the dependencies among tasks and
generate the DAG. This model is also used in the OpenMP standard (through
the task directive and the depend clause) and other runtime systems.

Additional parallelism besides that available among different branches of the
tree and within each block operation is achieved through the use of qr_mumps
asynchronous API. With the standard synchronous API, each call to an oper-
ation is blocking, which means that control is returned to the caller only after
the DAG for that operation is created and all of its tasks are executed. With
the asynchronous API, instead, only the DAG is created and control is im-
mediately returned to the caller; methods are available in qr_mumps to check
whether all the tasks associated with one called operation have been executed.
When multiple operations have to be executed, asynchronous calls can be made
for all of them, which will generate a single DAG for all at once where depen-
dencies are inferred between tasks belonging to different operations that access
the same data. Thanks to the availability of this asynchronous interface, our
implementation of the block tridiagonal QR factorization algorithm described
in the previous section consists of a sequential code that traverses the tree in
a topological order and, for each node, calls the qr_mumps operations corre-
sponding to the pivotal sequences described and in the appendix; parallelism is
automatically taken care of by qr_mumps.

4 Experimental results
In this section we report experimental results that illustrate the behavior of the
algorithm presented in Section 2 and its implementation described in Section 3.
These were obtained on one node of the Olympe supercomputer of the CALMIP
regional supercomputing center in Toulouse, France. One such node is equipped
with two Intel(R) Xeon(R) Gold 6140 CPUs for a total of 36 cores. We have
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l
0 1 2 3 4 5

#
th

re
ad

s

1 153.8 - - - - -
2 78.9 77.7 - - - -
4 40.4 39.0 57.9 - - -
8 26.3 20.2 29.7 34.8 - -
16 25.8 15.2 17.0 19.7 21.3 -
32 25.9 15.6 12.5 14.5 15.3 16.1
36 26.5 17.3 14.5 15.1 16.0 16.4

#
th

re
ad

s

1 149.1 - - - - -
2 81.9 74.2 - - - -
4 59.4 40.7 55.9 - - -
8 52.5 29.8 27.5 32.6 - -
16 53.2 28.7 16.7 18.0 19.3 -
32 57.3 28.7 15.3 9.7 10.1 10.7
36 67.1 34.7 15.9 9.6 9.4 9.7

Table 3: Execution time for the QR factorization of a problem with m = 640,
n = 320 and c = 4094 with tile size b = 160 (top) and b = 320 (bottom).

used the Intel compilers and the Intel MKL library v2018.2, StarPU revision
581387c from the public GIT repository1 and qr_mumps revision 2667 2.

For these experiments, we have set the block size to m = 640, n = 320 and
number of block-columns and block-rows c = 4094; note that choosing c = 2t−2
for some t ensures that when nested dissection is applied all the chains have the
same length 2t−l−2 ∀l = 1, ..., t−1. We will comment on how the behavior will
change for different values of these parameters but we will not report further
experiments because they do not provide additional insight to the experimental
analysis. Two different tile sizes have been chosen for the partitioning of blocks
within the qr_mumps operations, namely, b = 160 and b = 320. Finally, we
have executed experiments for varying values of the number of nested dissection
levels l from 0 (i.e., no matrix permutation) to 5; going beyond this value does
not make sense in our experimental setting because of the limited number of
cores.

Table 3 shows the execution time of the QR factorization for different num-
bers of threads and values of the l parameter with b = 160 in the top part and
b = 320 in the bottom part. The “−” entries correspond to the cases where the
number of threads is lower than the number of chains 2l; these are uninteresting
because of the excessive flops overhead spent for an unnecessary amount of par-
allelism. When nested dissection is not used, scalability is obviously limited by
the lack of parallelism; obviously, better results are obtained by using small tiles
because higher parallelism is available within each branch of the tree. When

1https://gforge.inria.fr/projects/starpu/
2http://buttari.perso.enseeiht.fr/qr_mumps/releases/qr_mumps_r2667.tgz
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l
0 1 2 3 4 5

#
th

re
ad

s

1 30.8 - - - - -
2 60.0 60.9 - - - -
4 117.0 121.2 128.0 - - -
8 180.0 234.2 249.5 251.5 - -
16 183.3 311.5 435.2 444.0 441.2 -
32 182.5 303.1 590.8 600.7 615.8 603.1
36 178.5 272.6 509.7 579.2 588.1 591.6

#
th

re
ad

s

1 31.7 - - - - -
2 57.8 63.8 - - - -
4 79.6 116.3 132.6 - - -
8 90.1 158.5 268.8 268.5 - -
16 88.9 164.8 442.3 486.0 488.0 -
32 82.6 165.0 482.5 901.9 932.0 907.4
36 70.5 136.5 464.1 905.2 997.8 997.8

Table 4: Speed in Gflop/s for the QR factorization of a problem with m = 640,
n = 320 and c = 4094 with tile size b = 160 (top) and b = 320 (bottom).

one level of nested dissection is applied, parallelism is roughly doubled with no
additional cost, which explains why the execution times in the second column of
the table are always below the corresponding ones in the first. The improvement
is, as expected, higher in the case of large tiles and when the number of threads
grows. For values of l greater than or equal to two, the use of nested dissec-
tion implies a computational overhead. This explains why, when the number
of threads is relatively low, increasing l results in a slowdown; this is especially
true when small tiles are used because sufficient parallelism is available even
with small values of l. When the number of threads is relatively high, the bene-
fit of the additional parallelism overcomes the extra computational cost and the
execution time is reduced. Additionally, we can observe that, when the number
of threads is relatively high, the best results are achieved with large tiles: this
is because of the larger granularity of tasks which allows for a better efficiency
of the BLAS operations executed on tiles. Ultimately, we can conclude that,
when the number of threads is relatively low, using small tiles and few levels of
nested dissection provides sufficient parallelism with no or little computational
overhead; inversely, when more threads are used, using large tiles is beneficial
for improving the efficiency of elementary operations and the extra parallelism
is worth the computational overhead. This is illustrated in Figure 7 (left) where
the best execution times are taken along each row of Table 3 and compared to
the best sequential result, i.e., 149.1s. The number next to each data point
shows the nested dissection levels used to obtain the corresponding result. The
best time improvement with respect to the sequential case is 15.8 for the case
l = 4 which results in roughly twice as many floating-point operations.
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Figure 7: Best time and speed improvement over the sequential case. The values
beside each data point shows the corresponding value of l.

0 1 2 3 4 5
160 76.3 56.5 79.9 96.8 104.2 106.6
320 138.2 75.1 49.8 58.2 61.9 64.7
160 496.4 670.4 741.9 723.2 723.0 732.2
320 274.2 504.5 1191.3 1202.9 1217.1 1205.2

Table 5: Execution time (top) and speed in Gflop/s (bottom) for the QR fac-
torization of a problem with m = 1280, n = 640 and c = 4094 with tile size
b = 160 (top) and b = 320 (bottom) on 36 cores.

In order to assess the efficiency and scalability of our implementation, in
Table 4 we provide the speed of computations in Gigaflops per second which
is insensitive to the computational overhead imposed by the use of nested dis-
section. As expected, performance grows for higher values of l because more
embarrassing parallelism is available; for a given value of l, performance at first
grows with the number of threads and eventually decreases when the available
parallelism is not enough to feed all the working threads. The peak performance
of a single core is 73.6 Gflop/s, which means that the sequential execution has
an efficiency of 43%. This relatively poor efficiency can be explained by the
relatively small values of m and n which makes the relative cost of BLAS-2 rich
operations (i.e., geqrt and tpqrt) greater; higher speeds can be observed when
larger blocks are used. The best speed improvement is a remarkable 31.4 out of
36; it must be noted that for the case of l = 5, roughly 99% of the computations
are done in chain or leaf nodes.

For the sake of completeness, in Table 5 we report the execution time and
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speed for the factorization of a matrix with large blocks (m = 1280 and n = 640)
obtained with 36 threads. In this case, more parallelism is available within each
branch and, consequently, the best shortest execution time is achieved with
fewer levels of nested dissection with respect to the previous case. It can also be
noted that the overall performance is higher thanks to a better ratio between
Level-3 and Level-2 BLAS operations; this also holds for the sequential case
where the execution time is 960.7 seconds for a speed of 39.46 Gflop/s.

Although, as discussed above, some concurrency is available within each
branch or node of the tree, this parallelism involves communications due to the
fact that multiple processes share the same data. On shared memory systems,
these communications take the form of memory traffic and synchronizations. In
distributed memory systems, these communications amount to transferring data
through the slow network interconnection and, therefore, are much more penal-
izing. The use of nested dissection introduces embarrassing parallelism because
each process may potentially work on a different branch without communicat-
ing with others. For this reason, we speculate that the benefit of increasing
l over the operational overhead is better on distributed memory systems than
shared memory ones. We reserve the development and analysis of a distributed
memory parallel implementation for the future.

5 Conclusion
In this work, we have presented a method for computing the QR factorization
of block-tridiagonal matrices. Our approach draws parallelism from the nested
dissection method which allows for structuring the elimination process as a
parallel topological order traversal of a tree graph. At each node of this tree,
one block-column is reduced through Householder reflections. These operations
are computed in such a way that the sparsity of the data handled at each node
of the tree is taken advantage of.

A detailed analysis of the operational and memory complexity of the re-
sulting method was provided. Although we demonstrated that this complexity
grows with the number of used nested dissection levels, the overhead with re-
spect to the sequential (i.e., no nested dissection) case is bounded by a moderate
constant.

An actual implementation of the factorization method that can take advan-
tage of multiple levels of parallelism was also presented. Not only does our
solver achieve parallelism through the concurrent traversal of separate branches
of the elimination tree but also from the intrinsic concurrency available at each
tree node and from pipelining the processing of nodes at different levels of the
tree. This is achieved by using the parallel, asynchronous dense linear algebra
methods available in the qr_mumps software and developing the missing opera-
tions.

Finally, experimental results on a shared memory architecture that show
the effectiveness of our approach as well as of its actual implementation were
included.
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A Pivotal sequences
Leaf nodes The matrix blocks concerned by the operations on a leaf node are
depicted in Figure 8 (left). At leaf node k, these are in columns k, k+ 1, k+2,
a1, a2 and rows k, k+1, a1 where a1 and a2 are block-columns associated with
an ancestor separator, the one that the chain is moving away from. Because
the two outer branches are not moving away from any separator, only the first
three rows and columns are concerned by the processing of a leaf node attached
to one such chain, as illustrated by the dashed green line in the figure. The
operations executed on a leaf node result in the structure shown in the right
part of the figure and are described by the following pivotal sequence:

GE(B7
k,k), GE(B7

k+1,k), TP (B1
k,k, B

1
k+1,k), GE(B7

a1,k
),

TP (B1
k,k, B

1
a1,k

), GE(B7
k+1,k+1), TP (B1

k+1,k+1, B
6
k,k+1),

TP (B1
k+1,k+1, B

1
a1,k+1), GE(B6

k+1,k+2), TP (B2
k+1,k+2, B

6
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TP (B2
k+1,k+2, B

1
a1,k+2), GE(B7

a1,a1
), GE(B6

a1,a2
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TP (B1
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, B4
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, B6
k,a2

), TP (B2
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, B4
k+1,a2

).

Operations that involve blocks in row or column a1 or a2 need not be exe-
cuted for leaf nodes attached to outer branches. As a reminder of what was said
in Section 2, at the end of these operations the k-th block-row of the global R
factor is computed, highlighted in red in Figure 8 (right); the blue blocks will be
operated upon in nodes along the branch connecting the leaf to the root of the
tree while the gray blocks correspond to the Householder vectors that implicitly
represent the Q factor.

Separator nodes The blocks concerned by the operations on a separator node
are depicted in Figure 9 (left). When all the chain nodes have been eliminated,
each separator (except the two outer ones) is connected to two other separators:
one is the parent node and the other an ancestor node in the tree. Therefore,
these blocks are in columns s1, s2, p1, p2, a1, a2 and rows s1, s2, p1, a1,
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Figure 8: The blocks concerned by the operations at leaf node k. Their structure
before and after the processing of the node are shown in the left and right parts
of the figure, respectively. The green dashed line shows the difference between
inner and outer leaf nodes.

where s1 and s2 are the block-columns associated with the separator, p1 and
p2 those associated with the parent separator and a1, a2 those associated with
the ancestor separator. Separators belonging to one of the two outer branches
are only connected to their parent and, therefore, columns a1, a2 and row a1
do not exist; this is illustrated by the dashed green line in Figure 9. Finally,
the root node is a separator which does not have a parent nor an ancestor and,
therefore, only the first two rows and columns are involved in its processing, as
illustrated by the dashed purple line in Figure 9. The operations executed on a
separator node result in the structure shown in the right part of the figure and
are described by the following pivotal sequence:
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s1,s1 , B

1
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a1,a2

, B2
s1,a2

), TP (B2
a1,a2

, B2
s2,a2

).

All the operations involving rows and columns a1 and a2 need not be done
on outer separators and the root; all those involving rows and columns p1 and
p2 need not be done on the root.
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Figure 9: The blocks concerned by the operations at separator node (s1, s2).
Their structure before and after the processing of the node are shown in the
left and right parts of the figure, respectively. The green dashed line shows the
difference between inner and outer separator nodes. The purple dashed line
delimits the rows and columns of the tree root node.
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