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PARALLEL QR FACTORIZATION OF BLOCK-TRIDIAGONAL
MATRICES

A. BUTTARI *, SOREN HAUBERG ', AND COSTY KODSI f

Abstract. In this work, we deal with the QR factorization of block-tridiagonal matrices, where
the blocks are dense and rectangular. This work is motivated by a novel method for computing
geodesics over Riemannian manifolds. If blocks are reduced sequentially along the diagonal, only
limited parallelism is available. We propose a matrix permutation approach based on the Nested
Dissection method which improves parallelism at the cost of additional computations and storage.
We show how operations can be arranged to keep this extra cost as low as possible. We provide a
detailed analysis of the approach showing that this extra cost is bounded. Finally, we present an
implementation for shared memory systems relying on task parallelism and the use a runtime system.
Experimental results support the conclusions of our analysis and show that the proposed approach
leads to good performance and scalability.

Key words. QR factorization, nested dissection, task-based parallelism

AMS subject classifications. 68W10, 68W40, 65F05, 65F20

1. Introduction. In this work, we deal with the solution of linear least squares
problems where the system matrix is block-tridiagonal. By this we mean that our
matrices have a block structure with ¢ block-rows and ¢ block-columns and along
block-row k we only have nonzeroes in block-columns & — 1 to k + 1 as depicted in
Figure 1. The blocks are assumed to be dense and rectangular of size m x n with
m > n.

In a LAPACK-like QR factorization where sub-diagonal coefficients are elimi-
nated by means of Householder reflections column-by-column in the natural order,
only limited parallelism is available because of the lack of update operations (i.e.,
application of the Householder reflections to the trailing submatrix) stemming from
the potentially narrow bandwidth and because each elimination step depends on the
previous. Even the use of tiled [11] or communication-avoiding [14] approaches can
barely improve the situation especially when c is high and m as well as n is small. By
choosing a different order for reducing the matrix columns, which essentially amounts
to permuting the matrix columns, it is possible to achieve better parallelism; this,
however, generates additional fill-in — coefficients that are zero in the original ma-
trix and are turned into nonzeroes by the factorization — which is responsible for
an increase in the operation count and the storage. We propose an approach that
computes this permutation by applying the Nested Dissection method to the com-
pressed matrix graph. This allows us to identify groups of blocks that can be reduced
independently; this first phase is followed by a reduction step that deals with the
blocks that are at the interface of the groups. Although the structure and value of
the R factor only depends on column permutations, the structure of the @ factor
and, consequently, the overall cost of the factorization greatly depend on the order
in which coefficients are annihilated within each column or, more generally, on row
permutations. Taking this into account, we propose an approach based on variable
pivoting that reduces the operational complexity by avoiding unnecessary computa-
tions, especially in the reduction phase which involves communications. We provide
a detailed analysis of the operational and memory cost showing that the overhead
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Fic. 1. A block-tridiagonal matriz.

depends on how many nested dissection levels are used but is bounded by a modest
constant. Finally, we present a parallel implementation for shared memory systems.
This is based on the use of task parallelism where the whole workload is represented on
the form of a Directed Acyclic Graph (DAG) of tasks which is automatically created
and scheduled by a runtime system. This implementation is achieved using features
of the qr_mumps software [1] which relies on the StarPU runtime system [5]. Exper-
imental results obtained with this implementation show that the proposed method
achieves good performance and scalability on a 36 cores system and has the potential
to perform even better on large-scale distributed memory systems.

1.1. Motivation. One of the key challenges in machine learning (ML) is to
learn (i.e., estimate) a representation of data that is suitable for a given task [6].
Learned representations for supervised ML tasks, such as classification and regression,
are optimal only for specific tasks. In contrast, representations for unsupervised ML
tasks, such as data exploration, are concerned with the underlying structure governing
the observed data.

It has been shown in [19, 4] that an effective approach for unsupervised ML in-
volves treating the learned representation as a Riemannian manifold. An unfortunate
implication, however, is that vector space operations are no longer applicable. Instead,
Riemannian counterparts, such as logarithm and ezponential maps take the place of
subtraction and addition operations. Also, geodesics in their role as generalizations
of line segments in Euclidean space become prominent. Just as a segment of a line
is the shortest distance connecting two distinct points, a geodesic on a Riemannian
manifold is a smooth parametric curve that is a local length minimizer connecting any
two distinct points. Additionally, a point moving along a geodesic does not experience
acceleration in the tangent direction, i.e., the velocity has a constant magnitude.

Consider now an n-dimensional manifold embedded in m-dimensional Euclidean
space (with m > n) described by the parametric map

y:R" - R™.
2
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A rather simple and intuitive strategy for determining a geodesic given any two dis-
tinct points on a Riemannian manifold requires working with the discretized version
of a smooth parametric curve. It is then possible to model the curve as a series of
connected linear elastic springs. A spring force f € R™ is related to the end points
y(x;),y(z;) € R™ of a curve segment by f = K (y(z;) — y(x;)), in which z € R™ and
K is the identity matrix representing the stiffness. Even though the springs are linear
in nature, the parameterization introduces potential nonlinearity. Imposing boundary
conditions (constituting the given points) on the assembled block tridiagonal (total)
stiffness matrix as well as force vector, a system of equations can be solved for the
unknown curve points yielding the stable equilibrium of the spring assemblage and
geodesic. If a system of nonlinear equations has to be tackled, which is the working
assumption, Newton’s method or a variation of Newton’s method is a popular choice.
In each iteration of Newton’s method, the solution of an overdetermined system of
linear equations featuring a full-rank Jacobian is sought as a trial step. It is possible
to multiply the transpose of the Jacobian to both sides of the overdetermined system
for symmetry purposes in preparation for solution. Since the Jacobian is likely to
be poorly conditioned, this is not desirable as it has the effect of squaring the con-
dition number of the problem. Alternatively, a solution methodology involving QR
factorization of the Jacobian does not unnecessarily degrade the conditioning of the
problem.

1.2. Related work. Our work can be related to the factorization of banded,
(block) bi or tridiagonal matrices. Most of the approaches presented in the literature
draw parallelism from cyclic reduction [22], wrap-around [20], partitioning methods
or minor variants thereof; these techniques amount to identifying independent sets
of computations that allow for reducing multiple (block) columns at once at the cost
of additional computations due to fill-in. The method we propose in this work relies
on the use of nested dissection (see Sections 2.1 and 2.2) and, essentially, leads to
permutations that are equivalent to those computed with cyclic reduction or wrap-
around; because nested dissection relies on graph theory, we believe it provides a
clearer framework that allows for a better understanding and analysis of parallelism
and fill-in.

Early work on the QR factorization of square tridiagonal systems by Givens ro-
tations is proposed by Sameh and Kuck [28]. Computations are organized in two
stages. In the first diagonal blocks are reduced independently; this introduces fill-in
at the interface of contiguous diagonal blocks which is reduced in the second stage.
These ideas eventually lead to the definition of spike [27, 25] algorithm for the LU
factorization of banded matrices. This approach was also used by Berry and Sameh
[7] to compute the parallel LU factorization of block-tridiagonal, diagonally dominant
(i.e., they do not require pivoting) matrices.

Arbenz and Hegland [3] propose a method for the stable solution of (periodic)
square banded linear systems. The factorization is achieved in two phases assuming
that the original matrix is permuted into standard form (i.e., lower-banded periodic)
through a circular shift; this permutation introduces some unnecessary fill-in. In the
first phase, a partitioning of the matrix (which amounts to a dissection step) and
block-columns associated with the resulting parts are reduced independently. This
leads to a periodic block-bidiagonal system which is reduced in parallel using cyclic
reduction. They discuss both the LU and QR factorization although mostly focus on
the first. Note that the QR factorization of square, periodic block-bidiagonal systems
through cyclic reduction is also addressed by Hegland and Osborne [21]
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None of the aforementioned approaches consider the case of overdetermined sys-
tems; this has non-trivial implications because when a block-column is reduced, some
coeflicients along the corresponding pivotal block-row remain which have to be re-
duced. Also, all of these methods only draw parallelism from the matrix permutation
or partitioning whereas our approach exploits multiple levels of parallelism as de-
scribed in Section 3.

All of the methods referenced, including ours, are, in essence, specialized mul-
tifrontal methods [15]. Algebraic multifrontal methods for the QR factorization of
sparse matrices have been proposed in the literature by Amestoy, Duff, and Puglisi
[2], Davis [13] and Buttari [10], for instance. These methods and the correspond-
ing tools are designed for generic sparse matrices; although they can obviously be
used for solving block-tridiagonal systems, they may not be the best suited tools.
Indeed, unlike common sparse matrices, our block-tridiagonal systems may be rela-
tively dense in the beginning (multiple thousands of coefficients per row) and fill up
moderately during the factorization (see Section 2.4). As a result, algebraic sparse
multifrontal solvers may suffer from the excessive overhead due to the handling of
the coefficients of the original matrix based on indirect addressing. Clearly, these
methods could be extended to efficiently handle block matrices; this is the object of
future work. Additionally, multifrontal methods involve explicit assembly of frontal
matrices which can be avoided in our case due to the simple, regular structure of the
data (see Section 2.3). Finally, in sparse multifrontal solvers, frontal matrices are
typically reduced using a LAPACK-like factorization which does not fully take into
account their possibly sparse nature as explained in Section 2.3.

2. Algorithm. In this section we describe our approach to parallelize the QR
factorization of a block-tridiagonal matrix. Our description and analysis will rely on
the theory of sparse matrix factorizations. The necessary theoretical background is
briefly described in the next section; we refer the reader to the cited documents for a
detailed discussion of this topic.

2.1. Preliminaries. As it is commonly done in the literature [12, 10], our sym-
bolic analysis of the QR factorization of a sparse matrix relies on the equivalence
between the R factor of a real matrix A and the Cholesky factor of the normal equa-
tion matrix B = AT A, whenever the Strong Hall property holds. As a result of
this equivalence, the QR factorization of a sparse matrix A follows the same com-
putational pattern as the Cholesky factorization of B. This can be modeled us-
ing the adjacency graph of B defined as a graph G(B) = (V,€) whose vertex set
Y ={1,2,...,cn} includes the unknowns associated with rows and columns of B and
edge set € = {(4,5) V b; ; # 0} includes an edge for each nonzero coefficient of B. In
our case, the symmetry of B implies that if (4, ) is in &, then so is (j, 1), and therefore
we will only represent one of these edges; such a graph is called undirected.

It is possible to use the adjacency graph to model the Cholesky factorization of
B. Specifically we can build a sequence of graphs G(B) = Go(B),G1(B), ..., Gen—1(B),
called elimination graphs, such that Gi(B) is the adjacency graph of the trailing
submatrix after elimination of variables 1,2, ..., k. Elimination graph Gy (B) is built
from Gi_1(B) by removing node k as well as all its incident edges and by updating
the connectivity of the remaining nodes: for any two nodes i and j that are neighbors
of k, we have to add an edge connecting them if it does not exist already. One such
edge, called a fill edge, models the occurrence of a new fill-in coefficient.

A sparse factorization can achieve better parallelism than a dense one because
sparsity implies that the elimination of one unknown does not affect all the unelimi-

4
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FIG. 2. Compressed graph for the normal equation matriz B = AT A. The label inside nodes
show the unknown number which, in this case, corresponds to the order in which unknowns are
eliminated.

nated ones but only part of them. The dependencies between variables are represented
by the so-called directed filled graph which corresponds to the original graph G(B) plus
all the fill edges; in this graph an edge (4, ) is directed from 4 to j if j is eliminated
after ¢ and expresses the fact that j depends on . Because many of the dependencies
expressed by the filled graph are redundant, its transitive reduction is computed to
obtain the smallest complete set of dependencies; this results in a tree graph called
an elimination tree. The elimination tree plays a central role in sparse matrix factor-
izations [24] because it dictates the order in which the unknowns can be eliminated:
any order that follows a topological (i.e., bottom-up) traversal of the tree leads to the
same result. A consequence of this fact is that nodes belonging to different branches
are independent and can, thus, be eliminated in parallel. Nodes of the elimination
tree are commonly amalgamated into supernodes containing nodes that share the
same neighbors in the filled graph and can thus be eliminated at once; the resulting
amalgamated tree is commonly referred to as an assembly tree.

Nested Dissection is a method introduced by George [17] to reduce the complexity
of sparse factorizations. The basic step of this method is based on the idea of com-
puting a separator S of a graph G; this is defined as a subset of nodes which splits the
graph into two non-connected subgraphs G; and G,. If the nodes in S are eliminated
last, no fill-in is possible between the nodes of G; and those of Gy because of the Rose,
Tarjan and Lueker theorem [26]. This generally reduces the overall amount of fill-in
and improves parallelism because the nodes of G; can be eliminated independently,
and, thus in parallel, than those of Go. Nested Dissection applies this procedure re-
cursively until subgraphs of a given minimum size are achieved. The resulting tree of
separators matches the assembly tree.

2.2. A Nested Dissection based approach. Because our matrices are made
of dense blocks, our analysis can focus on the compressed graph where a node repre-
sents all the unknowns in a block-column and an edge represents a set of edges that
connect all the unknowns in one block-column to all those in another block-column.
Figure 2 shows the compressed graph for the normal equation matrix B = AT A; this
can be easily derived knowing that b; ; # 0 if there exist arow k in A such that aj; # 0
and ag ; # 0. Because all the columns (rows) within a block-column (block-row) are
indistinguishable, we will use the term “column” (“row”) to refer to a block-column
(block-row).

A few observations can be made about this graph. First, regardless of the order in
which unknowns are eliminated, some fill-in will appear in R compared to A. In fact,
although block-row k of A only has nonzero blocks in block-columns k—1to k+1, R
will also have a nonzero block in block-column k+2; these fill-in blocks are represented
by the horizontal edges in Figure 2. We will refer to these fill blocks as unavoidable
because, as said above, they will exist in R regardless of the nodes elimination order.
Second, besides these unavoidable fill-in blocks, no additional fill-in is introduced in R
by the factorization if unknowns are eliminated in the natural order. This is because,

5
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upon elimination of node k, its neighbors are already connected to each other. Third,
the transitive reduction of the graph in Figure 2 leads to a linear graph, i.e., a tree
with a single branch which does not provide any opportunities for parallelism.

Nested dissection can be used to improve parallelism as briefly explained in the
previous section. One level of dissection can be applied by choosing, for example, the
two middle nodes as a separator as shown in the top graph of Figure 3, where the
nodes have been re-labeled to match the elimination order. This leads to the tree
shown in the bottom left part of the same figure. This tree has two separate branches
which can be traversed in parallel. It must be noted that the order in which the nodes
on the right of the separator are visited is reversed with respect to the original one; as
a result, in this case, no additional fill-in is added because the nodes are eliminated
starting at both ends of the graph.

One level of nested dissection

Tree for one level Tree for two levels
of nested dissection of nested dissection

FiG. 3. The effect of one and two levels of nested dissection on the compressed graph of the
normal equation matriz.
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Additional parallelism can be achieved by recursively applying this bisection step.
Figure 3 shows two levels of nested dissection lead to a tree with four parallel branches
and Figure 4 (left) shows the matrix permuted accordingly; note that in Figure 4 we
have applied the permutation also to block-rows and, although this is not necessary
in practice (as explained in the next section), we will assume it is always the case for
the sake of simplicity. It is important to note that when two levels of nested dissection
are used some fill-in is generated in R when processing the nodes in the two middle
branches; for example, upon elimination of node 7, three fill edges appear to connect
nodes 8, 9, 29 and 30 to each other, as described in the elimination graph procedure
presented in the previous section. The final structure of the R factor is depicted in
Figure 4 (right). With additional levels of nested dissection, a moderate increase
in the fill-in happens as a result of more nodes being processed in internal branches
rather than the two outer ones; this will be quantified shortly.

The nested dissection method is commonly used for reducing the complexity of a
sparse factorization. In our case, although it is very effective in improving parallelism,
it increases the overall cost of the factorization both in terms of flop count and memory
consumption. Consequently, operations have to be scheduled carefully to keep this
overhead as low as possible and a model of the factorization complexity as a function
of the number of nested dissection levels [ must be computed to understand whether a
suitable compromise between these two parameters can be found. This is the objective
of the next section.

A block QR factorization algorithm can be roughly described as a method which
runs in c¢ steps, ¢ being the number of block-columns, where at step k all the nonzero
blocks in column k are annihilated except one which is, instead, reduced to an upper
triangle; as a result of this column reduction we obtain one block-row of the global
R factor. In our method, this is achieved through a bottom-up traversal of the tree
where, at each node, one column (or two for nodes associated with separators) is
reduced. Reducing column k implies the update of a subset of the blocks in column
k+1,...,c; we refer to the ensemble of the blocks affected by the reduction of one
column as a frontal matriz. Depending on the size and shape of this frontal matrix,
the nodes of the tree can be classified into four different types: leaf, chain, separator
and root nodes. The first corresponds to the nodes that are at the lowest level of the
tree (e.g., nodes 7 or 15 in the bottom-right tree of Figure 3); the second corresponds
to nodes in the sequential branches associated with the subdomains resulting from
nested dissection (e.g., node 12 or 20 in Figure 3); the third corresponds to nodes
belonging to some separator (e.g., node (13,14) in Figure 3); the fourth is the root
node of the tree. For each type, a different sequence of transformations is used to
operate the corresponding column reduction; we refer to this as the pivotal sequence.
Moreover, for each type, nodes belonging to the two outer branches need some special
treatment because, as explained above, reducing the associated columns does not
introduce any additional fill-in in the R factor; this will be discussed in deeper details
in the next section.

2.3. Node elimination. As explained in the previous section, at each node of
the tree, one block-column (two for separator nodes) is reduced by annihilating all
the non-zero blocks in the column except one which is reduced into a triangle. The
annihilation of a block not only involves its block-row but also a second one which
we refer to as pivotal row; if, for example, the blocks are of size 1 x 1, this can be
achieved by a Givens rotation. In our case, because we are dealing with dense blocks of
potentially large size, Householder reflections will be used instead because they heavily

7
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Fi1G. 4. On the left, a block-tridiagonal matriz with ¢ = 30 permuted using two levels of nested
dissection as in Figure 3. Note that, for the sake of illustration, block-columns are permuted in the
same way as block-rows although this need not be the case in practice. The numbers on the right of
the matriz describe the index of each block-row in the original, unpermuted matriz; the same list of
indices applies to block-columns. On the right, the structure of R after the factorization; blocks with
a dark fill color correspond to nonzero blocks in A; bordered blocks with a lighter fill color correspond
to unavoidable fill blocks (i.e., those associated with horizontal edges in Figure 3); bordered blocks
with no fill color correspond to those that are due to the chosen pivotal order.

rely on Level-3 BLAS operations and, therefore, can achieve much higher performance
on modern processors; the LAPACK library provides the basic operations to achieve
these transformations which are presented below. As a result of a block annihilation in
column k, the structure of both the involved rows in columns k+1, ..., ¢ will be equal
to the union of their prior structures. This implies that some fill-in may be introduced
by the transformation; obviously this fill-in depends on which pivotal row is chosen
to annihilate a block. It must be noted that different pivotal sequences always lead
to the same (numerically) R factor which only depends on column permutations; as a
consequence, different pivotal sequences only have an effect on the trailing submatrix
of A and, ultimately, the @ factor. Several strategies were proposed in the past for
choosing pivotal sequences that reduce the fill-in. The approach that we adopted in
our work relates to the wvariable pivoting technique proposed by Gentleman [16] for
the QR factorization of sparse matrices by means of Givens rotations; this method
is strongly related to the row-merge scheme, later proposed by George and Heath
[18] and Liu [23] (see the work by Liu for a discussion on how the two approaches
compare). Variable pivoting can be summed up as a method where, when an entry in
position (i, k) has to be annihilated, a pivotal row j is chosen such that its structure
is as close as possible to that of row 1.

This manuscript is for review purposes only.
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Fic. 5. Example showing the use of the notation used to describe pivotal sequences. The data
modified at each step are shown with a fill pattern.

The annihilation of blocks and the corresponding updates can be achieved through
the geqrt, gemqrt, tpqrt and tpmqrt elementary operations which are available in
the LAPACK library. The first of these, geqrt, computes the QR factorization of
a rectangular block; the second, gemqrt, updates a block by applying the ¢ matrix
(or its transpose) resulting from a geqrt operation; the third, tpqrt, computes the
QR factorization of a matrix formed by a triangular block on top of a pentagonal
one (in our case it will only be either rectangular or triangular); the fourth, tpmgrt,
updates a couple of blocks by applying the @ matrix (or its transpose) resulting from
a tpqrt operation. All these routines are based on Householder transformations and,
especially for the update routines, heavily rely on Level-3 BLAS operations. Without
loss of generality, we assume that the number of rows in a block is at least twice
the number of columns, i.e., m > 2n; therefore, each block can be logically split into
three parts with the third being, possibly, empty: the first containing rows 1,...,n,
the second containing rows n+1,...,2n and the third containing rows 2n+1,...,m.
We will refer to these parts using a bitmap: for example A® denotes the first and
second parts of a block A, 3 being equal to 011 in binary format. The algorithm will
be described using the following notation:

e GE(B};): corresponds to reducing part u of the block in block-row i and
block-column j through a geqrt operation and updating all the corresponding
blocks in row ¢ using gemqrt operations;

° TP(BZ?fj,B,’;,j): corresponds to annihilating part v of the block in position
(k, 7) using part u of the block in position (7, j) through a tpqrt operation and
updating the corresponding blocks along rows i and k with tpmqrt operations.

An example of the use of this notation is provided in Figure 5.

For the sake of readability, here we only provide the pivotal sequence for a chain
node because this is where most of the computations are done assuming ¢ > 2'; the
other node types are discussed in the appendix. Reducing a column k associated with
one of these nodes affects blocks in columns k, £ + 1, k + 2, a; and as and rows k,
k + 1 and a1, where a; and as are the indices of the nodes in the separator that the
chain is moving away from. For example, when node 8 in Figure 3 (bottom-right) is
visited, it is connected to nodes 9, 10, 29 and 30 (because node 7 has been previously
eliminated) which explains why these columns are concerned by its elimination. Note
also that when node k is visited, block-rows k and a; and block-columns k, k + 1,
a1 and as have been already updated upon processing of nodes that are lower in the
same branch; this leads to the particular frontal matrix structure which is illustrated
in the left part of Figure 6. The pivotal sequence that we use on chain node k is:

9
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These operations transform the blocks shown in the left part of Figure 6 into those
shown in the right part of the same figure; the middle part of the figure shows the
state of the factorization after the first column is reduced by means of the first two
operations GE(BkJrl r)>, TP(Bj B,€+1 ). After these transformations, the blocks
in row k, with a dark fill color in the ﬁgure are in their final state and will not be
updated anymore; the bordered blocks with a lighter fill color in rows k + 1 and a;
will, instead, be updated in the parent node. Finally, the bordered blocks with no
fill color blocks end up in the H matrix that implicitly represents by means of
the Householder vectors; these are also in their final state and will not be modified
anymore. Note that the two outer chains advance from one end of the graph towards
the center and, therefore, they do not move away from any separator. As a result only
columns k, k+ 1 and k + 2 and rows k and k + 1 are concerned by the elimination of
the nodes therein; this is illustrated with a dashed line in Figure 6. Consequently, the
last four (underlined) operations in the pivotal sequence above need not be executed
on these nodes.

This process closely resembles the @ R multifrontal method [2, 13, 10]. It must be
noted, however, that in the multifrontal method, frontal matrices are explicitly assem-
bled by copying coefficients into dense matrix data structures which are allocated in
memory and initialized to zero beforehand; these copies can be extremely costly due
to the large size of blocks and the heavy use of indirect addressing. In our approach,
instead, the frontal matrices need not be formed explicitly but the constituent blocks
can be easily accessed through pointers (see Section 3 for further details). Addition-
ally, the multifrontal method can only take advantage of the zeroes in the bottom-left
part of frontal matrices (this is referred to as “Strategy 3” in the work of Amestoy,
Duff, and Puglisi [2]) whereas, through the use of variable pivoting, our approach can
avoid more unnecessary computations.

2.4. Complexity. The cost of the elementary operations that are used in our
method are reported in Table 1. For the tpgrt and tpmgrt operations, two cases are
reported: the first (in the middle column) where the bottom block is a rectangle of
size p x n and the second (in the right column) where the bottom block is a triangle of
size n xn. Note that, p is a generic block-row size and, in the algorithm of the previous
section, it does not necessarily correspond to the row size m of an entire block but the
part that is actually concerned by the operation. The number of columns, instead,
will always be equal to n (the block column size) which is assumed to be the same for
all blocks.

Summing up the values in Table 1 for the operations of the pivotal sequence from
the previous section yields the value in row two, column three of Table 2. For a node
in an outer chain, the cost, reported in row and column two, is lower because fewer
operations are needed as explained in the previous section. In the top rows of the
table we also report the operational complexity of all the other node types and we
refer the reader to the appendix for details of the related pivotal sequences. With a
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the end of the node reduction (right). The dashed line shows the difference between inner and outer
chain nodes.

Bl

geqrt 2n2(p —n/3) tpqrt  2pn? tpqrt*  2n3/3
gemrt  2n%(2p —n) || tpmgrt 4pn? || tpmgrt* 2n3
TABLE 1

Operational complexity of the elementary operations. p corresponds to the number of rows in a
block that are concerned by the operation. The * suffiz denotes the case where the lower block is a
triangle.

slight abuse of notation, we denote “outer root” the root of the tree for the case I =0
and “middle root” the tree root for the case [ > 0.

By the same token, it is possible to compute the amount of memory (in number
of coefficients) consumed at each node type, reported in the bottom part of Table 2;
this is made up of the blocks coming from the original matrix (underlined in the
table) plus the fill-in generated during the processing of the node (for example, for
chain nodes this can be computed as the difference between the right and left parts
of Figure 6).

Summing up the values in Table 2 for all the nodes of the tree leads to the overall
cost of the factorization, which is

(2.1)
Cle,l >0) = (28 —2)Cpp +2C, % leaf nodes
+ (2l - 2) (C;QZ - 3) Com +2 (6;2 - 3) Ceo % chain nodes
+ (2'=2-2(1—1)) Com +2(I — 1)Cs0 % separator nodes
+ Crm % root node
Cle,1=0) = Cp % leaf nodes
+ (¢=3)Ceo % chain nodes
+  Cro- % root node

In the above formula, C can be replaced with either F or M leading to, respec-
tively, the overall flop count or the overall memory consumption.

In this formula, for the case where no nested dissection is used (i.e., I = 0), the
root node corresponds to the penultimate chain node where the last two block-columns
of the matrix are reduced.

Figure 7 (top) and (middle) shows how the relative cost of the factorization,
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‘ Outer Middle

Leaf | Fj, = 32mn? — 1603 Fim = 86mn? — 100n3/3
Chain | F., = 18mn? —2n3/3 Fom = 42mn? — 2n3/3
Separator | Fy, = 34mn? — 10n3/3 | Fyp = 98mn® — 10n3/3
Root | Fyo = 8mn? Frm = 16n3/3
Leaf | M;, = mn+5mn M = 4mn + 2n2+9mn
Chain | M, = 2n%+3mn Mo = 2mn + 2n2+3mn
Separator | Mg, = 3n? M = 12n2
Root | M, =2mn Mpm =0
TABLE 2

Flops (top) and storage (bottom) count at each node of the tree. Fach value in the top part
is computed as a sum of the complexity of the elementary operations reported in Table 1 over the
corresponding pivotal sequence. Each value in the bottom part is computed as the difference between
the structure of blocks before and after processing the corresponding node.

respectively F(c,1)/F(c,0) and M(e,1)/M(c,0), varies for different problem sizes
and different levels of nested dissection for the case where m = 2n; it is possible to see
that, for growing values of [ and ¢, these curves converge to, respectively, Fep/Feo
and M., /M, because for | = 0 the tree is essentially made of a single outer chain,
whereas for large [ and ¢ values the vast majority of computations are done in nodes
belonging to middle chains. For growing values of m, these two ratios converge,
respectively, to 2.33 and 1.66.

Other pivotal sequences can be used on each node type. Finding an optimal
pivotal sequence is an extremely challenging task due to its combinatorial nature. The
sequence(s) proposed above, however aim at achieving as many operations as possible
within the chains which can be processed in an embarrassingly parallel fashion; indeed
all the operations in separator nodes only involve parts of blocks that are of size n x n
(either square or triangular; see the appendix for further details). This is likely to
reduce the relative weight of the reduction phase associated with the top part of the
tree where communications happen. Figure 7 (bottom) shows which fraction of the
total floating point operations is performed within chain or leaf nodes demonstrating
that even with matrices of relatively small size it is possible to achieve high levels of
parallelism (by increasing [) without incurring an excessive volume of communications.

3. A solver with multiple levels of parallelism. In this section, we describe
how an actual parallel implementation of the described algorithm for shared memory
systems (e.g., single node, multicore machines) was achieved.

As explained, our method relies on four basic kernels which are used to achieve the
pivotal sequences described in Section 2.3 and in the appendix. Although these kernels
are available in the LAPACK library, we have chosen to rely on their implementation
in the qr_mumps library. This software implements a sparse multifrontal solver based
on the QR factorization; as such it relies on dense linear algebra operations for pro-
cessing frontal matrices. Among others, qr mumps provides an implementation of the
geqrt, gemqrt operations; to these we have added an implementation of the tpqrt
and tpmgrt (see below for the details).

One immediate advantage of this choice is that, in qr_mumps these operations are
efficiently parallelized through the use of scalable tiled algorithms [11] (also referred
to as communication avoiding): blocks are divided into square tiles of size b x b which
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F1G. 7. Relative number of floating point operations (top) and memory consumption (middle)
with respect to no nested dissection based permutation. Relative number of floating point operations
performed in chain of leaf nodes with respect to the total (bottom). m = 2n is assumed for all.

are eliminated by means of block Householder transformations according to different
schemes [9] which aim at improving concurrency by reducing unnecessary synchroniza-
tions and communications. Our implementation of the tpqrt and tpmqrt operations
relies on the same approach and uses a tile elimination scheme which is referred to as
Sameh-Kuck by Bouwmeester et al. [9]: the tiles in the trapezoidal block (remember
that we only consider the two special cases where the trapezoidal degenerates to a
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triangle or a rectangle) along a column are eliminated one after the other starting
from the top using the corresponding diagonal tile in the triangular block. Through
the use of these parallel kernels some parallelism can be achieved within each node of
the tree and even in the case where no nested dissection permutation is used.

qr mumps relies on task based parallelism for the implementation of these meth-
ods. The workload is represented in the form of a Directed Acyclic Graph (DAG)
where nodes are elementary operations (e.g., elimination of a tile) and edges are
the dependencies among them; this representation allows for very quick access to all
the available concurrency at any moment during the execution and for using very
dynamic and asynchronous execution approaches. qr_mumps achieves task based par-
allelism through the use of a runtime system, namely StarPU [5], which provides a
programming interface for defining the DAG and a scheduling engine for tracking
the status of the DAG and triggering the execution of ready tasks on the available
processing units [1]. StarPU provides a programming API based on the Sequential
Task Flow (STF) model (sometimes also referred to as superscalar). In this model,
a master thread submits tasks to the runtime specifying how each of them accesses
the data (whether in read or write mode); based on this information and the tasks
submission order, the runtime can automatically define the dependencies among tasks
and generate the DAG. This model is also used in the OpenMP [8] standard (through
the task directive and the depend clause) and other runtime systems.

A further advantage of using the kernels available in qr mumps is that its asyn-
chronous API provides additional parallelism besides that available among different
branches of the tree and within each block operation. With the standard synchronous
API, each call to an operation is blocking, which means that control is returned to
the caller only after the DAG for that operation is created and all of its tasks are
executed. With the asynchronous API, instead, only the DAG is created and control
is immediately returned to the caller; methods are available in qr_mumps to check
whether all the tasks associated with one called operation have been executed. When
multiple operations have to be executed, asynchronous calls can be made for all of
them, which will generate a single DAG for all at once where dependencies are inferred
between tasks belonging to different operations that access the same data. Thanks
to the availability of this asynchronous interface, our implementation of the block
tridiagonal QR factorization algorithm described in the previous section consists of a
sequential code that traverses the tree in a topological order and, for each node, calls
the qr_mumps operations corresponding to the pivotal sequences described and in the
appendix; parallelism is automatically taken care of by qr mumps.

The whole matrix data structure is a simple bi-dimensional array of pointers to
blocks where only those that point to nonzero blocks (either in the original matrix or
in the factors) are non-null. Consequently, as already mentioned above, in our code
frontal matrices need not be explicitly formed but, rather, the constituent blocks
can be easily accessed with a simple indirection without any data movement. This
allows for significant time savings with respect to a general purpose multifrontal solver
whereas frontal matrices are explicitly assembled through time consuming and poorly
parallelizable memory-bound (that is, limited by the speed of the main memory)
operations.

4. Experimental results. In this section we report experimental results that
illustrate the behavior of the algorithm presented in Section 2 and its implementation
described in Section 3. These were obtained on one node of the Olympe supercomputer
of the CALMIP regional supercomputing center in Toulouse, France. One such node
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l
o 1 2 3 4 5
1 [1538 - - - -
2| 7189 TIT O - - - -
S 4 | 404 390 579 - - -
5 8 | 263 202 297 348 - -
% 16| 258 152 17.0 197 213 -
32| 259 156 125 145 153 16.1
36 | 265 17.3 145 151 160 16.4
1[40 - - - o
2| 819 T2 - - - -
C 4 | 594 407 559 - - -
5 8 | 525 208 275 326 - -
S O16| 532 287 167 180 193 -
32| 573 287 153 9.7 101 10.7
36 | 671 347 159 9.6 94 9.7

TABLE 3
Ezecution time, in seconds, for the QR factorization of a problem with m = 640, n = 320 and
¢ = 4094 with tile size b= 160 (top) and b = 320 (bottom).

is equipped with two Intel(R) Xeon(R) Gold 6140 CPUs for a total of 36 cores. We
have used the Intel compilers and the Intel MKL library v2018.2, StarPU revision
581387c from the public GIT repository! and qr_mumps revision 8b160df 2.

For these experiments, we have set the block size to m = 640, n = 320 and
number of block-columns and block-rows ¢ = 4094; note that choosing ¢ = 2t — 2 for
some t ensures that when nested dissection is applied all the chains have the same
length 26~ — 2Vl = 1,...,t — 1. We will comment on how the behavior will change
for different values of these parameters but we will not report further experiments
because they do not provide additional insight to the experimental analysis. Two
different tile sizes have been chosen for the partitioning of blocks within the qr _mumps
operations, namely, b = 160 and b = 320. Finally, we have executed experiments
for varying values of the number of nested dissection levels ! from 0 (i.e., no matrix
permutation) to 5; going beyond this value does not make sense in our experimental
setting because of the limited number of cores.

Table 3 shows the execution time of the QR factorization for different numbers of
threads and values of the | parameter with b = 160 in the top part and b = 320 in the
bottom part. The “—” entries correspond to the cases where the number of threads
is lower than the number of chains 2'; these are uninteresting because of the excessive
flops overhead spent for an unnecessary amount of parallelism. When nested dissection
is not used, scalability is obviously limited by the lack of parallelism; obviously, better
results are obtained by using small tiles because higher parallelism is available within
each branch of the tree. When one level of nested dissection is applied, parallelism
is roughly doubled with no additional cost, which explains why the execution times
in the second column of the table are always below the corresponding ones in the
first. The improvement is, as expected, higher in the case of large tiles and when the

Lhttps://gforge.inria.fr/projects/starpu/

2http://buttari.perso.enseeiht.fr/qr_mumps/releases/qr_-mumps_8b160df.tgz
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!
0 1 2 3 4 5
1 | 308 - - - - -
2| 600 609 - - - -
< 4 | 1170 1212 1280 - - -
58 | 1800 2342 2495 2515 - -
%16 1833 3115 4352 4440 4412 -
32 | 1825 303.1 590.8 600.7 6158 603.1
36 | 1785 272.6 509.7 579.2 5881 591.6
1| 317 - - - - -
2 | 578 638 - - - -
< 4 | 796 1163 1326 - - -
5 8 | 901 1585 2688 2685 - -
%16 | 889 1648 4423 4860 4880 -
32| 826 1650 4825 901.9 932.0 907.4
36 | 705 1365 464.1 9052 997.8 997.8

TABLE 4
Speed in Gflop/s for the QR factorization of a problem with m = 640, n = 320 and ¢ = 4094
with tile size b =160 (top) and b = 320 (bottom).

number of threads grows. For values of [ greater than or equal to two, the use of nested
dissection implies a computational overhead. This explains why, when the number
of threads is relatively low, increasing [ results in a slowdown; this is especially true
when small tiles are used because sufficient parallelism is available even with small
values of [. When the number of threads is relatively high, the benefit of the additional
parallelism overcomes the extra computational cost and the execution time is reduced.
Additionally, we can observe that, when the number of threads is relatively high, the
best results are achieved with large tiles: this is because of the larger granularity of
tasks which allows for a better efficiency of the BLAS operations executed on tiles.
Ultimately, we can conclude that, when the number of threads is relatively low, using
small tiles and few levels of nested dissection provides sufficient parallelism with no
or little computational overhead; inversely, when more threads are used, using large
tiles is beneficial for improving the efficiency of elementary operations and the extra
parallelism is worth the computational overhead. This is illustrated in Figure 8 (left)
where the best execution times are taken along each row of Table 3 and compared
to the best sequential result, i.e., 149.1s. The number next to each data point shows
the nested dissection levels used to obtain the corresponding result. The best time
improvement with respect to the sequential case is 15.8 for the case [ = 4 which results
in roughly twice as many floating-point operations.

In order to assess the efficiency and scalability of our implementation, in Table 4
we provide the speed of computations in Gigaflops per second which is insensitive to
the computational overhead imposed by the use of nested dissection. As expected,
performance grows for higher values of [ because more embarrassing parallelism is
available; for a given value of [, performance at first grows with the number of threads
and eventually decreases when the available parallelism is not enough to feed all the
working threads. The peak performance of a single core is 73.6 Gflop/s, which means
that the sequential execution has an efficiency of 43%. This relatively poor efficiency
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0 1 2 3 4 )

160 | 76.3  56.5 79.9 96.8 104.2  106.6
320 | 138.2  75.1 49.8 58.2 61.9 64.7

160 | 496.4 6704 7419 7232 723.0 7322
320 | 274.2 504.5 1191.3 12029 1217.1 1205.2

TABLE 5
Ezecution time (top) and speed in Gflop/s (bottom) for the QR factorization of a problem with
m = 1280, n = 640 and c = 4094 with tile size b = 160 (top) and b = 320 (bottom) on 36 cores.

can be explained by the relatively small values of m and n which makes the relative
cost of BLAS-2 rich operations (i.e., geqrt and tpqrt) greater; higher speeds can be
observed when larger blocks are used. The best speed improvement is a remarkable
31.4 out of 36; it must be noted that for the case of | = 5, roughly 99% of the
computations are done in chain or leaf nodes.

For the sake of completeness, in Table 5 we report the execution time and speed
for the factorization of a matrix with large blocks (m = 1280 and n = 640), same
value of ¢ = 4094, obtained with 36 threads. In this case, more parallelism is available
within each branch and, consequently, the best shortest execution time is achieved
with fewer levels of nested dissection with respect to the previous case. It can also
be noted that the overall performance is higher thanks to a better ratio between
Level-3 and Level-2 BLAS operations; this also holds for the sequential case where
the execution time is 960.7 seconds for a speed of 39.46 Gflop/s.

The above results suggest that, in order to obtain the lowest execution time, a
careful combination of the qr_mumps block size b and nested dissection depth [ must be
chosen. The optimal values mostly depend on the characteristics of the used platform
such as number of cores, relative speed between cores and memory, and efficiency
of low-level BLAS operations. The proposed approach proved to be scalable in our
experimental setting because the shortest execution time is obtained using all the
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l
0 1 2 3 4

flops ratio | 1.00 1.00 1.11 1.14  1.16
seq time ratio | 1.66 1.66 1.62  1.57  1.57
par time ratio | 4.08 6.30 8.98 11.34 11.14

TABLE 6
Ratios of floating point and execution times between the developed implementation of the pro-
posed approach and gr-mumps for different values of I with m = 640, n = 320 and c = 2046.

available threads; for smaller problems (i.e., smaller values of m, n or ¢), using all the
available cores may not be beneficial though. Because the cost of the factorization as a
function of [ is upper bounded by a modest constant and because most computations
are performed in chain or leaf nodes (see Figure 7 and the related discussion), for
relatively large values of ¢ we can expect to achieve good scalability even on large
numbers of cores.

Although, as discussed above, some concurrency is available within each branch
or node of the tree, this parallelism involves communications due to the fact that
multiple processes share the same data. On shared memory systems, these communi-
cations take the form of memory traffic and synchronizations. In distributed memory
systems, these communications amount to transferring data through the slow net-
work interconnection and, therefore, are much more penalizing. The use of nested
dissection introduces embarrassing parallelism because each process may potentially
work on a different branch without communicating with others. For this reason, we
speculate that the benefit of increasing [ over the operational overhead is better on
distributed memory systems than shared memory ones. We reserve the development
and analysis of a distributed memory parallel implementation for the future.

4.1. Comparison with qr mumps. In this section we document an experimen-
tal comparison between the proposed approach and qr_mumps. This is intended to
demonstrate the advantage over a general-purpose (structure unaware) tool. Care
must be taken, however, in interpreting the results as it is not a direct comparison of
theory. After all, design choices were made in qr_mumps to cater for general structures.

For this comparison we have chosen to use the reference block size m = 640,
n = 320. With such a block size, the largest possible value of ¢ is 2046; larger values
lead to a total number of nonzeroes which exceeds the capacity of 32bit integers used
in gr_mumps (note that our code never needs to compute nor use the total number of
nonzeroes in the matrix). For a fair comparison, the same column permutation (as
discussed in Section 2.2) was used in qr_-mumps and the developed implementation of
the proposed approach. The operation count as well as the sequential and parallel
(with 36 threads) execution times for values of [ from 0 to 4 were measured. Table 6
contains the ratios of the values obtained with qr_mumps and the proposed approach.

The difference in terms of floating point operations is due to the use, in our
approach, of pivotal sequences that can take advantage of empty blocks within the
structure of frontal matrices. This difference is negligible (less than 1%) for { = 0 or 1
because in these cases most fronts (all fronts except leaves and root) are of type outer
chain (the part above and on the left of the dashed line in Figure 6) and almost full.
As [ grows, the tree includes more and more fronts with a more complex structure
where better gains can be achieved. This ratio was also observed to increase when
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the value m/n grows because the empty blocks within fronts are larger.

The ratio between the sequential execution times is around 1.6 and is partly
due to the extra floating point operations and, in most part, due to the symbolic
operations done in qr mumps to assemble frontal matrices. In a parallel execution,
this ratio becomes much larger and increases with [. This is due to the fact that
symbolic operations are memory-bound and, thus, scale very poorly; moreover some
of these operations are not parallelized at all in qr mumps because in its intended
use they only account for a small, often negligible, part of the execution time. As a
result, these symbolic operations become dominant in a parallel execution and, unlike
our approach, qr mumps cannot take advantage of the parallelism provided by higher
values of [.

5. Conclusion. In this work, we have presented a method for computing the
QR factorization of block-tridiagonal matrices. Our approach draws parallelism from
the nested dissection method which allows for structuring the elimination process
as a parallel topological order traversal of a tree graph. At each node of this tree,
one block-column is reduced through Householder reflections. These operations are
computed in such a way that the sparsity of the data handled at each node of the tree
is taken advantage of.

A detailed analysis of the operational and memory complexity of the resulting
method was provided. Although we demonstrated that this complexity grows with
the number of used nested dissection levels, the overhead with respect to the sequential
(i.e., no nested dissection) case is bounded by a moderate constant.

An actual implementation of the factorization method that can take advantage
of multiple levels of parallelism was also presented. Not only does our solver achieve
parallelism through the concurrent traversal of separate branches of the elimination
tree but also from the intrinsic concurrency available at each tree node and from
pipelining the processing of nodes at different levels of the tree. This is achieved
by using the parallel, asynchronous dense linear algebra methods available in the
qr_mumps software and developing the missing operations.

Finally, experimental results on a shared memory architecture that show the
effectiveness of our approach as well as of its actual implementation were included.
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Appendix A. Pivotal sequences.
Leaf nodes. The matrix blocks concerned by the operations on a leaf node are

depicted in Figure 9 (left). At leaf node k, these are in columns k, k + 1, k + 2,
a1, as and rows k, k + 1, a; where a; and as are block-columns associated with an
ancestor separator, the one that the chain is moving away from. Because the two
outer branches are not moving away from any separator, only the first three rows and
columns are concerned by the processing of a leaf node attached to one such chain, as
illustrated by the dashed line in the figure. The operations executed on a leaf node
result in the structure shown in the right part of the figure and are described by the
following pivotal sequence:

GE(B{ ), GE(B[14); TP(Byy, Biiix): GE(BE L),

(
TP(Bi g Bay i) GEBiyypi1)y TPBiyykrns BRasn)s
TP(B%+1,1€+1’B;1,1¢+1)7 GE(BE+1,1§+2)7 TP(B£+1,k+27Bg,k+2)7
TP(B£+1,k+2’B;1,k+2)7 GE(BZM“), GE(BSWZ),
TP(Bg, 0, BYa,): TP(Byy o Bigia,):
TP(B}, 0y Bilay): TP(BE, ay0 Biy1a,)-

Operations that involve blocks in row or column a; or as need not be executed for

leaf nodes attached to outer branches. As a reminder of what was said in Section 2,
at the end of these operations the k-th block-row of the global R factor is computed,
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with a dark fill color in Figure 9 (right); the bordered blocks with a light fill color
will be operated upon in nodes along the branch connecting the leaf to the root of
the tree while the bordered blocks with no fill color correspond to the Householder
vectors that implicitly represent the @ factor.
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Fi1G. 9. The blocks concerned by the operations at leaf node k. Their structure before and after
the processing of the node are shown in the left and right parts of the figure, respectively. The dashed
line shows the difference between inner and outer leaf nodes.

Separator nodes. The blocks concerned by the operations on a separator node are
depicted in Figure 10 (left). When all the chain nodes have been eliminated, each
separator (except the two outer ones) is connected to two other separators: one is
the parent node and the other an ancestor node in the tree. Therefore, these blocks
are in columns sy, S, p1, p2, a1, as and rows si, So, p1, a1, where s; and sy are
the block-columns associated with the separator, p; and po those associated with the
parent separator and a1, as those associated with the ancestor separator. Separators
belonging to one of the two outer branches are only connected to their parent and,
therefore, columns a1, as and row a; do not exist; this is illustrated by the dashed
line in Figure 10. Finally, the root node is a separator which does not have a parent
nor an ancestor and, therefore, only the first two rows and columns are involved in
its processing, as illustrated by the dashed purple line in Figure 10. The operations
executed on a separator node result in the structure shown in the right part of the
figure and are described by the following pivotal sequence:

TP(B;, s> Bs,5,), GE(B 32,32) TP(Bs, s, B, ;) TP(Bg, 4, B, 50),
TP(B, P B ;). TP(B, i Bz, )
TP(B; i sl,pz), TP(B; i sm),
TP(Bg, a, B a)): TP(Bg, 0, B2, 0,);
TP(B}, .y B ay)s TP(BZ, 0y B2, 0,)-

All the operations involving rows and columns a; and as need not be done on
outer separators and the root; all those involving rows and columns p; and py need
not be done on the root.
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Fic. 10. The blocks concerned by the operations at separator node (s1,s2). Their structure
before and after the processing of the mode are shown in the left and right parts of the figure,
respectively. The dashed line shows the difference between inner and outer separator nodes. The
dotted line delimits the rows and columns of the tree root node.

23

This manuscript is for review purposes only.



	Introduction
	Motivation
	Related work

	Algorithm
	Preliminaries
	A Nested Dissection based approach
	Node elimination
	Complexity

	A solver with multiple levels of parallelism
	Experimental results
	Comparison with qr_mumps

	Conclusion
	Acknowledgments
	Appendix A. Pivotal sequences

