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Abstract

Recently, several fast methods to compute Solvent Excluded Surfaces (SES) on GPUs have been presented. While these published
methods reportedly yield interesting and useful results, up to now no public, freely accessible implementation of a fast and open-
source SES mesh computation method that runs on GPUs is available. Most molecular viewers, therefore, still use legacy CPU
methods that run only on a single core, without GPU acceleration. In this paper, we present an in-depth explanation and a fully
open-source CUDA implementation of the fast, grid-based computation method proposed by Hermosilla et al. [HKG∗17]. Our
library called QuickSES runs on GPUs and is distributed with a permissive license. It comes with a standalone program that
reads Protein Data Bank (PDB) files and outputs a complete SES mesh as a Wavefront OBJ file. Alternatively it can directly be
integrated in classical molecular viewers as shared library. We demonstrate the low memory consumption to enable execution
on lower-end GPUs, and compare the runtime speed-up to available state-of-the-art tools.

CCS Concepts
• Applied computing → Molecular structural biology; • Computing methodologies → Massively parallel algorithms;

1. Introduction

Molecular surface representations form a core part of standard
molecular viewers to visualize molecules. They ease the percep-
tion of molecular interactions by providing a visual representation
of the accessibility and complementarity of molecules. Therefore,
molecular surfaces are an essential tool for the analysis of complex
molecular structures.

Several types of surfaces depict different molecular properties:
the Van der Waals (VDW) surface yields an approximation of the
space that atoms are taking, the solvent accessible surface (SAS)
represents the volume taken by the molecule and a hypothetical
solvent layer, but only the solvent excluded surface (SES) really
provides a sense of the molecular shape as "seen" by the solvent or
a ligand prone to bind to it. The proposed method discussed here
focuses on fast SES computation, for instance to render dynamic
datasets in interactive time.

1.1. State of the Art

Initially, the SES was defined as the surface obtained by rolling
a probe sphere on the atoms [Ric77]. An analytical solution has
been proposed [Con83], but these methods tend to be slow and
may prove hard to parallelize. On the other hand, grid-based meth-
ods provide a coarser solution but can take advantage of multicore
CPUs and massively parallel GPU architectures.

Two largely used available tools to compute a mesh representa-
tion of the SES are MSMS [SOS96] and EDTSurf [XZ09]. MSMS

is an analytical method that computes the patches of the SES and
triangulates them afterwards. It speeds up the analytical computa-
tions using the so-called reduced surface algorithm, but runs only
on a single core of the CPU. Attempts to parallelize this algorithm
on GPUs had only little success [KDE10], as it is inherently se-
quential. MSMS is still used by many molecular viewers, for ex-
ample the popular and freely available VMD [HDS96] or UCSF
Chimera [PGH∗04]. EDTSurf is a grid-based method implemented
on CPUs that can generate SES meshes at different resolutions.
Similar to MSMS, EDTSurf takes multiple seconds to generate the
SES of a larger biomolecule. A way of explaining why these tools
are still widely used is that they output a standard mesh file.

Several GPU implementations have been proposed to interac-
tively compute SES surfaces [KBE09, KGE11, PV12]. QuickSurf
[KSES12] is an example of a fast GPU method to compute an
isosurface based on a Gaussian density map, using the CUDA
language. It has been successfully integrated in VMD [HDS96]
and MegaMol [GKM∗15]. However, extracting the implementation
from these tools is not straightforward and it provides only an ap-
proximation of the SES, not the exact surface. Recently, Hermosilla
et al. [HKG∗17] presented a GPU-parallelized method that com-
putes the SES on a grid, similar to EDTSurf. Their implementation
makes use of a progressive grid refinement to achieve interactive
frame rates even for large, dynamic data. For rendering, GPU vol-
ume ray marching (i.e., direct volume rendering) is used instead of
extracting a triangle mesh. A detailed survey of visualizations for
molecular data, including an extensive discussion of methods to
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compute and visualize the SES and other molecular surfaces, was
recently presented by Kozlíková et al. [KKF∗17].

1.2. Motivation and Contribution

While the methods discussed in subsection 1.1 have been published
and reportedly yield interesting results, a public, freely accessible
open-source implementation of such a fast SES mesh computation
method that runs on GPUs and outputs a mesh usable outside of a
molecular viewer is not currently available.

In this paper, we explain a CUDA implementation of Hermosilla
et al.’s [HKG∗17] grid-based SES computation method. The cor-
responding tool named QuickSES is published under a permissive
license, runs all computations on the GPU, and outputs a complete
SES mesh as Wavefront OBJ files. An example of the SES com-
puted with QuickSES is shown in Figure 3. It can be executed as
a standalone program that reads Protein Data Bank (PDB) files, or
can be called from classical molecular viewers as a shared library.

2. Method and Implementation Details

The algorithm is extensively described in the orignial paper by Her-
mosilla et al. [HKG∗17], therefore we will focus only on the spe-
cific details of our CUDA implementation. To generate the SES,
the method requires to compute a signed distance field (named SES
grid) with positive values outside the SES and negative ones in-
side. To speed up parts of the computation, a second grid is used to
access neighboring atoms in constant time.

To emulate the rolling of the probe sphere, usually with a 1.4 Å
radius representing water, the method is composed of 4 main steps:
(1) computing the neighbor grid, (2) assigning voxels inside, at the
border or outside of the molecule, (3) processing the "border" vox-
els to refine the distance field, and (4) transforming the distance
field into a mesh using the Marching Cubes algorithm [LC87a].

2.1. Neighbor Search

Fast access to an atom’s neighbors is a key point of this method.
Indeed, to classify atoms and to efficiently compute the distances
at the border in the third step, a constant access time is mandatory
to achieve acceptable performance.

QuickSES implements a standard uniform 3D grid around the
molecule, fully executed on the GPU [Gre10]. The resolution of
this grid is given by the size of the probe radius (rprobe) plus
the maximum Van der Waals atom radius of the molecule (rmax):
Rneighbor = rprobe + rmax.

A hash value is assigned to each atom by converting its 3D index
position in the neighbor grid into its 1D index. The hash is stored
together with the index (id) of the atom in the array of positions,
this array is called hashIndex. This procedure effectively assigns
each atom to a neighbor cell. After sorting the hashIndex array by
the hash value (using the Thrust library [BH12]), we obtain the dis-
tribution of atoms per grid cell (cf Figure 1). To improve coalesced
access of memory, an array of atom position sorted by hash is also
maintained. To count the number of atoms per grid cell, we record
the position of the first and last hash in the hashIndex array.

Figure 1: Uniform 3D grid for fast neighbor access : each atom is
assigned to a cell. Sorting the array of index id and hash by hash
yields a simple data structure to query atoms in a cell.

We now have a data structure enabling us to fetch neighboring
information in constant time. The relatively small construction time
of this uniform grid is outweighed by the gains during the subse-
quent steps.

Instead of using the radix sort implementation from the
Thrust library, a speed improvement has been proposed by Hoet-
zlein [Hoe14], who achieved significantly lower computation times
uses atomic operations in a count sort. However, since this is not
the limiting step in our implementation, we left this optimization
as future work.

2.2. Probe Intersection and Voxel Classification

The goal of this step is to determine the voxels of the SES grid
that are at the boundary of the surface and to quickly classify other
voxels as inside or outside the SES. The SES grid encompasses
the whole protein and has a user-defined resolution, which is deter-
mined by the size of one voxel VSES (which is given in Å). Smaller
VSES result in a higher quality of the final SES, but also lead to a
higher computation time.

• A voxel is inside the molecule if the distance between its center
and at least one atom is less than the radius of this atom plus the
voxel size VSES. The voxel voxel value is set to −VSES.
• A voxel is at the bondary of the SES if the distance between

this grid point and an atom is less than the atom radius minus the
voxel size VSES. The voxel is temporarily set to 0.0 and will be
processed in the next step.
• Otherwise, the voxel is outside the molecule, meaning that there

is no atom close to this voxel (the atom-voxel distance is more
than the atom radius +VSES). The voxel value is set to rprobe.
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To keep track of voxels at the border, we record the 1D index
of this cell inside an array the size of the sub-grid. If the voxel is
inside or outside the SES, we record a large number instead. We
then sort this array and count the number of cells at the border.

As the user defines the SES grid resolution, the size of this grid
can be very large (more than 5003 voxels, resulting in more than
500 MB of memory). Depending on the GPU specifications, allo-
cating the full SES grid in GPU memory is not always possible. To
avoid this memory limitation, we only allocate a subset of this grid,
usually a 3003 cube and we process all the following steps for each
subset (Figure 2). To process the full grid, we have to offset this
sub-grid in all directions by o f f set =

⌈
rprobe
VSES

⌉
, leading to a total of⌈

gridSize
(sliceSize−o f f set)

⌉3
sub-grids processed.

The user may define the size of the slice to speed this step up on
GPUs with more memory. The slice can then cover the whole grid.
On the contrary, the user can decrease the sub-grid size to lower
memory consumption and run QuickSES on lower-end GPUs.

Figure 2: Compute a 43 subset (red) of the 123 grid. The subset
of the grid needs to access a larger part in the distance refinement
step (represented here in purple) that has to be computed in the
probe intersection step.

2.3. Distance Refinement

As stated by Hermosilla et al. [HKG∗17], the limiting step of the
algorithm is clearly the distance refinement step for large grid sizes.
For each voxel found at the border of the SES in the previous step,
we look for the closest voxel that is outside of the SES, in a cube
of size o f f set×2 cells around the current cell. If no such voxel is
found, the value in the SES grid is set as inside the SES. Otherwise,
the value is set to rprobe−minDist where minDist is the minimum
distance found.

To avoid any issue with the watchdog timer that controls the
execution time of a CUDA kernel, the kernel is split into several
smaller ones. Thereby, we bypass processing all the voxels during
a single kernel, which could take more than the 5 seconds time
budget. In order to maximize high-end GPU usage, CUDA streams
start these sub-kernels asynchronously.

This step bears a high probability of a cache miss, as not all
voxels are always aligned. The lower the resolution of the SES grid,
the larger this cube, increasing the execution time for this step.

2.4. Marching Cubes on GPU

Now that the distance field is correctly computed, a GPU-
parallelized variant of the Marching Cubes (MC) algo-
rithm [LC87b] is executed on the sub-grid to triangulate a
surface mesh. Our implementation is similar to the example
provided with the Nvidia GPU Computing Toolkit. The first step
outputs the number of vertices computed for each cell of the
sub-grid. A prefix sum counts the overall number of vertices for
the mesh to be allocated, thereby limiting the size of the data to
transfer from the GPU to the CPU. The actual MC step can then be
executed on the relevant voxels only.

To further reduce the size of the vertex array, we added a welding
vertex step that consists in rounding the vertices to a lower preci-
sion, sorting the array based on the x values, then on the y values,
then on the z values. We remove duplicates keeping track of the
new order of the vertices, which is needed to connect the vertices
using triangles. The Thrust library provides a set of functions to
efficiently execute these steps.

The classical edge and triangle tables are stored in constant
memory arrays for cached access during the first and the last step
of the MC GPU implementation. Once the mesh is returned to the
CPU, it is smoothed using a Laplacian step as the mesh can be
coarse at high voxel size (small box size). At last, once all sub-
grids have been processed, we merge the meshes of each subset
into a larger mesh by offsetting the triangle indices.

3. Results

Figure 3: Solvent Excluded Surface of the PDB 3EAM computed
with QuickSES with a 0.15 Å grid resolution (ambient occlusion of
the generated OBJ file computed in MeshLab [CCC∗08]).

3.1. Interactive molecular dynamics trajectory rendering

We successfully integrated QuickSES in UnityMol [LTDS∗13] (cf.
Supp. Mat. Video) to test it’s suitability for interactive rendering
of molecular dynamics trajectories in surface representation. Fur-
thermore, this test suggests that QuickSES could be used similarly
easily in any other visualization software. As standard mesh files
can be generated as well, it is straightforward to post-process them
as illustrated in Figure 3.
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Table 1: Time (in ms) and memory consumption (in brackets; peak
in MB) for different SES computation methods, averaged over 5
executions. The probe radius was set to 1.4 Å Note that we did not
count the time spent writing the mesh to disk. MSMS was executed
with a density of 10, and no area computed. QuickSES voxel size
was set to 0.5 Å and the slice size was the default value of 3003

voxels. Tests were run on a 1080 Ti GPU and a i7-6700 3.4Ghz
CPU. MSMS fails to compute large molecules (1GRU and 4V59).

PDB ID #atoms EDTSurf MSMS QuickSES

1CRN 327 746 (45) 88 (5) 333 (10)
1KX2 1,249 1403 (77) 188 (10) 340 (20)
3EAM 13,505 4586 (280) 1743 (90) 627 (439)
1GRU 58,688 5939 (317) – 1888 (805)
4V59 169,748 6881 (427) – 2893 (695)

3.2. Speed and memory benchmark

The execution times and memory usage are detailed in Table 1.
QuickSES is always faster than EDTSurf. The resolution of the
grid for QuickSES is set to 0.5 Å meaning that for large molecules
(more than 10k atoms), the resolution of the mesh is higher than for
EDTSurf. Indeed, by default, EDTSurf lowers the resolution of the
mesh to fit the molecule inside the box.

It should be noted that using QuickSES as library will reduce the
execution time as no parsing of the input file, nor mesh writing will
be necessary. One could also use the mesh directly from the GPU
without copying it to the system memory.

3.2.1. Impact of slicing the SES grid

Besides the resolution and the number of atoms, the size of the sub-
grid impacts the performance of our method. As expected (cf. Supp.
Mat. Table 1), if the total grid fits inside the slice, we can compute
the SES slightly faster. The impact on the performance is limited (it
is ≈ 30% faster to run QuickSES on PDB-id 3eam with a sub-grid
of 4503 voxels rather than with a box of 2003 voxels).

4. Conclusion

We propose an efficient, open-source GPU implementation of the
SES mesh computation algorithm by Hermosilla et al. [HKG∗17],
available at (Link to GitHub repository removed for double-blind
review). Our QuickSES can be used as a standalone executable to
parse PDB files and output OBJ mesh files. We also provide a sim-
ple way to use it as a shared library and integrate it into already ex-
isting visualization softwares, providing access to interactive SES
rendering.

An effort has been made to lower the memory footprint, in order
to make it possible to tackle large structures even with a modest
GPU, i. e. with less than 512 MB of GPU RAM.

4.1. Future work

The execution speed may further be increased by optimizing
CUDA kernels and by using shared memory more extensively, in

particular during the stencil operations done in the probe intersec-
tion step and the distance refinement step. Another area of improve-
ment could be to process several voxels per GPU thread to do more
work and hide the memory access latency.

As a complete distance field is computed, we could compute
smooth mesh normals during the MC step. Interestingly, one of the
only steps currently run on the CPU is the Laplacian mesh smooth-
ing. For large meshes, this step can take a significant amount of
time. A GPU implementation of a mesh smoothing algorithm could
thus provide a speed-up for this part. The current implementation is
only computing the SES but can easily compute the VDW surface
or the SAS instead.

Finally, to target a broader spectrum of hardware, we plan to
release an OpenCL implementation of QuickSES to be able to use it
on AMD and Intel GPUs, as well as to take advantage of multicore
CPUs.
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