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Abstract

In this paper we study the online variant of two well-known Steiner tree problems. In the online
setting, the input consists of a sequence of terminals; upon arrival of a terminal, the online algorithm
must irrevocably buy a subset of edges and vertices of the graph so as to guarantee the connectivity
of the currently revealed part of the input. More precisely, we first study the online node-weighted
Steiner tree problem, in which both edges and vertices are weighted, and the objective is to minimize
the total cost of edges and vertices in the solution. We then address the online priority Steiner tree
problem, in which each edge and each request are associated with a priority value, which corresponds to
their bandwidth support and requirement, respectively. Both problems have applications in the domain
of multicast network communications and have been studied from the point of view of approximation
algorithms.

Motivated by the observation that competitive analysis gives very pessimistic and unsatisfactory
results when the only relevant parameter is the number of terminals, we introduce an approach based on
parameterized analysis of online algorithms. In particular, we base the analysis on additional parameters
that help reveal the true complexity of the underlying problem, and allow a much finer classification of
online algorithms based on their performance. More specifically, for the online node-weighted Steiner
tree problem, we show a tight bound of Θ(max{min{α, k}, log k}) on the competitive ratio, where α is
the ratio of the maximum node weight to the minimum node weight and k is the number of terminals. For
the online priority Steiner tree problem, we show corresponding tight bounds of Θ(b log k

b ), when k > b
and Θ(k), when k ≤ b, where b is the number of priority levels and k is the number of terminals. Our
main results apply to both deterministic and randomized algorithms, as well as to generalized versions
of the problems (i.e., to Steiner forest variants).

1 Introduction

1.1 Problem statements and motivation

Steiner tree problems occupy a central place in optimization theory. In its standard formulation, the input to
the Steiner tree problem consists of an undirected graph G = (V,E), with cost function c : E → R+, as
well as a set of vertices K ⊆ V , also called terminals. The objective is to to find a minimum-cost subgraph
∗This paper is an extended combined version of two conference papers: The Node-Weighted Steiner Problem in Graphs of

Restricted Node Weights, Proceedings of the 10th Scandinavian Workshop on Algorithm Theory, pp 208–219, 2006 and Online
Priority Steiner Tree Problems, Proceedings of the 11th Symposium on Algorithms and Data Structures, pp 27–48, 2009.
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which spans all vertices in K (clearly, such a subgraph is always a tree). The cost of the Steiner tree is
defined as the sum of the costs of its edges. A generalization of this fundamental problem associates the set
K with of k pairs of vertices (s1, t1), . . . , (sk, tk). Once again, the objective is to identify a subgraph of
minimum cost, such that for all i ∈ [1, k] there is a path connecting si to ti in the subgraph. The problem is
known as the Generalized Steiner Problem (GS), or the Steiner Forest Problem since the solution is a forest
of G.

In the online version of the problem, the set of terminals K is not known in advance. Instead, the
terminals are revealed as a sequence of requests. Upon arrival of a request t ∈ K, the online algorithm must
guarantee connectivity of all terminals revealed up to this point in time; this implies that the algorithm may
need to update its current solution by buying new edges. This action is irrevocable, in the sense that any
edge that is bought contributes to the final solution cost. We make the usual assumption in the field that the
graph G is known to the algorithm. In the standard framework of competitive analysis (see, e.g. [11]), the
goal is to design online algorithms of small competitive ratio. In the context of Steiner tree problems, in
particular, the competitive ratio is defined as the supremum of the ratio of the cost of the solution produced
by the algorithm over the optimal off-line cost (namely the cost of an offline algorithm which has complete
knowledge of the request set K).

Both the offline and online variants of Steiner tree problems have been studied extensively in the liter-
ature (see Section 1.2 for some representative results) and are often encountered in the context of several
combinatorial optimization problems. In addition to their appeal from the point of view of theoretical anal-
ysis, they offer useful formulations of real-life applications. For instance, they are useful in abstracting the
design of multicast protocols in computer networks, which involves distribution of the same information
stream to the members of the multicast group over an existing network. Indeed, multicasting can be mod-
eled as the problem of selecting communication links (i.e, edges of the underlying graph) so as to minimize
the cost (in terms of either bandwidth and/or the physical cost of links) for supporting traffic routing through
a tree. For the interplay between the Steiner Tree problem and multicast applications, the interested reader
is referred to the thesis [17] and the survey [32].

In this work we study the online variants of the following Steiner tree problems:

• The node-weighted Steiner tree problem (abbr. NWST). Here, not only the edges, but also the vertices of
the graph G are associated with a weight (cost). More formally, the cost function is defined as c : V ∪E →
R+. The solution cost is the sum of the cost of all edges and vertices in the tree solution.

• The priority Steiner tree problem (abbr. PST). Here, each edge e ∈ E is associated with a priority
p(e) ∈ {1, 2, . . . , b}, where b ∈ N+ is some specified maximum priority value. In addition, every terminal
t ∈ K is associated with a priority demand p(t) ∈ {1, 2, . . . , b}. Each edge has a cost function c : V → R+

(but nodes do not have weights). Last, a vertex r ∈ V is specified as the source or root. A feasible solution
is a subgraph of G in which there is a path pt from the root to each terminal t ∈ K such that each edge in pt
has priority at least p(t).

The generalized node-weighted Steiner problem (GNWS) and the generalized priority Steiner tree prob-
lem (GPS) are defined as extensions of the tree variants in the natural way, i.e, by substituting the set of ter-
minals K with a set of pairs {(si, ti)|i ∈ [1, k]}. For GPS, in particular, each pair (si, ti) requests priority
pi, and the solution stipulates a path from si to ti in which each edge has priority at least pi. Throughout the
paper we will always denote |K| by k.

As with the standard version, both variants we consider in this work arise often in interesting applica-
tions. For instance, node-weighted Steiner tree formulations have been used in multicasting under multi-
domain and hierarchical constraints [8] as well as in environmental engineering, specifically in the design
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of wildlife corridors for multiple species [30]. Moreover, the priority Steiner tree problem is a formula-
tion of multicasting with Quality of Service (QoS) guarantees in networks with heterogeneous users. More
precisely, each priority level corresponds to a bandwidth (or QoS) level, the priority of a terminal reflects
the bandwidth requirement of the end user, and the solution guarantees that information can be efficiently
disseminated from the source to all users of the multicast group in accordance to QoS provisions [14].

Note that neither online node-weighted Steiner tree problems nor online priority Steiner tree problems
have been studied prior to the conference versions of this paper. We believe that this is largely due to the fact
that, at first sight, there are straightforward matching upper and lower bounds on the worst-case competitive
ratio of the two problems. It is very easy, indeed, to show that every deterministic/randomized algorithm is
Ω(k)-competitive, using an adversarial argument along the lines of [38]. Moreover, even extremely naive
algorithms are O(k)-competitive, and thus optimal. Consider, for instance, the naive algorithm for PST
which buys a new path from the root to the currently requested terminal; in particular, the algorithm does
not set the weight of each bought edge to zero. This algorithm achieves the same competitive ratio as the
greedy algorithm, which considers, in a very natural way, all previously bought edges as available for free
when serving future requests. The same holds for the naive algorithm for NWST which buys a new path to
the current tree, without considering previously bought edges and vertices. It is immediately obvious that
the greedy algorithm should have better performance than the naive algorithm, however competitive analysis
does not reflect this separation, and deems both algorithms optimal. In a sense, this deficiency of competi-
tive analysis has parallels with the well-studied paging problem, in which extremely naive algorithms (such
as Flush-When-Full) attain the optimal competitive ratio [11]. This drawback has already been observed by
Ramanthan [33] and Faloutsos et al. [18] in the context of the online Directed Steiner tree problem, who
followed the approach of parameterized analysis. More precisely, their analysis incorporates not only the
number of terminals k, but also the edge asymmetry of the underlying directed graph, which informally is a
measure of the “directedness” of the input graph G. Once the asymmetry of the graph is taken into consid-
eration as a parameter in the analysis, it is indeed possible to separate algorithms based on their anticipated
performance, and in [4, 5, 6] we were able to establish optimal competitive ratios. More significantly, this
parameterized analysis helps reveal the true complexity and richness of the problem which is lost when the
competitive ratio is a function only of the number of terminals k.

The above discussion motivates our approach in the context of the online node-weighted and priority
Steiner tree problems. For the former, we define the node asymmetry (or simply asymmetry when clear
from context) as the quantity α = maxv,u∈V c(v)/c(u), i.e., the ratio of the maximum node weight to the
minimum node weight in the graph. For the latter, the relevant parameter is the number of priority levels b.
Note that if α = 1 or b = 1, the problems reduce to the classic Steiner tree problem; in contrast, when α or b
attain relatively large values, it is easy to show that the competitive ratios are (unavoidably) linear in k. Our
goal in this work is to obtain tight bounds on the competitive ratios for all possible ranges of the parameters
(as opposed to only the extreme values).

We note that for a directed graph G = (V,E), its edge asymmetry is defined as follows [33]. Let A
denote the set of pairs of vertices in V such that if the pair u, v is in A, then either (v, u) ∈ E or (u, v) ∈ E
(i.e, there is an edge from u to v or an edge from v to u or both). Then the edge asymmetry of G is defined
as γ = max{v,u}∈A

c(v,u)
c(u,v) .

1.2 Related work

The standard Steiner Tree problem (in which c(v) = 0, for all v ∈ V ), was one of the earliest problems
shown to be NP-hard by Karp [28]; in fact, the problem is APX-hard [10] [35]. Currently, the best up-
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per bound for general graphs is 1.55 due to Byrka et al. [12]. For the Generalized Steiner Problem, the
corresponding bound is 2 [21],[1]. In terms of online algorithms, Imase and Waxman [27] showed that a
simple greedy algorithm achieves optimal competitive ratio Θ(log k) for the online Steiner Tree. Berman
and Coulston [9] extended the result to the Generalized Steiner problem by providing a more sophisticated
algorithm. The performance of the greedy algorithm for the Generalized Steiner Problem has also been
studied by Westbrook and Yan [39] and Awerbuch et al. [7]; the latter showed that the greedy algorithm is
O(log |V |2)-competitive. For the online Steiner Tree in the Euclidean plane, the best known lower bound
on the competitive ratio is Ω(log k/ log log k) due to Alon and Azar [3]. Westbrook and Yan [38] showed
that in directed graphs, the competitive ratio can be as bad as Ω(k), which is trivially matched by a naive
algorithm that serves each request by buying a least-cost path from the root to the requested terminal. More
recently, several other settings for the online Steiner tree problem have been studied (e.g. the setting in which
a request may correspond to a deletion rather than insertion of a terminal [25], algorithms with limited re-
vocable decisions [22], and stochastic requests [20]). Recent work on online Steiner tree problems builds
heavily on online primal-dual approaches and linear-programming techniques (see [2] for a framework for
online algorithms in the context of generalized connectivity and cut problems).

Berman (see reference in [29]) showed an approximation-preserving reduction from Set Cover to NWST,
which implies, using results of [19] and [34], that NWST cannot be approximated within a factor of o(log k)
unless P=NP. We emphasize that the hardness result holds only when α is unbounded, in particular, it is re-
quired that α is as big as Ω(n). Klein and Ravi [29] presented an asymptotically optimal algorithm which
guarantees an approximation ratio of 2 ln k. Guha and Khuller [24] improved the upper bound to 1.35 ln k
(approximately). Concerning the online variant, Naor et al. [31] showed a O(log n log2 k) upper bound for
online NWST a result which was extended to GNWS by Hajiaghayi et al. [26]; for both problems a lower
bound of Ω(log n log k) applies. We emphasize that n denotes the number of vertices in the graph.

The priority Steiner tree problem was introduced by Charikar, Naor and Schieber [14]. In their work,
they provided O(min{log k, b}) approximation algorithms for both PST and GPS. The question whether
PST could be approximated within a constant factor was left open in [14], and sparked considerable interest
in this problem, until Chuzhoy et al. [15] showed a lower bound of Ω(log log n) (under the complexity
assumption that NP does not have slightly superpolynomial time deterministic algorithms). Interestingly,
this is one of few problems for which a log log-inapproximability result is currently the best known.

To the best of our knowledge, the first application of parameterized analysis in the context of Steiner
tree problems is due to Ramanathan [33] who studied approximations of the Steiner tree problem in directed
graphs of bounded edge asymmetry. Informally, the edge asymmetry captures the “directedness” of the
underlying graph. [33] proposed three different metrics of edge asymmetry, with the metric γ (defined
earlier) being the most natural one. According to this measure, undirected graphs are graphs of asymmetry
γ = 1, whereas directed graphs in which there is at least one pair of vertices v, u such that (v, u) ∈ E, but
(u, v) /∈ E are graphs with unbounded asymmetry (γ =∞). Between these extreme cases, graphs of small
asymmetry are useful, for instance, in modeling networks which are relatively homogeneous networks in
terms of the cost of antiparallel links. In [33] it was shown that for two of the proposed asymmetry metrics,
there is an algorithm with approximation ratio at most twice the asymmetry metric (when this metric is
defined by γ, the result is straightforward). [33] also gave an experimental evaluation of this algorithm in
the setting of randomly generated graphs.

The first study of the online Steiner tree problem in graphs of bounded edge asymmetry γ is due to
Faloutsos et al. [18]. The bounds on the competitive ratio were improved in [4, 5], which showed that the
competitive ratio of the simple greedy algorithm is bounded byO

(
min

{
max

{
γ log k
log γ , γ

log k
log log k

}
, k
})

, and
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that every online algorithm has competitive ratio Ω
(

min
{

max
{
γ log k
log γ , γ

log k
log log k

}
, k1−ε

})
, for arbitrarily

small constant ε. The small gap between these bounds was finally closed in [6] which showed that for all γ in
the range of values for which [5] is not tight, the competitive ratio of the greedy algorithm is Θ

(
log(k/γ)

log log(k/γ)

)
,

and this bound is tight for any deterministic algorithm. It is worth emphasizing that the introduction of the
edge asymmetry as an additional parameter yields a far more challenging and interesting analysis than the
trivial Θ(k) bound (which is optimal even for a naive algorithm that serves a new request by ignoring edges
that have already been bought [38]).

1.3 Contribution of this paper

Concerning NWST, we begin with a study of the approximability of its offline variant. Our motivation
stems from the results of [14], who gave parameterized approximation algorithms for PST and GPS; this
demonstrates that parameterized analysis has been useful in the study of approximability of these problems,
so one should naturally investigate whether similar benefits can be attained in the context of their online
variants. More precisely, we first show that unless P=NP, offline NWST cannot be approximated within a
factor better than O(min{logα, log k}) (Theorem 6). The proof uses ideas behind the reduction of Klein
and Ravi (see section 1.2), however we reduce from Set Cover of Bounded Set Size; the result then follows
from Trevisan’s inapproximability result [36]. Theorem 7 shows that the hardness bound is asymptotically
tight, by presenting an algorithm which is a combination of the Klein-Ravi algorithm for GNWS and the
constant-factor approximation algorithm of Goemans and Williamson for GS.

We then move to the onlive variant of the problems. Specifically, in Theorem 10 we show an asymptot-
ically tight bound of Θ(max{min{α, k}, log k}) on the competitive ratio of (deterministic or randomized)
online algorithms for NWST and GNWS. Concerning online priority Steiner problems, the main tech-
nical result is a tight bound on the competitive ratio of deterministic algorithms for both PST and GPS
equals Θ

(
b log k

b

)
(if k > b), and Θ(k), otherwise (Theorem 11 and Theorem 12). The bounds extend

to randomized algorithms (Theorem 17). Although the upper bound is relatively simple, the lower bound
requires an inductively-defined construction of an adversarial graph that combines several components, and
which enforces every asymptotically optimal algorithm to have essentially the same behavior as the greedy
algorithm.

Next, we study the competitiveness of PST in directed graphs. This is motivated by the above-mentioned
fact that PST is a useful formulation of multicasting with QoS guarantees. Moreover, one should take into
account that directed graphs provide a more accurate and realistic representation of a network. Indeed,
studies on the traffic of network backbones reveal marked asymmetry in parameters such as speed, link uti-
lization and reliability [16]. We first observe that if antiparallel links have the same costs, but their priorities
can differ by as little as one, then a tight bound of Θ(k) on the competitive ratio follows easily. Hence we
focus on the case in which antiparallel links have the same priority, but their costs may vary. In particular, we
consider directed graphs of bounded edge-cost asymmetry γ, as defined in Section 1.2. More precisely, we
derive an upper bound ofO

(
min

{
max

{
γb log(k/b)log γ , γb log(k/b)

log log(k/b)

}
, k
})

on the performance of the greedy

algorithm (Theorem 15), and a corresponding lower bound of Ω
(

min
{
γb log(k/b)log γ , k1−ε

})
, where ε is any

arbitrarily small constant, for any online algorithm (Theorem 16). In other words, we demonstrate how to
apply parameterized analysis of an online problem with three instance-related parameters: the number of
terminals, the edge asymmetry and the number of priority levels. This analysis succeeds in separating the
greedy from the naive algorithm, for a large range of the parameters γ and b, as will be argued in Section 4.3.

Last, we show how to use techniques introduced by Alon et al. [2] in order to obtain a O(log k logm)-
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competitive randomized algorithm for online PST and GPS, where m is the number of edges in the graph
(Theorem 20). The result demonstrates that when k is comparable to m (and thus n as well), there exist
efficient online algorithms regardless of the number of priority levels.

Table 1 summarizes the main results of this paper, in the context of previous work.

Table 1: Summary of previous work and main results in this paper. UB and LB abbreviate “upper bound”
and “lower bound”, respectively. Results without citation appear in this work.

Node-weighted Steiner Priority Steiner Directed Steiner
Online

non-parameterized
UB O(k) O(k) O(k) [38]
LB Ω(k) Ω(k) Ω(k) [38]

Online
parameterized

UB O(max{min{α, k}, log k}) O(min
{
b log k

b
, k
}

) O
(

min
{

max
{
γ log k

log γ
, γ log k

log log k

}
, k
})

[5]

LB Ω(max{min{α, k}, log k}) Ω(min
{
b log k

b
, k
}

) Ω
(

min
{

max
{
γ log k

log γ
, γ log k

log log k

}
, k1−ε

})
[4, 6]

Offline
non-parameterized

UB O(log k) [29] O(log k) [14] O(kε) [13]
LB Ω(log k) [29] Ω(log log n) [15] Ω(log k) [13]

Offline
parameterized

UB O(min{logα, log k}) O(min{b, log k}) [14] 2γ [33]
LB Ω(min{logα, log k})

2 Preliminaries

Given a (simple) path P between two vertices v, u in G, the cost of P is the sum of the costs of all vertices
and edges in P , excluding the end vertices v and u. Note that a path of minimum cost can be computed in
polynomial time, by constructing a directed graph G′ = (V,E′) in which only edges have cost, such that for
every edge e = (v, u) ∈ E, e′ = (v, u) ∈ E′, and c(e′) = c(e) + c(u). It is easy to see that a shortest path
from v to u in G′ translates to a minimum-cost path from v to u in G.

Given graph G with edge and vertex weights, define the shortest path completion of G (or simply path
completion), as the complete graph Gp = (V,E′) in which every vertex has the same cost as in V , and the
cost of an edge e = (v, u) ∈ E′ is the cost of a minimum-cost path between v and u in G. Note that the path
completion can be computed in polynomial time. Following a standard practice in the study of Steiner trees
we observe that, when we need so, we can restrict our attention to the path completion ofG, in the sense that
a solution to NWST in Gp can be transformed in polynomial time to a solution to NWST in G without any
increase to the solution’s cost, and without affecting the approximation ratio (see, e.g., Theorem 3.2 in [37]
which is cast in the context of the metric completion of the graph, but also can be applied in the case of the
path completion, even though the latter does not necessarily give rise to metric distances).

Using standard terminology, given a Steiner tree T = (VT , ET ) for a set of terminalsK, we call vertices
in VT \K Steiner vertices. We will use the following property.

Observation 1. Let (Gp,K) be the input to NWST, then we can transform any solution (Steiner tree) T
to a a tree T ′ which has total cost at most the cost of T , and for which the number of Steiner nodes (i.e.,
vertices which are not terminals) is at most |K| − 2.

Proof. We will show that there exists a Steiner tree T ′ for K of cost at most the cost of T such that every
Steiner vertex in T ′ has degree at least 3. Let S(T ′) denote the set of Steiner vertices of tree T ′, and degT ′(v)
denote the degree of v in T ′. Then, we have that

3|S(T ′)|+ |K| ≤
∑

v∈S(T ′)∪K

degT ′(v) = 2(|K|+ |S(T ′)| − 1),

6



which yields the desired result. Suppose that in T there exists a Steiner vertex v of degree 2 (note that
Steiner vertices of degree 1 can be removed from the tree without increasing its cost). Let u1, u2 denote the
neighbors of v in T . Then, using the definition of the path completion Gp, we can replace the path u1, v, u2
by the single edge (u1, u2) without increasing the cost of the tree. Repeating this process, we end up with a
tree with the desired property.

The following straightforward observation will simplify some cost manipulations in the proofs.

Observation 2. For NWST algorithms, when computing the cost of solutions, we can assume, without loss
of generality, that terminals have zero weight.

This is because the contribution of terminals to the total node weight is the same in any online algorithm
as well as in the offline optimal solution. Note that this is not to say that their weights are actually zero
(which would imply infinite asymmetry), but rather that we can treat them as zero, without affecting the
bounds.

Throughout this paper we assume that parameters such as α, β, γ are integers, since we can always scale
them to the nearest integer without affecting, asymptotically, the bounds. Furthermore, we can assume that
each parameter is at least a sufficiently large constant (e.g, 8). This is due to the fact that if any of these
parameters is bounded by a constant, then the corresponding competitive ratios are asymptotically the same
as for a value of the said parameter equal to 1.

We assume thatG is connected, since otherwise we can restrict the problem to the connected components
of G. We denote by cmin, cmax the minimum and maximum costs of vertices in V , respectively. Since G
is part of the input in both the online and offline versions of the problem, we assume that the parameters α
and b are known to the algorithm. A greedy online algorithm for either problem connects the terminal to the
current solution via a feasible, shortest-cost path. Edges already bought have their cost set to zero, to reflect
that they can be used for free in the future.

Theorem 3 ([9]). For the online GS problem, algorithm BC due to Berman and Coulston is O(log k)-
competitive. The bound is asymptotically optimal.

Theorem 4 ([29]). For online GNWS, algorithm KR due to Klein and Ravi is O(log k) competitive. The
bound is asymptotically optimal.

Theorem 5 ( [21]). For the offline GS problem, algorithm GW due to Goemans and Williamson is a 2-
approximation.

We also note that Alon et al. [2] have studied online algorithms for broad classes of (edge-weighted)
connectivity and cut problems. Their approach applies to online problems that have integer programming
formulations whose LP-relaxation models either a cut or a connectivity problem. In order to obtain efficient
online randomized algorithms [2] apply a two-step approach: in the first step, a solution to the fractional
problem (i.e., the one modeled by the LP relaxation) is obtained using the multiplicative updates technique.
In the second step, this fractional solution is rounded, in an online fashion, to an integral one. This gives rise
to a randomized online algorithm, whose competitive ratio is the product of the performance ratios of the
two steps. [2] applied this technique to a wide variety of problems such as online facility location, online
multicast, and online group Steiner.

Last, in order to show lower bounds on randomized algorithms, we resort to a standard tool, namely
Yao’s principle [40], according to which the ratio of the average cost of the algorithm over the average
optimal cost is a lower bound on the competitive ratio of every randomized algorithm against an oblivious
adversary (assuming cost minimization problems).
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3 Parameterized analysis of NWST and GNWS

Recall that in the context of node-weighted problems, the relevant parameters are the number of terminals k
and the parameter α which is equal to the ratio of the maximum node weight to the minimum node weight
in the graph.

3.1 Approximation algorithms

We first address the inapproximability of NWST. To this end, we use a reduction from the Bounded-size
Set Cover problem, or BSSC, for brevity. The input to this problem consists of a universe U of elements
and a collection C of sets, with each such set containing at most B elements in U , for some parameter B.
The objective, as in the general set cover problem, is to find a collection C ⊆ C of minimum cardinality
such that for every e ∈ U there exists S ∈ C such that e ∈ U . As shown by Trevisan [36], BSSC is not
approximable within a factor of lnB −O(ln lnB) unless P=NP.

Theorem 6. Any polynomial-time algorithm for NWST in graphs of asymmetry α has approximation ratio
Ω(min{log k, logα}), unless P = NP .

Proof. The proof is based on a reduction from BSSC. Consider an instance I of BSSC which consists of
a universe of elements, denoted by U and a collection C of sets, each containing at most α elements in U .
The reduction is as follows: G is defined as a graph with a vertex vS for each set S ∈ C, and a vertex ve for
every element e ∈ U . Each ve vertex has weight equal to 1/α and each vertex vS has weight 1. All pairs of
vertices of the form vS , vS′ are pairwise adjacent; furthermore, vS and ve are adjacent if and only if e ∈ S.
All edge weights are zero. Last, we define the set of terminals K as the set of all ve vertices in G (hence
k = |U |). Note that this transformation gives rise to an instance I ′ of NWST, and that G has asymmetry α.

Denote byOPT (I ′),A′(I ′) the cost of the optimal algorithm and the cost of an approximation algorithm
A′ for NWST on the above instance I ′, respectively. Also denote by C ′opt, C

′ the set of vertices of the form
vS in (any fixed) optimal solution and the solution of A′, on input I ′, respectively. It is easy to see that
a Steiner tree for K in G corresponds to a set cover for the instance (U, C), in that the set of vertices C ′

corresponds to a collection of sets (which we denote by C) which cover U . Define A as the set cover
algorithm which, on instance I , selects all sets in C. Since all edges in G have zero weight,

A′(I ′) = k/α+ |C ′| and A(I) = |C| = |C ′|. (1)

Likewise, we have

OPT (I ′) = k/α+ |C ′opt| and OPT (I) = |Copt| = |C ′opt|. (2)

where OPT (I) is the optimal cost for the instance I of set cover, and Copt is the collection of sets in I
corresponding to C ′opt. Suppose that NWST is approximable within a factor ρ, then

A′(I ′) ≤ ρ ·OPT (I ′) = ρ(k/α+ |C ′opt|) (from (2)),

The solution obtain via the reduction for the instance I of BSSC has cost at most A′(I), and from (2) we
obtain that we can approximate BSSC to a factor ρBSSC such that

ρBSSC ≤ ρ ·
k/α+ |C ′opt|
|C ′opt|

. (3)
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We now distinguish two cases, depending on whether α ≤ k or not. Suppose first that α ≤ k. In this case,
since Copt is a feasible solution for I , we have that

α|C ′opt| = α|Copt| ≥ k. (4)

Combining (3) and (4) we obtain that ρ ≥ ρBSSC/2 ≥ lnα
2 − O(ln lnα), where the last inequality follows

from the inapproximability of BSSC [36].
Suppose next that α > k. In this case, we obtain again directly from (3) that ρ ≥ ρBSSC/2, which in

combination with the inapproximability of BSSC implies that ρ ≥ ln k
2 − O(ln ln k), which completes the

proof.

We now present an algorithm that has approximation ratio O(min(log k, logα)), thereby matching the
lower bound of Theorem 6. We first note that when α ≥ k, the Klein-Ravi (KR) algorithm is O(log k)-
approximation, hence optimal. We may thus assume that α < k. In this case, our algorithm is the a
combination of the Klein-Ravi and Goemans-Williamson (GW) algorithms. For convenience, we borrow
some of the notation in [29, 21]: in particular, we use the concept of a requirement function r : V × V →
{0, 1}, defined as r(u, v) = 1 if and only if the pair of vertices u, v is not yet connected at the end of the
current iteration of the algorithm (and thus initially r(si, ti) = 1 for all pairs (si, ti) ∈ K, and r(u, v) = 0
for all other pairs not in K). We remind the reader, in particular, that in each iteration of the KR algorithm,
a subset of currently active trees is merged into a single tree (i.e., into a single connected component) by
buying a vertex of highest cost-efficiency, and paths from the vertex to the active trees in question (the
definition of cost-efficiency is as in [29] and is not critical in our analysis). Here, the term “active” reflects
the fact that the tree contains vertices for which the requirement function is not satisfied by the current partial
solution. More formally, a tree T is active if and only if there exist vertices u, v ∈ V , with u ∈ T , v /∈ T
such that r(u, v) = 1. Prior to the execution of the algorithm r(u, v) = 1 if and only if (u, v) ∈ K.

Algorithm 1 Algorithm OFFLINEGNWS on input (G, r)

1: Execute the KR algorithm until at most k/α active trees remain.
2: Create a new graph G′ by contracting each tree in the partial solution to a single “supernode”. Each

supernode is assigned vertex weight zero.
3: Define a new requirements function r′ onG′ and solve GS on instance (G′p, r

′) using the GW algorithm.

We emphasize that for the GS instance (G′p, r
′), all nodes have zero weight, and that G′p is the path

completion of G′. We also remind the reader that GS is the (plain) Generalized Steiner problem, with no
node weights.

The requirements function r′ in step 3 of the algorithm is defined in a very natural way. In particular, at
the end of step 1, the set of edges and vertices which have been bought induces a forest F , with each tree T
in the forest corresponding to a supernode vT in the vertex set of G′. We define r′ for supernodes u, v ∈ G′
to be such that r′(u, v) = 1 if and only if there exist vertices ũ ∈ T1 and ṽ ∈ T2, for trees T1, T2 in F
such that r(ũ, ṽ) = 1 at the end of step 1. Informally, r′ is determined by all vertices whose connectivity
requirement has not been satisfied by the end of step 1. Let OPT denote the optimal solution cost for the
instance (G, r) of GNWS.

Theorem 7. Algorithm OFFLINEGNWS has approximation ratio O(min(log k, logα)).

Proof. We upper bound the cost of each one of the steps 1 and 3 of the algorithm with respect to the optimal
cost OPT . Recall that from Observation 2, we can assume that all terminals have zero weight.
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Consider first step 1, and more precisely the penultimate iteration of the KR algorithm in it. Since at
least k/α active trees remain, the cost of the partial solution maintained up to that iteration, i.e., edges and
vertices bought by KR is upper bounded by

2 ln
k

k/a
OPT = O(lnα)OPT.

The above follows by the analysis of the KR algorithm (see Section 4 in [29], in particular the two inequal-
ities following (4) in [29]). More precisely, in any iteration of the KR algorithm, [29] shows that the cost
of the algorithm up to that iteration is bounded by the quantity 2 ln k

φOPT , where φ is the number of active
trees that remain up to that point.

The KR algorithm has the property that in every iteration it connects q ≥ 2 active trees in a new
component at an average cost of at most OPT/q, which implies that the cost of the last iteration in step 1 is
bounded by OPT . Overall, step 1 contributes cost O(lnα)OPT .

It remains to bound the cost due to step 3; here, we bound separately the vertex and edge costs. Denote
by F = {T1, . . . , Tl} the forest of trees returned by OFFLINEGNWS. First, note that the cost of edges in the
optimal solution to the GS instance (G′p, r

′) is bounded byOPT . Since GW is a 2-approximation algorithm
for GS (Theorem 5), the cost of the edges in the forest is at most 2OPT . Next, let ki denote the number
of terminal pairs in tree Ti (here, we stress that the term terminal refers to the instance (G′p, r

′), namely a
supernode which corresponds to an active tree at the end of step 1 is considered a single terminal). From
Observation 1, the number of Steiner nodes in Ti is bounded by 2ki − 2 ≤ 2ki. Therefore the total weight
of Steiner nodes in F is at most

l∑
i=1

2ki · cmax ≤ 2
k

α
cmax = 2k · cmin ≤ 2OPT,

where the first inequality follows from the fact that at most k/α active trees remain at the beginning of step
2, the equality follows the definition of the asymmetry, and the second inequality follows from the fact that
the weight of each terminal in K also appears in OPT . We conclude that the total node-weight of the forest
F is at most 2 · OPT , and its total weight at most 3 · OPT , which in turn is a bound for step 3 of the
algorithm.

Adding the contribution of both steps, we obtain that the algorithm has overall cost O(logα)OPT .

3.2 Online Algorithms

Lemma 8. The competitive ratio of deterministic online GNWS is Ω(max{min{α, k}, log k}).

Proof. We consider the online NWST problem (the lower bound carries over to online GNWS). If α <
log k, a lower bound of Ω(log k) follows by the construction of Imase and Waxman [27] for the online edge-
weighted Steiner tree problem. Otherwise the adversary presents a graphG which is defined as follows: The
vertex set of G consists of (disjoint) sets V1 and V2 (we require, in particular, that |V2| ≥ k(k + 1)/2). The
set V1 is defined in terms of V2 as follows: Each subset of k vertices in V2 defines a vertex u ∈ V1 which is
adjacent to these k vertices in V2. No more vertices or edges exist in G. The weight of each vertex in V1 is
α, and each vertex in V2 has unit weight, whereas the weight of all edges is zero.

The adversary will present a nemesis sequence consisting of vertices in V2, determined by a game
against the algorithm. In the first round of the game, the adversary picks any two vertices in V2 as the first
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two terminals in the sequence; the algorithm buys a vertex in V1 so as to guarantee connectivity. In each
subsequent round, the adversary presents a new terminal, namely a vertex in V2, which is not adjacent to
vertices bought in earlier rounds. The algorithm then must buy a new vertex in V1 and the adversary repeats
the above strategy. Clearly, the game lasts k − 1 rounds. At the end of the game, k terminals have been
presented all of which are adjacent to some vertex in V1, hence OPT ≤ α + k. On the other hand, the
algorithm has bought k− 1 vertices in V1, hence its cost is at least α(k− 1) which in turn yields a bound on
the competitive ratio of Ω(min{α, k}).

We observe that the lower bound of Lemma 8 can be extended to randomized algorithms, using the same
graph as part of the adversarial input; we require, however, a larger set of vertices V2, namely we require
that |V2| ≥ 2k2. We define a probability distribution D on the sequence of terminals presented to any fixed
deterministic online algorithm; from Yao’s principle [40], the ratio of the average cost of the algorithm over
the average optimal cost is a lower bound on the competitive ratio of every randomized algorithm against
an oblivious adversary. In particular D chooses uniformly at random a set K ⊆ V2, with |K| = k; then the
input to the deterministic algorithm is the set K, in any order. It follows that every time the deterministic
algorithm considers a terminal t ∈ K (except for the very first terminal), the probability it has already
bought a vertex in V1 which is adjacent to t is at most k

2k2−k2 = 1
k , and hence the probability that for each

of the k − 1 terminals the algorithm must buy a new vertex in V1 is at least (1 − 1/k)k−1 ≥ e−1, thus the
average cost of the algorithm is Ω(αk), while the average optimal cost is still α+ k.

Next, we show a matching upper bound. More precisely, we propose an algorithm, denoted by A, which
works in two phases. Let k denote the number of pairs presented by the adversary thus far, and k the total
number of pairs that will be presented eventually (A does not know k). The first phase is a greedy phase
and lasts for as long as α > k: namely, the algorithm connects the two terminals in the pair by means of a
minimum-cost path. The second phase starts when k exceeds α, at which point the algorithm switches to
the Berman and Coulston (BC) algorithm for (edge-weighted) GS [9]. More precisely, the algorithm treats
all edges bought during the greedy phase as having weight zero (meaning that it already paid for them). In
addition, it ignores vertex weights (or alternatively, treats vertices as if they have zero weight).

Lemma 9. Algorithm A described above has competitive ratio O(max{min{α, k}, log k}).

Proof. The total cost due to the first phase is clearly at most min{α, k}OPT . For the second phase, since
the BC algorithm is O(log k)-competitive for GS (Theorem 3) it follows that the cost of the edges it buys is
O(log k)OPT . Moreover, since BC returns a forest of at most k trees, using Observation 1, it follows that
at most 2k vertices of the forest are Steiner vertices. Therefore the total node-cost of the forest is bounded
by the quantity C = 4k · cmax ≤ 4αk · cmin. However, the latter contribution to the cost is in effect only
when k ≥ α, otherwise we do not run BC. Given that in such case OPT ≥ kcmin ≥ αcmin, we have that
C ≤ 4α ·OPT = 4 min{α, k} ·OPT Therefore, the total cost of A is

O(log k ·OPT + min{α, k} ·OPT ) = O(max{min{α, k}, log k} ·OPT ).

Combining Lemmas 8 and 9 we obtain the following theorem.

Theorem 10. The competitive ratio of deterministic online GNWS is Θ(max{min{α, k}, log k}).
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4 Parameterized analysis of online PST and GPS

In this section we study the online priority Steiner tree problems. Recall that for this problem, the relevant
parameters are the number of terminals k as well as the number of priority levels b.

4.1 Upper bound

We analyze a relatively simple algorithm, called ONLINEGPS which applies not only to PST but also to its
generalization, namely GPS (as defined in Section 1). This algorithm uses, as subroutine, the online algo-
rithm for the (plain) Generalized Steiner problem (GS) in undirected graphs due to Berman and Coulston [9],
which we denote by BC. In Section 4.2 we prove that this algorithm is asymptotically optimal.

Denote by k the number of terminals revealed so far. ONLINEGPS works in two phases. In the first
phase, as long as k ≤ b ONLINEGPS connects each terminal pair by a minimum-cost path. The second
phase begins when k > b: during this phase, ONLINEGPS serves each request by running the BC algorithm.
More precisely, let Gj denote the subgraph of G induced by all edges e of priority at least j, for all integers
1 ≤ j ≤ b. During the second phase, ONLINEGPS partitions the sequence of requests into subsequences
R1, . . . , Rb such that Rj consists of all requests in R of priority equal to j. Each sequence in Rj is served
by running BC on graph Gj .

Theorem 11. The competitive ratio of ONLINEGPS is O
(
b log k

b

)
, if k > b and O(k), otherwise.

Proof. If k ≤ b, then ONLINEGPS executes only the first phase, hence its cost is at most k · OPT . Next,
suppose that k > b. LetOPTj denote the cost of the optimal solution to the Generalized Steiner Problem on
graph Gj , and for the set of terminals Rj , (here, Gj and Rj are as defined above). Let c(Rj) denote the cost
of ONLINEGPS for the sequence of requests inRj ; we can assume, without loss of generality, that |Rj | > 0,
since otherwise Rj does not contribute any cost. Since the BC algorithm is O(log |Rj |)-competitive, it
follows that c(Rj) = O(log |Rj |)OPTj = O(log |Rj |)OPT (since OPTj ≤ OPT ). Therefore, the cost
incurred by ONLINEGPS in the second phase is bounded by

c(R) = O

 b∑
j=1

log |Rj |OPT

 = O

log
b∏

j=1

|Rj |

OPT,

which is maximized when |Rj | = k
b (for k > b.) Hence c(R) = O

(
b log k

b ·OPT
)
. Since the contribution

of the first phase is at most b · OPT , we obtain that the total cost of the algorithm is O
(
b log k

b ·OPT
)
,

which concludes the proof.

4.2 Lower bound

In this section, we prove that the algorithm of Section 4.1 is asymptotically optimal. More precisely, we
prove the following theorem:

Theorem 12. The competitive ratio of every deterministic online algorithm for online PST and GPS is
Ω
(
b log k

b

)
, if k > b and Ω(k), otherwise.

We prove the bound for online PST, then the result carries over to online GPS. We distinguish two
cases, based on whether k > b. Depending on the case, the adversary will present a suitable input graph G
and a request sequence σ of k terminals (the latter is derived by means of a game between the algorithm and
the adversary). The case k > b is substantially harder than the case k ≤ b (which is also reflected, in some
sense, in the upper bound of Theorem 11).
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4.2.1 Case k > b

We present a game between a deterministic online algorithm and the adversary which results in a competitive
ratio at least Ω

(
b log k

b

)
. The adversarial graph G will be constructed in b consecutive phases. Each phase,

in turn, will be defined in terms of additions of appropriate vertices and edges, which occurs in consecutive
rounds.

High-level description of the proof. We begin with some intuition and an informal outline of the proof.
Recall that for the standard online Steiner tree problem in an undirected graph, there is a Ω(log k) lower
bound on the competitive ratio of any online algorithm [27]. This bound is obtained by a game between an
adversary and the online algorithm on an inductively defined graph. Figure 1 illustrates the main idea behind
this construction. Consider first graph G1, and suppose that terminals r, u1 are first requested. The online
algorithm (say A), will connect u1 to r via a path that passes either through either u2,1 or u2,2. Then the
adversary will request next vertex u2,2, or u2,1, respectively. This ensures that A pays a cost of 3/2, whereas
OPT has a cost equal to 1. One can “boost” this bound by forcing the algorithm to make further “bad”
choices; this can be done, informally, by replacing, in G1, the edges of cost 1/2 with copies of G1, where
now edges have weight 1/4. This gives rise to graph G2. The adversary now will request vertices r, u1 first,
one vertex of type u2,∗, and two vertices of type u3,∗, in such a way that all requested vertices lie on a path
from r to u1. This means that OPT still pays 1, whereas A now pays cost 1 + 1/2 + 2 · 1/4 = 1 + 2 · 1/2.
We can then continue by defining recursively G3, . . . , Glog k; then a similar game on the final graph Glog k

yields a cost for A that is Ω(log k), whereas OPT still pays cost 1.

r

u1

u2,1 u2,2

1/2

r

u1

u2,1 u2,2

1/4

G1 G2

Figure 1: An illustration of the adversarial graph of Imase and Waxman [27]. In G1 all edges have weights
equal to 1/2, whereas in G2 all edges have weights equal to 1/4.

Turning to online PST, we use some elements of the above construction so as to define a game that
consists of b phases. In phase i, only terminals of priority i will be requested. By assigning appropriate
values to the edge priorities of the graph, we enforce a situation in which the parts of the graph that were
bought in phases 1, . . . i − 1 will not be useful, for the online algorithm, in phase i. Thus, each phase will
incur a lower bound of Ω(log k

b ), we achieve overall a lower bound of Ω(b log k
b ), as wanted.

There are certain technical challenges that one must overcome in this approach. Namely, one must
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guarantee that for the online algorithm, phases are sufficiently “disjoint”, as explained above, whereas for
OPT , all requested terminals are still on a simple path (as in the standard online Steiner tree construction).
To do so, instead of using the “diamond”-shaped construction illustrated in Figure 1, we use a construction
in which there are many vertical-shaped edges (which we call “columns”), as depicted in Figure 2. The
terminals will connect to the columns by means of edges to certain subset of vertices (which we will call
s-sets). Finally, in order to simplify the proof (namely, so as to argue more easily about the disjointness
of phases), we use “tree-like” constructions of s-sets. In this way, the adversary will be able to request
successive terminals whose s-sets are in a parent-child relation, thus giving the adversary a lot of power in
moving the game towards columns that have not yet been used by the algorithm.

r

u1

u2,1 u2,2

Figure 2: A different construction of the adversarial graphG2 of Figure 1. Here, only non-solid vertices can
be requested as terminals. Solid edges have weight 1/4, all other edges have 0 weight. Rectangles depict
the s-sets to which potentially requested terminals connect. Note that there are 8 columns in total.

We now proceed with the technical details of the proof. We first show how to construct the adversarial
graph, using the intuition outlined above. Then we define the game between the algorithm and the adversary,
and finish by bounding the costs of the online algorithm and the optimal offline algorithm.

Construction of the adversarial graph. We begin with defining some auxiliary constructions. Let T1 =
{v1, . . . , vl} and T2 = {v′1, . . . , v′l} be two disjoint sets of l vertices each (we should think of T1 as lying
higher than T2, as illustrated in Figure 3). For every i ≤ l, we define the distance between vi and v′i to be
equal to 1. We call index i the i-th column, and require that l is a power of 2, and that it is large compared
to k (e.g., at least 2k). For a column i ≤ l, we say that we insert a vertex w at depth d < 1 in column i if we
introduce a new vertex w at distance d from vertex vi and distance 1− d from vertex v′i. We also say that a
collection of vertices which are at the same depth form a layer of vertices. Intuitively, the depth of a vertex
w describes how far away w is from the top layer T1, or equivalently, how close it is to the bottom layer T2.
The distance between two inserted vertices is the absolute value of the difference of their depths. We denote
by E the set of all l columns (see Figure 3 for an illustration).

On the setE of columns, we define a constructionB(E, β) called block which inserts vertices and edges
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T1

T2

1 � d

d

Figure 3: An illustration of the insertion of a vertex at depth d. Here, T1 and T2 consist of eight vertices
each, and the vertex is inserted at the third column.

in log(k/b)−1 consecutive rounds1; here β is an integral parameter, with β ∈ [1, b]. The rounds are defined
inductively as follows: In round 1, l vertices w1,1 . . . , w1,l are inserted, one in each column of E, at depth
equal to 1/2. We partition the l vertices in two groups, S1,1 and S1,2, consisting of vertices {w1,1, . . . w1,l/2},
and {w1,l/2+1, . . . w1,l}, respectively. We refer to such groups of w vertices as s-sets. For each one of the
two s-sets we add a corresponding vertex, namely we add vertices u1,1 and u1,2. For every vertex w ∈ S1,1

(resp. w ∈ S1,2) we add the edge (w, u1,1) (resp. (w, u1,2), which has zero cost and priority equal to β.
We now describe the j-th round in the construction of B(E, β), assuming that rounds 1, . . . , j − 1 have

been defined. Let d denote the size of the s-set of smallest cardinality that was inserted in round j − 1. For
every i ∈ [1, 2j−1], we insert l vertices at depth i/2j , one for each column inE, unless some other w vertex
has been inserted at this same depth in a previous round, in which case we do not perform any additional
insertion. This has the effect that 2j−1 additional layers of vertices are inserted in round j. We call the i-th
deepest layer of vertices that is inserted in round j the i-th layer of round j, and denote by wj,i,1 . . . wj,i,l

its vertices. We partition the l w-vertices of the i-th layer of round j in (2il)/d s-sets (from left to right),
all of the same size d/2i: In particular, the s-set Sj,i,q (in words, the q-th s-set, from left to right, of the i-th

layer of round j) consists of d/2i vertices {wj,i,
(q−1)d

2i
+1, . . . wj,i,

qd

2i }. For each such s-set of the form Sj,i,q,
we add a vertex uj,i,q, and for every vertex w ∈ Sj,i,q we add the edge (w, uj,i,q) of zero cost and priority
β. The depth of a u-vertex is defined as the depth of any of the w-vertices in its corresponding s-set, and its
height is defined to be equal to one minus its depth. This completes the definition of round j, and thus the
definition of the block construction as well. Figure 4 illustrates the block construction.

Finally, we turn B(E, β) into a well-defined graph by inserting edges between any two pairs of consec-
utive vertices in all columns. More precisely, for each pair of consecutive vertices w,w′ of every column i,
we add an edge (w,w′) (which we call vertical edge) of cost equal to the distance between w and w′ in the
column and priority equal to b. We use the same notation B(E, β) to refer to this graph, when clear from
context.

We say that an s-set S crosses a certain set of columns C if and only if the set of columns in which the
vertices of S lie intersectsC. Two s-sets cross each other if and only if the intersection of the sets of columns
crossed by each one is non-empty. Note that there is a 1-1 correspondence between s-sets and u-vertices,
which means that several properties and definitions pertaining to s-sets carry over to the corresponding u
vertices (e.g., we say that two u vertices cross if their s-sets cross).

1Throughout the paper we omit floors and ceilings since they do not affect the asymptotic behavior of the algorithms.
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T1

T2

1 4 8 12 16

S1,1
S1,2

S2,1,1 S2,1,2 S2,1,3 S2,1,4

S2,2,1 S2,2,2 S2,2,3 S2,2,4 S2,2,5 S2,2,6 S2,2,7 S2,2,8

Figure 4: An illustration of the block construction B(E, β), assuming a set E of 16 columns, and two
rounds. For simplicity, the figure illustrates only the partition of w-vertices into s-sets, and omits the u
vertices. S1,1 and S1,2 are the s-sets of round 1. The sets S2,1,1 . . . S2,1,4 are the s-sets at the first layer of
round 2, and S2,2,1 . . . S2,2,8 are the s-sets at the second layer of round 2.

The adversarial graph G is defined by performing a series of block constructions, in b consecutive
phases. Let T1, T2 and E be as defined earlier. Phase 1 consists only of the insertion of block B(E, 1).
Suppose that phase p−1 < b has been defined, we next define phase p. Let d denote the smallest cardinality
among s-sets inserted in phase p − 1. In other words, d is the cardinality of s-sets in the last (i.e., highest)
layer inserted in the last round of phase p− 1. This induces a partition of the columns in E in d sets, where
the i-th set in this partition, say set Ei, consists of columns (i− 1)d+ 1, . . . id. Phase p consists of inserting
l/d blocks, namely blocks B(Ei, p), for all i ∈ [1, l/d] (see Figure 5 for an illustration).

One subtle point has to do with w-vertices of the same column, which are at the same depth but belong
to different phases. Say w1 and w2 are such vertices, added in phases j1 and j2, respectively. For every such
pair, there is an edge (w1, w2) in G of zero weight and priority equal to min{j1, j2}. In words, this means
that using this edge is free, however it can be of use only if we route traffic at a level at most the minimum
of the two corresponding phases.

This essentially completes the construction of G. We also add a root vertex r and edges of the form
(r, v), for all v ∈ T1, as well as edges of the form (t, v′), for all v′ ∈ T2 (where t is a new vertex). These
edges are assigned zero cost and priority b.

Before proceeding to the description of the game between the algorithm and the adversary, we provide
some alternative classification of vertices added in round j of phase p, which will make the description of
the game easier. Consider the collection of deepest s-sets inserted during round j of phase p. This collection
induces a partition of the set of all columns E into disjoint sets Ej,1p , Ej,2p , . . ., from left to right: every
s-set inserted during round j of phase p will cross only one of the sets of columns Ej,1p , Ej,2p , . . .. We then
say that an s-set (or a corresponding u-vertex) inserted during round j of phase p that crosses edges of the
set Ej,ip belongs in component Cj,ip . This provides a convenient way to identify s-sets and u-vertices in this
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T1

T2

B(E1,�) B(E8,�). . .

Figure 5: An illustration of a phase in the construction of G. Here, B(E, 1) consists of 2 rounds, similar
to Figure 3, i.e., three layers are inserted in total. There are eight blocks B(E1, 2), . . . B(E8, 2) inserted in
phase 2, each crossing the columns of the highest S-set ofB(E, 1); each of the blocksB(E, 2) is represented
by a rectangle.

construction. Namely, we use the notationCj,ip (level, pos) to describe the s-set which belongs in component
Cj,ip , is in the level-th deepest layer among layers of the component Cj,ip and is also the pos-th s-set (from
left to right) in this component. We call the s-set Cj,ip (1, 1) the s-root of component Cj,ip (by definition, the
unique deepest s-set of the component).

As an example of the above definitions, in Figure 4, the component C2,3
1 consists of the sets S2,1,3,

S2,2,5 and S2,2,6. The root of this component is S2,1,3, and S2,2,5 and S2,2,6 are its left and right children,
respectively.

The purpose of this notation is to define a parent/child relation among s-sets in the same component,
which is at the heart of the game between the algorithm and the adversary, as it will become clear later.
From construction, every s-set in layer L of Cj,ip , say the set Cj,ip (L, pos) crosses exactly two other s-sets
in the same component which are inserted at layer L+ 1, namely sets Cj,ip (L, 2pos) and Cj,ip (L, 2pos+ 1),
which we call the left and right child of Cj,ip (L, pos), respectively. The only exception is the highest layer
of the component, which does not have any children.

We emphasize that definitions that relate s-sets apply also to u-vertices, due to their 1-1 correspondence.
For instance, we say that a u-vertex is the u-root, or simply root of a component if its corresponding s-set is
the s-root of the component, or we say that two u-vertices are in a child/parent relation if the corresponding
s-sets are in such relation (in the same component).

The game between the algorithm and the adversary. We show how to construct an adversarial sequence
σ of at most k requests (the actual number of requests will be k−b+1, but this does not affect the asymptotic
analysis). The request sequence σ is constructed in b phases, and each phase will request a u-vertex which
was added in the corresponding phase in the construction of G (with the exception of the very first request,

17



which is for vertex t). Every requested vertex in phase p ≤ b will be assigned a priority equal to the phase
index, namely p. For every such vertex u, the online algorithm must establish a connection path from r to
u denoted by path(u) (of priority at least p(u)), possibly buying new edges. We can assume, without loss
of generality, that the algorithm provides a single connection path for each requested terminal (if more than
one such paths exist, the adversary can declare one arbitrarily as path(u), and ignore all others; this only
strengthens the bound. Similar arguments have been used in [18] and [4]).

All phases consist of log(k/b) − 1 rounds, with the exception of phase 1, which consists of log(k/b)
rounds (with round 0 an “initialization” round). To give some intuition about the game, we first describe the
actions of the adversary on the first three rounds of phase 1, then provide a more formal iterative description
of the game. Every request in phase 1 is assigned priority equal to 1. In round 0, vertex t is requested,
and the connection path path(t) chosen by the algorithm will cross exactly one of the sets S1,1 and S1,2

(which are also the s-roots of the trivial components C1,1
1 and C1,2

1 ). Round 1 consists of a single request
to a u-vertex determined as follows: if path(t) crosses the s-root of C1,1

1 (resp. C1,2
1 ), then the adversary

requests the root of C1,2
1 (resp. C1,1

1 ). At this point, no matter what the connection paths chosen so far, there
is a component C2,x

1 , for some x ∈ [1, 4], such that no columns of C2,x
1 are crossed by existing connection

paths2. Round 2 then begins, during which the adversary will request one u vertex per layer of C2,x
1 . In the

first request of the round, the adversary requests the root of C2,x
1 . The connection path for the latter will

cross exactly one of its children: if it crosses the left child, then the next request will be to the right child
and vice versa. In total 2 requests to u-vertices are made in this round.

For a formal description of the algorithm/adversary game, we first need a straightforward proposition
concerning u-vertices, which follows from the construction of G. The proposition will guarantee that the
actions of the adversary are well-defined.

Proposition 13. Let u be a u-vertex requested by the adversary which belongs to component Cj,xp , for some
round j and index x. Suppose that u satisfies the precondition that prior to its request in σ, no connection
path for previously requested vertices crosses u. Then the following hold:

(a) If u is the highest u-vertex in Cj,xp , (i.e., u has no children in Cj,xp ) and j < log(k/b) − 1, then after
path(u) is established, there is a component Cj+1,y

p whose root does not cross any connection paths
for all previous requests.

(b) If u is not the highest u-vertex in Cj,xp (i.e., u has children in Cj,xp ) then after path(u) is established,
there is a child of u in Cj,xp that is not crossed by any connection paths for all previous requests.

(c) If u is the highest u-vertex in Cj,xp , and j = log(k/b) − 1, then after path(u) is established, there is
a component C1,y

p+1 whose root does not cross any connection paths of previous requests.

Proof. (a) Let S denote the s-set to which u corresponds. Since S is the highest s-set in round j, from
construction of G, there will be two s-sets which are the roots of components Cj+1,y

p , Cj+1,y′
p , for two

indices y and y′ with the property that they each cross half the columns crossed by S. Hence, the connection
path for u will cross only one of these two sets (without loss of generality, Cj+1,y′

p ). Then Cj+1,y
p is the

component with the desired property.
2We say that a connection path for a terminal crosses an s-set (or a corresponding u-vertex) if it contains (vertical) edges in a

column that is crossed by the s-set).
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(b) Let S denote the s-set to which u corresponds. Since S is not the highest S-set in round j, it has two
children in component Cj,xp , with the property that they each cross half the columns crossed by S. The
argument proceeds as in (a).

(c) Let S denote the s-set to which u corresponds. Since S is the highest s-set in the last round of phase p,
phase p + 1 will involve (in its first round), the introduction of two components, say C1,y

p+1, C1,y′

p+1 such that
their corresponding roots cross half of the columns crossed by S. Once again, the argument proceeds as in
(a).

The game proceeds as follows: First, suppose that rounds 1 . . . j of phase p have been defined (with
j < log(k/b) − 1), we now describe the requests of round j + 1 of phase p. Let s denote the s-set of the
highest u-vertex requested in round j. Then, from Proposition 13(a), there is a component, namely Cj+1,y

p

for some index y such that no connection path established so far crosses the s-root of Cj+1,y
p . Round j + 1

begins with the adversary requesting the u-root of this component. The connection path for this request will
cross only one of its children in the component, and the child that is not crossed will be the 2nd terminal
to be requested in this round. Round j of this phase proceeds with requesting u-vertices in an upwards
fashion, one u-vertex per layer of Cj+1,y

p : when a vertex is requested, the next request is the unique child
of the vertex that is not crossed by any connection paths up to that point (which can be done as suggested
by Proposition 13(b)). The round continues until the highest vertex in component Cj+1,y

p is requested, i.e.,
continues with 2j requests in total.

It remains to argue how to generate the first request for any phase p > 1. Note that the last request
of phase p − 1 is to a u-vertex which is highest in some component C log(k/b)−1,x

p−1 for some index value x.
Proposition 13(c) guarantees that there is a component C1,y

p , for some index y, whose root does not cross
any connection paths of previous requests. Then the first request in phase p (indeed the only request of the
first round in phase p) is to the u-root of C1,y

p .

Analysis. We first observe that the adversarial sequence of requests σ is such that for any request u, there
exists a column in u that crosses all previously requested u-vertices in σ (this is easy to show by means of
a straightforward induction). This implies that all requested u-vertices in σ share a common column, say
i. Then, an offline solution suffices to buy: i) all vertical edges of column i (for a total cost equal to 1);
ii) edges from a w vertex in column i to a requested u-vertex (zero cost); iii) edges of the form (r, vi), and
(t, v′i) (at zero cost). Hence the optimal offline cost is at most 1.

On the other hand, consider the requests which belong in round j of phase p. These requests are part of
a component Cj,xp for some index x. Due to the actions of the adversary, as well as Proposition 13(b), every
time a request is issued for a u-vertex in Cj,xp other than the root of this component the algorithm must pay
cost at least 1/2j . Since there are 2j−1 requests in σ that belong to Cj,xp , the algorithm pays a cost which is
at least 1/2 − 1/2j during the round. Since there are b phases and log(k/b) − 1 rounds in each phase, the
overall cost is Ω(b log k

b ).

4.2.2 Case 2: k ≤ b.
In this case, the adversarial graph is based on a tree-like construction which is defined as follows. In addition
to the root r, there are k levels of vertices: level 1 consists only of vertex u1,1, whereas level i (1 < i ≤ k)
consists of vertices ui,1 . . . ui,2i−1 . Every vertex ui,j , with i < k is connected to vertices ui+1,2j , ui+1,2j+1,
by means of edges with priority i and unit cost. Edges incident with the root vertex r have priority b (and
zero cost). Every vertex that is requested will be assigned a priority equal to its level, i.e., if vertex ui,j
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is requested, it will be assigned priority equal to i. The game proceeds in rounds: In the first round, the

r

u1,1

u2,1 u2,2

u3,1 u3,2 u3,3 u3,4

u4,5u4,1 u4,2 u4,3 u4,4 u4,6 u4,7 u4,8

1 1

2 2 2 2

3 3 3 3 3 3 3 3

5

5 5 5 5 5 5
5

Figure 6: An illustration of the adversarial graph for k = 4 and b = 5. The edge weights denote their
priority levels.

adversary requests u1,1. The algorithm will establish a connection path from r to u1,1, say path(u1,1)
of cost k; based on the choice of this path, in round 2 the adversary will request the unique vertex u2,j
such that path(u1,1) does not visit u2,j . The game proceeds in a similar fashion: let ui denote the last vertex
requested, during round i. In round i+1 the adversary requests the unique vertex ui+1,j such that path(ui,1)
does not visit ui+1,j . Note that from the choice of priorities of edges and requested vertices, the connection
path for ui+1,j must be a path from the root r which does not use edges of connection paths established in
earlier rounds. Hence the cost of this connection path is then k − i, which implies that the overall cost of
the algorithm is

∑k
i=1(k − i) = Θ(k2). Finally, note that all requests can be served, offline, by a single

path from r to u1,1 which visits all requests (one per level), and has total cost k, which establishes that the
competitive ratio of any algorithm is, in this case, Ω(k).

4.3 The online directed PST problem

In this section we study the online PST problem in the setting of directed graphs. Recall that the relevant
parameters here are the number of terminals k, the number of priority levels b, as well as the edge-asymmetry
of the graph γ, defined as the maximum ratio of weights of antiparallel edges in the graph.

To the best of our knowledge, priority Steiner Tree problems have been studied only in the context of
undirected graphs. However, as noted in Section 1.3, these problems are useful in modeling multicasting
with QoS guarantees; hence, a directed graph may provide a more realistic representation of the underlying
network. Suppose then thatG is directed, and that we seek a minimum-cost arborescence, namely a directed
subgraph ofG such that there is a unique directed path from the root to every terminal inK, with the property
that this path satisfies the QoS requirements of the said terminal. What can we say about the competitiveness
of this problem?

The first observation to make is that the competitiveness of PST changes dramatically when G is di-
rected. Specifically, since the online Steiner tree problem is Ω(k)-competitive for directed graphs [38], the
same lower bound carries over to online PST. More importantly, the same bound applies even in graphs in
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which antiparallel edges have the same cost (i.e., γ = 1), as long as we allow the priorities of antiparallel
edges to differ by as little as one.

Proposition 14. In directed graphs with γ = 1 and at least two priority levels, any algorithm for PST is
Ω(k)-competitive.

Proof. The adversarial graph is based on a directed variant of the graph of Figure 6. Here, there are directed
edges from any vertex at level i, say ui,j to two of its children at level i+ 1, namely ui+1,2j , ui+1,2j+1. The
directed edge (ui,j , ui+1,2j) has priority 1 and cost 1, whereas the antiparallel directed edge (ui+1,2j , ui,j)
has priority 2, and cost again 1. Similar weight assignments hold for (ui,j , ui+1,2j+1) and (ui+1,2j , ui,j).
All edges from the root r to the u-vertices have priority 2. Last, every request at level i has priority equal to
2. We can then repeat the argument of the proof of Theorem 12, Case k ≤ b, so as to show a lower bound of
Ω(k) on the competitive ratio.

In light of Proposition 14 we thus focus on graphs of bounded edge-cost asymmetry, denoted by γ, as
defined in Section 1.2, assuming that antiparallel links have the same priority. In other words, the “directed-
ness” of a graph manifests itself in terms of edge costs, and not in terms of edge priorities. We first analyze
the competitiveness of the greedy algorithm in this model. Here, the greedy algorithm connects a request to
terminal t to the current arborescence (i.e., the current tree rooted at r), by means of a (directed) least-cost
path of sufficient priority, namely p(t) (finding such a path is easy). For the purpose of the analysis, we
determine a classification of terminals according to their priority (similar to the proof of Theorem 11), in
combination with the analysis of the greedy algorithm for the edge-asymmetric Steiner tree problem of [5].

Theorem 15. The competitive ratio of the greedy algorithm for PST is

O

(
min

{
max

{
γb

log(k/b)

log γ
, γb

log(k/b)

log log(k/b)

}
, k

})
.

Proof. Using the terminology of the proof of Theorem 11, let Gj denote the subgraph of G induced by all
edges e of priority at least j, for all j ≤ b. For any sequence of requests R = r1, . . . rk, partition R into
subsequences R1, . . . , Rb such that Rj consists of all requests in R of priority equal to j. Let (Gj , Rj)
denote an instance of the (plain) online asymmetric Steiner tree problem on graph Gj and request sequence
Rj : here we ignore the priority of edges and terminals, and our objective is to minimize the cost of the
Steiner forest for the sequence Rj without concerns about priorities. Let OPTj denote the cost of the
Steiner forest for the above instance.

From the bound on the competitive ratio of the greedy algorithm for asymmetric Steiner tree due to [5],
we deduce that

c(Rj) = O

(
min

{
max

{
γ

log |Rj |
log γ

, γ
log |Rj |

log log |Rj |

}
, |Rj |

})
OPT (5)

where c(Rj) denotes the cost paid by the algorithm to serve requests in Rj .
Let f1(x) = log(x) and f2(x) = log(x)/ log log(x). We observe that the functions f1(x) and f2(x) are

concave. It then follows that

b∑
j=1

log |Rj |
log log |Rj |

≤ b · log(k/b)

log log(k/b)
and

b∑
j=1

log |Rj | ≤ b · log(k/b) (6)
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Let c(R) denote the total cost of the greedy algorithm for the request sequence R. Note that

c(R) =
b∑

j=1

c(Rj). (7)

Furthermore, it can be readily seen that any two functions f , g over the positive reals satisfy the following
two properties.

b∑
j=1

min{f(xj), g(xj)} ≤ min


b∑

j=1

f(xj),
b∑

j=1

g(xj)

 , and (8)

b∑
j=1

max{f(xj), g(xj)} ≤
b∑

j=1

(f(xj) + g(xj)) ≤ 2 max


b∑

j=1

f(xj),
b∑

j=1

g(xj)

 . (9)

Combining (5), (6), (7) and using properties (8), (9), we obtain that

c(R) = O

(
min

{
max

{
γb

log(k/b)

log γ
, γb

log(k/b)

log log(k/b)

}
, k

})
·OPT.

The following theorem shows that the greedy algorithm is near-tight for PST in graphs of edge-asymmetry
γ.

Theorem 16. Every online algorithm for PST in graphs of asymmetry γ has competitive ratio Ω
(

min
{
γb log(k/b)log γ , k1−ε

})
,

for arbitrarily small constant ε.

Proof. For a high-level description of the proof, we combine ideas from Theorem 12 and the lower-bound
constructions of [18] and [4]. We then argue that the adversarial sequence will force any algorithm to pay a
cost of Ω

(
min

{
γ log(k/b)

log γ , k/b
})

, in each of a total number of b phases.
We first describe the adversarial graph, and we begin with the definition of some auxiliary constructions.

Consider first a set E of columns, as defined in Section 4.2 (Case k > b), and as depicted in Figure 3. For
the convenience of the reader, we replicate the definition in the remainder of this paragraph. Let T1 =
{v1, . . . , vl} and T2 = {v1, . . . , v′l} be two disjoint sets of l vertices each (we should think of T1 as lying
higher than T2). For every i ≤ l, we say that the distance between vi and v′i is equal to 1. We call index i
the i-th column, and require that l is a power of 2, and that it is large compared to k (e.g., at least 2k). For a
column i ≤ l, we say that we insert a vertex w at depth d < 1 in column i if we introduce a new vertex w at
distance d from vertex vi and distance 1− d from vertex v′i. We denote by E the set of all l columns.

On the collection of columns E we define a construction called block which we denote by B(E, β),
which is similar, although not identical to the block construction of Theorem 12, and inserts vertices and
edges in Θ

(
log(k/b)
log γ

)
rounds3. Here β is an integral parameter, with β ∈ [1, b]. The rounds are defined

as follows: In the first round, for every i ∈ [1, γ − 1], we insert l vertices (which for consistency with
the earlier proof we call w-vertices) at depth i/γ, one for each column of E. Moreover, we group the w-
vertices in s-sets as follows: the vertices on the i-th deepest layer are grouped into s-sets of size l/2i. For
every s-set we introduce an associated u-vertex, which is connected to the corresponding s-set by means of

3Without loss of generality we once again omit flours and ceilings, and assume all fraction quantities (as well as γ) are integral.
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antiparallel edges of zero cost (or, more formally, of the same infinitesimally small cost) and priority equal
to the parameter β.

Suppose that rounds 1, . . . j − 1 have been defined in the construction of B(E, β), we show how to
define round j. Let d denote the size of the s-set of smallest cardinality that was inserted in round j− 1. For
every i ∈ [1, γj−1], we insert l vertices at depth i/γj , one for each column inE, unless some otherw vertex
has been inserted at this same depth in a previous round, in which case we do not perform any additional
insertion. This has the effect that Θ(γj) additional layers of vertices are inserted in round j. We call the i-th
deepest layer of vertices that is inserted in round j the i-th layer of round j, and denote by wj,i,1 . . . wj,i,l its
vertices. We partition the l w-vertices of the i-th layer of round j in (2il)/d s-sets (from left to right), all of
the same size d/2i: In particular, the s-set Sj,i,q (in words, the q-th s-set, from left to right, of the i-th layer

in round j) consists of d/2i vertices {wj,i,
(q−1)d

2i
+1, . . . wj,i,

qd

2i }. For each such s-set of the form Sj,i,q, we
add a vertex uj,i,q, and for every vertex w ∈ Sj,i,q we add the edges (w, uj,i,q) and (uj,i,q, w) of the same
infinitesimally small cost and priority β. This completes the definition of round j.

Finally, we turn B(E, β) into a well-defined graph by inserting directed edges connecting any two pairs
of consecutive vertices in all columns. More precisely, for each consecutive pair of vertices w,w′ of every
column i, such that w is higher that w′, we insert the edge (w,w′) of cost equal to the distance of w and
w′ in the column i, and priority equal to b. We also insert the antiparallel edge (w′, w), of cost γc(w,w′),
and priority again b. Informally, the “downwards” direction is cheap, whereas the “upwards” direction is
expensive.

The adversarial graph G is defined by performing a series of block constructions, in b consecutive
phases. Let T1, T2 and E be as defined earlier. Phase 1 consists only of the insertion of block B(E, 1).
Suppose that phase p−1 < b has been defined, we next define phase p. Let d denote the smallest cardinality
among s-sets inserted in phase p − 1 (in other words, d is the cardinality of s-sets in the last (i.e., highest)
layer inserted in the last round of phase p − 1). This induces a partition of the columns in E in l/d sets,
where the i-th set in this partition, say set Ei, consists of columns (i − 1)d + 1, . . . id. Phase p consists of
inserting d blocks, namely blocks B(Ei, p), for all i ∈ [1, d].

As in the proof of Theorem 12, a subtle point has to do with vertices which are inserted in different
phases yet they are in the same layer. Say w1 and w2 are vertices with this property, with w1 added in
phase j and w2 added in phase j′. For every such pair, there are edges (w1, w2) and (w2, w1) of the same
infinitesimally small cost and priority equal to min{j, j′}. In words, this means that using these edges is free,
however they can be of use only if we route traffic at a level at most the minimum of the two corresponding
phases.

This essentially completes the construction of G. We also add a root vertex r and edges of the form
(r, v), (v, r) for all v ∈ T1, as well as edges of the form (t, v′), (v′, t) for all v′ ∈ T2. These edges are
assigned zero cost (or the same infinitesimally small cost) and priority b. Note that the asymmetry of the
resulting graph is γ.

We conclude the description of the adversarial graph by making two important observations: First, the
construction B(E, β), for any value β is defined in such a way so as to be conceptually similar to the
(recursively defined) adversarial graph of [18]. Thus, at an intuitive level, we aim at a lower bound which
will be equal to the lower bound of [18], but replacing k with k/b, and multiplying by the overall number of
phases b.

The second observation is that G is very similar to the adversarial graph of Theorem 12. The significant
difference is that round j adds Θ(γj) layers of vertices instead of only 2j . This also affects the overall
number of rounds, which is now Θ

(
log(k/b)
log γ

)
instead of log k

b − 1.
Given these similarities, we show how to produce the adversarial sequence and how the cost-analysis is

23



performed (we omit technical details that follow the analysis of [18] and [4]). For the adversarial sequence,
we request u-vertices in the same manner as in the proof of Theorem 12 (Case 1). The only difference is
that within round j, Θ(γj) terminals are requested instead of Θ(2j). Again, within a round, the next vertex
to be requested is the child of the last requested vertex.

Concerning the cost analysis, the cost of the optimal algorithm is at most one (as argued in the main
result). On the other hand, consider a request at round j of phase p. There are two possibilities concerning
the connection path that the algorithm can choose so as to serve this request. The first possibility it that the
connection path originates from the root r (i.e., uses the “cheap”, downwards edges of some column). In
this case, the algorithm will pay a cost equal to the depth of the requested u-vertex. This holds because at
the time of u’s request, no connection path of any previous terminal crosses u.

The second possibility is that the connection path for u originates from a previously requested terminal
u′, of the same phase (thus the connection path does not visit r). In this case, we can argue that the algorithm
must pay at least Ω(γ · (1/γj)) This follows from the fact that Θ(γj) terminals are requested in rounds ≤ j
(of any given phase), and that the smallest distance between any two such vertices is Ω(γ · (1/γj)) (because
the connection path should follow the “upwards”, “expensive” direction). Once again, we use the fact that
the algorithm/adversary game guarantees that when u is requested, no connection path of any previous
terminal crosses u.

Summarizing, a terminal requested at round j of phase p of the game will contribute a cost equal to

Ω
(
min

{
1/γj−1, d

})
,

where d is the depth of the terminal.
Recall that there are Θ(γj) terminals in round j, from Theorem 1.2 in [4], their contribution to the cost

is
Ω (min {1/γ, number of terminals in round j}) ,

Finally, we conclude that the total contribution of all Θ(log(k/b)/ log γ) rounds in all b phases is

Ω

(
min

{
γb

log(k/b)

log γ
, k1−ε

})
,

for arbitrarily small ε.

We conclude this section with a discussion concerning the significance of theorems 15 and 16. The
results show that when γb is small in comparison to k (e.g, when γb ∈ O(k1−ε), for constant ε), then the
greedy algorithm is a factor at most O(log log(k/b)) from the best online algorithm. Otherwise, e.g., when
γb = Ω(k), the corresponding gap is at most kε. In contrast, recall that the naive algorithm has competitive
ratio Θ(k) independent of the parameters γ and b. Thus, according to Theorem 16, its performance is
a factor as big as Θ( k

log k ) from optimal, even when γ and b are small compared to k (e.g., constant).
This demonstrates that the parameterized analysis of Theorem 15 achieves a relative separation of the two
algorithms even in the setting of directed graphs.

4.4 Randomized algorithms

In this section we study the effect of randomization in online priority Steiner tree problems. We begin by
showing that the lower bound of Theorem 12 holds even when considering randomized algorithms against
an oblivious adversary. For the remainder of this section, we assume undirected graphs (i.e., γ = 1).
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Theorem 17. The competitive ratio of every randomized online algorithm against the oblivious adversary
for online PST and GPS is Ω

(
b log k

b

)
, if k > b and Ω(k), otherwise.

Proof. We resort to Yao’s principle [40]. It suffices to show that there exists an input graph, and a distribution
over a sequence of k requests such that the average cost incurred by any deterministic algorithm (over this
distribution) is at least Ω

(
b log k

b

)
, if k > b and Ω(k), otherwise. times the average optimal cost.

The input graph is the graph G constructed as in the proof of Theorem 12, depending on whether k > b
or not. The distribution for the case k > b is motivated by the request sequence in the deterministic case
(see Section 4.2.1): more specifically, let u be the i-th u-vertex requested by the adversary during round
j of phase p, and suppose that u belongs in component Cj,xp . Then the (i + 1)-th request (of round j and
phase p) is chosen uniformly at random: with probability 1/2, the left child of u in component Cj,xp is
requested, otherwise, the right child of u is requested. The first u-vertex of a round (of any phase), is chosen
deterministically, so as to enforce Proposition 13(a) and (c). This ensures that any deterministic algorithm
will pay, on average, a cost at least half the cost determined in the analysis of Theorem 12, whereas the
optimal average cost remains as in the same analysis.

A similar argument can be made for the case k ≤ b. In this case we use the adversarial tree-like graph of
Section 4.2.2. Here, assuming that u is the last-requested vertex, we choose with equally probability which
of its children will be subsequently requested. This guarantees that the deterministic algorithm still pays
Ω(k2), in expectation, whereas the optimal cost is at most k.

Even though Theorem 12 and Theorem 17 are tight, they suggest that in the case in which b is large,
namely when b ∈ Ω(k), the competitive ratio of any deterministic or randomized algorithm is disapointingly
bad (i.e., Ω(k)). However, observe that the adversarial graph G requires at least an exponential number
of vertices (and edges) in the number of requested terminals k. Thus the following question arises: if
the number of edges is comparable to the number of terminals, can we achieve better competitive ratios?
Note that this type of question has already been addressed in the context of the (plain) online Steiner tree
problem, as well as the online node-weighted Steiner tree problem (see Section 1 for some relevant results,
in particular, the results of [7, 31, 26]).

Concerning the online priority Steiner tree problem, we show how to use the framework of Alon et
al. [2], which studied online algorithms for broad classes of (edge-weighted) connectivity and cut problems
using the multiplicative-updates approach. In particular, we note that GPS has a a formulation that matches
the framework of [2] as follows. We are given graph G = (V,E), with cost and priority functions defined
over E as c : E → R+ and p : E → R+, respectively. A feasible integral solution to GPS is an assignment
of weights (capacities) w from {0, 1} such that for each request of the form (si, ti, bi) there is a flow from si
to ti in G that is routed only through edges of priority at least bi and which has value at least 1. A feasible
fractional solution is an assignment of weights4 (capacities) w from [0, 1] such that for each request of the
form (si, ti, bi) there is a flow from si to ti in G that is routed only through edges of priority at least bi and
which has value at least 1. The cost of the solution w, in both cases, is defined as

∑
e∈E wece.

We can then use the two-step approach of [2] in order to obtain an online randomized algorithm. The
first step consists of computing an online fractional solution. This can be done, in black-box fashion, using
the multiplicative-updates algorithm described in Section 3.1. of [2]. Then Theorem 3 of [2] implies the
following:

Lemma 18. There is an online fractional algorithm for GPS that is O(logm) competitive, where m is the
number of edges in the graph.

4The weight w(e) of an edge should not be confused with its cost c(e).
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The second step in the approach s responsible for rounding the fractional solution to an integral one, and
is performed on-line, during each step, i.e. after each pair request is issued. The rounding method is simple
and is based on the rounding employed in the context of the multicast problem in [2]. More specifically,
the method involves keeping 2dlog(k′ + 1)e independent random variables Xi distributed uniformly in the
interval [0, 1], for all edges e such that p(e) ≥ pi. Here, k′ denotes the number of terminal pairs served by the
online algorithm up to the current point, which implies that the number of the random variables increases as
the algorithm serves more and more requests. Define the threshold θ as min

2dlog(k′+1)e
j=1 {Xj}. The algorithm

will then update its current integral solution I by adding in I all edges e of the graph with the property that
w(e) ≥ θ i.e., all edges whose weight exceeds the current value of the threshold (initially I = ∅). Using
the same argument as in the proof of Lemma 7 in [2], we conclude that this rounding method introduces a
multiplicative overhead of O(log k) in comparison to the cost of the fractional solution.

Lemma 19. There is an online randomized algorithm that given a fraction solution for GPS produces an
online integral solution which is O(log k) competitive.

Combining Lemmas 18 and 19 we obtain the following:

Theorem 20. There exists a randomized algorithm for GPS and PST with competitive ratioO(log k logm),
where m is the number of edges in the graph.

5 Conclusion

In this paper we presented a parameterized analysis of the online node-weighted and the priority Steiner tree
problems. More precisely, we gave tight upper and lower bounds on the competitive ratio of online algo-
rithms by considering, as relevant parameters, the ratio of the maximum to the minimum node weight and
the number of priority levels, respectively (in addition to the number of terminals in the request sequence).
Our analysis confirms the intuitive expectation that naive algorithms (which are deemed optimal assuming
competitive analysis solely over the number of terminals) are inferior to more sophisticated algorithms once
the additional relevant parameters are taken into consideration. We have thus proven a strict separation
between these two classes of algorithms which was yet to be reflected by “standard” competitive analysis.

An interesting direction for future work is to pursue a more refined classification of the performance of
algorithms in the context of “hard” Steiner tree problems (i.e., problems with worst-case competitive ratio
Ω(k)) under different settings. For example, it is known that when the requests are generated randomly, (in
particular, assuming requests are i.i.d. over the set of vertices), one can obtain constant competitive ratios for
online Steiner tree in undirected graphs [20]. A natural question is what are the corresponding competitive
ratios of the node-weighted and priority Steiner tree problem in this stochastic setting. What about the online
directed Steiner tree problem? Another setting that is worth studying is the setting in which we allow the
online algorithm some limited power in deferring or revoking its decisions. Suppose, for instance, that we
allow the algorithm to change a single edge of the current Steiner tree, upon each request (instead of only
adding edges). It turns out that this seemingly marginal increase in power yields a constant competitive
ratio for the (plain) online Steiner tree problem [23]. It would be interesting to study whether significant
performance improvement is possible for hard online Steiner tree problems under this setting.
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