
HAL Id: hal-02370953
https://hal.science/hal-02370953v2

Submitted on 5 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parallel QR factorization of block-tridiagonal matrices
Alfredo Buttari, Søren Hauberg, Costy Kodsi

To cite this version:
Alfredo Buttari, Søren Hauberg, Costy Kodsi. Parallel QR factorization of block-tridiagonal matrices.
SIAM Journal on Scientific Computing, 2020, 42 (6), pp.C313-C334. �10.1137/19M1306166�. �hal-
02370953v2�

https://hal.science/hal-02370953v2
https://hal.archives-ouvertes.fr

PARALLEL QR FACTORIZATION OF BLOCK-TRIDIAGONAL1

MATRICES2

A. BUTTARI ∗, SØREN HAUBERG † , AND COSTY KODSI †3

Abstract. In this work, we deal with the QR factorization of block-tridiagonal matrices, where4
the blocks are dense and rectangular. This work is motivated by a novel method for computing5
geodesics over Riemannian manifolds. If blocks are reduced sequentially along the diagonal, only6
limited parallelism is available. We propose a matrix permutation approach based on the Nested7
Dissection method which improves parallelism at the cost of additional computations and storage.8
We show how operations can be arranged to keep this extra cost as low as possible. We provide a9
detailed analysis of the approach showing that this extra cost is bounded. Finally, we present an10
implementation for shared memory systems relying on task parallelism and the use a runtime system.11
Experimental results support the conclusions of our analysis and show that the proposed approach12
leads to good performance and scalability.13

Key words. QR factorization, nested dissection, task-based parallelism14

AMS subject classifications. 68W10, 68W40, 65F05, 65F2015

1. Introduction. In this work, we deal with the solution of linear least squares16

problems where the system matrix is block-tridiagonal. By this we mean that our17

matrices have a block structure with c block-rows and c block-columns and along18

block-row k we only have nonzeroes in block-columns k − 1 to k + 1 as depicted in19

Figure 1. The blocks are assumed to be dense and rectangular of size m × n with20

m > n.21

In a LAPACK-like QR factorization where sub-diagonal coefficients are elimi-22

nated by means of Householder reflections column-by-column in the natural order,23

only limited parallelism is available because of the lack of update operations (i.e.,24

application of the Householder reflections to the trailing submatrix) stemming from25

the potentially narrow bandwidth and because each elimination step depends on the26

previous. Even the use of tiled [11] or communication-avoiding [14] approaches can27

barely improve the situation especially when c is high and m as well as n is small. By28

choosing a different order for reducing the matrix columns, which essentially amounts29

to permuting the matrix columns, it is possible to achieve better parallelism; this,30

however, generates additional fill-in — coefficients that are zero in the original ma-31

trix and are turned into nonzeroes by the factorization — which is responsible for32

an increase in the operation count and the storage. We propose an approach that33

computes this permutation by applying the Nested Dissection method to the com-34

pressed matrix graph. This allows us to identify groups of blocks that can be reduced35

independently; this first phase is followed by a reduction step that deals with the36

blocks that are at the interface of the groups. Although the structure and value of37

the R factor only depends on column permutations, the structure of the Q factor38

and, consequently, the overall cost of the factorization greatly depend on the order39

in which coefficients are annihilated within each column or, more generally, on row40

permutations. Taking this into account, we propose an approach based on variable41

pivoting that reduces the operational complexity by avoiding unnecessary computa-42

tions, especially in the reduction phase which involves communications. We provide43

a detailed analysis of the operational and memory cost showing that the overhead44

∗Université de Toulouse, CNRS-IRIT
†DTU, Department of Applied Mathematics and Computer Science

1

This manuscript is for review purposes only.

1

2

· · ·

· · ·

c

m

n

Fig. 1. A block-tridiagonal matrix.

depends on how many nested dissection levels are used but is bounded by a modest45

constant. Finally, we present a parallel implementation for shared memory systems.46

This is based on the use of task parallelism where the whole workload is represented on47

the form of a Directed Acyclic Graph (DAG) of tasks which is automatically created48

and scheduled by a runtime system. This implementation is achieved using features49

of the qr mumps software [1] which relies on the StarPU runtime system [5]. Exper-50

imental results obtained with this implementation show that the proposed method51

achieves good performance and scalability on a 36 cores system and has the potential52

to perform even better on large-scale distributed memory systems.53

1.1. Motivation. One of the key challenges in machine learning (ML) is to54

learn (i.e., estimate) a representation of data that is suitable for a given task [6].55

Learned representations for supervised ML tasks, such as classification and regression,56

are optimal only for specific tasks. In contrast, representations for unsupervised ML57

tasks, such as data exploration, are concerned with the underlying structure governing58

the observed data.59

It has been shown in [19, 4] that an effective approach for unsupervised ML in-60

volves treating the learned representation as a Riemannian manifold. An unfortunate61

implication, however, is that vector space operations are no longer applicable. Instead,62

Riemannian counterparts, such as logarithm and exponential maps take the place of63

subtraction and addition operations. Also, geodesics in their role as generalizations64

of line segments in Euclidean space become prominent. Just as a segment of a line65

is the shortest distance connecting two distinct points, a geodesic on a Riemannian66

manifold is a smooth parametric curve that is a local length minimizer connecting any67

two distinct points. Additionally, a point moving along a geodesic does not experience68

acceleration in the tangent direction, i.e., the velocity has a constant magnitude.69

Consider now an n-dimensional manifold embedded in m-dimensional Euclidean70

space (with m > n) described by the parametric map71

y : Rn → Rm.72

2

This manuscript is for review purposes only.

A rather simple and intuitive strategy for determining a geodesic given any two dis-73

tinct points on a Riemannian manifold requires working with the discretized version74

of a smooth parametric curve. It is then possible to model the curve as a series of75

connected linear elastic springs. A spring force f ∈ Rm is related to the end points76

y(xi), y(xj) ∈ Rm of a curve segment by f = K (y(xj)− y(xi)), in which x ∈ Rn and77

K is the identity matrix representing the stiffness. Even though the springs are linear78

in nature, the parameterization introduces potential nonlinearity. Imposing boundary79

conditions (constituting the given points) on the assembled block tridiagonal (total)80

stiffness matrix as well as force vector, a system of equations can be solved for the81

unknown curve points yielding the stable equilibrium of the spring assemblage and82

geodesic. If a system of nonlinear equations has to be tackled, which is the working83

assumption, Newton’s method or a variation of Newton’s method is a popular choice.84

In each iteration of Newton’s method, the solution of an overdetermined system of85

linear equations featuring a full-rank Jacobian is sought as a trial step. It is possible86

to multiply the transpose of the Jacobian to both sides of the overdetermined system87

for symmetry purposes in preparation for solution. Since the Jacobian is likely to88

be poorly conditioned, this is not desirable as it has the effect of squaring the con-89

dition number of the problem. Alternatively, a solution methodology involving QR90

factorization of the Jacobian does not unnecessarily degrade the conditioning of the91

problem.92

1.2. Related work. Our work can be related to the factorization of banded,93

(block) bi or tridiagonal matrices. Most of the approaches presented in the literature94

draw parallelism from cyclic reduction [22], wrap-around [20], partitioning methods95

or minor variants thereof; these techniques amount to identifying independent sets96

of computations that allow for reducing multiple (block) columns at once at the cost97

of additional computations due to fill-in. The method we propose in this work relies98

on the use of nested dissection (see Sections 2.1 and 2.2) and, essentially, leads to99

permutations that are equivalent to those computed with cyclic reduction or wrap-100

around; because nested dissection relies on graph theory, we believe it provides a101

clearer framework that allows for a better understanding and analysis of parallelism102

and fill-in.103

Early work on the QR factorization of square tridiagonal systems by Givens ro-104

tations is proposed by Sameh and Kuck [28]. Computations are organized in two105

stages. In the first diagonal blocks are reduced independently; this introduces fill-in106

at the interface of contiguous diagonal blocks which is reduced in the second stage.107

These ideas eventually lead to the definition of spike [27, 25] algorithm for the LU108

factorization of banded matrices. This approach was also used by Berry and Sameh109

[7] to compute the parallel LU factorization of block-tridiagonal, diagonally dominant110

(i.e., they do not require pivoting) matrices.111

Arbenz and Hegland [3] propose a method for the stable solution of (periodic)112

square banded linear systems. The factorization is achieved in two phases assuming113

that the original matrix is permuted into standard form (i.e., lower-banded periodic)114

through a circular shift; this permutation introduces some unnecessary fill-in. In the115

first phase, a partitioning of the matrix (which amounts to a dissection step) and116

block-columns associated with the resulting parts are reduced independently. This117

leads to a periodic block-bidiagonal system which is reduced in parallel using cyclic118

reduction. They discuss both the LU and QR factorization although mostly focus on119

the first. Note that the QR factorization of square, periodic block-bidiagonal systems120

through cyclic reduction is also addressed by Hegland and Osborne [21]121

3

This manuscript is for review purposes only.

None of the aforementioned approaches consider the case of overdetermined sys-122

tems; this has non-trivial implications because when a block-column is reduced, some123

coefficients along the corresponding pivotal block-row remain which have to be re-124

duced. Also, all of these methods only draw parallelism from the matrix permutation125

or partitioning whereas our approach exploits multiple levels of parallelism as de-126

scribed in Section 3.127

All of the methods referenced, including ours, are, in essence, specialized mul-128

tifrontal methods [15]. Algebraic multifrontal methods for the QR factorization of129

sparse matrices have been proposed in the literature by Amestoy, Duff, and Puglisi130

[2], Davis [13] and Buttari [10], for instance. These methods and the correspond-131

ing tools are designed for generic sparse matrices; although they can obviously be132

used for solving block-tridiagonal systems, they may not be the best suited tools.133

Indeed, unlike common sparse matrices, our block-tridiagonal systems may be rela-134

tively dense in the beginning (multiple thousands of coefficients per row) and fill up135

moderately during the factorization (see Section 2.4). As a result, algebraic sparse136

multifrontal solvers may suffer from the excessive overhead due to the handling of137

the coefficients of the original matrix based on indirect addressing. Clearly, these138

methods could be extended to efficiently handle block matrices; this is the object of139

future work. Additionally, multifrontal methods involve explicit assembly of frontal140

matrices which can be avoided in our case due to the simple, regular structure of the141

data (see Section 2.3). Finally, in sparse multifrontal solvers, frontal matrices are142

typically reduced using a LAPACK-like factorization which does not fully take into143

account their possibly sparse nature as explained in Section 2.3.144

2. Algorithm. In this section we describe our approach to parallelize the QR145

factorization of a block-tridiagonal matrix. Our description and analysis will rely on146

the theory of sparse matrix factorizations. The necessary theoretical background is147

briefly described in the next section; we refer the reader to the cited documents for a148

detailed discussion of this topic.149

2.1. Preliminaries. As it is commonly done in the literature [12, 10], our sym-150

bolic analysis of the QR factorization of a sparse matrix relies on the equivalence151

between the R factor of a real matrix A and the Cholesky factor of the normal equa-152

tion matrix B = ATA, whenever the Strong Hall property holds. As a result of153

this equivalence, the QR factorization of a sparse matrix A follows the same com-154

putational pattern as the Cholesky factorization of B. This can be modeled us-155

ing the adjacency graph of B defined as a graph G(B) = (V, E) whose vertex set156

V = {1, 2, ..., cn} includes the unknowns associated with rows and columns of B and157

edge set E = {(i, j) ∀ bi,j 6= 0} includes an edge for each nonzero coefficient of B. In158

our case, the symmetry of B implies that if (i, j) is in E , then so is (j, i), and therefore159

we will only represent one of these edges; such a graph is called undirected.160

It is possible to use the adjacency graph to model the Cholesky factorization of161

B. Specifically we can build a sequence of graphs G(B) = G0(B),G1(B), ...,Gcn−1(B),162

called elimination graphs, such that Gk(B) is the adjacency graph of the trailing163

submatrix after elimination of variables 1, 2, ..., k. Elimination graph Gk(B) is built164

from Gk−1(B) by removing node k as well as all its incident edges and by updating165

the connectivity of the remaining nodes: for any two nodes i and j that are neighbors166

of k, we have to add an edge connecting them if it does not exist already. One such167

edge, called a fill edge, models the occurrence of a new fill-in coefficient.168

A sparse factorization can achieve better parallelism than a dense one because169

sparsity implies that the elimination of one unknown does not affect all the unelimi-170

4

This manuscript is for review purposes only.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Fig. 2. Compressed graph for the normal equation matrix B = ATA. The label inside nodes
show the unknown number which, in this case, corresponds to the order in which unknowns are
eliminated.

nated ones but only part of them. The dependencies between variables are represented171

by the so-called directed filled graph which corresponds to the original graph G(B) plus172

all the fill edges; in this graph an edge (i, j) is directed from i to j if j is eliminated173

after i and expresses the fact that j depends on i. Because many of the dependencies174

expressed by the filled graph are redundant, its transitive reduction is computed to175

obtain the smallest complete set of dependencies; this results in a tree graph called176

an elimination tree. The elimination tree plays a central role in sparse matrix factor-177

izations [24] because it dictates the order in which the unknowns can be eliminated:178

any order that follows a topological (i.e., bottom-up) traversal of the tree leads to the179

same result. A consequence of this fact is that nodes belonging to different branches180

are independent and can, thus, be eliminated in parallel. Nodes of the elimination181

tree are commonly amalgamated into supernodes containing nodes that share the182

same neighbors in the filled graph and can thus be eliminated at once; the resulting183

amalgamated tree is commonly referred to as an assembly tree.184

Nested Dissection is a method introduced by George [17] to reduce the complexity185

of sparse factorizations. The basic step of this method is based on the idea of com-186

puting a separator S of a graph G; this is defined as a subset of nodes which splits the187

graph into two non-connected subgraphs G1 and G2. If the nodes in S are eliminated188

last, no fill-in is possible between the nodes of G1 and those of G2 because of the Rose,189

Tarjan and Lueker theorem [26]. This generally reduces the overall amount of fill-in190

and improves parallelism because the nodes of G1 can be eliminated independently,191

and, thus in parallel, than those of G2. Nested Dissection applies this procedure re-192

cursively until subgraphs of a given minimum size are achieved. The resulting tree of193

separators matches the assembly tree.194

2.2. A Nested Dissection based approach. Because our matrices are made195

of dense blocks, our analysis can focus on the compressed graph where a node repre-196

sents all the unknowns in a block-column and an edge represents a set of edges that197

connect all the unknowns in one block-column to all those in another block-column.198

Figure 2 shows the compressed graph for the normal equation matrix B = ATA; this199

can be easily derived knowing that bi,j 6= 0 if there exist a row k in A such that ak,i 6= 0200

and ak,j 6= 0. Because all the columns (rows) within a block-column (block-row) are201

indistinguishable, we will use the term “column” (“row”) to refer to a block-column202

(block-row).203

A few observations can be made about this graph. First, regardless of the order in204

which unknowns are eliminated, some fill-in will appear in R compared to A. In fact,205

although block-row k of A only has nonzero blocks in block-columns k− 1 to k+ 1, R206

will also have a nonzero block in block-column k+2; these fill-in blocks are represented207

by the horizontal edges in Figure 2. We will refer to these fill blocks as unavoidable208

because, as said above, they will exist in R regardless of the nodes elimination order.209

Second, besides these unavoidable fill-in blocks, no additional fill-in is introduced in R210

by the factorization if unknowns are eliminated in the natural order. This is because,211

5

This manuscript is for review purposes only.

upon elimination of node k, its neighbors are already connected to each other. Third,212

the transitive reduction of the graph in Figure 2 leads to a linear graph, i.e., a tree213

with a single branch which does not provide any opportunities for parallelism.214

Nested dissection can be used to improve parallelism as briefly explained in the215

previous section. One level of dissection can be applied by choosing, for example, the216

two middle nodes as a separator as shown in the top graph of Figure 3, where the217

nodes have been re-labeled to match the elimination order. This leads to the tree218

shown in the bottom left part of the same figure. This tree has two separate branches219

which can be traversed in parallel. It must be noted that the order in which the nodes220

on the right of the separator are visited is reversed with respect to the original one; as221

a result, in this case, no additional fill-in is added because the nodes are eliminated222

starting at both ends of the graph.223

One level of nested dissection

1

2

3

4

5

6

7

8

9

10

11

12

13

14

29

30

28

27

26

25

24

23

22

21

20

19

18

17

16

15

Two levels of nested dissection

1

2

3

4

5

6

13

14

12

11

10

9

8

7

29

30

21

22

23

24

25

26

27

28

20

19

18

17

16

15

Tree for one level
of nested dissection

29, 30

14

...

1

28

...

15

Tree for two levels
of nested dissection

29, 30

13, 14

6

...

1

12

...

7

27, 28

26

...

21

20

...

15

Fig. 3. The effect of one and two levels of nested dissection on the compressed graph of the
normal equation matrix.

6

This manuscript is for review purposes only.

Additional parallelism can be achieved by recursively applying this bisection step.224

Figure 3 shows two levels of nested dissection lead to a tree with four parallel branches225

and Figure 4 (left) shows the matrix permuted accordingly; note that in Figure 4 we226

have applied the permutation also to block-rows and, although this is not necessary227

in practice (as explained in the next section), we will assume it is always the case for228

the sake of simplicity. It is important to note that when two levels of nested dissection229

are used some fill-in is generated in R when processing the nodes in the two middle230

branches; for example, upon elimination of node 7, three fill edges appear to connect231

nodes 8, 9, 29 and 30 to each other, as described in the elimination graph procedure232

presented in the previous section. The final structure of the R factor is depicted in233

Figure 4 (right). With additional levels of nested dissection, a moderate increase234

in the fill-in happens as a result of more nodes being processed in internal branches235

rather than the two outer ones; this will be quantified shortly.236

The nested dissection method is commonly used for reducing the complexity of a237

sparse factorization. In our case, although it is very effective in improving parallelism,238

it increases the overall cost of the factorization both in terms of flop count and memory239

consumption. Consequently, operations have to be scheduled carefully to keep this240

overhead as low as possible and a model of the factorization complexity as a function241

of the number of nested dissection levels l must be computed to understand whether a242

suitable compromise between these two parameters can be found. This is the objective243

of the next section.244

A block QR factorization algorithm can be roughly described as a method which245

runs in c steps, c being the number of block-columns, where at step k all the nonzero246

blocks in column k are annihilated except one which is, instead, reduced to an upper247

triangle; as a result of this column reduction we obtain one block-row of the global248

R factor. In our method, this is achieved through a bottom-up traversal of the tree249

where, at each node, one column (or two for nodes associated with separators) is250

reduced. Reducing column k implies the update of a subset of the blocks in column251

k + 1, . . . , c; we refer to the ensemble of the blocks affected by the reduction of one252

column as a frontal matrix. Depending on the size and shape of this frontal matrix,253

the nodes of the tree can be classified into four different types: leaf, chain, separator254

and root nodes. The first corresponds to the nodes that are at the lowest level of the255

tree (e.g., nodes 7 or 15 in the bottom-right tree of Figure 3); the second corresponds256

to nodes in the sequential branches associated with the subdomains resulting from257

nested dissection (e.g., node 12 or 20 in Figure 3); the third corresponds to nodes258

belonging to some separator (e.g., node (13, 14) in Figure 3); the fourth is the root259

node of the tree. For each type, a different sequence of transformations is used to260

operate the corresponding column reduction; we refer to this as the pivotal sequence.261

Moreover, for each type, nodes belonging to the two outer branches need some special262

treatment because, as explained above, reducing the associated columns does not263

introduce any additional fill-in in the R factor; this will be discussed in deeper details264

in the next section.265

2.3. Node elimination. As explained in the previous section, at each node of266

the tree, one block-column (two for separator nodes) is reduced by annihilating all267

the non-zero blocks in the column except one which is reduced into a triangle. The268

annihilation of a block not only involves its block-row but also a second one which269

we refer to as pivotal row ; if, for example, the blocks are of size 1 × 1, this can be270

achieved by a Givens rotation. In our case, because we are dealing with dense blocks of271

potentially large size, Householder reflections will be used instead because they heavily272

7

This manuscript is for review purposes only.

1
2
3
4
5
6
14
13
12
11
10
9
7
8
30
29
28
27
26
25
17
18
19
20
21
22
24
23
15
16

1
2
3
4
5
6
14
13
12
11
10
9
7
8
30
29
28
27
26
25
17
18
19
20
21
22
24
23
15
16

Fig. 4. On the left, a block-tridiagonal matrix with c = 30 permuted using two levels of nested
dissection as in Figure 3. Note that, for the sake of illustration, block-columns are permuted in the
same way as block-rows although this need not be the case in practice. The numbers on the right of
the matrix describe the index of each block-row in the original, unpermuted matrix; the same list of
indices applies to block-columns. On the right, the structure of R after the factorization; blocks with
a dark fill color correspond to nonzero blocks in A; bordered blocks with a lighter fill color correspond
to unavoidable fill blocks (i.e., those associated with horizontal edges in Figure 3); bordered blocks
with no fill color correspond to those that are due to the chosen pivotal order.

rely on Level-3 BLAS operations and, therefore, can achieve much higher performance273

on modern processors; the LAPACK library provides the basic operations to achieve274

these transformations which are presented below. As a result of a block annihilation in275

column k, the structure of both the involved rows in columns k+1, . . . , c will be equal276

to the union of their prior structures. This implies that some fill-in may be introduced277

by the transformation; obviously this fill-in depends on which pivotal row is chosen278

to annihilate a block. It must be noted that different pivotal sequences always lead279

to the same (numerically) R factor which only depends on column permutations; as a280

consequence, different pivotal sequences only have an effect on the trailing submatrix281

of A and, ultimately, the Q factor. Several strategies were proposed in the past for282

choosing pivotal sequences that reduce the fill-in. The approach that we adopted in283

our work relates to the variable pivoting technique proposed by Gentleman [16] for284

the QR factorization of sparse matrices by means of Givens rotations; this method285

is strongly related to the row-merge scheme, later proposed by George and Heath286

[18] and Liu [23] (see the work by Liu for a discussion on how the two approaches287

compare). Variable pivoting can be summed up as a method where, when an entry in288

position (i, k) has to be annihilated, a pivotal row j is chosen such that its structure289

is as close as possible to that of row i.290

8

This manuscript is for review purposes only.

GE(B7
1,1) TP (B1

1,1, B
7
2,1)

Fig. 5. Example showing the use of the notation used to describe pivotal sequences. The data
modified at each step are shown with a fill pattern.

The annihilation of blocks and the corresponding updates can be achieved through291

the geqrt, gemqrt, tpqrt and tpmqrt elementary operations which are available in292

the LAPACK library. The first of these, geqrt, computes the QR factorization of293

a rectangular block; the second, gemqrt, updates a block by applying the Q matrix294

(or its transpose) resulting from a geqrt operation; the third, tpqrt, computes the295

QR factorization of a matrix formed by a triangular block on top of a pentagonal296

one (in our case it will only be either rectangular or triangular); the fourth, tpmqrt,297

updates a couple of blocks by applying the Q matrix (or its transpose) resulting from298

a tpqrt operation. All these routines are based on Householder transformations and,299

especially for the update routines, heavily rely on Level-3 BLAS operations. Without300

loss of generality, we assume that the number of rows in a block is at least twice301

the number of columns, i.e., m ≥ 2n; therefore, each block can be logically split into302

three parts with the third being, possibly, empty: the first containing rows 1, . . . , n,303

the second containing rows n+ 1, . . . , 2n and the third containing rows 2n+ 1, . . . ,m.304

We will refer to these parts using a bitmap: for example A3 denotes the first and305

second parts of a block A, 3 being equal to 011 in binary format. The algorithm will306

be described using the following notation:307

• GE(Bu
i,j): corresponds to reducing part u of the block in block-row i and308

block-column j through a geqrt operation and updating all the corresponding309

blocks in row i using gemqrt operations;310

• TP (Bu
i,j , B

v
k,j): corresponds to annihilating part v of the block in position311

(k, j) using part u of the block in position (i, j) through a tpqrt operation and312

updating the corresponding blocks along rows i and k with tpmqrt operations.313

An example of the use of this notation is provided in Figure 5.314

For the sake of readability, here we only provide the pivotal sequence for a chain315

node because this is where most of the computations are done assuming c � 2l; the316

other node types are discussed in the appendix. Reducing a column k associated with317

one of these nodes affects blocks in columns k, k + 1, k + 2, a1 and a2 and rows k,318

k + 1 and a1, where a1 and a2 are the indices of the nodes in the separator that the319

chain is moving away from. For example, when node 8 in Figure 3 (bottom-right) is320

visited, it is connected to nodes 9, 10, 29 and 30 (because node 7 has been previously321

eliminated) which explains why these columns are concerned by its elimination. Note322

also that when node k is visited, block-rows k and a1 and block-columns k, k + 1,323

a1 and a2 have been already updated upon processing of nodes that are lower in the324

same branch; this leads to the particular frontal matrix structure which is illustrated325

in the left part of Figure 6. The pivotal sequence that we use on chain node k is:326

9

This manuscript is for review purposes only.

GE(B7
k+1,k), TP (B1

k,k, B
1
k+1,k), GE(B7

k+1,k+1),

TP (B1
k+1,k+1, B

2
k,k+1), GE(B6

k+1,k+2), TP (B2
k+1,k+2, B

2
k,k+2),

TP (B1
a1,a1

, B2
k,a1

), TP (B1
a1,a1

, B4
k+1,a1

),

TP (B2
a1,a2

, B2
k,a2

), TP (B2
a1,a2

, B4
k+1,a2

).

327

These operations transform the blocks shown in the left part of Figure 6 into those328

shown in the right part of the same figure; the middle part of the figure shows the329

state of the factorization after the first column is reduced by means of the first two330

operations GE(B7
k+1,k), TP (B1

k,k, B
1
k+1,k). After these transformations, the blocks331

in row k, with a dark fill color in the figure, are in their final state and will not be332

updated anymore; the bordered blocks with a lighter fill color in rows k + 1 and a1333

will, instead, be updated in the parent node. Finally, the bordered blocks with no334

fill color blocks end up in the H matrix that implicitly represents Q by means of335

the Householder vectors; these are also in their final state and will not be modified336

anymore. Note that the two outer chains advance from one end of the graph towards337

the center and, therefore, they do not move away from any separator. As a result only338

columns k, k + 1 and k + 2 and rows k and k + 1 are concerned by the elimination of339

the nodes therein; this is illustrated with a dashed line in Figure 6. Consequently, the340

last four (underlined) operations in the pivotal sequence above need not be executed341

on these nodes.342

This process closely resembles the QR multifrontal method [2, 13, 10]. It must be343

noted, however, that in the multifrontal method, frontal matrices are explicitly assem-344

bled by copying coefficients into dense matrix data structures which are allocated in345

memory and initialized to zero beforehand; these copies can be extremely costly due346

to the large size of blocks and the heavy use of indirect addressing. In our approach,347

instead, the frontal matrices need not be formed explicitly but the constituent blocks348

can be easily accessed through pointers (see Section 3 for further details). Addition-349

ally, the multifrontal method can only take advantage of the zeroes in the bottom-left350

part of frontal matrices (this is referred to as “Strategy 3” in the work of Amestoy,351

Duff, and Puglisi [2]) whereas, through the use of variable pivoting, our approach can352

avoid more unnecessary computations.353

2.4. Complexity. The cost of the elementary operations that are used in our354

method are reported in Table 1. For the tpqrt and tpmqrt operations, two cases are355

reported: the first (in the middle column) where the bottom block is a rectangle of356

size p×n and the second (in the right column) where the bottom block is a triangle of357

size n×n. Note that, p is a generic block-row size and, in the algorithm of the previous358

section, it does not necessarily correspond to the row size m of an entire block but the359

part that is actually concerned by the operation. The number of columns, instead,360

will always be equal to n (the block column size) which is assumed to be the same for361

all blocks.362

Summing up the values in Table 1 for the operations of the pivotal sequence from363

the previous section yields the value in row two, column three of Table 2. For a node364

in an outer chain, the cost, reported in row and column two, is lower because fewer365

operations are needed as explained in the previous section. In the top rows of the366

table we also report the operational complexity of all the other node types and we367

refer the reader to the appendix for details of the related pivotal sequences. With a368

10

This manuscript is for review purposes only.

a1

k

k+1

k k
+

1

k
+

2

a
1

a
2

a1

k

k+1

k k
+

1

k
+

2

a
1

a
2

a1

k

k+1

k k
+

1

k
+

2

a
1

a
2

Fig. 6. The structure of the frontal matrix associated with chain node k at the beginning of
the node reduction (left), after the first two steps GE(B7

k+1,k), TP (B1
k,k, B

1
k+1,k) (middle)and at

the end of the node reduction (right). The dashed line shows the difference between inner and outer
chain nodes.

geqrt 2n2(p− n/3) tpqrt 2pn2 tpqrt∗ 2n3/3
gemrt 2n2(2p− n) tpmqrt 4pn2 tpmqrt∗ 2n3

Table 1
Operational complexity of the elementary operations. p corresponds to the number of rows in a

block that are concerned by the operation. The ∗ suffix denotes the case where the lower block is a
triangle.

slight abuse of notation, we denote “outer root” the root of the tree for the case l = 0369

and “middle root” the tree root for the case l > 0.370

By the same token, it is possible to compute the amount of memory (in number371

of coefficients) consumed at each node type, reported in the bottom part of Table 2;372

this is made up of the blocks coming from the original matrix (underlined in the373

table) plus the fill-in generated during the processing of the node (for example, for374

chain nodes this can be computed as the difference between the right and left parts375

of Figure 6).376

Summing up the values in Table 2 for all the nodes of the tree leads to the overall377

cost of the factorization, which is378

(2.1)
C(c, l > 0) = (2l − 2)Clm + 2Clo % leaf nodes

+
(
2l − 2

) (
c+2
2l
− 3

)
Ccm + 2

(
c+2
2l
− 3

)
Cco % chain nodes

+
(
2l − 2− 2(l − 1)

)
Csm + 2(l − 1)Cso % separator nodes

+ Crm % root node

C(c, l = 0) = Clo % leaf nodes
+ (c− 3)Cco % chain nodes
+ Cro. % root node

379

In the above formula, C can be replaced with either F or M leading to, respec-380

tively, the overall flop count or the overall memory consumption.381

In this formula, for the case where no nested dissection is used (i.e., l = 0), the382

root node corresponds to the penultimate chain node where the last two block-columns383

of the matrix are reduced.384

Figure 7 (top) and (middle) shows how the relative cost of the factorization,385

11

This manuscript is for review purposes only.

Outer Middle

Leaf Flo = 32mn2 − 16n3 Flm = 86mn2 − 100n3/3
Chain Fco = 18mn2 − 2n3/3 Fcm = 42mn2 − 2n3/3

Separator Fso = 34mn2 − 10n3/3 Fsm = 98mn3 − 10n3/3
Root Fro = 8mn2 Frm = 16n3/3

Leaf Mlo = mn+5mn Mlm = 4mn + 2n2+9mn
Chain Mco = 2n2+3mn Mcm = 2mn + 2n2+3mn

Separator Mso = 3n2 Msm = 12n2

Root Mro = 2mn Mrm = 0

Table 2
Flops (top) and storage (bottom) count at each node of the tree. Each value in the top part

is computed as a sum of the complexity of the elementary operations reported in Table 1 over the
corresponding pivotal sequence. Each value in the bottom part is computed as the difference between
the structure of blocks before and after processing the corresponding node.

respectively F(c, l)/F(c, 0) and M(c, l)/M(c, 0), varies for different problem sizes386

and different levels of nested dissection for the case where m = 2n; it is possible to see387

that, for growing values of l and c, these curves converge to, respectively, Fcm/Fco388

and Mcm/Mco because for l = 0 the tree is essentially made of a single outer chain,389

whereas for large l and c values the vast majority of computations are done in nodes390

belonging to middle chains. For growing values of m, these two ratios converge,391

respectively, to 2.33 and 1.66.392

Other pivotal sequences can be used on each node type. Finding an optimal393

pivotal sequence is an extremely challenging task due to its combinatorial nature. The394

sequence(s) proposed above, however aim at achieving as many operations as possible395

within the chains which can be processed in an embarrassingly parallel fashion; indeed396

all the operations in separator nodes only involve parts of blocks that are of size n×n397

(either square or triangular; see the appendix for further details). This is likely to398

reduce the relative weight of the reduction phase associated with the top part of the399

tree where communications happen. Figure 7 (bottom) shows which fraction of the400

total floating point operations is performed within chain or leaf nodes demonstrating401

that even with matrices of relatively small size it is possible to achieve high levels of402

parallelism (by increasing l) without incurring an excessive volume of communications.403

3. A solver with multiple levels of parallelism. In this section, we describe404

how an actual parallel implementation of the described algorithm for shared memory405

systems (e.g., single node, multicore machines) was achieved.406

As explained, our method relies on four basic kernels which are used to achieve the407

pivotal sequences described in Section 2.3 and in the appendix. Although these kernels408

are available in the LAPACK library, we have chosen to rely on their implementation409

in the qr mumps library. This software implements a sparse multifrontal solver based410

on the QR factorization; as such it relies on dense linear algebra operations for pro-411

cessing frontal matrices. Among others, qr mumps provides an implementation of the412

geqrt, gemqrt operations; to these we have added an implementation of the tpqrt413

and tpmqrt (see below for the details).414

One immediate advantage of this choice is that, in qr mumps these operations are415

efficiently parallelized through the use of scalable tiled algorithms [11] (also referred416

to as communication avoiding): blocks are divided into square tiles of size b× b which417

12

This manuscript is for review purposes only.

102 103 104 105
1.80

2.00

2.20

2.40

c

Relative flops

102 103 104 105

1.40

1.50

1.60

c

Relative memory

102 103 104 105

0.70

0.80

0.90

1.00

c

Relative flops in chains and leaves

l=3 l=4 l=5 l=6 l=8 l=10

Fig. 7. Relative number of floating point operations (top) and memory consumption (middle)
with respect to no nested dissection based permutation. Relative number of floating point operations
performed in chain of leaf nodes with respect to the total (bottom). m = 2n is assumed for all.

are eliminated by means of block Householder transformations according to different418

schemes [9] which aim at improving concurrency by reducing unnecessary synchroniza-419

tions and communications. Our implementation of the tpqrt and tpmqrt operations420

relies on the same approach and uses a tile elimination scheme which is referred to as421

Sameh-Kuck by Bouwmeester et al. [9]: the tiles in the trapezoidal block (remember422

that we only consider the two special cases where the trapezoidal degenerates to a423

13

This manuscript is for review purposes only.

triangle or a rectangle) along a column are eliminated one after the other starting424

from the top using the corresponding diagonal tile in the triangular block. Through425

the use of these parallel kernels some parallelism can be achieved within each node of426

the tree and even in the case where no nested dissection permutation is used.427

qr mumps relies on task based parallelism for the implementation of these meth-428

ods. The workload is represented in the form of a Directed Acyclic Graph (DAG)429

where nodes are elementary operations (e.g., elimination of a tile) and edges are430

the dependencies among them; this representation allows for very quick access to all431

the available concurrency at any moment during the execution and for using very432

dynamic and asynchronous execution approaches. qr mumps achieves task based par-433

allelism through the use of a runtime system, namely StarPU [5], which provides a434

programming interface for defining the DAG and a scheduling engine for tracking435

the status of the DAG and triggering the execution of ready tasks on the available436

processing units [1]. StarPU provides a programming API based on the Sequential437

Task Flow (STF) model (sometimes also referred to as superscalar). In this model,438

a master thread submits tasks to the runtime specifying how each of them accesses439

the data (whether in read or write mode); based on this information and the tasks440

submission order, the runtime can automatically define the dependencies among tasks441

and generate the DAG. This model is also used in the OpenMP [8] standard (through442

the task directive and the depend clause) and other runtime systems.443

A further advantage of using the kernels available in qr mumps is that its asyn-444

chronous API provides additional parallelism besides that available among different445

branches of the tree and within each block operation. With the standard synchronous446

API, each call to an operation is blocking, which means that control is returned to447

the caller only after the DAG for that operation is created and all of its tasks are448

executed. With the asynchronous API, instead, only the DAG is created and control449

is immediately returned to the caller; methods are available in qr mumps to check450

whether all the tasks associated with one called operation have been executed. When451

multiple operations have to be executed, asynchronous calls can be made for all of452

them, which will generate a single DAG for all at once where dependencies are inferred453

between tasks belonging to different operations that access the same data. Thanks454

to the availability of this asynchronous interface, our implementation of the block455

tridiagonal QR factorization algorithm described in the previous section consists of a456

sequential code that traverses the tree in a topological order and, for each node, calls457

the qr mumps operations corresponding to the pivotal sequences described and in the458

appendix; parallelism is automatically taken care of by qr mumps.459

The whole matrix data structure is a simple bi-dimensional array of pointers to460

blocks where only those that point to nonzero blocks (either in the original matrix or461

in the factors) are non-null. Consequently, as already mentioned above, in our code462

frontal matrices need not be explicitly formed but, rather, the constituent blocks463

can be easily accessed with a simple indirection without any data movement. This464

allows for significant time savings with respect to a general purpose multifrontal solver465

whereas frontal matrices are explicitly assembled through time consuming and poorly466

parallelizable memory-bound (that is, limited by the speed of the main memory)467

operations.468

4. Experimental results. In this section we report experimental results that469

illustrate the behavior of the algorithm presented in Section 2 and its implementation470

described in Section 3. These were obtained on one node of the Olympe supercomputer471

of the CALMIP regional supercomputing center in Toulouse, France. One such node472

14

This manuscript is for review purposes only.

l
0 1 2 3 4 5

#
th

re
ad

s

1 153.8 - - - - -
2 78.9 77.7 - - - -
4 40.4 39.0 57.9 - - -
8 26.3 20.2 29.7 34.8 - -
16 25.8 15.2 17.0 19.7 21.3 -
32 25.9 15.6 12.5 14.5 15.3 16.1
36 26.5 17.3 14.5 15.1 16.0 16.4

#
th

re
ad

s

1 149.1 - - - - -
2 81.9 74.2 - - - -
4 59.4 40.7 55.9 - - -
8 52.5 29.8 27.5 32.6 - -
16 53.2 28.7 16.7 18.0 19.3 -
32 57.3 28.7 15.3 9.7 10.1 10.7
36 67.1 34.7 15.9 9.6 9.4 9.7

Table 3
Execution time, in seconds, for the QR factorization of a problem with m = 640, n = 320 and

c = 4094 with tile size b = 160 (top) and b = 320 (bottom).

is equipped with two Intel(R) Xeon(R) Gold 6140 CPUs for a total of 36 cores. We473

have used the Intel compilers and the Intel MKL library v2018.2, StarPU revision474

581387c from the public GIT repository1 and qr mumps revision 8b160df 2.475

For these experiments, we have set the block size to m = 640, n = 320 and476

number of block-columns and block-rows c = 4094; note that choosing c = 2t − 2 for477

some t ensures that when nested dissection is applied all the chains have the same478

length 2t−l − 2 ∀l = 1, ..., t − 1. We will comment on how the behavior will change479

for different values of these parameters but we will not report further experiments480

because they do not provide additional insight to the experimental analysis. Two481

different tile sizes have been chosen for the partitioning of blocks within the qr mumps482

operations, namely, b = 160 and b = 320. Finally, we have executed experiments483

for varying values of the number of nested dissection levels l from 0 (i.e., no matrix484

permutation) to 5; going beyond this value does not make sense in our experimental485

setting because of the limited number of cores.486

Table 3 shows the execution time of the QR factorization for different numbers of487

threads and values of the l parameter with b = 160 in the top part and b = 320 in the488

bottom part. The “−” entries correspond to the cases where the number of threads489

is lower than the number of chains 2l; these are uninteresting because of the excessive490

flops overhead spent for an unnecessary amount of parallelism. When nested dissection491

is not used, scalability is obviously limited by the lack of parallelism; obviously, better492

results are obtained by using small tiles because higher parallelism is available within493

each branch of the tree. When one level of nested dissection is applied, parallelism494

is roughly doubled with no additional cost, which explains why the execution times495

in the second column of the table are always below the corresponding ones in the496

first. The improvement is, as expected, higher in the case of large tiles and when the497

1https://gforge.inria.fr/projects/starpu/
2http://buttari.perso.enseeiht.fr/qr mumps/releases/qr mumps 8b160df.tgz

15

This manuscript is for review purposes only.

https://gforge.inria.fr/projects/starpu/
http://buttari.perso.enseeiht.fr/qr_mumps/releases/qr_mumps_8b160df.tgz

l
0 1 2 3 4 5

#
th

re
ad

s
1 30.8 - - - - -
2 60.0 60.9 - - - -
4 117.0 121.2 128.0 - - -
8 180.0 234.2 249.5 251.5 - -
16 183.3 311.5 435.2 444.0 441.2 -
32 182.5 303.1 590.8 600.7 615.8 603.1
36 178.5 272.6 509.7 579.2 588.1 591.6

#
th

re
ad

s

1 31.7 - - - - -
2 57.8 63.8 - - - -
4 79.6 116.3 132.6 - - -
8 90.1 158.5 268.8 268.5 - -
16 88.9 164.8 442.3 486.0 488.0 -
32 82.6 165.0 482.5 901.9 932.0 907.4
36 70.5 136.5 464.1 905.2 997.8 997.8

Table 4
Speed in Gflop/s for the QR factorization of a problem with m = 640, n = 320 and c = 4094

with tile size b = 160 (top) and b = 320 (bottom).

number of threads grows. For values of l greater than or equal to two, the use of nested498

dissection implies a computational overhead. This explains why, when the number499

of threads is relatively low, increasing l results in a slowdown; this is especially true500

when small tiles are used because sufficient parallelism is available even with small501

values of l. When the number of threads is relatively high, the benefit of the additional502

parallelism overcomes the extra computational cost and the execution time is reduced.503

Additionally, we can observe that, when the number of threads is relatively high, the504

best results are achieved with large tiles: this is because of the larger granularity of505

tasks which allows for a better efficiency of the BLAS operations executed on tiles.506

Ultimately, we can conclude that, when the number of threads is relatively low, using507

small tiles and few levels of nested dissection provides sufficient parallelism with no508

or little computational overhead; inversely, when more threads are used, using large509

tiles is beneficial for improving the efficiency of elementary operations and the extra510

parallelism is worth the computational overhead. This is illustrated in Figure 8 (left)511

where the best execution times are taken along each row of Table 3 and compared512

to the best sequential result, i.e., 149.1s. The number next to each data point shows513

the nested dissection levels used to obtain the corresponding result. The best time514

improvement with respect to the sequential case is 15.8 for the case l = 4 which results515

in roughly twice as many floating-point operations.516

In order to assess the efficiency and scalability of our implementation, in Table 4517

we provide the speed of computations in Gigaflops per second which is insensitive to518

the computational overhead imposed by the use of nested dissection. As expected,519

performance grows for higher values of l because more embarrassing parallelism is520

available; for a given value of l, performance at first grows with the number of threads521

and eventually decreases when the available parallelism is not enough to feed all the522

working threads. The peak performance of a single core is 73.6 Gflop/s, which means523

that the sequential execution has an efficiency of 43%. This relatively poor efficiency524

16

This manuscript is for review purposes only.

12 4 8 16 32
0

5

10

15

1
1

1

1
2

2

1
1

2

2

3 4

#threads

Time improvement

small tiles
large tiles

12 4 8 16 32
0

10

20

30

1
2

3

3

4 5

1
2

3

4

5
5

#threads

Speed improvement

Fig. 8. Best time and speed improvement over the sequential case. The values beside each data
point shows the corresponding value of l.

l
0 1 2 3 4 5

160 76.3 56.5 79.9 96.8 104.2 106.6
320 138.2 75.1 49.8 58.2 61.9 64.7

160 496.4 670.4 741.9 723.2 723.0 732.2
320 274.2 504.5 1191.3 1202.9 1217.1 1205.2

Table 5
Execution time (top) and speed in Gflop/s (bottom) for the QR factorization of a problem with

m = 1280, n = 640 and c = 4094 with tile size b = 160 (top) and b = 320 (bottom) on 36 cores.

can be explained by the relatively small values of m and n which makes the relative525

cost of BLAS-2 rich operations (i.e., geqrt and tpqrt) greater; higher speeds can be526

observed when larger blocks are used. The best speed improvement is a remarkable527

31.4 out of 36; it must be noted that for the case of l = 5, roughly 99% of the528

computations are done in chain or leaf nodes.529

For the sake of completeness, in Table 5 we report the execution time and speed530

for the factorization of a matrix with large blocks (m = 1280 and n = 640), same531

value of c = 4094, obtained with 36 threads. In this case, more parallelism is available532

within each branch and, consequently, the best shortest execution time is achieved533

with fewer levels of nested dissection with respect to the previous case. It can also534

be noted that the overall performance is higher thanks to a better ratio between535

Level-3 and Level-2 BLAS operations; this also holds for the sequential case where536

the execution time is 960.7 seconds for a speed of 39.46 Gflop/s.537

The above results suggest that, in order to obtain the lowest execution time, a538

careful combination of the qr mumps block size b and nested dissection depth l must be539

chosen. The optimal values mostly depend on the characteristics of the used platform540

such as number of cores, relative speed between cores and memory, and efficiency541

of low-level BLAS operations. The proposed approach proved to be scalable in our542

experimental setting because the shortest execution time is obtained using all the543

17

This manuscript is for review purposes only.

l
0 1 2 3 4

flops ratio 1.00 1.00 1.11 1.14 1.16
seq time ratio 1.66 1.66 1.62 1.57 1.57
par time ratio 4.08 6.30 8.98 11.34 11.14

Table 6
Ratios of floating point and execution times between the developed implementation of the pro-

posed approach and qr mumps for different values of l with m = 640, n = 320 and c = 2046.

available threads; for smaller problems (i.e., smaller values of m, n or c), using all the544

available cores may not be beneficial though. Because the cost of the factorization as a545

function of l is upper bounded by a modest constant and because most computations546

are performed in chain or leaf nodes (see Figure 7 and the related discussion), for547

relatively large values of c we can expect to achieve good scalability even on large548

numbers of cores.549

Although, as discussed above, some concurrency is available within each branch550

or node of the tree, this parallelism involves communications due to the fact that551

multiple processes share the same data. On shared memory systems, these communi-552

cations take the form of memory traffic and synchronizations. In distributed memory553

systems, these communications amount to transferring data through the slow net-554

work interconnection and, therefore, are much more penalizing. The use of nested555

dissection introduces embarrassing parallelism because each process may potentially556

work on a different branch without communicating with others. For this reason, we557

speculate that the benefit of increasing l over the operational overhead is better on558

distributed memory systems than shared memory ones. We reserve the development559

and analysis of a distributed memory parallel implementation for the future.560

4.1. Comparison with qr mumps. In this section we document an experimen-561

tal comparison between the proposed approach and qr mumps. This is intended to562

demonstrate the advantage over a general-purpose (structure unaware) tool. Care563

must be taken, however, in interpreting the results as it is not a direct comparison of564

theory. After all, design choices were made in qr mumps to cater for general structures.565

For this comparison we have chosen to use the reference block size m = 640,566

n = 320. With such a block size, the largest possible value of c is 2046; larger values567

lead to a total number of nonzeroes which exceeds the capacity of 32bit integers used568

in qr mumps (note that our code never needs to compute nor use the total number of569

nonzeroes in the matrix). For a fair comparison, the same column permutation (as570

discussed in Section 2.2) was used in qr mumps and the developed implementation of571

the proposed approach. The operation count as well as the sequential and parallel572

(with 36 threads) execution times for values of l from 0 to 4 were measured. Table 6573

contains the ratios of the values obtained with qr mumps and the proposed approach.574

The difference in terms of floating point operations is due to the use, in our575

approach, of pivotal sequences that can take advantage of empty blocks within the576

structure of frontal matrices. This difference is negligible (less than 1%) for l = 0 or 1577

because in these cases most fronts (all fronts except leaves and root) are of type outer578

chain (the part above and on the left of the dashed line in Figure 6) and almost full.579

As l grows, the tree includes more and more fronts with a more complex structure580

where better gains can be achieved. This ratio was also observed to increase when581

18

This manuscript is for review purposes only.

the value m/n grows because the empty blocks within fronts are larger.582

The ratio between the sequential execution times is around 1.6 and is partly583

due to the extra floating point operations and, in most part, due to the symbolic584

operations done in qr mumps to assemble frontal matrices. In a parallel execution,585

this ratio becomes much larger and increases with l. This is due to the fact that586

symbolic operations are memory-bound and, thus, scale very poorly; moreover some587

of these operations are not parallelized at all in qr mumps because in its intended588

use they only account for a small, often negligible, part of the execution time. As a589

result, these symbolic operations become dominant in a parallel execution and, unlike590

our approach, qr mumps cannot take advantage of the parallelism provided by higher591

values of l.592

5. Conclusion. In this work, we have presented a method for computing the593

QR factorization of block-tridiagonal matrices. Our approach draws parallelism from594

the nested dissection method which allows for structuring the elimination process595

as a parallel topological order traversal of a tree graph. At each node of this tree,596

one block-column is reduced through Householder reflections. These operations are597

computed in such a way that the sparsity of the data handled at each node of the tree598

is taken advantage of.599

A detailed analysis of the operational and memory complexity of the resulting600

method was provided. Although we demonstrated that this complexity grows with601

the number of used nested dissection levels, the overhead with respect to the sequential602

(i.e., no nested dissection) case is bounded by a moderate constant.603

An actual implementation of the factorization method that can take advantage604

of multiple levels of parallelism was also presented. Not only does our solver achieve605

parallelism through the concurrent traversal of separate branches of the elimination606

tree but also from the intrinsic concurrency available at each tree node and from607

pipelining the processing of nodes at different levels of the tree. This is achieved608

by using the parallel, asynchronous dense linear algebra methods available in the609

qr mumps software and developing the missing operations.610

Finally, experimental results on a shared memory architecture that show the611

effectiveness of our approach as well as of its actual implementation were included.612

6. Acknowledgments. This work was granted access to the HPC resources613

of CALMIP supercomputing center under the allocation 2018-p0989. S. Hauberg614

was supported by a research grant (15334) from VILLUM FONDEN. C. Kodsi and615

S. Hauberg have received funding from the European Research Council (ERC) un-616

der the European Union’s Horizon 2020 research and innovation programme (grant617

agreement no 757360). A. Buttari is partially supported by 3IA Artificial and Natu-618

ral Intelligence Toulouse Institute, French “Investing for the Future - PIA3” program619

under the Grant agreement ANR-19-PI3A-0004.620

References.621

[1] Emmanuel Agullo et al. “Implementing Multifrontal Sparse Solvers for Mul-622

ticore Architectures with Sequential Task Flow Runtime Systems”. In: ACM623

Trans. Math. Softw. 43.2 (Aug. 2016), 13:1–13:22. issn: 0098-3500. doi: 10 .624

1145/2898348.625

[2] Patrick R. Amestoy, Iain S. Duff, and Chiara Puglisi. “Multifrontal QR factor-626

ization in a multiprocessor environment”. In: Int. Journal of Num. Linear Alg.627

and Appl. 3(4) (1996), pp. 275–300. doi: 10.1002/(SICI)1099-1506(199607/08)3:628

4〈275::AID-NLA83〉3.0.CO;2-7.629

19

This manuscript is for review purposes only.

https://doi.org/10.1145/2898348
https://doi.org/10.1145/2898348
https://doi.org/10.1145/2898348
https://doi.org/10.1002/(SICI)1099-1506(199607/08)3:4<275::AID-NLA83>3.0.CO;2-7
https://doi.org/10.1002/(SICI)1099-1506(199607/08)3:4<275::AID-NLA83>3.0.CO;2-7
https://doi.org/10.1002/(SICI)1099-1506(199607/08)3:4<275::AID-NLA83>3.0.CO;2-7

[3] Peter Arbenz and Markus Hegland. “On the stable parallel solution of general630

narrow banded linear systems”. In: High performance algorithms for structured631

matrix problems. Vol. 2. Adv. Theory Comput. Math. Commack, NY: Nova Sci.632

Publ., 1998, pp. 47–73.633

[4] Georgios Arvanitidis, Lars Kai Hansen, and Søren Hauberg. “Latent Space Odd-634

ity: on the Curvature of Deep Generative Models”. In: International Conference635

on Learning Representations (ICLR). 2018.636

[5] Cedric Augonnet et al. “StarPU: A Unified Platform for Task Scheduling on Het-637

erogeneous Multicore Architectures”. In: Concurrency and Computation: Prac-638

tice and Experience, Special Issue: Euro-Par 2009 23 (2 Feb. 2011), pp. 187–639

198. doi: 10.1002/cpe.1631.640

[6] Yoshua Bengio, Aaron Courville, and Pascal Vincent. “Representation learning:641

A review and new perspectives”. In: IEEE transactions on pattern analysis and642

machine intelligence 35.8 (2013), pp. 1798–1828.643

[7] Michael W. Berry and Ahmed Sameh. “Multiprocessor Schemes for Solving644

Block Tridiagonal Linear Systems”. In: The International Journal of Supercom-645

puting Applications 2.3 (1988), pp. 37–57. doi: 10.1177/109434208800200304.646

[8] The OpenMP architecture review board. OpenMP 5.0 Complete specifications.647

2018.648

[9] Henricus Bouwmeester et al. “Tiled QR Factorization Algorithms”. In: Pro-649

ceedings of 2011 International Conference for High Performance Computing,650

Networking, Storage and Analysis. SC ’11. Seattle, Washington: ACM, 2011,651

7:1–7:11. isbn: 978-1-4503-0771-0. doi: 10.1145/2063384.2063393.652

[10] Alfredo Buttari. “Fine-Grained Multithreading for the Multifrontal QR Factor-653

ization of Sparse Matrices”. In: SIAM Journal on Scientific Computing 35.4654

(2013), pp. C323–C345. doi: 10.1137/110846427.655

[11] Alfredo Buttari et al. “A class of parallel tiled linear algebra algorithms for656

multicore architectures”. In: Parallel Comput. 35 (1 Jan. 2009), pp. 38–53. issn:657

0167-8191. doi: 10.1016/j.parco.2008.10.002.658

[12] Tim Davis. Direct Methods for Sparse Linear Systems. Society for Industrial659

and Applied Mathematics, 2006. doi: 10.1137/1.9780898718881.660

[13] Timothy A. Davis. “Algorithm 915, SuiteSparseQR: Multifrontal multithreaded661

rank-revealing sparse QR factorization”. In: ACM Trans. Math. Softw. 38.1662

(Dec. 2011), 8:1–8:22. issn: 0098-3500. doi: 10.1145/2049662.2049670.663

[14] James Demmel et al. “Communication-optimal Parallel and Sequential QR and664

LU Factorizations”. In: SIAM J. Sci. Comput. 34.1 (Feb. 2012), pp. 206–239.665

issn: 1064-8275. url: http://dx.doi.org/10.1137/080731992.666

[15] Iain S Duff, Albert M Erisman, and John K Reid. Direct Methods for Sparse667

Matrices. New York, NY, USA: Oxford University Press, Inc., 1986. isbn: 0-668

198-53408-6.669

[16] W. Morven Gentleman. “Row elimination for solving sparse linear systems and670

least squares problems”. In: Numerical Analysis. Ed. by G. Alistair Watson.671

Berlin, Heidelberg: Springer Berlin Heidelberg, 1976, pp. 122–133. isbn: 978-3-672

540-38129-7. doi: 10.1007/BFb0080119.673

[17] Alan J. George. “Nested dissection of a regular finite-element mesh”. In: SIAM674

J. Numer. Anal. 10.2 (1973), pp. 345–363. doi: 10.1137/0710032.675

[18] Alan J. George and Michael T. Heath. “Solution of Sparse Linear Least Squares676

Problems Using Givens Rotations”. In: 34 (1980), pp. 69–83.677

[19] Søren Hauberg. “Only Bayes should learn a manifold”. In: (2018).678

20

This manuscript is for review purposes only.

https://doi.org/10.1002/cpe.1631
https://doi.org/10.1177/109434208800200304
https://doi.org/10.1145/2063384.2063393
https://doi.org/10.1137/110846427
https://doi.org/10.1016/j.parco.2008.10.002
https://doi.org/10.1137/1.9780898718881
https://doi.org/10.1145/2049662.2049670
http://dx.doi.org/10.1137/080731992
https://doi.org/10.1007/BFb0080119
https://doi.org/10.1137/0710032

[20] Markus Hegland. “On the parallel solution of tridiagonal systems by wrap-679

around partitioning and incomplete LU factorization”. In: Numerische Mathe-680

matik 59.1 (Dec. 1991), pp. 453–472. issn: 0945-3245. doi: 10.1007/BF01385791.681

[21] Markus Hegland and Mike Osborne. “Algorithms for Block Bidiagonal Sys-682

tems on Vector and Parallel Computers”. In: Proceedings of the 12th Inter-683

national Conference on Supercomputing. ICS ’98. Melbourne, Australia: ACM,684

1998, pp. 1–6. isbn: 0-89791-998-X. doi: 10.1145/277830.277835.685

[22] R. W. Hockney. “A Fast Direct Solution of Poisson’s Equation Using Fourier686

Analysis”. In: J. ACM 12.1 (Jan. 1965), pp. 95–113. issn: 0004-5411. doi: 10.687

1145/321250.321259.688

[23] Joseph W. H. Liu. “On General Row Merging Schemes for Sparse Givens Trans-689

formations”. In: SIAM J. Sci. Stat. Comput. 7 (1986), pp. 1190–1211.690

[24] Jospeh W. H. Liu. “The Role of Elimination Trees in Sparse Factorization”.691

In: SIAM Journal on Matrix Analysis and Applications 11 (1990), pp. 134–172.692

doi: 10.1137/0611010.693

[25] Eric Polizzi and Ahmed H. Sameh. “A parallel hybrid banded system solver:694

the SPIKE algorithm”. In: Parallel Computing 32.2 (2006). Parallel Matrix695

Algorithms and Applications (PMAA’04), pp. 177–194. issn: 0167-8191. doi:696

https://doi.org/10.1016/j.parco.2005.07.005.697

[26] Donald J. Rose, R. Endre Tarjan, and George S. Lueker. “Algorithmic Aspects698

of Vertex Elimination on Graphs”. In: SIAM Journal on Computing 5.2 (1976),699

pp. 266–283. doi: 10.1137/0205021.700

[27] A. Sameh. “On Two Numerical Algorithms for Multiprocessors”. In: Proc. of701

NATO Adv. Res. Workshop on High-Speed Comp., Series F: Computer and702

Systems Sciences. Vol. 7. 1984, pp. 311–328.703

[28] A. H. Sameh and D. J. Kuck. “On Stable Parallel Linear System Solvers”. In: J.704

ACM 25.1 (Jan. 1978), pp. 81–91. issn: 0004-5411. doi: 10.1145/322047.322054.705

Appendix A. Pivotal sequences.706

Leaf nodes. The matrix blocks concerned by the operations on a leaf node are707

depicted in Figure 9 (left). At leaf node k, these are in columns k, k + 1, k + 2,708

a1, a2 and rows k, k + 1, a1 where a1 and a2 are block-columns associated with an709

ancestor separator, the one that the chain is moving away from. Because the two710

outer branches are not moving away from any separator, only the first three rows and711

columns are concerned by the processing of a leaf node attached to one such chain, as712

illustrated by the dashed line in the figure. The operations executed on a leaf node713

result in the structure shown in the right part of the figure and are described by the714

following pivotal sequence:715

GE(B7
k,k), GE(B7

k+1,k), TP (B1
k,k, B

1
k+1,k), GE(B7

a1,k
),

TP (B1
k,k, B

1
a1,k

), GE(B7
k+1,k+1), TP (B1

k+1,k+1, B
6
k,k+1),

TP (B1
k+1,k+1, B

1
a1,k+1), GE(B6

k+1,k+2), TP (B2
k+1,k+2, B

6
k,k+2),

TP (B2
k+1,k+2, B

1
a1,k+2), GE(B7

a1,a1
), GE(B6

a1,a2
),

TP (B1
a1,a1

, B6
k,a1

), TP (B1
a1,a1

, B4
k+1,a1

),

TP (B2
a1,a2

, B6
k,a2

), TP (B2
a1,a2

, B4
k+1,a2

).

716

Operations that involve blocks in row or column a1 or a2 need not be executed for717

leaf nodes attached to outer branches. As a reminder of what was said in Section 2,718

at the end of these operations the k-th block-row of the global R factor is computed,719

21

This manuscript is for review purposes only.

https://doi.org/10.1007/BF01385791
https://doi.org/10.1145/277830.277835
https://doi.org/10.1145/321250.321259
https://doi.org/10.1145/321250.321259
https://doi.org/10.1145/321250.321259
https://doi.org/10.1137/0611010
https://doi.org/https://doi.org/10.1016/j.parco.2005.07.005
https://doi.org/10.1137/0205021
https://doi.org/10.1145/322047.322054

with a dark fill color in Figure 9 (right); the bordered blocks with a light fill color720

will be operated upon in nodes along the branch connecting the leaf to the root of721

the tree while the bordered blocks with no fill color correspond to the Householder722

vectors that implicitly represent the Q factor.723

a1

k

k+1

k k
+

1

k
+

2

a
1

a
2

a1

k

k+1

k k
+

1

k
+

2

a
1

a
2

Fig. 9. The blocks concerned by the operations at leaf node k. Their structure before and after
the processing of the node are shown in the left and right parts of the figure, respectively. The dashed
line shows the difference between inner and outer leaf nodes.

Separator nodes. The blocks concerned by the operations on a separator node are724

depicted in Figure 10 (left). When all the chain nodes have been eliminated, each725

separator (except the two outer ones) is connected to two other separators: one is726

the parent node and the other an ancestor node in the tree. Therefore, these blocks727

are in columns s1, s2, p1, p2, a1, a2 and rows s1, s2, p1, a1, where s1 and s2 are728

the block-columns associated with the separator, p1 and p2 those associated with the729

parent separator and a1, a2 those associated with the ancestor separator. Separators730

belonging to one of the two outer branches are only connected to their parent and,731

therefore, columns a1, a2 and row a1 do not exist; this is illustrated by the dashed732

line in Figure 10. Finally, the root node is a separator which does not have a parent733

nor an ancestor and, therefore, only the first two rows and columns are involved in734

its processing, as illustrated by the dashed purple line in Figure 10. The operations735

executed on a separator node result in the structure shown in the right part of the736

figure and are described by the following pivotal sequence:737

TP (B1
s1,s1 , B

1
s2,s1), GE(B1

s2,s2), TP (B1
s2,s2 , B

2
s1,s2), TP (B1

s2,s2 , B
2
s2,s2),

TP (B1
p1,p1

, B2
s1,p1

), TP (B1
p1,p1

, B2
s2,p1

),

TP (B2
p1,p2

, B2
s1,p2

), TP (B2
p1,p2

, B2
s2,p2

),

TP (B1
a1,a1

, B2
s1,a1

), TP (B1
a1,a1

, B2
s2,a1

),

TP (B2
a1,a2

, B2
s1,a2

), TP (B2
a1,a2

, B2
s2,a2

).

738

All the operations involving rows and columns a1 and a2 need not be done on739

outer separators and the root; all those involving rows and columns p1 and p2 need740

not be done on the root.741

22

This manuscript is for review purposes only.

a1

s1

s2

p1

s 1 s 2 p
1

p
2

a
1

a
2

a1

s1

s2

p1

s 1 s 2 p
1

p
2

a
1

a
2

Fig. 10. The blocks concerned by the operations at separator node (s1, s2). Their structure
before and after the processing of the node are shown in the left and right parts of the figure,
respectively. The dashed line shows the difference between inner and outer separator nodes. The
dotted line delimits the rows and columns of the tree root node.

23

This manuscript is for review purposes only.

	Introduction
	Motivation
	Related work

	Algorithm
	Preliminaries
	A Nested Dissection based approach
	Node elimination
	Complexity

	A solver with multiple levels of parallelism
	Experimental results
	Comparison with qr_mumps

	Conclusion
	Acknowledgments
	Appendix A. Pivotal sequences

