
HAL Id: hal-02370723
https://hal.science/hal-02370723v1

Submitted on 21 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling a trait-dependent diversification process
coupled with molecular evolution on a random species

tree
Daniah Tahir, Sylvain Glémin, Martin Lascoux, Ingemar Kaj

To cite this version:
Daniah Tahir, Sylvain Glémin, Martin Lascoux, Ingemar Kaj. Modeling a trait-dependent diversi-
fication process coupled with molecular evolution on a random species tree. Journal of Theoretical
Biology, 2019, 461, pp.189-203. �10.1016/j.jtbi.2018.10.032�. �hal-02370723�

https://hal.science/hal-02370723v1
https://hal.archives-ouvertes.fr


Modeling a trait-dependent diversification process coupled with molecular evolution on a
random species tree
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Abstract

Understanding the evolution of binary traits, which affects the birth and survival of species and also the rate of molecular evolution,

remains challenging. In this work, we present a probabilistic modeling framework for binary trait, random species trees, in which

the number of species and their traits are represented by an asymmetric, two-type, continuous time Markov branching process. The

model involves a number of different parameters describing both character and molecular evolution on the so-called ‘reduced’ tree,

consisting of only extant species at the time of observation. We expand our model by considering the impact of binary traits on

dN/dS , the normalized ratio of nonsynonymous to synonymous substitutions. We also develop mechanisms which enable us to

understand the substitution rates on a phylogenetic tree with regards to the observed traits. The properties obtained from the model

are illustrated with a phylogeny of outcrossing and selfing plant species, which allows us to investigate not only the branching tree

rates, but also the molecular rates and the intensity of selection.
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1. Introduction

One of the main challenges in modern evolutionary biology

entails recognizing how different traits evolve on a phylogenetic

tree, and how they can affect the evolution of other species char-

acteristics. Of particular importance is the impact of life history

or ecological traits on molecular evolutionary rates (Nikolaev

et al., 2008; Smith and Donoghue, 2008; Mayrose and Otto,

2011; Figuet et al., 2016; Levy Karin et al., 2017). Among

other things, comprehending the relationship between the two

could help unravel the causes of molecular clock variation.

Models have been developed to associate continuous or dis-
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crete traits with molecular rates. For example, the program

TraitRateProp (Levy Karin et al., 2017) allows the identification

of sequence sites undergoing shifts in rate associated with phe-

notypic changes. Levy Karin et al. (2017) used TraitRateProp

to identify shifts in site evolutionary rates within the RPS8 pro-

tein associated with transition to a heterotrophic lifestyle in or-

chids. However, existing methods do not allow for the pheno-

typic traits to also affect rates of speciation and extinction. A

classical approach involves mapping traits on a phylogenetic

tree, and then matching them with the evolutionary rates that

have been measured on the corresponding branches. In such

approaches, it is usually assumed that the phylogenetic tree is

fixed, and is independent of the evolving traits. Yet, it is well

known that some traits can affect the diversification process,

and hence, the tree shape, which can bias the reconstruction of

ancestral states as well as state transitions along the tree (Gold-
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berg and Igić, 2008).

A minimal model addressing the differences in speciation

rates between groups, will need to consider both trait evolu-

tion and species diversification. The binary-state speciation

and extinction (BiSSE) model (Maddison et al., 2007) was pre-

cisely developed for this purpose, and it also helped disen-

tangle the two aspects. It was later extended to the ClaSSE

(cladogenetic-state speciation and extinction) model (Goldberg

and Igić, 2012). These models have been extensively used and

extended to test for the effect of traits on species diversification

(Mayrose et al., 2011; Beaulieu and O’Meara, 2016). However,

to our knowledge, this approach has not been incorporated yet

to assess for the possible effect of traits on molecular evolution.

Ideally, we would like to have a model which considers the

impact of traits on not only the species diversification rates,

but also on molecular evolutionary rates. A typical example

where both approaches have been conducted independently, is

the evolution of selfing from outcrossing in plant species, in

the context of the so-called ‘dead-end’ hypothesis (Stebbins,

1957). The popular claim that the transition towards selfing

is an evolutionary dead-end (Igic and Busch, 2013) relies on

two assumptions: the transition from outcrossing to selfing is

irreversible, and, selfing species have negative diversification

rates (difference between speciation and extinction rates). In the

short term, selfing offers reproductive assurance and transmis-

sion advantage over outcrossing (Fisher, 1941), since selfing

species can contribute to outcross pollen while fertilizing their

own ovules at the same time. Outcrossing also limits a plant’s

ability to reproduce in case of rarity of mates. Therefore, tran-

sition from outcrossing to selfing occurs and is thought to be

one of the most frequent evolutionary changes in angiosperms.

However, once the outcrossing ability of a species is lost, it

is difficult to regain due to, for instance, the accumulation of

loss-of-function mutations on self-incompatibility genes (Igic

et al., 2008). The main advantage of outcrossing is avoiding in-

breeding depression, which is presumably purged by a species

that reproduces through selfing for some time. In the long

run, selfing species suffer from negative genetic consequences:

selfing reduces effective population sizes and recombination,

which globally lessens the efficacy of selection. Selfing species

are thus, more prone to the accumulation of deleterious muta-

tions and less able to adapt to changing environments, which

eventually drives them towards extinction (Wright et al., 2013).

In agreement with this prediction and using the BiSSE model

(Maddison et al., 2007), the net diversification rates are found

to be higher in outcrossing than in selfing Solanaceae species

(Goldberg et al., 2010). In parallel, the negative genetic effects

of selfing, which can explain higher extinction rates, were tested

by comparing the molecular evolutionary rates between self-

ing and outcrossing lineages. The efficacy of selection can be

assessed through the ratio of nonsynonymous to synonymous

substitutions, dN/dS ; a higher ratio corresponding to less ef-

ficient selection. Phylogenetic analyses have been carried out,

but usually they either detect only weak effects, or fail at de-

tecting any effect of mating system on dN/dS at all (Glémin

and Muyle, 2014). A likely explanation for such results could

be the recent origin of selfing, corresponding to a small fraction

of the branch leading to a selfing species. Anyhow, the diversi-

fication processes underlying the observed trees, have not been

incorporated so far, in such dN/dS analyses which implicitly

assume a model where trait shifts occur at speciation times.

In this work, we examine, simultaneously, trait evolution,

species diversification and molecular evolutionary rates. We

first present a probabilistic modeling framework for a random,

binary trait, species tree. The characterization of the tree prop-

erties then allows us to study a trait-dependent substitution pro-

cess running along the branches of the tree. In particular, the

branch lengths of the two trait components of the tree, are the

key elements which we use to precisely determine the trait-

dependent evolutionary rates. Similar models have been used in

statistical inference, but, to our knowledge, their detailed math-

ematical properties have not been studied yet.

The edges of our tree model are grouped into two categories

based on a generic trait. Over time, the trait has influenced and

shaped the ancestral family tree of the extant species and led

eventually to the observable mixture of traits associated with
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the present tree branches. The model specifies expected val-

ues of various random functionals of the tree in terms of basic

Markov chain parameters. Not only the expected number of

species of each trait, but also the expected total branch lengths

in the ancestral tree, with existing ancestors at the time of ob-

servation, are provided. While the tree model is constructed in

forward time, it is the traits and mutations in the ancestral tree

seen backwards from the extant set of species, that determine

the current set of states. In the model, this shift of view corre-

sponds to studying the reduced branching tree, obtained from

the original species tree by the removal of extinct species. The

model also allows us to study the accumulated number of mu-

tations in relation to the observed distribution of traits. The rate

of fixation, as the species accumulate mutations, depends on

the trait value, due, for example, to a varying degree of selec-

tion associated with the traits.

Our analysis helps to understand the interplay between the

evolution of a trait associated to rates of speciation and extinc-

tion on one hand, and molecular rates on the other. This the-

oretical framework should be useful for further developments

of statistical methods combining trait-dependent diversification

processes and trait-dependent molecular evolutionary rates.

2. Modeling the species tree

We consider evolution of binary traits on a species tree, start-

ing with a single species of known trait at the root of the tree.

Each species in the tree, throughout its lifetime, carries trait

value 0 or 1. The ancestral species carries trait-0. The species

family evolves as a branching tree with births of new species

and extinction of existing species. The tree runs in continuous

time over an interval [0, t], where t is the time span from the

time of origin of the first species at t = 0, up to the time of ob-

servation, i.e., today. The speciation process in the model is the

simplest possible where new species arise instantly, either as a

branch point or a transition from an earlier species. A specia-

tion event could simply be replacement of a single species with

two new ones of the same type (0 → 0 + 0 and 1 → 1 + 1),

or replacement of a single trait-0 species with a combination of

a) Cladogenetic change
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b) Anagenetic change
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c) Two-type Markov model
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Figure 1: Diagrammatic representation of cladogenetic state change, anagenetic

state change, and the Markov branching process. The 0 and 1 labels represent

trait marks. In a), cladogenetic change 0 → 0 + 1 is given by solid blue-red

lines, and 1 → 0 + 1 by dashed blue-red lines. In b), anagenetic change 0 → 1

is given by a solid blue-red line, and 1→ 0 by a dashed red-blue line. Panel c)

depicts the two-type Markov model, as well as various rates of the branching

process. Transitions from trait-1 to trait-0, represented by dashed lines in all

three panels, are not considered further in this paper.

the two traits (0 → 0 + 1). The latter is called ‘cladogenetic’

state change and is represented by solid lines in Figure 1a. The

state change could also be ‘anagenetic’ in nature, in which a sin-

gle trait-0 species is replaced by a single trait-1 species along a

branch (0 → 1), as represented by the solid line in Figure 1b.

Moreover, it is assumed that cladogenetic and anagenetic state

changes from trait-1 to trait-0 (dashed lines in Fig. 1a and Fig.

1b, respectively) do not occur.

The number of species and their traits change according to

an integer-valued, two-type, continuous time Markov branch-

ing process, where we use the terms ‘type’ and ‘trait’ inter-
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a)

0 t
trait-0 trait-1

b)

0 0t t
trait-0 trait-1

Figure 2: Diagram of a species tree T . Panel a): rooted tree T = T 0 ∪ T 1, with trait-0 species colored blue and trait-1 species colored red. Panel b): rooted type-0

tree T 0, and edges of type-1 tree T 1, plotted separately in blue and red, respectively.

changeably (Athreya and Ney, 1972; Taylor and Karlin, 1984).

The Markov intensities for birth events are λ0 for a change

0→ 0 + 0, λ1 for 1→ 1 + 1, pδ for 0→ 0 + 1 and (1 − p)δ for

0→ 1. Here, the rates λ0, λ1 and δ are non-negative, whereas p

(0 ≤ p ≤ 1) is the probability of cladogenetic change of states

from type-0 to type-1 species. Each species is exposed to ex-

tinction with intensities µ0 for type-0 and µ1 for type-1. This

two-type Markov branching process is represented in Fig. 1c.

The resulting species family is described by a rooted tree T ,

with vertices given by the birth or extinction of species. The

edges are marked by 0 or 1 recording the trait of a species and

the edge lengths represent the species lifetime. The species tree

is composed of disjoint parts

T = T 0 ∪ T 1,

where T 0 is a rooted type-0 tree and T 1 consists of all edges of

type-1. Figure 2a shows such a tree T , restricted to the interval

[0, t], with species of trait-0 plotted in blue and species of trait-

1 plotted in red. Figure 2b shows T 0 and T 1 separately, again

cut off at time t.

Putting Kt = the number of type-0 species and Lt = the num-

ber of type-1 species, Kt + Lt is the total number of species at

time t, and

Xt = (Kt, Lt), t ≥ 0, (1)

is a two-type, continuous time Markov branching process, with

branching rates

(k, `) 7→



(k + 1, `) λ0k

(k − 1, ` + 1) (1 − p)δk

(k − 1, `) µ0k

(k, ` + 1) pδk + λ1`

(k, ` − 1) µ1`.

(2)

Here, X0 = (1, 0), that is, K0 = 1 and L0 = 0. Kt, the number of

species in the sub-tree T 0, is an ordinary one-type, continuous

time branching process with parameters (λ, µ), where

λ = λ0 is the rate of binary splitting of trait-0 species
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Table 1: Description of parameters.

Parameter Description

Kt number of type-0 species

Lt number of type-1 species

λ0 = λ speciation rate of type-0 species

λ1 speciation rate of type-1 species

µ0 extinction rate of type-0 species

µ1 extinction rate of type-1 species

pδ rate of cladogenetic change to type-1 species

(1 − p)δ rate of anagenetic change to type-1 species

δ total rate of state change to type-1 species

µ µ0 + (1 − p)δ

r0 λ0 − µ0, diversification rate of type-0 species

r1 = γ1 λ1 − µ1, diversification rate of type-1 species

γ0 λ − µ = r0 − (1 − p)δ

T complete species tree

T 0 type-0 component in T

T 1 type-1 component in T

Tt reduced species tree at time t

(Tt)0 type-0 component in Tt

(Tt)1 type-1 component in Tt

(T 0)t type-0 species tree, reduced at time t

(T 1)t type-1 species tree, reduced at time t

At total branch length of (T 0)t

A′t total branch length of (Tt)0

Bt total branch length of (T 1)t = (Tt)1

Ttot branch length estimate of Tt

T 1
tot branch length estimate of (Tt)1

K̃s,t number of type-0 species in (T 0)t at time s

K̃′s,t number of type-0 species in (Tt)0 at time s

L̃s,t number of type-1 species in (Tt)1 at time s

ω0 dN/dS in type-0 species

ω1 dN/dS in type-1 species

ω̂0 dN/dS estimate in type-0 species

ω̂1 dN/dS estimate in type-1 species

ω̂ dN/dS estimate over the whole species tree

and

µ = µ0 + (1 − p)δ is the rate of removal of trait-0 species.

The exact distribution of Xt is known for the pure anagenetic

case (p = 0) in terms of generating functions (Antal and

Krapivsky, 2011). In the model, the net diversification rates

for the two traits are r0 and r1 given as

r0 = λ0 − µ0 and r1 = λ1 − µ1.

The eigenvalues of the mean offspring matrix are given by

γ0 = λ − µ = r0 − (1 − p)δ and γ1 = λ1 − µ1 = r1.

A list of all important parameters used in this paper, is given

in Table 1. Appendix A summarizes the mathematical proper-

ties of the two-type branching process Xt. The more general

model of two-sided transitions, where type-1 species may gen-

erate species of type-0 at birth, is not discussed further in this

work.

3. Analyzing the reduced species tree

The reduced species tree is what remains if we fix a time

point and remove all branches of the species tree T , that are

extinct at that time. More formally, we denote by Tt, t ≥ 0, the

sequence of the reduced species trees defined for each fixed t.

Tt is pruned of any extinct species and hence composed of only

those branches which exist at time t (Fig. 3a). In case all species

are extinct at t, the reduced tree is empty. The species traits in

the original tree provide a record of types for the reduced tree,

and hence Tt splits up into disjoint trees

Tt = (Tt)0 ∪ (Tt)1,

where (Tt)0 is a single connected tree and (Tt)1 may consist

of several components (Fig. 3b). Moreover, we let (T 0)t and

(T 1)t be the reduced trait-0 and trait-1 trees, respectively, ob-

tained by first splitting the full tree T into disjoint parts, and

then reducing it at t (Fig. 3c). We observe, however, that

(Tt)0 ⊇ (T 0)t and (Tt)1 = (T 1)t,
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a)

0 s t
trait-0 trait-1

b)

0 0s st t
trait-0 trait-1

c)

0 0s st t
trait-0 trait-1

Figure 3: Diagrammatic representation of reduced species trees. Panel a) shows the reduced tree Tt , given the original tree T from Figure 2a. Trait-0 species are

colored blue and trait-1 species are colored red. In panel b), the trees are obtained by splitting Tt into disjoint parts, that is, (Tt)0 and (Tt)1, which are plotted

separately, in blue and red, respectively. Panel c) shows the rooted trait-0 tree (T 0)t in blue, and the trait-1 edges (T 1)t in red, which are are obtained if the original

tree T (from Fig. 2a) is first split into type-0 and type-1 disjoint parts (as in Fig. 2b) and then reduced at t. In all three panels, t ≥ 0 and 0 ≤ s ≤ t.

as shown in Figure 3b and Figure 3c. Indeed, for 0 ≤ s ≤ t,

letting K̃s,t be the size at time s of the tree (T 0)t obtained by

first splitting and then reducing the full tree, and K̃′s,t be the size

at s of the corresponding tree (Tt)0 obtained by first reducing

and then splitting, one has

K̃s,t = number of 0-species at s with at least one

descendant 0-species at t,

K̃′s,t = number of 0-species at s with at least one

descendant 0- or 1-species at t,

so that K̃s,t ≤ K̃′s,t, where the assumption of one-sided transi-

tions makes the inequality true. For trait-1 species, the order

of splitting and reducing the tree has no effect and we write

L̃s,t for the total number of 1-species at time s in the reduced

tree (Tt)1 = (T 1)t, consisting of the collection of reduced trees

generated by any existing 1-species at t. This collection of

branches could be empty, consist of a single reduced tree of

siblings, or be composed of a cluster of disconnected trees with

at least one descendant, each at time t. Clearly, K̃t,t = Kt and

L̃t,t = Lt. When |Xt | = Kt + Lt = 0, the reduced tree is void and
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K̃s,t = L̃s,t = 0, where 0 ≤ s ≤ t.

We now let

At =

∫ t

0
K̃s,t ds (3)

be the total branch length of (T 0)t, and

A′t =

∫ t

0
K̃′s,t ds (4)

the total branch length of (Tt)0, so that A′t ≥ At almost surely.

Similarly, the total branch length of (T 1)t = (Tt)1 is given by

Bt =

∫ t

0
L̃s,t ds. (5)

The purpose of the following sections is to find the expected

values of At and Bt, and to relate these quantities to model pa-

rameters. Different approaches towards analyzing the reduced

trait-0 and trait-1 species tree are reviewed and extended. The

terminology of reduced trees used here, is well established in

the theory of branching processes. Other options are recon-

structed tree or reconstructed evolutionary process, being aware

that statistically oriented phylogeneticists might use other kinds

of reconstructed trees.

3.1. The reduced trait-0 species tree

In this section, we examine certain mathematical properties

of the reduced trait-0 tree (T 0)t. In particular, we determine

E(At |Kt > 0), that is, the expected total branch length of (T 0)t

conditional on non-extinction. To do this, we recall the condi-

tional expectations of the branching process Kt, and the reduced

branching process K̃s,t (see e.g., Kendall (1948) and Nee et al.

(1994)). With λ = λ0 and µ = µ0 + (1− p)δ being the speciation

and extinction rates, respectively, of the trait-0 species tree, and

restricting to γ0 = λ − µ , 0, put

p0(t) =
µ(1 − e−γ0t)
λ − µe−γ0t ,

where p0(t) denotes the probability of the tree going extinct be-

fore time t. We also let

ut =
λp0(t)
µ

=
λ(1 − e−γ0t)
λ − µe−γ0t ,

and

vs,t =
1 − p0(t)
1 − p0(s)

us =
λ(1 − e−γ0 s)
λ − µe−γ0t .

Then

E(Kt |Kt > 0) =
1

1 − ut
=
λeγ0t − µ

γ0
, (6)

and

E(Kt) = eγ0t.

More generally, for s ≤ t,

E(Ks|Kt > 0) =
1

1 − us
+

us p0(t − s)
1 − us p0(t − s)

=
λeγ0 s − µ

γ0
+
λµ(eγ0 s − 1)(eγ0(t−s) − 1)

γ0(λeγ0t − µ)
, (7)

E(K̃s,t |Kt > 0) =
1

1 − vs,t
=

λeγ0t − µ

λeγ0(t−s) − µ
, (8)

and

E(K̃s,t) =
1 − p0(t)
1 − vs,t

=
γ0eγ0t

λeγ0(t−s) − µ
. (9)

Thus, using (3) and (8)

E(At |Kt > 0) =

∫ t

0
E(K̃s,t |Kt > 0) ds

=

∫ t

0

λeγ0t − µ

λeγ0(t−s) − µ
ds. (10)

Evaluating the above integral, we obtain

E(At |Kt > 0) =
µ − λeγ0t

µγ0
log

( λ − µ

λ − µe−γ0t

)
.

The relation in (10) simplifies for the critical case γ0 = λ − µ =

0, for example

E(At |Kt > 0) =

∫ t

0

1 + λt
1 + λ(t − s)

ds =
1 + λt
λ

log(1 + λt).

Moreover, we can also describe properties of the trait-0

species tree conditioned on observing a fixed number of species

at time t (Kt = n), where the single-type linear branching pro-

cess (Kt)t≥0, is now restricted to the critical or supercritical case,

γ0 = λ− µ ≥ 0. Given n trait-0 species at time t, the n− 1 bifur-

cation times, S 1, . . . , S n−1, are the time intervals from the tips of

the tree at t backwards until two species merge. The bifurcation

times of the complete species tree are identical to the bifurca-

tion times of the reduced tree, given Kt = n. It turns out that
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the joint distribution of the bifurcation times is the same as that

of n − 1 i.i.d. observations sampled from a particular family of

distribution functions Ft(s), 0 ≤ s ≤ t, depending on λ and µ

(Thompson, 1975; Gernhard, 2008). For the supercritical case

λ > µ,

Ft(s) =
λ − µe−γ0t

1 − e−γ0t

1 − e−γ0 s

λ − µe−γ0 s , 0 ≤ s ≤ t. (11)

Writing S (k), 1 ≤ k ≤ n − 1, for the ordered bifurcation times

of the reduced type-0 tree and adding S (0) = 0 and S (n) = t, so

that 0 = S (0) ≤ S (1) ≤ · · · ≤ S (n−1) ≤ S (n) = t, it follows that the

total branch length At, in (3), has the representation

At = n(S (1) − S (0)) + (n − 1)(S (2) − S (1)) + . . .

+ 1 · (S (n) − S (n−1))

= S (1) + S (2) + · · · + S (n−1) + t

= S 1 + S 2 + · · · + S n−1 + t.

Hence,

E(At |Kt = n) = (n − 1)E[S ] + t,

where

E[S ] =

∫ t

0
(1 − Ft(s)) ds,

and Ft(s) is obtained from (11).

3.2. The reduced trait-1 species tree

The trait-1 species tree is composed of a collection of

branches, which are injected at random times and locations on

top of the initially existing trait-0 tree, to obtain the complete

species tree. The total intensity at which species of trait-1 en-

ter the tree at any time s ≥ 0, is δKs, hence proportional to

the current number of trait-0 species Ks, in the system. A new

trait-1 species is the result of cladogenetic splitting with proba-

bility p and of anagenetic transition with probability 1−p. Each

new 1-species potentially initiates a sub-tree, which preserves

its trait during the subsequent path to extinction or supercritical

growth. Let Ls
t , s ≤ t, denote the branching process with initial

time s, with Ls
s = 1, which counts the number of type-1’s at t

originating from a new type-1 at s. Then, the total number of

trait-1 species at t is a random sum

Lt =
∑
i:si≤t

Lsi
t , t ≥ 0, (12)

where Lsi
t , i ≥ 1, are independent copies of the type-1 branch-

ing process. Under cladogenetic splitting, the process Kt is

independent of the number of 1-species and (12) is a Poisson

sum representation of Lt. The dynamics of an anagenetic transi-

tion is more involved, as Kt decreases by one whenever a type-

1 species enters the tree, and (12) is a self-regulating process

rather than a Poisson process. In both cases, however, the ex-

pected number of 1-species at t is

E0(Lt) = δ

∫ t

0
E0(Ks)E1(Ls

t ) ds, t ≥ 0,

where E0 is the expectation starting from one species of trait-

0 and E1 is the expectation given an initial species of trait-1.

Similarly,

E0(Lt |Kt > 0) = δ

∫ t

0
E0(Ks|Kt > 0)E1(Ls

t ) ds, (13)

where

E1(Ls
t ) = eγ1(t−s), (14)

and, using (7),

E0(Ks|Kt > 0) =
λeγ0 s − µ

γ0
+
λµ(eγ0 s − 1)(eγ0(t−s) − 1)

γ0(λeγ0t − µ)
.

Using (5), and keeping the condition of at least one 0-species at

t, the expected branch length of trait-1 species equals

E0(Bt |Kt > 0) =

∫ t

0
E0(L̃s,t |Kt > 0) ds, (15)

where L̃s,t is a summation of contributing reduced branching

processes L̃u
s,t, u ≤ s ≤ t, with Lu

u,t = 1, which originate from

some point of the non-reduced, trait-0 tree at time u. Hence,

E0(L̃s,t |Kt > 0) = δ

∫ s

0
E0(Ku|Kt > 0)E1(L̃u

s,t) du.

Using the above equation in (15) yields

E0(Bt |Kt > 0) = δ

∫ t

0

∫ s

0
E0(Ku|Kt > 0)E1(L̃u

s,t) duds, (16)

where E0(Ku|Kt > 0) is given in (7) and E1(L̃u
s,t) is obtained as

in (9), by replacing λ, µ, and γ0 by λ1, µ1, and γ1, respectively,

that is,

8



E1(L̃u
s,t) =

1 − p0(t − u)
1 − vs−u,t−u

=
γ1eγ1(t−u)

λ1eγ1(t−s) − µ1
.

From (16), it can be seen that the expected trait-1 branch length

depends not only on the expected number of trait-0 species

conditioned on non-extinction, but also on the expected num-

ber of trait-1 species already present in the tree. This equa-

tion serves as an important tool for evaluating the trait-1 branch

lengths, and will be essential later on in studying dN/dS over

the species tree.

3.3. The number of trait-1 species clusters

Let Ct be the number of separate clusters of trait-1 species

at time t, that is, the number of sub-trees in T 1 at t. Clearly,

1 ≤ Ct ≤ Lt. The expected number of clusters is obtained by

modifying (13) as

E0(Ct |Kt > 0) = δ

∫ t

0
E0(Ks|Kt > 0)P1(Ls

t > 0) ds, (17)

where E0(Ks|Kt > 0) is given in (7) and

P1(Ls
t > 0) =

γ1

λ1 − µ1e−γ1(t−s) . (18)

Now, by (14) and (18), it can be seen that for 0 ≤ λ1 ≤ µ1,

1 ≤
E1(Ls

t )
P1(Ls

t > 0)
≤

µ1 − λ1e−(µ1−λ1)t

µ1 − λ1
.

Hence, the ratio of the expected number of trait-1 species to the

expected number of trait-1 clusters satisfies

1 ≤
E(Lt |Kt > 0)
E(Ct |Kt > 0)

≤
µ1 − λ1e−(µ1−λ1)t

µ1 − λ1
, (19)

for each value of p and δ. It is straightforward to verify that

1 =
E(Lt |Kt > 0)
E(Ct |Kt > 0)

if and only if λ1 = 0. (20)

A conclusion of (20) is that if we observe a phylogenetic tree

where each species of trait-1 at t forms its own singleton clus-

ter with no other trait-1 species as a closest neighbor (hence,

Ct = Lt), it is natural to make the parameter estimation λ1 = 0.

In Appendix B, we have derived further estimates for the case

when λ1 = 0, under certain special conditions on the species

tree.

3.4. An illustration using arbitrary parameters

To illustrate the species tree model, we first notice that the

trait-0 tree, corresponding to the blue colored sub-tree T 0 in

Figure 2b, depends only on the parameters λ and µ. In particu-

lar, the expected number of such species at t, given at least one

existing species, is given by (6) as

E(Kt |Kt > 0) =
λeγ0t − µ

γ0
,

and the expected branch length of the reduced tree, which is the

blue-colored subtree (T 0)t in Figure 3c, is obtained in (10) as

E(At |Kt > 0) =

∫ t

0

λeγ0t − µ

λeγ0(t−s) − µ
ds, γ0 = λ − µ.

In these expressions, however, the extinction parameter µ =

µ0 + (1 − p)δ consists of trait-0 extinction at rate µ0, and trait-0

to trait-1 anagenetic transition at rate (1− p)δ. As we now move

on and derive expected values for the trait-1 species tree, the re-

sulting expressions are stated as functions of λ, µ, δ, λ1 and µ1,

so that the dependence of µ0, p and δ arises in µ. Starting with

the expected number of trait-1 species at t, given at least one

existing trait-0 species, corresponding to the number of tips in

the red colored sub-tree T 1 in Figure 2b, we have by (13),

E(Lt |Kt > 0) =

δ

∫ t

0

(λeγ0 s − µ

γ0
+
λµ(eγ0 s − 1)(eγ0(t−s) − 1)

γ0(λeγ0t − µ)

)
eγ1(t−s) ds,

γ1 = λ1 − µ1. The expected trait-1 branch length, which is

consistent with the branch length of the red colored sub-tree

(T 1)t in Figure 3c, is obtained in (16) as

E(Bt |Kt > 0) =

= δ

∫ t

0

∫ s

0

(λeγ0u − µ

γ0
+
λµ(eγ0u − 1)(eγ0(t−u) − 1)

γ0(λeγ0t − µ)

)
×

γ1eγ1(t−u)

λ1eγ1(t−s) − µ1
duds.

Finally, the expected number of clusters of trait-1 species, cor-

responding to the red-colored subtree (T 1)t in Figure 3c, is de-

rived in (17) as

E(Ct |Kt > 0) =

= δ

∫ t

0

(λeγ0 s − µ

γ0
+
λµ(eγ0 s − 1)(eγ0(t−s) − 1)

γ0(λeγ0t − µ)

)
×

γ1

λ1 − µ1e−γ1(t−s) ds.

9



Figure 4: Plots of expected values versus δ; E(Lt |Kt > 0) versus δ in red,

E(Ct |Kt > 0) versus δ in orange, and E(Bt |Kt > 0) versus δ in green, when t = 1,

p = 0.5, λ = λ0 = 8, µ0 = 4, λ1 = 10, µ1 = 12 and µ = µ0 +(1− p) δ = 4+0.5 δ.

Let us take a fixed value of the probability p of cladogenetic

state change. If we assume that point estimates of the param-

eters λ0 and µ0 are known, this means that the trait-0 specia-

tion rate λ = λ0 is known, whereas the trait-0 extinction rate

µ = µ0 + (1 − p)δ is given as a function of δ. From this view

point, for a set of arbitrary parameters, Figure 4 shows plots of

the three trait-1 functionals listed above, illustrating the depen-

dence on the trait transition intensity δ.

Next, we consider the number of trait-1 species per trait-1

cluster and use the shorthand notation L/C to denote the ratio

E(Lt |Kt > 0)/E(Ct |Kt > 0). Using the same set of parameters

as in Figure 4, we now plot L/C as a function of p and δ. Plots

of L/C as a function of δ, for fixed values of p, are shown in

Figure 5a. Similarly, plots of L/C versus p, for selected values

of δ, are given in Figure 5b. As shown earlier in (19), re-written

below for convenience

1 ≤
L
C
≤

µ1 − λ1e−(µ1−λ1)t

µ1 − λ1
,

it can be seen that for any value of p and δ, the expected number

of trait-1 species per cluster lies within a given bound. The up-

per bound is conservative, and for a wide range of arbitrary pa-

rameter values, L/C remains closer to the lower bound, mean-

ing that it is unlikely to observe large clades of trait-1 species.

a)

b)

Figure 5: Plots of L/C = E(Lt |Kt > 0)/E(Ct |Kt > 0) versus δ and p. Plot of

L/C versus δ, for p = 0 in red, p = 0.5 in orange and p = 1 in green, is shown

in a), while plot of L/C versus p, for δ = 1.5 in green, δ = 2.5 in orange and

δ = 3.5 in red, is given in b). In both a) and b), t = 1, λ = λ0 = 8, µ0 = 4,

λ1 = 10, µ1 = 12 and µ = 4 + (1 − p) δ.

4. Mutations on the species tree

Mutation events occur randomly, according to a fixed Pois-

son molecular clock of evolution, and the resulting Poisson in-

tensity θ > 0 of mutations per time unit, is the same for all

species. The total mutation intensity splits into two contribu-

tions, θ = θsyn + θnon, where θsyn represents synonymous mu-

tations, while θnon represents nonsynonymous mutations. The

precise fractions θsyn and θnon can be obtained from a detailed

mutation model (Mugal et al., 2014), or estimated from data.

The actual marks of mutation, such as nucleotide substitutions,

codon substitutions, etc., will be called ‘fixed mutations’ for

10



short. The rate of fixed mutations depends on the trait. In-

deed, letting ω0 and ω1 be the trait-dependent scaled fixation

rates, the fixed mutations accumulate as a Poisson process run-

ning along all branches of the species tree. Synonymous sub-

stitutions build up neutrally over the whole tree at scaled rate

θsyn, while the substitution rate of nonsynonymous mutations

is reduced to θnonω0 for trait-0 species and to θnonω1 for trait-1

species where

ω0 ≤ ω1 < 1. (21)

The ordering in (21) indicates that both traits are under negative

selection, with the efficacy of selection in removing deleterious

mutations higher in trait-0 species.

4.1. Application to dN/dS

The dN/dS -ratio measures the normalized ratio of nonsyn-

onymous to synonymous substitutions on the species tree. If

we observe a single trait-0 species known to exist over a fixed

time duration t, the expected number of nonsynonymous and

synonymous substitutions is θnonω0t and θsynt, respectively, and

we understand the normalized ratio to be simply ω0. Similarly,

for a species known to carry trait-1 over a fixed time interval,

the corresponding ratio is ω1.

In our context, it is natural to associate dN/dS with the av-

erage number of substitutions that occurred anywhere in the

species family tree and are observable today. Substitutions ob-

servable today must have occurred on the reduced tree. Of

course, a meaningful dN/dS concept is naturally conditioned

on survival of some species today. To capture the accumulation

of fixed mutations on the species tree in more detail, we run in-

dependent Poisson processes along branches of the tree. First, a

collection of Poisson points S with intensity θsyn, representing

synonymous substitutions, is placed on top of the entire tree.

Next, nonsynonymous substitutions are generated by a Poisson

measure N (0) with intensity ω0θnon along all branches carrying

trait-0, and by a measure N (1) with intensity ω1θnon along the

branches representing trait-1. Starting with the trait-0 tree re-

duced at t, (T 0)t, the random variable S0
t = S((T 0)t) counts the

number of synonymous substitutions andN0
t = N (0)((T 0)t) the

number of nonsynonymous substitutions in trait-0 species exist-

ing at t. Thus, (S0
t )t≥0 and (N0

t )t≥0 are Poisson processes mod-

ulated by the stochastic intensitites θsynAt and θnonω0At, where

At, introduced in (3), is the total branch length of (T 0)t. An

empirical investigation would proceed from here by estimating

θnon and θsyn and comparing observed values of N0
t and S0

t to

obtain a dN/dS -ratio for ω0 as

ω̂0 =
N0

t /θnon

S0
t /θsyn

. (22)

Next, when we apply S and N (i) to the entire reduced species

tree at t, Tt = (Tt)0 ∪ (Tt)1, we obtain Poisson processes

St = # accumulated synonymous substitutions

in all existing species at t,

N
(i)
t = # accumulated nonsynonymous substitutions

in trait-i up to time t, i = 0, 1, t ≥ 0.

Here, St is modulated by the stochastic intensity θsyn (A′t + Bt),

where A′t and Bt, introduced in (4) and (5), respectively, are

the total lengths of trait-0 and trait-1 branches in the reduced

tree Tt. Indeed, conditionally, given t and given A′t and Bt, St

has a Poisson distribution with mean θsyn(A′t + Bt). Similarly,

N
(i)
t are Poisson processes modulated by the random intensities

θnonω0 A′t for i = 0 and θnonω1 Bt for i = 1.

Putting these tools together, we consider the dN/dS -ratio

dN/dS ∼
(E(N (0)

t |Kt > 0) + E(N (1)
t |Kt > 0))/θnon

E(St |Kt > 0)/θsyn

=
ω0E(A′t |Kt > 0) + ω1E(Bt |Kt > 0)

E(A′t + Bt |Kt > 0)
.

The conditioning scheme of assuming at least one trait-0

species at t, Kt > 0, is, to some degree, arbitrary. Alternatives,

such as assuming Kt = k or imposing a condition involving both

Kt and Lt, are equally natural. Our choice is computationally

more convenient and hence we define

dN/dS |t =
ω0E(A′t |Kt > 0) + ω1E(Bt |Kt > 0)

E(A′t |Kt > 0) + E(Bt |Kt > 0)
. (23)

Because of the appearance of A′t , it is not immediately clear as

to how we can compute this expression, even when the model
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Figure 6: Plots of dN/dS |comp
t versus δ in a) and dN/dS |comp

t versus t in b), for selected values of p. In a), t = 1, ω0 = 0.1, ω1 = 0.3, λ0 = 8, µ0 = 4, λ1 = 10,

µ1 = 12, while µ = µ0 + (1 − p) δ varies with p and δ. The dotted red curve gives those values of dN/dS |comp
1 which are obtained for a sub-critical process

(γ0 = λ − µ < 0). In b), δ = 3, ω0 = 0.1, ω1 = 0.3, λ0 = 8, µ0 = 4, λ1 = 10, µ1 = 12, while µ = µ0 + (1 − p) δ depends on the value of p. In both panels, the red

curve is obtained for p = 0, orange for p = 0.5, green for p = 1, and the dashed black lines represent the value of ω0 and ω1.

parameters are known. A possible approach is replacing A′t by

the branch length At ≤ A′t of the trait-0 reduced tree (T 0)t, in

both numerator and denominator of (23), and obtain the approx-

imation

dN/dS |comp
t =

ω0E(At |Kt > 0) + ω1E(Bt |Kt > 0)
E(At |Kt > 0) + E(Bt |Kt > 0)

,

where E(At |Kt > 0) and E(Bt |Kt > 0) are functions of the

model parameters derived in (10) and (16), respectively. For

t = 1, fixed mutation rates ω0 and ω1, and arbitrary values of

parameters λ0, µ0, λ1 and µ1, Figure 6a illustrates the shape of

dN/dS |comp
t versus δ, for selected values of p. On the other

hand, if δ is fixed, dN/dS |comp
t as a function of divergence time

t, increases from ω0 at t = 0 to a limiting value dN/dS |comp
∞ , as

shown in Figure 6b. By analyzing (10) and (16) in more detail

it can be seen that

dN/dS |comp
∞ =

D
1 + D

ω0 +
1

1 + D
ω1, (24)

where

D =
γ0(γ0 − γ1)

δγ1

∫ ∞

0

1
λeγ0 s − µ

ds∫ ∞

0

1
λ1eγ0 s − µ1e(γ0−γ1)s ds

.

While Figure 6 gives an idea of the dynamics of dN/dS for

known parameter values, we now describe a similar, but slightly

different approximation approach that can be obtained from a

given estimated tree. Assuming that the model parameters have

already been estimated from the tree, we would like to avoid

the replacement of A′ with A in (23). In addition, we require

estimates of ω0 and ω1. An estimate of ω0 on a species tree

can be found fairly easily by making use of existing methods,

but it is difficult to obtain a value for ω1, since we do not know

exactly when transition from trait-0 to trait-1 takes place along

a branch. In order to achieve this, suppose that we have an

estimate of the total branch length Ttot, of the whole species

tree, which is naturally associated with the denominator of (23),

i.e.,

Ttot = E(A′t |Kt > 0) + E(Bt |Kt > 0).

The analytical expression (16), giving the expected total branch

length of trait-1 species tree, that is,

E(Bt |Kt > 0) =

δ

∫ t

0

∫ s

0

(λeγ0u − µ

γ0
+
λµ(eγ0u − 1)(eγ0(t−u) − 1)

γ0(λeγ0t − µ)

)
×

γ1eγ1(t−u)

λ1eγ1(t−s) − µ1
duds,

yields an estimate T 1
tot = E(Bt |Kt > 0), and hence we obtain

from (23),
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Figure 7: Phylogenetic trees. Panel a) gives the tree consisting of 47 species in the Geraniaceae family and 1 outgroup species, while in panel b), ultrametric version

of the tree in a) is shown. In both a) and b), outcrossing species are colored in blue, selfing species in red, and the outgroup species in green.

dN/dS |t ∼
(
1 −

T 1
tot

Ttot

)
ω0 +

T 1
tot

Ttot
ω1.

Also available from the tree, as indicated in (22), is an estimate

ω̂0 ofω0. By applying the technique in (22) to the entire species

tree, one can similarly obtain an estimate ω̂ of dN/dS |t. Then,

the above equation becomes

ω̂ =
(
1 −

T 1
tot

Ttot

)
ω̂0 +

T 1
tot

Ttot
ω1,

and therefore by rearranging the above equation, we derive an

estimate of ω1 as

ω̂1 = ω̂0 + (ω̂ − ω̂0)
Ttot

T 1
tot
. (25)

This relation shows that incorporating information from the un-

derlying diversification process can help estimating ω1, without

having to replace A′ with A in (23). To implement (25) in prac-

tice, we require values for Ttot and T 1
tot, the estimates ω̂0 and ω̂,

and diversification parameters of the tree. In the next section,

we demonstrate the use of (25) by applying it to a real data set.

While the estimates of ω0 and ω, as well as tree parameters, are

obtained from already established techniques, the accuracy of

the estimates of Ttot and T 1
tot are tested through simulations, and

the results are summarized in Appendix C.

4.2. An example: outcrossing and selfing plant species

In this section, we analyze a set of outcrossing and selfing

plant species belonging to the Geraniaceae family. In doing

so, we also illustrate how the diversification process can affect

the dN/dS estimates. The outcrossing species, or outcrossers,

are the ancestral species and represent trait-0, while the self-

ing species, or selfers, represent trait-1. For a total of m = 48

species, a sequence alignment of chloroplastic genes, consist-

ing of 1425 codons, is obtained from Glémin and Muyle (2014).

Out of the 48 species, k = 33 are outcrossers, ` = 14 are self-

ers, and one species serves as the outgroup. For all the species,

the phylogeny analysis software PhyML (Guindon and Gas-

cuel, 2003), with nucleotide substitution model K80, is used

to reconstruct the phylogenetic tree and obtain corresponding

branch lengths. This tree is given in Figure 7a. The one-ratio

model in the software PAML (Yang, 1997), with 3xF4 option

for codon frequencies, is used to obtain ω̂ = 0.095, an es-

timate of the global dN/dS ratio over the tree (excluding the

outgroup). The outcrosser species sub-tree, is then obtained by

removing the outgroup and all selfing branches from the initial

tree in Figure 7a. This sub-tree and the corresponding outcross-
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Figure 8: Simulations of the two-type branching process Xt . In a), simulations were carried out with BiSSE model parameters (λ1 = 0, λ0 = 17.601, p = 0,

δ = 17.322, µ0 = 0, µ1 = 53.716), while in b), ClaSSE model parameters (λ1 = 0, λ0 = 11.761, p = 1, δ = 8.581, µ0 = 10.406, µ1 = 19.494) were used. Plots in

the left panel represent the trace of (Kt , Lt) in the (k, `) plane, while plots in the right panel show the paths over time of Kt and Lt in blue and red, respectively.

ing sequence data yields the dN/dS -value, essentially an esti-

mate of ω0, as ω̂0 = 0.075. As before, we use the one-ratio

model in PAML to obtain the estimate for ω0. The observed

ordering ω̂0 < ω̂ is consistent with our basic hypothesis in (21)

that ω0 ≤ ω1. The tree in Figure 7a is then made ultrametric

using the package ‘ape’ (Paradis et al., 2004) in the software

R (R Core Team, 2016), and normalized to have t = 1. This

ultrametric tree is given in Figure 7b. The total branch length

of the ultrametric tree, excluding the outgroup, is Ttot = 6.926.

To see which values of ω1 would be consistent with the ob-

servations, we proceed by estimating parameters on the tree by

maximum likelihood techniques. First of all, we consider the

case when p = 0 by fitting a BiSSE model (Maddison et al.,

2007) to the ultrametric tree in Figure 7b, using the package ‘di-

versitree’ (FitzJohn, 2012) in R. The parameters of the BiSSE

model are constrained to prohibit transitions from selfing to

outcrossing. This gives λ = λ0 = 17.601, λ1 = 0, µ0 = 0,

µ1 = 53.716, δ = 17.322 and µ = µ0 + (1 − p)δ = 17.322. The

corresponding two-type branching process is supercritical with

extinction probability µ/λ = 0.984. The left and right panels in

Figure 8a show a fairly typical realization of the branching pro-

cess, conditional on non-extinction. Using the parameter values

in (16) along with t = 1, we obtain an estimate of the total selfer

branch length as T 1
tot = E(B1|K1 > 0) = 0.126. Since the values

for Ttot and T 1
tot are now known, and the estimates ω̂ = 0.095

and ω̂0 = 0.075 have been obtained earlier as well, we can de-

rive an estimate of ω1 using (25), that is

ω̂1 = ω̂0 + (ω̂ − ω̂0)
Ttot

T 1
tot

= 1.174.

14



The general view regarding the role of selection in removing

deleterious mutations suggests that ω1 should be less than 1, as

assumed in (21). Obtaining ω1 > 1 in the above equation vio-

lates (21), and is indicative of a pure anagenetic (p = 0) model

being unsuitable to describe this particular family of species.

Also, the difference between the maximum likelihood estimates

of λ and µ is very small (γ0 = λ − µ = 0.279), suggesting that

since the outcrossing parameters are bordering on the critical

case, it will be very unlikely to observe a tree in this case.

Now, if we go to the other extreme and assume as much self-

ing in the tree as possible, i.e., a pure cladogenetic model, we

can obtain an estimate of ω1. Using the classical approach of

a two-ratio branch model in PAML, we get ω0 = 0.079 (which

is consistent with our estimate ω̂0 = 0.075) and ω1 = 0.167.

Since the values of ω0 and ω1 are quite close to one another, it

seems that the strength of selection is almost the same for both

traits. Moreover, in this scenario, we can neither determine the

branching tree rates, nor the corresponding value of the param-

eter p. Here, we would also like to stress on the fact that as-

suming a pure cladogenetic case (p = 1) for the full species

tree does not imply that the reduced tree is also cladogenetic

(as assumed by PAML) in our model, as illustrated in Figure 9.

Coming back to our example tree in Figure 7b, we now try to

obtain intermediate values of the parameters by fitting a ClaSSE

(Goldberg and Igić, 2012) model to the ultrametric tree, con-

strained in manner so that p = 1 and only one-sided transitions

from outcrossing to selfing are allowed. The ClaSSE model,

incorporated in the package ‘diversitree’ (FitzJohn, 2012) in R,

gives the maximum likelihood estimates λ0 = 11.761, λ1 = 0,

µ = µ0 = 10.406, µ1 = 19.494 and δ = 8.581. In this

case, the corresponding two-type branching process is super-

critical (γ0 = λ − µ = 1.355 > 0) with extinction probability

µ/λ = 0.885. The left and right panels in Figure 8b show a typ-

ical realization of this branching process. Using the parameter

values in (16) with t = 1, we obtain T 1
tot = 0.510 and from (25),

a suitable estimate of ω1 as

ω̂1 = ω̂0 + (ω̂ − ω̂0)
Ttot

T 1
tot

= 0.347.

a)

0 t
outcrosser selfer

b)

0 t
outcrosser selfer

Figure 9: Illustration of a tree with cladogenetic state changes. In panel a), the

tree constructed in forward time with parameter value p = 1 is shown, while

in panel b), the same tree in a), reduced at time t, is given. It can be seen that

even though p = 1, the reduced tree (constructed backwards in time) is not

cladogenetic. In both panels, the blue and red species represent outcrossers and

selfers, respectively.

Furthermore, using the ClaSSE model parameters along with

the estimated values of ω̂0 and ω̂ in (24), we obtain ω̂1 = 0.305,

which is very close to the estimated value of ω̂1 in the above

equation. As a concluding observation, we see that if the esti-

mates of different parameters including ω0 and ω1 are known,

then after a sufficient amount of time has passed, the value

of dN/dS , as well as the fraction of outcrossing and selfing

species in the species tree, reaches a steady state, which can be

determined using (24).

5. Discussion

In this paper, we linked trait-dependent diversification pro-

cess with trait-dependent substitution process. We focused on

binary-trait models based on the ‘evolutionary dead-end’ hy-

pothesis, with unidirectional shift from a trait-0 to a trait-1,
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where trait-0 is assumed to be the dominating type. To do so,

we first described several properties of diversification models

that have not been obtained before. In particular, we introduced

a novel way to decompose and analyze the reduced trait-0 and

trait-1 species trees. We then showed how trait-dependent di-

versification processes affect the inference and interpretation of

relationships between traits and molecular evolutionary rates.

We derived several expressions describing the tree character-

istics, such as the expected sizes of the reduced trees as well as

their expected branch lengths. An interesting result was ob-

tained, in particular, regarding the expected number of trait-

1 species per cluster; in (19), we showed that this value al-

ways remains within a bounded region. Assigning outcross-

ing and selfing species as trait-0 and trait-1, respectively, this

formally confirms the general observation that large clades of

selfing species are rare. Larger clusters of selfing species can

only be obtained when the selfing diversification rate is posi-

tive (λ1 > µ1), which corresponds to conditions where selfing is

no more an evolutionary dead-end. Observation of large clus-

ters of selfing species thus suggests that dead-end conditions

may not apply uniformly on a given tree. For example, a clade

of 21 self-compatible species was observed in the Solanaceae

dataset used in Goldberg et al. (2010). Such a pattern would

be compatible with a scenario where selfing lineages senesce

in diversification rates, with increasing extinction rates through

time (Ho and Agrawal, 2017).

A special case occurs when selfing species do not form any

clusters, but appear only as singletons. Under this condition,

testing the difference of dN/dS between outcrossing and self-

ing branches can be difficult. For longer branches leading to the

selfing species, we could expect to have more power to distin-

guish between ω0 and ω1, simply because more substitutions

occur and ω0, ω1 values are better estimated. However, the pro-

portion of the branch with ω1 decreases as the branch length

increases, making ω0 and ω1 values closer to one another.

For shorter branches, the mutation substitution process can-

not be considered as instantaneous, and the polymorphic tran-

sitory phase – currently not included in our modeling frame-

work – must be taken into account to avoid detection of spuri-

ous changes in dN/dS (Mugal et al., 2014). Thus, not detecting

any effect of selfing on dN/dS does not necessarily mean that

the effect is weak. The same rationale and conclusions may be

applied to other binary traits, such as hermaphroditism versus

dioecy (Käfer et al., 2013), sexuality versus clonality (Henry

et al., 2012) and solitary life versus sociality (Romiguier et al.,

2014).

Overall, our results show that trait-dependent diversification

processes can have a strong impact on the relationship between

traits and molecular evolution. Testing the effect of dead-end

traits on molecular evolutionary rates can be especially prob-

lematic in the presence of small clusters, as discussed above. In

addition, if large clusters corresponds to parts of the tree where

dead-end conditions are not yet met, weak or no effect of traits

on molecular evolutionary rates should also be expected. The

possible bias depends on the diversification process parameters,

for example, under a pure cladogenetic model, branch-specific

dN/dS estimates correspond toω0 andω1. Fitting a diversifica-

tion model prior to molecular evolutionary analysis should help

interpreting results. A further step would be to develop statisti-

cal methods allowing to jointly infer the effect of traits on both

the diversification process and the molecular evolutionary rates.

Since, under the dead-end hypothesis, accumulation of delete-

rious non synonymous mutations directly affects the long-term

survival of species (or is, at least, a signature of reduced selec-

tion efficacy that can drive species towards extinction), the rate

of extinction of a species could be considered directly propor-

tional to the rate of fixation of mutations in the corresponding

trait. Therefore, a possible extension of this work would be to

integrate the species diversification process with molecular evo-

lution by combining the substitution and extinction rates. This

could be achieved by means of, say for instance, a linear func-

tion, such as using a control parameter c > 0 and assuming that

µ0 = cω0 and µ1 = cω1. This would be a straightforward way to

connect the two processes, but more realistic parameterizations

could also be considered, as long as they bring new insights

without complicating the treatment or changing the rationale.

16



Allowing for two-sided transitions (reversion from selfing to

outcrossing, in our example) would also be a natural extension

to this work, but would lead to more complex scenarios, since

both trait-0 and trait-1 trees could be disjoint. We hope that the

modeling framework presented in our paper, will be a useful

starting point for further development in this field of research.

Supplementary material

The codon sequence file of the Geraniaceae data set, used

in our example in Section 4.2, and the corresponding esti-

mated phylogeny, depicted in Figure 7a, can be found online

at http://dx.doi.org/10.17632/d2fpg6dkrv.1.

Appendix A. Mathematical properties

This section elaborates the mathematical properties of the

two-type, continuous time Markov branching process Xt =

(Kt, Lt), given in (1). Here, we analyze the process following

the same approach and notation as in Athreya and Ney (1972).

The branching rates of Xt, given in (2), are rewritten below

for convenience

(k, `) 7→



(k + 1, `) λ0k

(k − 1, ` + 1) (1 − p)δk

(k − 1, `) µ0k

(k, ` + 1) pδk + λ1`

(k, ` − 1) µ1`.

The life length of type-i, i = 0, 1, is exponentially distributed

with parameter a = (a0, a1), such that

a0 = λ0 + µ0 + δ and a1 = λ1 + µ1.

The offspring distribution of the two types is given by p(j) =

(p(0)(j), p(1)(j)), where

p(0)(2, 0) =
λ0

λ0 + δ + µ0
, p(0)(0, 1) =

(1 − p)δ
λ0 + δ + µ0

,

p(0)(0, 0) =
µ0

λ0 + δ + µ0
, p(0)(1, 1) =

pδ
λ0 + δ + µ0

,

p(1)(0, 2) =
λ1

λ1 + µ1
, p(1)(0, 0) =

µ1

λ1 + µ1
,

and ∑
j

p(i)(j) = 1.

The generating function is of the form f(s) = (f(0)(s), f(1)(s)),

where f(i)(s) =
∑

j p(i)(j)s j, that is

f (0)(s0, s1) =
λ0s2

0 + pδs0s1 + (1 − p)δs1 + µ0

λ0 + δ + µ0
,

and

f (1)(s0, s1) =
λ1s2

1 + µ1

λ1 + µ1
.

The infinitesimal generating function is given by ui(s) =

ai[f(i)(s) − si], that is,

u(0)(s0, s1) = λ0s2
0 + pδs0s1 + (1 − p)δs1

− (λ0 + δ + µ0)s0 + µ0,

and

u(1)(s0, s1) = λ1s2
1 − (λ1 + µ1)s1 + µ1.

The mean offspring matrix A is defined as

A = (ai j), where ai j = ai

[∂ f (i)(s)
∂s j

∣∣∣∣
s=1
− δi j

]
,

and

δ(i, j) =

 1 if i = j

0 otherwise.

Hence,

A =

 λ0 − (1 − p)δ − µ0 δ

0 λ1 − µ1

 .
The eigenvalues of A,

γ0 = λ0 − (1 − p)δ − µ0 and γ1 = λ1 − µ1,

classify the process Xt as

γ+ = max(γ0, γ1)


< 0 Xt is subcritical

= 0 Xt is critical

> 0 Xt is supercritical.

Let the extinction probabilities of Xt = (Kt, Lt) be

q0 = P[extinction|X0 = (1, 0)], q1 = P[extinction|X0 = (0, 1)].
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Then, q0 and q1 are minimal solutions of the system

q0 = f (0)(q0, q1), q1 = f (1)(q0, q1).

Since type-1 species are unable to produce type-0 offspring,

q1 = 1. Hence, the only minimal solution of the above system,

that provides a nonnegative chance of species survival, is

q0 =
µ0 + (1 − p)δ

λ0
=
µ

λ
, q1 = 1.

To find the mean values, assume that

m00(t) = E(Kt |K0 = 1), m11(t) = E(Lt |L0 = 1),

m01(t) = E(Lt |K0 = 1), m10(t) = E(Kt |L0 = 1) = 0,

and

M(t) =

 m00(t) m01(t)

0 m11(t)

 .
Then, we have that M(s + t) = M(s)M(t) and M(t) → I as

t → 0. Hence, M(t) = eAt, and

m00(t) = e(r0−(1−p)δ)t, m11(t) = er1t,

m01(t) =
δ

r0 − (1 − p)δ − r1

[
e(r0−(1−p)δ)t − er1t].

Here, M(t) is not positively regular. However,

E(Kt)
E(Kt) + E(Lt)

=
m00(t)

m00(t) + m01(t)
→ 1 −

δ

r0 − r1 + pδ
,

and

E(Lt)
E(Kt)

=
m01(t)
m00(t)

→
δ

r0 − (1 − p)δ − r1
,

as t → ∞.

Appendix B. Estimates for the case when λ1 = 0

We examine a particular case, in which we assume that com-

plete species sampling has taken place, and that each observed

trait-1 species pairs up with a species of trait-0, at the most

recent branching bifurcation point. Hence, the trait-1 species

occur only as singletons, and we estimate λ1 = 0. Let us con-

sider such a species pair at time t, which traces back to a joint

ancestor at time t − s (Fig. B.1). Since λ1 = 0, the joint ances-

tor is necessarily a species of trait-0. The total divergence time

0 t-s t
trait-0 trait-1

R0 s − R0

Figure B.1: An observed pair of trait-0 (blue) and trait-1 (red) species at time t,

with a common trait-0 ancestor at time t − s.

of the pair is 2s. One branch of length s is trait-0 throughout,

while the other branch divides into s = R0 + (s − R0), where R0

is the time spent as trait-0. In particular, if the splitting event at

t − s produces one species of each trait, then R0 = 0.

We now attempt to find an estimate of the expected value of

R0. Suppose that we observe a total of ` species of trait-1 at t,

each having a trait-0 species as their nearest neighbor species

backwards in the tree. Let the divergence times of each of the

pairs be t − si, i = 1, . . . , `. Let R0(si) be the corresponding

times represented by trait-0 species since divergence. Then

A′t = At +
∑̀
i=1

R0(si),

E(A′t |Kt > 0) ≈ E(At |Kt > 0) +
∑̀
i=1

r0(si),

where the r0(si)’s denote the expected time spent as trait-0 on a

branch of length s, and are computed as follows.

Let R denote an exponential random variable with rate (1 −

p)δ, and let R0 have a mixed distribution so that R0 = 0 with

probability pδ/(λ + pδ) and R0 is given by R otherwise. Also,

let V0 and V1 be exponential extinction times of rate µ0 and

µ1, respectively. Here, R0 represents the time as trait-0 in the

branch ending up as trait-1, given that the species survive to t.

Thus, using notation of the type E(X|A) = E(X, A)/P(A),

r0(s) = E(R0|R0 < s,V0 > R0,V1 > s − R0)

=
E(R0, R0 < s,V0 > R0,V1 > s − R0)

P(R0 < s,V0 > R0,V1 > s − R0)
.

The expectation simplifies as
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a) b)

Figure B.2: The left panel a) gives plots of r0(s) versus p for s = 0.2 in green, s = 0.4 in orange, and s = 0.6 in red. The right panel b) gives plot of f (s) versus s

for p = 0.2 in green, p = 0.4 in orange, and p = 0.6 in red. In both plots, δ = 3, λ0 = 8, µ0 = 4, µ1 = 12, λ1 = 0 and µ = µ0 + (1 − p) δ.

E(R0, R0 < s,V0 > R0,V1 > s − R0)

=
λ

λ + pδ
E(R, R < s,V0 > R,V1 > s − R)

=
λ

λ + pδ

∫ s

0
re−µ0re−µ1(s−r)(1 − p)δe−(1−p)δr dr.

Furthermore,

P(R0 < s,V0 > R0,V1 > s − R0)

=
pδ

λ + pδ
P(V1 > s) +

λ

λ + pδ
P(R < s,V0 > R,V1 > s − R)

=
pδe−µ1 s

λ + pδ
+

λ

λ + pδ

∫ s

0
e−µ0r−µ1(s−r)(1 − p)δe−(1−p)δrdr,

and hence, recalling that µ = µ0 + (1 − p)δ,

r0(s) =
λ(1 − p)

∫ s
0 re(µ1−µ)r dr

p + λ(1 − p)
∫ s

0 e(µ1−µ)r dr
,

or, evaluating the integrals,

r0(s) =

λ(1 − p)
(
(µ1 − µ)s − 1 + e−(µ1−µ)s

)
p(µ1 − µ)2e−(µ1−µ)s + λ(1 − p)(µ1 − µ)(1 − e−(µ1−µ)s)

.

Figure B.2a shows how r0(s) varies with p for different val-

ues of s, when λ1 = 0. In particular, it can be seen that when

changes are not purely cladogenetic (p < 1), a substantial frac-

tion of the branch evolves as trait-0.

Define f (s) to be the fraction of type-1 in a branch carrying

both trait-0 and trait-1, as shown in Figure B.1, that is,

f (s) B
s − r0(s)

s
.

Figure B.2b gives an illustration of f (s) versus s for different

values of p, with λ1 = 0. It can be seen that f (s) decreases

with s whenever µ1 > µ = µ0 + (1 − p)δ. This means that

proportionally, the longer the branch leading to type-1, the more

recent the transition event would be.

Appendix C. Simulation results

To test the accuracy of the relevant parameters namely, T 1
tot

and Ttot, used in our example in Section 4.2, we simulated 100

phylogenetic trees with λ0 = 11.761, λ1 = 0, µ = µ0 = 10.406,

µ1 = 19.494, δ = 8.581 and p = 1, as initial values. (Note that

these are the same values as those estimated from the ClaSSE

model in Section 4.2.) Maximum likelihood estimation method

of ClaSSE, constrained to allow only one-sided transitions, was

then applied to each of the 100 trees to obtain different param-

eter values. Out of the 100 set of parameter values, we disre-

garded 16 since they did not conform to our model (γ0 = λ − µ

was negative for these trees). From the remaining 84 sets of
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Figure C.1: Histograms showing probability distributions for T 1
tot in a) and Ttot in b), for 84 simulated trees. In the left and right panels, the observed values

T 1
tot = 0.510 and Ttot = 6.926, respectively, are indicated by a dashed blue vertical line.

parameter values, we calculated the expected selfer tree branch

lengths T 1
tot using (16), and from the corresponding 84 simu-

lated trees, we also recorded the observed total branch length

Ttot of each tree. The results are shown in the form of his-

tograms given in Figure C.1a and C.1b. From these figures, we

conclude that the estimates T 1
tot = 0.510 and Ttot = 6.926, used

in our example in Section 4.2, are typically consistent with the

model.
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Glémin, S., Muyle, A., 2014. Mating systems and selection efficacy: a test using

chloroplastic sequence data in angiosperms. J. Evol. Biol. 27, 1386–1399.

Goldberg, E.E., Igić, B., 2008. On phylogenetic tests of irreversible evolution.

Evolution. 62, 2727–2741.

Goldberg, E.E., Kohn, J.R., Lande, R., Robertson, K.A., Smith, S.A., Igić, B.,
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Figure legends

Figure 1: Diagrammatic representation of cladogenetic state change, anagenetic state change, and the Markov branching process.

The 0 and 1 labels represent trait marks. In a), cladogenetic change 0 → 0 + 1 is given by solid blue-red lines, and 1 → 0 + 1

by dashed blue-red lines. In b), anagenetic change 0 → 1 is given by a solid blue-red line, and 1 → 0 by a dashed red-blue line.

Panel c) depicts the two-type Markov model, as well as various rates of the branching process. Transitions from trait-1 to trait-0,

represented by dashed lines in all three panels, are not considered further in this paper.

Figure 2: Diagram of a species tree T . Panel a): rooted tree T = T 0 ∪ T 1, with trait-0 species colored blue and trait-1 species

colored red. Panel b): rooted type-0 tree T 0, and edges of type-1 tree T 1, plotted separately in blue and red, respectively.

Figure 3: Diagrammatic representation of reduced species trees. Panel a) shows the reduced tree Tt, given the original tree T

from Figure 2a. Trait-0 species are colored blue and trait-1 species are colored red. In panel b), the trees are obtained by splitting

Tt into disjoint parts, that is, (Tt)0 and (Tt)1, which are plotted separately, in blue and red, respectively. Panel c) shows the rooted

trait-0 tree (T 0)t in blue, and the trait-1 edges (T 1)t in red, which are are obtained if the original tree T (from Fig. 2a) is first split

into type-0 and type-1 disjoint parts (as in Fig. 2b) and then reduced at t. In all three panels, t ≥ 0 and 0 ≤ s ≤ t.

Figure 4: Plots of expected values versus δ; E(Lt |Kt > 0) versus δ in red, E(Ct |Kt > 0) versus δ in orange, and E(Bt |Kt > 0)

versus δ in green, when t = 1, p = 0.5, λ = λ0 = 8, µ0 = 4, λ1 = 10, µ1 = 12 and µ = µ0 + (1 − p) δ = 4 + 0.5 δ.

Figure 5: Plots of L/C = E(Lt |Kt > 0)/E(Ct |Kt > 0) versus δ and p. Plot of L/C versus δ, for p = 0 in red, p = 0.5 in orange and

p = 1 in green, is shown in a), while plot of L/C versus p, for δ = 1.5 in green, δ = 2.5 in orange and δ = 3.5 in red, is given in b).

In both a) and b), t = 1, λ = λ0 = 8, µ0 = 4, λ1 = 10, µ1 = 12 and µ = 4 + (1 − p) δ.

Figure 6: Plots of dN/dS |comp
t versus δ in a) and dN/dS |comp

t versus t in b), for selected values of p. In a), t = 1, ω0 = 0.1,

ω1 = 0.3, λ0 = 8, µ0 = 4, λ1 = 10, µ1 = 12, while µ = µ0 + (1 − p) δ varies with p and δ. The dotted red curve gives those values

of dN/dS |comp
1 which are obtained for a sub-critical process (γ0 = λ − µ < 0). In b), δ = 3, ω0 = 0.1, ω1 = 0.3, λ0 = 8, µ0 = 4,

λ1 = 10, µ1 = 12, while µ = µ0 + (1 − p) δ depends on the value of p. In both panels, the red curve is obtained for p = 0, orange

for p = 0.5, green for p = 1, and the dashed black lines represent the value of ω0 and ω1.

Figure 7: Phylogenetic trees. Panel a) gives the tree consisting of 47 species in the Geraniaceae family and 1 outgroup species,

while in panel b), ultrametric version of the tree in a) is shown. In both a) and b), outcrossing species are colored in blue, selfing

species in red, and the outgroup species in green.

Figure 8: Simulations of the two-type branching process Xt. In a), simulations were carried out with BiSSE model parameters

(λ1 = 0, λ0 = 17.601, p = 0, δ = 17.322, µ0 = 0, µ1 = 53.716), while in b), ClaSSE model parameters (λ1 = 0, λ0 = 11.761, p = 1,

δ = 8.581, µ0 = 10.406, µ1 = 19.494) were used. Plots in the left panel represent the trace of (Kt, Lt) in the (k, `) plane, while plots

in the right panel show the paths over time of Kt and Lt in blue and red, respectively.

Figure 9: Illustration of a tree with cladogenetic state changes. In panel a), the tree constructed in forward time with parameter

value p = 1 is shown, while in panel b), the same tree in a), reduced at time t, is given. It can be seen that even though p = 1, the
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reduced tree (constructed backwards in time) is not cladogenetic. In both panels, the blue and red species represent outcrossers and

selfers, respectively.

Figure B.1: An observed pair of trait-0 (blue) and trait-1 (red) species at time t, with a common trait-0 ancestor at time t − s.

Figure B.2: The left panel a) gives plots of r0(s) versus p for s = 0.2 in green, s = 0.4 in orange, and s = 0.6 in red. The right

panel b) gives plot of f (s) versus s for p = 0.2 in green, p = 0.4 in orange, and p = 0.6 in red. In both plots, δ = 3, λ0 = 8, µ0 = 4,

µ1 = 12, λ1 = 0 and µ = µ0 + (1 − p) δ.

Figure C.1: Histograms showing probability distributions for T 1
tot in a) and Ttot in b), for 84 simulated trees. In the left and right

panels, the observed values T 1
tot = 0.510 and Ttot = 6.926, respectively, are indicated by a dashed blue vertical line.

Table legends

Table 1: Description of parameters.
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