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UNIQUENESS OF TWO-BUBBLE WAVE MAPS

JACEK JENDREJ AND ANDREW LAWRIE

Abstract. This is the second part of a two-paper series that establishes the uniqueness and
regularity of a threshold energy wave map that does not scatter in both time directions.

Consider the S2-valued equivariant energy critical wave maps equation on R1+2, with equivari-

ance class k ≥ 4. It is known that every topologically trivial wave map with energy less than twice
that of the unique k-equivariant harmonic map Qk scatters in both time directions. We study
maps with precisely the threshold energy E = 2E(Qk).

In the first part of the series we gave a refined construction of a threshold wave map that
asymptotically decouples into a superposition of two harmonic maps (bubbles), one of which is
concentrating in scale. In this paper, we show that this solution is the unique (up to the natural
invariances of the equation) two-bubble wave map. Combined with our earlier work [11] we can
now give an exact description of every threshold wave map.

1. Introduction

This paper concerns wave maps from the Minkowski space R
1+2
t,x into the two-sphere S2, with

k-equivariant symmetry. These are formal critical points of the Lagrangian action,

A(Ψ) =
1

2

∫

R
1+2

t,x

(
− |∂tΨ(t, x)|2 + |∇Ψ(t, x)|2

)
dxdt,

restricted to the class of maps Ψ : R1+2
t,x → S2 ⊂ R3 that take the form,

Ψ(t, r, θ) = (u(t, r), kθ) →֒ (sinu(t, r) cos kθ, sinu(t, r) sin kθ, cosu(t, r)) ∈ S
2 ⊂ R

3,

for some fixed k ∈ N. Here u is the colatitude measured from the north pole of the sphere and the
metric on S2 is given by ds2 = du2 + sin2 u dω2. We note that (r, θ) are polar coordinates on R2,
and u(t, r) is radially symmetric.

Wave maps are known as nonlinear σ-models in high energy physics literature, see for exam-
ple, [6, 25]. They satisfy a canonical example of a geometric wave equation – it simultaneously
generalizes the free scalar wave equation to manifold valued maps and the classical harmonic maps
equation to Lorentzian domains. The 2d case considered here is of particular interest, as the static
solutions given by finite energy harmonic maps are amongst the simplest examples of topologi-
cal solitons; other examples include kinks in scalar field equations, vortices in Ginzburg-Landau
equations, magnetic monopoles, Skyrmions, and Yang-Mills instantons; see [25]. Wave maps under
k-equivariant symmetry possess intriguing features from the point of view of nonlinear dynamics,
for example, bubbling harmonic maps, multi-soliton solutions, etc., in the relatively simple setting
of a geometrically natural scalar semilinear wave equation. For a more thorough presentation of the
physical or geometric content of wave maps, see e.g., [6, 25, 36].

The Cauchy problem for k-equivariant wave maps is given by

∂2
t u− ∂2

ru−
1

r
∂ru+ k2

sin 2u

2r2
= 0,

(u(t0), ∂tu(t0)) = (u0, u̇0), t0 ∈ R.
(1.1)

J.Jendrej was supported by ANR-18-CE40-0028 project ESSED. A. Lawrie was supported by NSF grant DMS-
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The conserved energy is

E(u(t)) := 2π

∫ ∞

0

1

2

(
(∂tu)

2 + (∂ru)
2 + k2

sin2 u

r2

)
r dr, (1.2)

where we have used bold font to denote the vector u(t) := (u(t), ∂tu(t)). We will write vectors
with two components as v = (v, v̇), noting that the notation v̇ will not, in general, refer to a time
derivative of v but rather just to the second component of v. With this notation (1.1) can be
rephrased as the Hamiltonian system

d

dt
u(t) = J ◦D E(u(t)), (1.3)

where

J =

(
0 1
−1 0

)
, D E(u(t)) =

(
−∆u(t) + r−2f(u(t))

∂tu(t)

)
. (1.4)

Note that above we have introduced the notation,

f(u) := k2 sin(2u).

We remark that both (1.3) and (1.2) are invariant under the scaling

u(t, ·) 7→ u(t/λ, ·)λ = (u(t/λ, ·/λ), λ−1∂tu(t/λ, ·/λ)), λ > 0.

which makes this problem energy critical.
It follows from (1.2) that any regular k-equivariant initial data u0 of finite energy must satisfy

limr→0 u0(r) = mπ and limr→∞ u0(r) = nπ for some m,n ∈ Z. Since the smooth wave map flow
depends continuously on the initial data these integers are fixed over any time interval t ∈ I on which
the solution is defined. This splits the energy space into disjoint classes indexed by the pair (m,n)
and it is natural to consider the Cauchy problem (1.1) within a fixed class. These classes are related
to the topological degree of the full map Ψ(t) : R2 → S2. In particular, k-equivariant wave maps
with (m,n) = (0, 0) correspond to topologically trivial maps Ψ, whereas those with (m,n) = (0, 1)
are degree = k maps.

The unique (up to scaling) k-equivariant harmonic map is given explicitly by

Q(r) := 2 arctan(rk),

and we write, Q := (Q, 0). We note that Q(r) has degree = k and it is a standard fact that
Q minimizes the energy amongst all degree k maps (see, e.g., [11]) and in particular amongst k-
equivariant maps with (m,n) = (0, 1). It is not hard to show that E(Q) = 4πk.

In this paper we consider topologically trivial k-equivariant wave maps, i.e., those with data u0

that satisfies limr→0 u0(r) = limr→∞ u0(r) = 0. The natural function space in which to consider
such solutions in the energy space, which comes with the norm,

‖u0‖
2
H := ‖u0‖

2
H + ‖u̇0‖

2
L2 :=

∫ ∞

0

(
(∂ru0(r))

2 + k2
u0(r)

2

r2

)
r dr +

∫ ∞

0

u̇0(r)
2 r dr.

Denoting by L0 := −∆ + k2r−2 we remark that the H norm of a smooth function u0 can also
expressed as ‖u0‖

2
H = 〈L0u0 | u0〉 , where 〈f | g〉 := (2π)−1 〈f | g〉L2(R2) is the L2 inner product. We

use L0 to define spaces of higher regularity, and we let H2 denote the norm

‖u0‖
2
H2 := ‖u0‖

2
H2 + ‖u̇0‖

2
H := 〈L0u0 | L0u0〉+ 〈L0u̇0 | u̇0〉 .

We also require the following weighted norm,

‖u0‖Λ−1H := ‖(r∂ru0, (r∂r + 1)u̇0)‖H.

While Q 6∈ H, this solution to (1.1) still plays a significant role in the dynamics of solutions in H;
for example, superpositions of two bubbles, i.e., Q(r/λ) −Q(r/µ) for λ 6= µ, are elements of H .
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1.1. Sub-threshold theorems and bubbling. The regularity theory for energy critical wave
maps has been extensively studied; [1, 2, 14–20, 37, 38, 42, 43, 45, 46]. Recently, the focus has been
on the nonlinear dynamics of solutions with large energy. A remarkable sub-threshold theorem was
established in [22, 39, 40, 44]: every wave map with energy less than that of the first nontrivial
harmonic map is globally regular on R

1+2 and scatters to a constant map. The role of the minimal
harmonic map in the formulation of the sub-threshold theoem was first clarified by fundamental work
of Struwe [41], who showed that the smooth equivariant wave map flow can only develop a singularity
by concentrating energy at the tip of a light cone via the bubbling off of at least one non-trivial
finite energy harmonic map. Bubbling wave maps were first constructed in a series of influential
works by Krieger, Schlag, Tataru [23], Rodnianski, Sterbenz [34], and Raphaël, Rodnianski [32],
with the latter work yielding a stable blow-up regime; see also the recent work [21] for stability
properties of the solutions from [23], as well as [13] for a classification of blowup solutions with a
given radiation profile, and [31] for a construction of a new class of singular solutions that blow up
in infinite time. In particular, all of these works demonstrate that blow up by bubbling can occur
for maps with energy slightly above the ground-state harmonic map, which shows the sharpness of
the sub-threshold theorem.

The sub-threshold theorem can be refined by taking into account the topological degree of the
map. Only topologically trivial maps can scatter to a constant map and it was shown in [3, 24]
that the correct threshold that ensures scattering is E < 2E(Q) (rather than E(Q)). The reasoning
behind the number 2E(Q) is as follows. The topological degree counts (with orientation) the number
of times a map ‘wraps around’ S2. If a harmonic map of degree k bubbles off from a wave map Ψ(t),
then, in order for Ψ(t) to be degree zero, it must also ‘unwrap’ k times away from the bubble. The
minimum energy required for each wrapping is 4πk = E(Q). Thus the energy required for a degree
zero map to form a bubble is E ≥ 8πk = 2E(Q).

1.2. Main result: uniqueness of two-bubble wave maps. We consider topologically trivial
k-equivariant maps with precisely the threshold energy E = 2E(Q). Building on the work [9] of the
first author and our work [11], we can now give an exact description of every such map. We show
that for equivariance classes k ≥ 4, there is a unique (up to the natural invariances up the equation)
threshold wave map that does not scatter in both time directions.

Let u(t) : [T0,∞) → H be a solution to (1.1) with E(u) = 2E(Q). We say u(t) is a two-bubble in
forward time if there exist ι ∈ {+1,−1} and continuous functions λ(t), µ(t) > 0 such that

lim
t→∞

‖(u(t)− ι(Qλ(t) −Qµ(t)), ∂tu(t))‖H = 0, λ(t) ≪ µ(t) as t → ∞. (1.5)

A two-bubble in the backward time direction is defined similarly. HereQν denotes the scalingQν(r) :=
Q(r/ν). In [9] the first author constructed a two-bubble in forward time. In [11] we showed that
the solution from [9] must be global and scattering in backwards time. In the companion paper [12]
we gave a refined construction of a two-bubble in forward time, showing that it possesses additional
regularity and decay, i.e., it lies in the space H ∩H2 ∩Λ−1H. In this paper we show that there is
only one 2-bubble wave map in each equivariance classes k ≥ 4.

Theorem 1.1 (Uniqueness of 2-bubble wave maps). Let k ≥ 4. There exists a global-in-time solution
uc : R → H∩H2 ∩Λ−1H of (1.1) such that

∥∥uc(t)−
(
−Q+Q

qk|t|
−

2
k−2

)∥∥
H

→ 0 as t → ∞,

where qk > 0 is an explicit constant depending on k (see (1.6)).
Moreover, if u(t) ∈ H is any other 2-bubble in forward time, then there exists (t0, µ0) ∈ R×(0,∞)

such that,

u(t) = uc,t0,µ0,±(t) := ±
(
uc(t− t0, r/µ0),

1

µ0
∂tuc(t− t0, r/µ0)

)
,

i.e., uc(t) is unique up to sign, time translation, and scale.
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Remark 1.2. We note that [11, Theorem 1.6] ensures that uc(t) is global and scatters freely in
backwards time.

Remark 1.3. The solution uc(t) from Theorem 1.1 was constructed in [9]. However, the proof of
uniqueness given in Section 3 requires more detailed information about uc(t) than what is obtained
via the methods in [9]. This refined construction of uc(t) is carried out in the companion paper [12],
and is summarized in Theorem 1.12 below. Of course only after Theorem 1.1 is proved can we be
sure that uc(t) is the same solution found in [9]. We note that the companion paper [12] contains the
proof that uc(t) ∈ H ∩ H2 ∩Λ−1H, as well as an expansion of the solution into profiles that decay

up to the rate t−
3k−2

k−2 , along with a precise dynamical characterization of the modulation parameters
associated to each bubble; see the beginning of Section 1.3 for a detailed statement.

This result can be combined with the main theorem in [11] to obtain the following complete
classification.

Theorem 1.4 (Classification of E = 2E(Q) wave maps). Fix any equivariance class k ≥ 4. Let
u : (T−, T+) → H be a solution to (1.1) such that

E(u) = 2E(Q) = 8πk.

Then T− = −∞, T+ = +∞, and one the following alternatives holds:

• u(t) scatters freely in both time directions
• u(t) = uc,t0,µ0,±(t), for some (t0, µ0) ∈ R× (0,∞). This solution is a two-bubble in forward time
and freely scattering in backwards time

• u(t) = (uc,t0,µ0,±(−t),−∂tuc,t0,µ0,±(−t)), for some (t0, µ0) ∈ R× (0,∞). This solution is a two-
bubble in backwards time and freely scattering in forwards time and is given by time-reversing the
solution from Theorem 1.1

Remark 1.5. Several of the conclusions in the statement of Theorem 1.4 were proved in [11, Theorem
1.6]. In that work we showed that any threshold solution that does not scatter in some direction
must be a two-bubble in that direction as in (1.5), and with rates λ(t), µ(t) that are to leading order
the same as the rates of uc(t). Additionally, in [11] we solved the so-called collision problem for
this equation. We showed that any two bubble in forward time must scatter freely in backwards
time, i.e., when scales of the bubbles become comparable, this ‘collision’ completely annihilates the
2-bubble structure and the entire solution becomes free radiation; see also [27–29]. Viewing the
evolution of uc(t) in forward time, this means that the 2-bubble emerges from pure radiation, and
constitutes an orbit connecting two different dynamical behaviors.

Remark 1.6. Theorem 1.1 fits in a broader program to classify solutions to nonlinear wave equations
via their linear radiation. Note that the solution uc(t) emits zero linear radiation as t → ∞. For (1.1)
the conjecture (soliton resolution) is that the only solutions with this property are the trivial solution
u(t) ≡ 0 and pure multi-bubbles such as uc(t). Theorem 1.1 says that uc(t) is the only solution with
two bubbles that emits zero radiation forward-in-time. More generally, one can fix a linear forward
radiation profile uL(t) and ask if there are solutions u(t) to (1.1) that asymptotically decouple into
a sum of bubbles plus the radiative wave uL(t), and more ambitiously, for which uL(t) can these be
classified?

This same type of perspective can be taken in the context of solutions that develop a singularity
in finite time via bubbling, see [13] where a classification is given in terms of a given finite time
radiation profile u∗, which is a weak limit of the solution as t → T+ < ∞.

Remark 1.7. We expect identical theorems to hold for the equivariance classes k = 2, 3. In fact,
the argument used to prove uniqueness in this paper adapts easily to these cases. However, we only
carry out the refined construction in [12] for k ≥ 4. The proof given in that paper can be readily
adapted to cover the k = 3 case, but we avoided this due to a technical inconvenience to keep the
exposition as simple as possible, see [12, Remark 1.4]. The k = 2 case is more delicate due to the
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failure r∂rQ(r) 6∈ H∗. This introduces the need for cut-offs in the modulation analysis. This issue
was confronted in [11], but we also avoided it in [12] to keep the analysis as straightforward as
possible. Finally, the dynamics of non-scattering threshold solutions in the case k = 1 is different –
there is blow up in finite time; see the recent paper by Rodriguez [35]. However, we still expect an
analogous uniqueness statement to hold in that setting; see e.g., [13, Conjecture 1.9].

Remark 1.8. One can compare/contrast Theorem 1.4 with the classification of E = E(W ) threshold
solutions of the focusing energy critical wave equation by Duyckaerts and Merle [4] with data (u0, u1)

in the subset (Ḣ1∩L2)×L2 of the energy space; see also [5] for the corresponding theorem for NLS.
There W is the ground state Aubin-Talenti solution and it is shown that every threshold solution
either scatters in both time directions, exhibits ODE blow up in both directions, is equal to W , or
is one of two solutions W±; W− scatters freely in one direction and scatters to W in the other, and
W+ exhibits finite time ODE blow up in one direction and scatters to W in the other. One main
difference here is that the non-scattering threshold solution uc(t) contains 2 bubbles, one of which
is concentrating, which significantly complicates the analysis.

Remark 1.9 (Strong vs. weak soliton interactions). The first uniqueness result for multi-solitons is
due to Martel [26] who constructed and proved uniqueness of N -soliton solutions to g-KdV with
distinct, nontrivial velocities. We refer to the multi-solitons in that work as weakly interacting since
the leading order dynamics are given/determined by the internal motion of each individual soliton.
We emphasize here a distinction with Theorem 1.1: the bubbles in uc(t) are strongly interacting in
the sense that the dynamics are driven by nonlinear interactions between the two bubbles.

Remark 1.10 (Unique strongly interacting topological solitons). One may compare Theorem 1.1 with
the authors’ recent work with Kowalczyk, [10], which establishes the existence and uniqueness of
strongly interacting kink-antikink solutions to scalar field equations on the line (e.g., sine-Gordon
and φ4-model). While the Theorem 1.1 and the main result in [10] are quite similar in nature
(albeit for different equations), we develop a completely different technique in this paper to establish
uniqueness. We explain the difference in more detail in Remark 1.15 below.

Remark 1.11 (Uniqueness theorems in the blow up setting). Finally, we mention two other uniqueness
results for solutions with non-trivial dynamics in the blow-up setting, namely the pioneering work
of Merle [30] which proved the existence and uniqueness (up to phase) of minimal mass blow up
for the mass critical NLS, and the remarkable paper by Raphaël and Szeftel [33] which proved an
analogous result for same equation, but with an inhomogeneous nonlinearity (which precludes the
use of the psuedo-conformal symmetry in the proof). Several techniques used in this series of papers
were inspired by [33], although we emphasize the method we use to prove uniqueness is novel.

1.3. The existence and regularity of two bubble wave maps. The starting point for the proof
of Theorem 1.1 is the existence of the two-bubble wave map uc(t) from Theorem 1.1 with a precise
description of its dynamics and regularity. This is the content of the companion paper [12]. For the
reader’s convenience we review the main conclusions here.

We begin by introducing some notation needed to state Theorem 1.12 below. We define,

ρk :=
(8k
π

sin(π/k)
) 1

2

, γk :=
k

2
ρ2k, qk :=

(k − 2

2
ρk

)− 2
k−2

(1.6)

We remark that ρ2k = 16k‖ΛQ‖−2
L2 . Given a radial function w : R2 → R we denote the H and L2

re-scalings as follows

wλ(r) := w(r/λ), wλ(r) :=
1

λ
w(r/λ)
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The corresponding infinitesimal generators are given by

Λw := −
∂

∂λ

∣∣∣∣
λ=1

wλ = r∂rw (H scaling)

Λ0w := −
∂

∂λ

∣∣∣∣
λ=1

wλ = (1 + r∂r)w (L2scaling)

(1.7)

Next, we define C∞(0,∞) functions A,B, B̃ as the unique solutions to the equations,

LA = −Λ0ΛQ, 0 = 〈A | ΛQ〉

LB = γkΛQ− 4rk−2[ΛQ]2, 0 = 〈B | ΛQ〉 ,

LB̃ = −γkΛQ+ 4r−k−2[ΛQ]2, 0 =
〈
B̃ | ΛQ

〉 (1.8)

where here L := −∆ + r−2f ′(Q) is the operator obtained via linearization about Q. These are
constructed in [12, Lemma 3.3], and here we note that

A(r), B(r) = O(rk) as r → 0, B̃(r) = O(rk |log r|) as r → 0

A(r), B(r), B̃(r) = O(r−k+2) as r → ∞

Next, given a time interval J ⊂ R and a quadruplet of C1 functions (µ(t), λ(t), a(t), b(t)) on J we
define the 2-bubble ansatz,

Φ(µ(t), λ(t), a(t), b(t), r) = (Φ(µ(t), λ(t), a(t), b(t), r), Φ̇(µ(t), λ(t), a(t), b(t), r))

by

Φ(µ, λ, a, b) := (Qλ + b2Aλ + νkBλ)− (Qµ + a2Aµ + νkB̃µ)

Φ̇(µ, λ, a, b) := bΛQλ + b3ΛAλ − 2γkbν
kAλ + bνkΛBλ − kbνkBλ − kaνk+1Bλ

+ aΛQµ + a3ΛAµ + 2γ̃kaν
kAµ + aνkΛB̃µ + kbνk−1B̃µ + kaνkB̃µ

(1.9)

where we have introduced the notation, ν := λ/µ. To ensure that Φ̇ ∈ L2, we now restrict to the
setting k ≥ 4. See [12, Remark 1.4] for a discussion of the cases k = 2, 3. The main result from [12]
is the following theorem.

Theorem 1.12 (A refined two-bubble construction). [12] Fix any equivariance class k ≥ 4. There
exists a global-in-time solution uc(t) ∈ H to (1.1) that is a two-bubble in forward time with the
following additional properties:

• The solution uc(t) lies in the space H ∩H2 ∩Λ−1H, and scatters freely in negative time.
• There exists T0 > 0, a quadruplet of C1([T0,∞) functions (µc(t), λc(t), ac(t), bc(t)), and

wc(t) ∈ H ∩ H2 ∩ Λ−1H so that on the time interval [T0,∞) the solution uc(t) admits a
decomposition,

uc(t) = Φ(µc(t), λc(t), ac(t), bc(t)) +wc(t) (1.10)

where Φ is defined in (1.9) and the functions (µc(t), λc(t), ac(t), bc(t)) satisfy,

λc(t) = qkt
− 2

k−2 (1 +O(t−
4

k−2
+ǫ)) as t → ∞,

µc(t) = 1−
k

2(k + 2)
q2kt

− 4
k−2 +O(t−

6
k−2

+ǫ) as t → ∞,

bc(t) = qk
2

k − 2
t−

k
k−2 (1 +O(t−

4
k−2

+ǫ)), as t → ∞,

ac(t) =
2k

(k − 2)(k + 2)
q2kt

− k+2

k−2 (1 +O(t−
4

k−2
+ǫ)) as t → ∞,
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where ǫ > 0 is any fixed small constant. We also have,

|λ′
c(t) + bc(t)| . t−

2
k−2

(2k−1) as t → ∞,

|µ′
c(t)− ac(t)| . t−

2
k−2

(2k−1) as t → ∞.

Finally, wc(t) satisfies,

‖wc(t)‖
2
H . λc(t)

3k−2,

‖wc(t)‖
2
H2 . λc(t)

3k−4,

‖Λwc(t)‖
2
H . λc(t)

2k−2,

uniformly in t ≥ T0.

1.4. An outline of the proof of uniqueness: method of refined modulation parameters.

The goal of this paper is to prove that uc(t) from (1.10) is the unique 2-bubble in forward time up
to a change of sign, a fixed time translation, and rescaling. We introduce a dynamical method to
accomplish this. We will highlight below where the need for the refined construction in Theorem 1.12
appears in the proof.

The first observation is that uc(t) yields an invariant 2-dimensional sub-manifold M of the energy
space H via time translation and scaling. For large times, it is natural to endow this manifold with
coordinates related to the 2-bubble structure of uc(t), i.e., for all t ≥ T0 we use the C1 functions
λc(t), µc(t) given by Theorem 1.12 such that

uc(t) = Qλc(t) +Qµc(t) + oH(1)

where λc(t) = qkt
− 2

k−2 (1 + o(1)) and µc = 1 + o(1) as t → ∞. Because λc(t) is monotonic in time,
it is natural to reparamaterize time via the inverse function, i.e., t = λ−1

c (σ) for σ ∈ (0, σ0] where
σ0 = λc(T0). We define,

U(µ, σ) := uc(λ
−1
c (σ))µ

i.e., (µ, σ) give coordinates on M in the large time regime.
Now let u(t) ∈ H be any other 2-bubble solution in forward time (with the sign ι = +1 in (1.5)).

The idea is to modulate about U(µ, σ). Via a standard argument, we show that there exist C1-
functions µ(t), σ(t) and g(t) ∈ H such that for large enough times t we have

u(t) = U(µ(t), σ(t)) + g(t),

0 =
〈
ΛQµ(t)σ(t) | g(t)

〉
=
〈
ΛQµ(t) | g(t)

〉 (1.11)

and that ‖g(t)‖H, σ(t) → 0 as t → ∞ (for the simple reason thatM also asymptotically approaches
the set of two bubble configurations {Qλ −Qµ : (λ, µ) ∈ (0,∞)× (0,∞), λ/µ ≪ 1}). Note that the
desired uniqueness would follow from showing that g(t) = 0 for some time t ≥ T0.

We now make use of the fact that u(t) and U(µ, σ) both have energy E = 2E(Q). For each time
t ≥ T0 we consider a Taylor expansion of the energy,

E(U(µ(t), σ(t))) = E(u(t)) = E(U(µ(t), σ(t)) + g(t))

= E(U (µ(t), σ(t))) + 〈DE(U(µ(t), σ(t))) | g(t)〉+
〈
D2E(U(µ(t), σ(t)))g(t) | g(t)

〉
+ o(‖g‖2H)

Subtracting E(U(µ(t), σ(t))) from both sides, establishing a coercivity estimate for the quadratic
term (which is a consequence of the orthogonality conditions (1.11)), and making the “little oh”
term above smaller than half the coercivity constant c1 > 0 (which is possible by taking T0 > 0 large
enough) we arrive at the inequality

0 ≥ 〈DE(U(µ(t), σ(t))) | g(t)〉+
1

2
c1‖g(t)‖

2
H (1.12)

We next turn to studying the dynamics of the term 〈DE(U(µ(t), σ(t))) | g(t)〉 with the objective of
finding a contradiction above in the case that g(t) 6≡ 0. This is not an unnatural object to study,
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as one can observe that DE(U (µ, σ)) = −λ′
c(λ

−1
c (σ))µ−1J ◦ ∂σU(µ, σ), i.e., it is a renormalized

90-degree rotation of the tangent vector ∂σU(µ, σ) and moreover to leading order we have,

〈DE(U (µ(t), σ(t))) | g(t)〉 ≈ −λ′
c(λ

−1
c (σ))(µσ)−1 〈ΛQµσ | ġ〉

In other words, 〈DE(U(µ(t), σ(t))) | g(t)〉 is deeply related to the dynamics of the modulation pa-
rameters as can be seen from differentiating the terms in the second line in (1.11). However, a naive
second differentiation of the orthogonality conditions (1.11) does not directly reveal useful informa-
tion on the dynamics since terms of critical size but indeterminate sign arise. Here we use a technique
similar to the one developed in [7,9,11] – we perform an ad hoc correction to the modulation parame-

ters themselves using a localized virial functional. After proving that −λ′
c(λ

−1
c (σ)) = ρkσ

k
2 (1+o(1))

in Theorem 1.12, we define,

b(t) :=
1

ρkσ
k
2

〈DE(U(µ(t), σ(t))) | g(t)〉+ 〈A0(µ(t)σ(t))g(t) | ġ(t)〉 (1.13)

where A0(µσ) is the same localized and rescaled version of the virial operator used in the companion
paper [12], i.e., A0(µσ) ≈ (µσ)−1Λ0 up to scale µσ. While the correction is small (order ‖g‖2H) as
compared to the first term, its derivative is large and designed to cancel terms with critical size but
indeterminate sign.

The heart of the argument is an almost monotonicity formula for b(t), proved in Proposition 4.3,
which readily leads to a contradiction in (1.12). It is in the proof of Proposition 4.3 where the need
for refined asymptotics and refined regularity estimates for U(µ, σ) arises – indeed, one can observe
from (1.13) and (1.4) that the equation for b′ will involve estimates on the second derivatives of
U(µ, σ), given that g(t) can only be assumed to lie in H. The proof also requires weighted energy
estimates. The list of estimates on U(µ, σ) needed for the argument is given in Corollaries 3.3
and 3.4, and Theorem 1.12 is proved with these in mind. Of course in [11] the same type of higher
regularity and weighted estimates arise as well, but there we modulated around the 2-bubble family
Qλ − Qµ, rather than the constructed solution U(µ, σ), and thus the analogous estimates there
followed trivially from the formula for Q(r).

Remark 1.13. The basic outline above draws inspiration from the first author’s work [8] in a different
context. There one uses a combination of the energy expansion with a modulation analysis to rule
out two bubble configurations with opposing signs for the critical NLW, albeit without the virial
correction to the modulation parameters, which is a crucial ingredient here.

Remark 1.14. Note that the argument does not use that uc(t) is a threshold solution in a crucial
way, and thus should be applicable in other settings.

Remark 1.15. Together with the proof of uniqueness of the strongly interacting kink-antikink pair
in [10] we have now introduced two quite different techniques to prove uniqueness (and existence)
of solutions to dispersive PDEs exhibiting nontrivial dynamics under some qualitative assumption
– here the assumption is the solution has threshold energy but is non-scattering, and in [10] we look
for asymptotically stationary 2-kink solutions to scalar field equations.

The methods differ as follows. In [10] we first establish a quantitative classification of the dynamics
for any kink-antikink pair. Then we find a single, unique kink-antikink solution in a time-weighted
function space via a contraction mapping argument – in fact this is done in two-steps by way of
a novel implementation of Liapunov-Schmidt reduction. The preliminary quantitative classification
result is then used to show that any finite energy kink-antikink must also lie in this weighted function
space, which proves uniqueness.

In contrast, here we do not make any use of the dynamical classification of non-scattering threshold
solutions obtained in our previous paper [11] to prove uniqueness. We resort instead to the novel
modulation technique that we just outlined above. The steep cost however, is that this modulation
method requires very refined information on the constructed solution uc(t) (including H2-estimates),
which leads to the lengthy computations in the companion paper [12].
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In summary, one can say quite roughly that the method here is inspired by the general principle
of weak-strong uniqueness whereas in [10] the method uses the contraction mapping principle to
deduce uniqueness. We note that the method from [10] should be adaptable to the present setting
and vice versa. Both methods should be applicable in other settings as well.

2. Preliminaries

For radial functions u, v on L2(R2), we write u = u(r), v = v(r) and we use the notation,

〈u | v〉 :=
1

2π
〈u | v〉L2(R2) =

∫ ∞

0

u(r)v(r) r dr.

Let L0 denote the operator

L0w := −∆w +
k2

r2
w. (2.1)

We define the function space H as the completion of C∞
0 ((0,∞)) functions w under the norm

‖w‖2H := 〈L0w | w〉 =

∫ ∞

0

(
(∂rw(r))

2 + k2
w(r)2

r2

)
rdr

For the vector pair w = (w, ẇ) we define the norm H by

‖w‖2H := ‖w‖2H + ‖ẇ‖2L2

Next, we define the space H2 via the norm,

‖w‖2H2 := 〈L0w | L0w〉 =

∫ ∞

0

(
(∂2

rw(r))
2 + (2k2 + 1)

(∂rw(r))
2

r2
+ (k4 − 4k2)

w(r)2

r4

)
r dr

And for the pair w = (w, ẇ) we define H2 by

‖w‖2H2 := ‖w‖2H2 + ‖ẇ‖2H

We also require the following weighted norm,

‖w‖Λ−1H := ‖(Λw,Λ0ẇ)‖H

where Λ,Λ0 are defined in (1.7). It is a standard fact that the regularity of a solution u(t) to (1.1)
in the space H ∩H2 ∩Λ−1H is propagated by the flow.

The infinitesimal generators Λ,Λ0 defined in (1.7) satisfy the integration by parts identities,

〈Λf | g〉 = −〈f | Λg〉 − 2 〈f | g〉 , 〈Λ0f | g〉 = −〈f | Λ0g〉

The operator LU obtained by linearization of (1.1) about the first component of finite energy map

U = (U, U̇) plays an important role in the analysis. Given g ∈ H we have,

LUg := −∆g + k2
cos 2U

r2
g

In fact, given any g = (g, ġ) ∈ H we have

〈
D2 E(U )g | g

〉
= 〈LUg | g〉L2 + 〈ġ | ġ〉L2 =

∫ ∞

0

(
ġ2 + (∂rg)

2 + k2
cos 2U

r2
g2
)
rdr

The most important instance of the operator LU is given by linearizing (1.1) about U = Qλ. In
this case we use the short-hand notation,

Lλ := LQλ
= (−∆+

k2

r2
) +

1

r2
(f ′(Q)− k2)

We write L := L1. We often use the notation L = L0 + P , where L0 is as in (2.1) and

P (r) :=
1

r2
(f ′(Q)− k2) = −

2k2 sin2 Q

r2
= −4k2

r2k−2

(1 + r2k)2
(2.2)
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We recall that

ΛQ(r) = k sinQ =
2krk

1 + r2k

is a zero energy eigenfunction for L, that is,

LΛQ = 0, and ΛQ ∈ L2
rad(R

2).

for all k ≥ 2. When k = 1, LΛQ = 0 holds but ΛQ 6∈ L2 due to slow decay as r → ∞ and 0 is
referred to as a threshold resonance. In fact, ΛQ spans the kernel of L; see [11] for more.

We require the following localized coercivity result for functions in the orthogonal complement to
the kernel of L. This was proved in detail in [9]; see also [12].

Lemma 2.1 (Localized coercivity for L). [9, Lemma 5.4] There exists a uniform constant c1 > 0
with the following property. Suppose w ∈ H is such that

〈w | ΛQ〉 = 0. (2.3)

Then,

〈Lw | w〉 ≥ c1‖w‖
2
H .

In addition, for any c > 0, there exists R1 > 0 large enough so that for all w ∈ H as in (2.3), we
have

∫ R1

0

(
(∂rw(r))

2 + k2
w(r)2

r2

)
rdr + 〈Pw | w〉 ≥ −c‖w‖2H (2.4)

Lastly, for any c > 0, there exists r1 > 0 small enough so that for all w ∈ H as in (2.3), we have
∫ ∞

r1

(
(∂rw(r))

2 + k2
w(r)2

r2

)
rdr + 〈Pw | w〉 ≥ −c‖w‖2H

2.1. The truncated virial operators. We define truncated virial operators A(λ) and A0(λ), and
state related estimates. Nearly identical operators were introduced by the first author in [9] and
used crucially by the authors in [11]. We require a slight modification, which was established in [12].

Lemma 2.2. [9, Lemma 4.6] [12, Lemma 4.1] For each c, R > 0 there exists a function p(r) =
pc,R(r) ∈ C5,1((0,+∞)) with the following properties:

(1) p(r) = 1
2r

2 for r ≤ R,

(2) there exists R̃ = R̃(R, c) > R such that p(r) ≡ const for r ≥ R̃,
(3) |p′(r)| . r and |p′′(r)| . 1 for all r > 0, with constants independent of c, R,
(4) p′′(r) ≥ −c and 1

r
p′(r) ≥ −c, for all r > 0,

(5) |r∂r∆p| ≤ c for all r > 0,
(6) ∆2p(r) ≤ c · r−2, for all r > 0,
(7) ∆3p(r) ≥ −c · r−4 for all r > 0,

(8)
∣∣r
(
p′(r)
r

)′∣∣ ≤ c, for all r > 0,

(9)

∣∣∣∣∣r
(
r
(
p′(r)
r

)′
)′
∣∣∣∣∣ ≤ c for all r > 0.

For each λ > 0 define A(λ) and A0(λ) as follows,

[A(λ)w](r) := p′
( r
λ

)
· ∂rw(r), (2.5)

[A0(λ)w](r) :=
( 1

2λ
p′′
( r
λ

)
+

1

2r
p′
( r
λ

))
w(r) + p′

( r
λ

)
· ∂rw(r). (2.6)

Note the similarity between A and 1
λ
Λ and betweenA0 and

1
λ
Λ0. Recall the notation, L0 := −∆+ k2

r2
.
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Lemma 2.3. [9, Lemma 5.5] [12, Lemma 4.2] Let c0 > 0 be arbitrary. There exists c > 0 small

enough and R, R̃ > 0 large enough in Lemma 2.2 so that the operators A(λ) and A0(λ) defined
in (2.5) and (2.6) have the following properties:

• the families {A(λ) : λ > 0}, {A0(λ) : λ > 0}, {λ∂λA(λ) : λ > 0} and {λ∂λA0(λ) : λ > 0} are
bounded in L (H ;L2), with the bound depending only on the choice of the function p(r),

• In addition, the operators A0(λ) and λ∂λA0(λ) satisfy the bounds

‖∂rA0(λ)w‖L2 + ‖r−1A0(λ)w‖L2 . ‖∂rw‖H +
1

λ
‖w‖H

‖∂rλ∂λA0(λ)w‖L2 + ‖r−1λ∂λA0(λ)w‖L2 . ‖∂rw‖H +
1

λ
‖w‖H

with a constant that depends only on the choice of the function p(r),
• For all w ∈ H ∩H2 we have

〈A0(λ)w | L0w〉 ≥ −
c0
λ
‖w‖2H +

1

λ

∫ Rλ

0

(
(∂rw)

2 +
k2

r2
w2
)
rdr, (2.7)

• Moreover, for λ, µ > 0 with λ/µ ≪ 1,

‖Λ0ΛQλ −A0(λ)ΛQλ‖L2 ≤ c0, (2.8)

• Finally, let Pλ(r) denote the potential, Pλ(r) :=
1
r2
(f ′(Qλ)− k2). We have,

∣∣∣∣〈A0(λ)w | Pλ(r)w〉 −

〈
1

λ
Λ0w | Pλ(r)w

〉∣∣∣∣ ≤
c0
λ
‖w‖2H (2.9)

2.2. Properties of the ansatz Φ(µ, λ, a, b). The 2-bubble ansatz Φ(µ, λ, a, b) is defined in (1.9).
The arguments in [12] required detailed information about Φ and we recall several formulas and

estimates proved there. First recall that A,B, B̃ are defined so that,

Lλ(b
2Aλ + νkBλ) = −

b2

λ
Λ0ΛQλ + γk

νk

λ
ΛQλ − 4

(r/µ)k(ΛQλ)
2

r2

Lµ(a
2Aµ + νkB̃µ) = −

a2

µ
Λ0ΛQµ − γ̃k

νk

µ
ΛQµ + 4

(r/λ)−k(ΛQµ)
2

r2

(2.10)

The existence of such A,B, B̃ is made precise in the following lemma.

Lemma 2.4. [12, Lemma 3.3] Let k ≥ 4. There exist C∞(0,∞) functions A,B, B̃ satisfying (1.8).

Moreover A,B, B̃ satisfy the estimates

A(r) = O(rk), ∂rA(r) = O(rk−1), ∂2
rA(r) = O(rk−2) as r → 0

A(r) = O(r−k+2), ∂rA(r) = O(r−k+1), ∂2
rA(r) = O(r−k) as r → ∞

B(r) = O(rk), ∂rB(r) = O(rk−1), ∂2
rB(r) = O(rk−2) as r → 0

B(r) = O(r−k+2), ∂rB(r) = O(r−k+1), ∂2
rB(r) = O(r−k) as r → ∞

B̃(r) = O(rk |log r|), ∂rB̃(r) = O(rk−1 |log r|), ∂2
r B̃(r) = O(rk−2 |log r|) as r → 0

B̃(r) = O(r−k+2), ∂rB̃(r) = O(r−k+1), ∂2
r B̃(r) = O(r−k) as r → ∞

Moreover we have A,ΛA,Λ0ΛA,B,ΛB,Λ0ΛB ∈ L2(R2) and B̃,ΛB̃,Λ0ΛB̃ ∈ L2(R2).

We have the following technical lemmas proved in [12].
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Lemma 2.5. [12, Lemma 3.8] Let A,B, B̃ be as in Lemma 2.4, and let ν = λ/µ ≪ 1. Then,

‖r−1[ΛQλ]
2ΛQµ‖L2 + ‖r−1ΛQλ[ΛQµ]

2‖L2 + ‖r−1[ΛQλ]
2Aµ‖L2 . νk

‖r−1[ΛQλ]
2B̃µ‖L2 . νk−o(1)

‖r−1[ΛQµ]
2Aλ‖L2 + ‖r−1[ΛQµ]

2Bλ‖L2 . νk−2

‖r−1ΛQλ[Aµ]
2‖L2 + ‖r−1ΛQλ[B̃µ]

2‖L2 + ‖r−1ΛQµ[Aλ]
2‖L2 + ‖r−1ΛQµ[Bλ]

2‖L2 . νk

(2.11)

where the o(1) above can be replaced with any small constant.

With Φ = (Φ, Φ̇) defined as in (1.9) we have,

−∆Φ+
1

r2
f(Φ) = γk

νk

λ
ΛQλ −

b2

λ
Λ0ΛQλ + γk

νk

µ
ΛQµ +

a2

µ
Λ0ΛQµ

−
1

r2

(
f(Qλ −Qµ)− f(Qλ) + f(Qµ)− 4

( r
µ

)k
(ΛQλ)

2 − 4
( r
λ

)−k
(ΛQµ)

2
)

−
1

r2

(
f(Φ)− f(Qλ −Qµ)− f ′(Qλ −Qµ)((b

2Aλ + νkBλ)− (a2Aµ + νkB̃µ)
)

−
1

r2

(
f ′(Qλ −Qµ)((b

2Aλ + νkBλ)− (a2Aµ + νkB̃µ))

− f ′(Qλ)(b
2Aλ + νkBλ) + f ′(Qµ)(a

2Aµ + νkB̃µ)
)

(2.12)

Next we recall the estimates proved in [12].

Lemma 2.6. [12, Lemma 3.11] Let Φ = (Φ, Φ̇) be defined as in (1.9) and let (µ, λ, a, b) satisfy
ν := λ/µ ≪ 1 and |a| , |b| ≪ 1. Then, for α = 1, 2, 3 we have

∥∥∥r−α
(
f(Qλ −Qµ)− f(Qλ) + f(Qµ)− 4

( r
µ

)k
(ΛQλ)

2 − 4
( r
λ

)−k
(ΛQµ)

2
)∥∥∥

L2

. ν2kλ−α+1

∥∥∥r−α
(
f(Φ)− f(Qλ −Qµ)− f ′(Qλ −Qµ)((b

2Aλ + νkBλ − (a2Aµ + νkB̃µ)
)∥∥∥

L2

. b4λ−α+1 + a4να−1λ−α+1 + ν2kλ−α+1

∥∥∥r−α
(
f ′(Qλ −Qµ)((b

2Aλ + νkBλ − (a2Aµ + νkB̃µ))

− f ′(Qλ)(b
2Aλ + νkBλ + f ′(Qµ)(a

2Aµ + νkB̃µ)
)∥∥∥

L2

. b2νk−1λ−α+1 + a2νk+α−2λ−α+1 + ν2k−1λ−α+1

(2.13)

Lemma 2.7. [12, Lemma 3.13] Let w ∈ H ∩ H2, let Φ = (Φ, Φ̇) be defined as in (1.9), and let
(µ, λ, a, b) satisfy ν := λ/µ ≪ 1 and |a| , |b| ≪ 1. Then,

∥∥∥∥
1

r

(
f(Φ + w)− f(Φ)− f ′(Φ)w

)∥∥∥∥
L2

. ‖w‖2H (2.14)

3. Refined Modulation Analysis

Let uc(t) be the solution constructed in Theorem 1.12 that approaches a 2-bubble in forward
time. Let u(t) ∈ H be any two-bubble in forward time as in (1.5). The goal of this paper is to prove
Theorem 1.1 by showing that u(t) = uc(t).

Since u(t) is a 2-bubble in forward time we know from (1.5) that

d̂(u(t)) := inf
σ,µ>0

‖u(t)− (Qσµ −Qµ)‖
2
H + σk,
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satisfies

d̂(u(t)) → 0 as t → ∞. (3.1)

Note that here we have fixed the sign ι = +1 in (1.5) without loss of generality. In fact, we know
more than this (see [11, Theorem 1.6 and Remark 1.7]), but the above is all we require in the sequel.
In [11] we used the smallness of d(u) to modulate around the 2-parameter family of pure two bubbles
Qσµ −Qµ, that, is we imposed orthogonality conditions on the difference

u(t)−Qµσ −Qµ

by modulating in σ and µ. In contrast, here we modulate around the 2-parameter family of maps
given by the rescaled trajectory of the solution uc(t) from Theorem 1.12, the two parameters being
time t and the scale µ. This is natural in that this trajectory is invariant in the sense of dynamical
systems.

Let uc(t) be the solution given by Theorem 1.12. Note that that λc(t) is monotone decreasing on
the interval [T0,∞). By Theorem 1.12 we have that

d̂(uc(t)) ≤ η0(T0), ∀t ∈ [T0,∞)

where η0 = η0(T0) → 0 as T0 → ∞ is a constant that we can fix later to be as small as we like.

Definition 3.1. Let σ0 = λc(T0) and define the inverse function

λ−1
c : (0, σ0] → [T0,∞)

i.e., we can express each t ∈ [T0,∞) uniquely by t = λ−1
c (σ) for some σ ∈ (0, σ0].

Define

U(µ, σ, ·) := uc(λ
−1
c (σ), ·)µ = (uc(λ

−1
c (σ), ·/µ),

1

µ
∂tuc(λ

−1
c (σ), ·/µ)) (3.2)

Then U defines a mapping,

(0,∞)× (0, σ0] ∋ (µ, σ) 7→ U(µ, σ, ·) ∈ H

In fact, since the constructed solution has the threshold energy E = 2E(Q), we can can view
U(µ, σ) as a 2-dimensional invariant (under the wave map flow) sub-manifold of {E = 2E(Q)} ⊂ H,
i.e,

(µ, σ) 7→ U(µ, σ) ⊂ {E = 2E(Q)} ⊂ H

3.1. Consequences of Theorem 1.12. In this section we establish a collection of estimates on
U(µ, σ) that will be needed in the proof of Theorem 1.1. We write

U(µ, σ) =: (U(µ, σ), U̇(µ, σ)).

Introducing the notation,

ξ(σ) := −λ′
c(λ

−1
c (σ))

we record formulas for the µ, σ derivatives of U(µ, σ).

Lemma 3.2. Let U : (0,∞)× (0, η) → H be defined as above with η ≤ σ0. Then,

∂µU(µ, σ) = −
1

µ
ΛU(µ, σ) := −

1

µ

(
[Λuc(λ

−1
c (σ), ·)]µ, [Λ0∂tuc(λ

−1
c (σ), ·)]µ

)
(3.3)

∂σU(µ, σ) = −
µ

ξ(σ)
J ◦D E(U (µ, σ)) = −

µ

ξ(σ)

(
U̇(µ, σ)

∆U(µ, σ) − 1
r2
f(U(µ, σ))

)
(3.4)
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Proof. The proof of (3.3) is a direct computation using the definition (3.2) and the definition of Λ,

i.e, for V = (V, V̇ ) we have

ΛV = (ΛV,Λ0V̇ ).

To prove (3.4) we note that for any µ > 0 the mapping

ũ(t) := U(µ, λc(t/µ)) = [uc(t/µ, ·)]µ

solves (1.3) on the interval [µT0,∞), i.e,

∂tũ(t) = J ◦D E(ũ(t)) ∀ t ∈ [µT0,∞).

In particular for t = µλ−1
c (σ) we have

J ◦D E(ũ(µλ−1
c (σ))) = J ◦D E(U (µ, σ)),

which is the right-hand-side of (3.4) up to the factor − µ
ξ(σ) . On the other hand, using the chain-rule

∂tũ(t)↾t=µλ
−1
c (σ) =

[
∂σU(µ, λc(t/µ))λ

′
c(t/µ)

1

µ

]
↾t=µλ

−1
c (σ)

= ∂σU(µ, σ)λ′
c(λ

−1
c (σ))

1

µ
= −

ξ(σ)

µ
∂σU(µ, σ)

which establishes the claim. �

Importantly, Theorem 1.12 yields refined regularity and decay information about U(µ, σ) that
will be crucial in the proof of Theorem 1.1. First we fix notation. We write,

U(µ, σ) = Φ(µ, σ) +wc(µ, σ) (3.5)

where we have defined,

Φ(µ, σ) := Φ(µc(λ
−1
c (σ)), σ, ac(λ

−1
c (σ)), bc(λ

−1
c (σ)))µ

wc(µ, σ) := wc(λ
−1
c (σ))µ

Here wc(µ, σ) := wc(λ
−1
c (σ))µ is as in Theorem 1.12 and Φ(µ, λ, a, b) is defined in (1.9). Next,

define gc(µ, σ) via,

gc(µ, σ) := Φ(µ, σ) +wc(µ, σ)

−Qµσ +Qµc(λ
−1
c (σ))µ − (0, bc(λ

−1
c (σ))ΛQµσ + ac(λ

−1
c (σ))ΛQµc(λ

−1
c (σ))µ)

so that we may also write,

U(µ, σ) = (Qµσ, bc(λ
−1
c (σ))ΛQµσ)− (Qµc(λ

−1
c (σ))µ,−ac(λ

−1
c (σ))ΛQµc(λ

−1
c (σ))µ)

+ gc(µ, σ)
(3.6)

First we translate the main estimates from Theorem 1.12 to estimates for the error wc(µ, σ) and for
the parameters ξ(σ), bc(λ

−1
c (σ)), µc(λ

−1
c (σ)) and ac(λ

−1
c (σ)).

Corollary 3.3. Let U(µ, σ), wc(µ, σ), and gc(µ, σ) be defined as above. Then, U(µ, σ) ∈ H∩H2 ∩
ΛH2 and we have the estimates,

‖wc(µ, σ)‖H . σ
3
2
k−1 (3.7)

‖wc(µ, σ)‖H2 . µ−1σ
3
2
k−2 (3.8)

‖Λwc(µ, σ)‖H . σk−1 (3.9)

uniformly in σ ∈ (0, σ0] and µ ∈ (0,∞). We have the asymptotics,

lim
σ→0+

ξ(σ)

ρkσ
k
2

= lim
σ→0+

bc(λ
−1
c (σ))

ρkσ
k
2

= 1, (3.10)
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∣∣µc(λ
−1
c (σ)) − 1

∣∣ = o(1)σ as σ → 0+, (3.11)

and
∣∣ac(λ−1

c (σ))
∣∣ = o(1)σ

k
2 as σ → 0+. (3.12)

In particular, the above additionally yield the less-refined estimates,

‖gc(µ, σ)‖H . σk (3.13)

‖Λgc(µ, σ)‖H . σk (3.14)

where the o(1) in all of the above denotes a constant that can be made as small as we like by taking
T0 large enough (and hence σ0 small enough).

Corollary 3.4. Let U(µ, σ) be as above. Then,

‖
1

ρkσ
k
2

U̇(µ, σ)− ΛQµσ‖L2 = o(1) as σ → 0 (3.15)

‖
1

ρkσ
k
2

U̇(µ, σ)− ΛQµσ‖H =
o(1)

µσ
as σ → 0 (3.16)

‖r(−∆U(µ, σ) + r−2f(U(µ, σ)))‖L2 . σk−1 as σ → 0 (3.17)

‖ −∆U(µ, σ) + r−2f(U(µ, σ))‖L2 .
σk

µσ
as σ → 0 (3.18)

Moreover, for any h ∈ H we have,

∣∣〈D2E(U (µ, σ))∂µU(µ, σ) | h
〉∣∣ ≤ o(1)σ

k
2
‖h‖H
µσ

(3.19)

∣∣∣∣∣
〈
D2E(U (µ, σ))∂σU(µ, σ)− (0,

σ
k
2

ρkσ
(γkΛQµσ − ρ2kΛ0ΛQµσ)) | h

〉
∣∣∣∣∣ ≤ o(1)σ

k
2
‖h‖H
σ

(3.20)

where o(1) can be replaced with any small constant by taking σ small enough.

Before proving Corollary 3.4 it will be convenient to first translate estimates for the ansatz
Φ(µ, λ, a, b) into estimates for Φ(µ, σ).

Lemma 3.5. Let Φ(µ, σ) be defined as above. Then,

‖Φ̇(µ, σ)‖L2 + ‖Λ0Φ̇(µ, σ)‖L2 . σ
k
2 (3.21)

‖Φ̇(µ, σ)− bc(λ
−1
c (σ))ΛQµσ‖L2 . o(1)σ

k
2

∣∣∣
〈
ΛQµσ | Φ̇(µ, σ)− bc(λ

−1
c (σ))ΛQµσ

〉∣∣∣ . o(1)σ
3
2
k−1

(3.22)

‖Φ̇(µ, σ)− bc(λ
−1
c (σ))ΛQµσ‖H . o(1)

σ
k
2

µσ
(3.23)

‖Φ̇(µ, σ) − ac(λ
−1
c (σ))ΛQµµc(λ

−1
c (σ))‖L2 . σ

k
2

∣∣∣
〈
ΛQµ | Φ̇(µ, σ)− ac(λ

−1
c (σ))ΛQµµc(λ

−1
c (σ))

〉∣∣∣ . σ
3
2
k−1

(3.24)

‖r(∆Φ(µ, σ) − r−2f(Φ(µ, σ)))‖L2 . σk (3.25)

‖∆Φ(µ, σ)− r−2f(Φ(µ, σ))‖L2 .
σk

µσ
(3.26)

where the o(1) in all of the above denotes a constant that can be made as small as we like by taking
T0 large enough (and hence σ0 small enough).
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Proof of Lemma 3.5. The estimate (3.21) the estimate (3.23) and the first estimates in (3.22) and (3.24)

follow directly from the definition of Φ̇(µ, σ) along with the estimates (3.10), (3.11), and (3.12). The
second estimates in (3.22) and (3.24) follow from the same considerations along with [12, Lemma

3.5], which contains the standard estimates regarding the pairings of A,B, B̃,ΛQ in L2 at different
scales.

To prove (3.25) and (3.26) we record the formula,

−∆Φ(µ, σ) +
1

r2
f(Φ(µ, σ))

= γk
σk

µc(λ
−1
c (σ))kµσ

ΛQµσ −
bc(λ

−1
c (σ))2

µσ
Λ0ΛQµσ

+ γk
σk

µc(λ
−1
c (σ))k+1µ

ΛQµc(λ
−1
c (σ))µ +

ac(λ
−1
c (σ))2

µc(λ
−1
c (σ))µ

Λ0ΛQµc(λ
−1
c (σ))µ

−
1

r2

(
f(Qµσ −Qµc(λ

−1
c (σ))µ)− f(Qµσ) + f(Qµc(λ

−1
c (σ))µ)

− 4
( r

µc(λ
−1
c (σ))µ

)k
(ΛQµσ)

2 − 4
( r

µσ

)−k
(ΛQµc(λ

−1
c (σ))µ)

2
)

−
1

r2

(
f(Φ)− f(Qµσ −Qµc(λ

−1
c (σ))µ)

− f ′(Qµσ −Qµc(λ
−1
c (σ))µ)

(
bc(λ

−1
c (σ))2Tµσ − ac(λ

−1
c (σ))2T̃µc(λ

−1
c (σ))µ

))

−
1

r2

(
f ′(Qµσ −Qµc(λ

−1
c (σ))µ)

(
bc(λ

−1
c (σ))2Tµσ − ac(λ

−1
c (σ))2T̃µc(λ

−1
c (σ))µ

)

− f ′(Qµσ)bc(λ
−1
c (σ))2Tµσ + f ′(Qµc(λ

−1
c (σ))µ)ac(λ

−1
c (σ))2T̃µc(λ

−1
c (σ))µ

)

which is a rescaling of (2.12). The estimate (3.25) now follows from (2.10) and (2.13) with α = 1
along with (3.10), (3.11), and (3.12). The estimate (3.26) follows from the same considerations
using (2.10) and (2.13) with α = 2. �

Proof. First we note that (3.15) is a direct consequence of (3.22) along with (3.10) and (3.7). The
estimate (3.16) is a direct consequence of (3.23) along with (3.10) and (3.8).

To prove (3.17) and (3.18) we use the decomposition (3.5) to write,

−∆U(µ, σ) + r−2f(U(µ, σ)) = −∆Φ(µ, σ) + r−2f(Φ(µ, σ))

+ r−2(f(Φ(µ, σ) + wc(µ, σ)) − f(Φ(µ, σ))− f ′(Φ(µ, σ))wc(µ, σ))

−∆wc(µ, σ) + r−2f ′(Φ(µ, σ))wc(µ, σ)

(3.27)

First we prove (3.17). For the first line in (3.27) we apply (3.25). For the second line we use (2.14)
along with (3.7) to obtain,

‖r−1(f(Φ(µ, σ) + wc(µ, σ)) − f(Φ(µ, σ))− f ′(Φ(µ, σ))wc(µ, σ))‖L2 . ‖wc(µ, σ)‖
2
H . σ3k−2

Finally, for the last line in (3.27) we have the estimates,

‖r∆wc(µ, σ)‖L2 . ‖Λwc(µ, σ)‖H . σk−1

which follows from (3.9) and

‖r−1f ′(Φ(µ, σ))wc(µ, σ)‖L2 . ‖wc(µ, σ)‖H . σ
3
2
k−1

which follows from (3.7). This proves (3.17). The proof of (3.18) is similar.
Next, we prove (3.19). First, using (3.3) we have

〈
D2E(U(µ, σ)∂µU(µ, σ) | h

〉
= −

1

µ

〈
LU(µ,σ)ΛU(µ, s) | h

〉
−

1

µ

〈
Λ0U̇(µ, σ) | ḣ

〉
(3.28)
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To treat the second term on the right above we use (3.5) to estimate,
∣∣∣∣
1

µ

〈
Λ0U̇(µ, σ) | ḣ

〉∣∣∣∣ .
1

µ
(‖Λ0Φ̇(µ, σ)‖L2 + ‖Λ0ẇc(µ, σ)‖L2)‖ḣ‖L2 .

σ
k
2

µ
‖ḣ‖L2

where we have used the estimates (3.21) and (3.9) in the second inequality above. To handle the first
term on the right of (3.28) we make use of the fact that LΛQ = 0 along with the decomposition (3.6)
to write,

LU(µ,σ)ΛU(µ, σ) = (LU(µ,σ) − Lµσ)ΛQµσ + (LU(µ,σ) − Lµc(λ
−1
c (σ))µ)ΛQµc(λ

−1
c (σ))µ

+ LU(µ,σ)Λgc(µ, σ)

We use the weighted estimate (3.14) to treat the contribution of last term above,
∣∣∣∣
〈
1

µ
LU(µ,σ)Λgc(µ, σ) | h

〉∣∣∣∣ .
1

µ
‖Λgc(µ, σ)‖H‖h‖H .

σk

µ
‖h‖H

To treat the first term note that,

(LU(µ,σ) − Lµσ)ΛQµσ = r−2
(
f ′(U(µ, σ)) − f ′(Qµσ)

)
ΛQµσ

= r−2
(
f ′(Qµσ −Qµc(λ

−1
c (σ))µ)− f ′(Qµσ)

)
ΛQµσ + r−2O(gc(µ, σ)ΛQµσ)

(3.29)

Using the pointwise estimate,
∣∣∣f ′(Qµσ −Qµc(λ

−1
c (σ))µ)− f ′(Qµσ)

∣∣∣ΛQµσ . ΛQ2
µc(λ

−1
c (σ))µ

ΛQµσ + ΛQµc(λ
−1
c (σ))µΛQ

2
µσ

we deduce that,
∣∣∣∣
1

µ

〈
r−2
(
f ′(Qµσ −Qµc(λ

−1
c (σ))µ)− f ′(Qµσ)

)
ΛQµσ | h

〉∣∣∣∣

.
1

µ

(
‖r−1ΛQ2

µc(λ
−1
c (σ))

ΛQσ‖L2 + ‖ΛQµc(λ
−1
c (σ))ΛQ

2
σ‖L2)‖h‖H .

σk

µ
‖h‖H

We can also use (3.13) to deduce that,
∣∣∣∣
1

µ

〈
r−2gc(µ, σ)ΛQµσ | h

〉∣∣∣∣ .
σk

µ
‖h‖H

where in the last line we used (3.11). And thus,
∣∣∣∣
1

µ

〈
(LU(µ,σ) − Lµσ)ΛQµσ | h

〉∣∣∣∣ .
σk

µ
‖h‖H

The second term in (3.28) is treated in the same way. This completes the proof of (3.19).
Lastly, we prove (3.20). Using (3.4) we have

〈
D2E(U(µ, σ))∂σU(µ, σ) | h

〉
= −

µ

ξ(σ)

〈
∆U(µ, σ)− r−2f(U(µ, σ)) | ḣ

〉

−
µ

ξ(σ)

〈
LU(µ,σ)U̇(µ, σ) | h

〉 (3.30)

For the first term on the right above we recall the decomposition (3.27) to obtain,

−
µ

ξ(σ)

〈
∆U(µ, σ) − r−2f(U(µ, σ)) | ḣ

〉
= −

µ

ξ(σ)

〈
−∆Φ(µ, σ) + r−2f(Φ(µ, σ)) | ḣ

〉

−
µ

ξ(σ)

〈
r−2(f(Φ(µ, σ) + wc(µ, σ))− f(Φ(µ, σ)) − f ′(Φ(µ, σ))wc(µ, σ)) | ḣ

〉

−
µ

ξ(σ)

〈
−∆wc(µ, σ) | ḣ

〉
−

µ

ξ(σ)

〈
r−2f ′(Φ(µ, σ))wc(µ, σ) | ḣ

〉
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For the first line above we use the expansion (3.17) along with the estimates (2.13) with α = 2 and
the asymptotics (3.10),(3.11), and (3.12) to obtain,

−
µ

ξ(σ)

〈
−∆Φ(µ, σ) + r−2f(Φ(µ, σ)) | ḣ

〉

= γk
σ

k
2

ρkσ

〈
ΛQµσ | ḣ

〉
−

ρkσ
k
2

σ

〈
Λ0ΛQµσ | ḣ

〉
+ o(1)

σ
k
2

σ
‖ḣ‖L2

which reveals the leading order terms that appear on the left-hand side of (3.20). For the next line
we have,

|
µ

ξ(σ)

〈
r−2(f(Φ(µ, σ) + wc(µ, σ)) − f(Φ(µ, σ))− f ′(Φ(µ, σ))wc(µ, σ)) | ḣ

〉
|

.
µ

ξ(σ)
‖r−2wc(µ, σ)

2‖L2‖ḣ‖L2 . σ− k
2 µ‖wc(µ, σ)‖H‖wc(µ, σ)‖H2‖ḣ‖L2 . σ

5
2
k−3‖ḣ‖L2

where in the last line we used (3.7) and (3.8). Finally, for the last line we again use (3.8) to obtain,
∣∣∣∣

µ

ξ(σ)

〈
−∆wc(µ, σ) | ḣ

〉∣∣∣∣ . µσ− k
2 ‖wc(µ, σ)‖H2‖ḣ‖L2 . σk−1 ‖ḣ‖L2

σ
∣∣∣∣

µ

ξ(σ)

〈
r−2f ′(Φ(µ, σ))wc(µ, σ) | ḣ

〉∣∣∣∣ . σk−1 ‖ḣ‖L2

σ

which completes the estimates for the first term in (3.30). To treat the second term in (3.30) we
expand using the fact that LΛQ = 0 as follows,

LU(µ,σ)U̇(µ, σ) = bc(λ
−1
c (σ))(LU(µ,σ) − Lµσ)ΛQµσ

+ ac(λ
−1
c (σ))(LU(µ,σ) − Lµµc(λ

−1
c (σ)))ΛQµc(λ

−1
c (σ))µ

+ LU(µσ)

(
Φ̇(µ, σ)− bc(λ

−1
c (σ))ΛQµσ − ac(λ

−1
c (σ))ΛQµc(λ

−1
c (σ))µ

)

+ LU(µσ)ẇc(µ, σ)

(3.31)

The contribution of the last term above to (3.20) is controlled by the estimate (3.8),

µ

ξ(σ)

∣∣〈LU(µ,s)ẇc(µ, σ) | h
〉∣∣ . µσ− k

2 ‖ẇc(µ, σ)‖H‖h‖H . σk−1 ‖h‖H
σ

Next, consider the first line in (3.31). Using (3.29), (3.10) we have,

µ

ξ(σ)

∣∣∣bc(λ−1
c (σ))〈(LU(µ,σ) − Lµσ)ΛQµσ | h〉

∣∣∣ . µ

µσ
‖r−1ΛQ2

µc(λ
−1
c (σ))µ

ΛQµσ‖L2‖h‖H

+
µ

µσ
‖r−1ΛQµc(λ

−1
c (σ))µΛQ

2
µσ‖L2‖h‖H +

µ

µσ
‖gc(µ, σ)‖H‖h‖H

. σk ‖h‖H
σ

where the last inequality follows from the estimates (2.11) from Lemma 2.5 along with the esti-
mate (3.13). The contribution of the second line in (3.31) to (3.20) is handled similarly. Finally, the
estimate,

µ

ξ(σ)

∣∣∣
〈
LU(µσ)

(
Φ̇(µ, σ) − bc(λ

−1
c (σ))ΛQµσ − ac(λ

−1
c (σ))ΛQµc(λ

−1
c (σ))µ

)
| h
〉 ∣∣∣ . σk ‖h‖H

σ

follows directly from the definition of Φ̇(µ, σ) along with (3.10), (3.11), and (3.12). Plugging the
preceding estimates back into (3.30) we obtains,

〈
D2E(U (µ, σ))∂σU(µ, σ) | h

〉
= γk

σ
k
2

ρkσ

〈
ΛQµσ | ḣ

〉
−

ρkσ
k
2

σ

〈
Λ0ΛQµσ | ḣ

〉
+ o(1)O(

σ
k
2

σ
‖h‖H)

as claimed. �
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3.2. Modulation around U(µ, σ). Next we modulate around U(µ, σ).

Lemma 3.6 (Modulation Lemma). There exists an η0 > 0 small enough so that the following
statement holds true. Let J be a time interval, and let u : J → H be a solution to (1.1) such that

d̂(u(t)) < η ≤ η0 ∀t ∈ J

Then there exist C1(J ; (0,∞)) functions µ(t), σ(t) such that defining g(t) ∈ H by

g(t) = u(t)−U(µ(t), σ(t)) (3.32)

we have, for each t ∈ J ,
〈
ΛQµ | g

〉
= 0 (3.33)

〈
ΛQσµ | g

〉
= 0 (3.34)

In addition, there exists a uniform constant c1 > 0 such that
〈
D2E(U(µ(t), σ(t))g(t) | g(t)

〉
≥ c1‖g(t)‖

2
H0

(3.35)

Finally, we have the estimates,

|µ′(t)| . ‖ġ‖L2 + σ
k
2 ‖g‖H . ‖g‖H (3.36)

∣∣∣µ(t)σ′(t) + ξ(σ(t)) +

〈
ΛQλ(t) | ġ

〉

‖ΛQ‖2
L2

∣∣∣ . o(1)‖ġ‖L2 + σ
k
2 ‖g‖H . o(1)‖g‖H (3.37)

where the o(1) term above can be taken as small as we like by taking η > 0 small.

Remark 3.7. By (3.1) we may apply Lemma 3.6 to the arbitrary 2-bubble solution u(t) on the time
interval J = [T0,∞) for large enough T0 > 0, and we obtain a decomposition

u(t) = U(µ(t), σ(t)) + g(t), ∀ t ∈ J

Note that by (3.1) and the proof of Lemma 3.6 we obtain the qualitative behavior,

‖g(t)‖2H + σ(t)k → 0 as t → ∞.

Before proving Lemma 3.6 we record several identities that will be used throughout the rest of
the paper. We use the notation

g(t) =: (g(t), ġ(t)), U(µ, σ) := (U(µ, σ), U̇(µ, σ))

The equation satisfied by g(t) as defined in (3.32) is

∂tg(t) = ∂tu(t)− ∂tU(µ(t), σ(t))

= J ◦D E(u(t))− µ′(t)∂µU(µ, σ)− σ′(t)∂σU(µ, σ)

= J ◦
(
D E(U (µ, σ) + g)−D E(U(µ, σ))

)

− µ′∂µU(µ, σ)−
(
σ′∂σU(µ, σ)− J ◦D E(U(µ, σ))

)

We use (3.4) to rewrite the last line above, obtaining,

∂tg(t) = J ◦
(
D E(U(µ, σ) + g)−D E(U (µ, σ))

)

− µ′∂µU(µ, σ)−
(
σ′ +

ξ(σ)

µ

)
∂σU(µ, σ)

= J ◦
(
D E(U(µ, σ) + g)−D E(U (µ, σ))

)

− µ′∂µU(µ, σ)−
(
σ′ +

ρkσ
k
2

µ

)
∂σU(µ, σ) +

1

µ

(
ρkσ

k
2 − ξ(σ)

)
∂σU(µ, σ)

(3.38)
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In components this reads,

∂t

(
g
ġ

)
=

(
ġ − µ′∂µU(µ, σ)− (σ′ + ξ(σ)

µ
)∂σU(µ, σ)

∆g − 1
r2

(
f(U(µ, σ) + g)− f(U(µ, σ))

)
− µ′ ˙∂µU(µ, σ)− (σ′ + ξ(σ)

µ
) ˙∂σU(µ, σ)

)
(3.39)

Proof of Lemma 3.6. The proof of the existence of (g(t), µ(t), σ(t)) as in the statement of the lemma
is nearly identical to [11, Proof of Lemma 3.1] so we give only a brief sketch here, highlighting the

differences. First note that since d̂(u(t)) is small, we can find µ1(t), σ1(t) with σk
1 (t) ≤ η2 so that

for g1(t) defined by

g1(t) := u(t)− (Qµ1σ1
−Qµ1

) (3.40)

we have

‖g1(t)‖
2
H + σ1(t)

k ≤ 2η2 (3.41)

To simplify notation we will suppress the time-dependency in the expressions below. Define a
mapping F : H × (0,∞)× (0,∞) → H by

F (g, µ, σ) := g − U(µ, σ) + (Qµ1σ1
−Qµ1

)

and recall that by definition of gc(µ, σ) and the estimate (3.13),

U(µ, σ) = Qµσ −Qµµc(λ
−1
c (σ)) + gc(µ, σ), ‖gc(µ, σ)‖H . σk (3.42)

It follows that

F (gc(λ
−1
c (σ1))µ1

+Qµ1µc(λ
−1
c (σ1))

−Qµ1
, µ1, σ1) = 0 (3.43)

and we have

‖F (g, µ, σ)‖H ≤ ‖g‖H + ‖U(µ, σ)− (Qµσ −Qµµc(λ
−1
c (σ)))‖H + ‖Qµσ −Qµ1σ1

‖H

+ ‖Qµµc(λ
−1
c (σ)) −Qµ1µc(λ

−1
c (σ))‖H + ‖Qµ1µc(λ

−1
c (σ)) −Qµ1

‖H

. ‖g‖H + ‖gc(λ
−1
c (σ))‖H +

∣∣∣∣
µσ

µ1σ1
− 1

∣∣∣∣
1
2

+

∣∣∣∣
µ

µ1
− 1

∣∣∣∣
1
2

+
∣∣µc(λ

−1
c (σ))− 1

∣∣ 12

Next, define a mapping G : H × (0,∞)× (0,∞) → R2 by

G(g, µ, σ) =




1
µ

〈
ΛQµ | F (g, µ, σ)

〉

1
µσ

〈
ΛQµσ | F (g, µ, σ)

〉



Using (3.43) we have

G(gc(λ
−1
c (σ1))µ1

+Qµ1µc(λ
−1
c (σ1))

−Qµ1
, µ1, σ1) = 0

Moreover, for any h ∈ H we have the estimates

1

µ

∣∣∣
〈
ΛQµ | h

〉∣∣∣ . ‖r/µΛQµ‖L2‖r−1h‖L2 . ‖h‖H

1

µσ

∣∣∣
〈
ΛQµσ | h

〉∣∣∣ . ‖r(µσ)−1ΛQµσ‖L2‖r−1h‖L2 . ‖h‖H

which ensures that G is well defined and continuous. As in [11, Proof of Lemma 3.1] one can now
readily check that the implicit function theorem can applied to G, meaning that for each g0 in a
small enough neighborhood (of size ≃ η0) of gc(λ

−1
c (σ1))µ1

+Qµ1µc(λ
−1
c (σ1))

−Qµ1
, we can find unique

(µ0, σ0) = ς(g0) (for the function ς given by the implicit function theorem) in a neighborhood of
(µ1, σ1) (we note that it is convenient here to work in the variables, s = log σ,m := logµ) and so
that

G(g0, µ0, σ0) = 0
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We refer the reader to [11, Lemma 3.1 and Remark 3.2] for precise details on the version and
implementation of the implicit function in this setting. The desired triple (g, µ, σ) as in the lemma
is then given by

(µ, σ) := ς(g1), g := F (g1, µ, σ)

where g1 is as in (3.40), as long as g1 is close enough in H to gc(λ
−1
c (σ1))µ1

+Qµ1µc(λ
−1
c (σ1))

−Qµ1
.

To see this we measure,

‖g1 − gc(λ
−1
c (σ1))µ1

+Q
µ1µc(λ

−1
c (σ1))

−Qµ1
‖H ≤ ‖g1‖H + ‖gc(λ

−1
c (σ1))‖H

+ ‖Qµ1µc(λ
−1
c (σ1))

−Qµ1
‖H

. σk
1 +

∣∣µc(λ
−1
c (σ1))− 1

∣∣ 12 . η

where the last line above follows from (3.42), (3.41), and (3.11). Thus µ, σ and g are well-defined.
To conclude, we note that it follows from the definition of F that

g = F (g1, ς(g1)) = F (g1, µ, σ) = u− U(µ, σ)

and from the definition of G that
〈
ΛQµσ | g

〉
= 0 and

〈
ΛQµ | g

〉
= 0

as desired.
The coercivity estimate follows from a standard argument using the orthogonality conditions (3.33)

and (3.34) together with the localized coercivity Lemma 2.1. Indeed, the smallness of σ yields a
uniform constant c1 > 0 for which

∫ ∞

0

(∂rg)
2 + k2

cos(2Qµσ − cos 2Qµ)

r2
g2 r dr ≥ c1‖g‖

2
H

For a detailed proof of the above see [9, Lemma 5.4]. Next, we argue perturbatively. Note that

〈
D2E(U(µ, σ)g | g

〉
=

∫ ∞

0

(∂rg)
2 + k2

cos(2U(µ, σ))

r2
g2 r dr

and,

cos 2U(µ, σ) = cos
(
2Qµσ − 2Qµ + (2Qµ − 2Qµc(λ

−1
c (σ))µ) + 2gc(λ

−1
c (σ))

)

= cos
(
2Qµσ − 2Qµ

)
+O(

∣∣∣Qµ −Qµc(λ
−1
c (σ))µ

∣∣∣) +O(
∣∣gc(λ−1

c (σ))
∣∣)

Thus,

〈
D2E(U(µ, σ)g | g

〉
≥ c1‖g‖

2
H −O

( ∣∣µc(λ
−1
c (σ))− 1

∣∣ 12 ) + ‖gc(λ
−1
c (σ))‖H

)
‖g‖2H

≥ c0‖g‖
2
H

where the last line follows by taking σ > 0 small enough. This completes the proof of (3.35).
Next we prove the estimates (3.36) and (3.37). We differentiate the modulation equations, begin-

ning with (3.33),

0 =
d

dt

〈
ΛQµ | g

〉
= −

µ′

µ

〈
[Λ0ΛQ]µ | g

〉
+
〈
ΛQµ | ∂tg

〉

= −
µ′

µ

〈
[Λ0ΛQ]µ | g

〉
+
〈
ΛQµ | ġ

〉
− µ′

〈
ΛQµ | ∂µU(µ, σ)

〉

−
(
σ′ +

ξ(σ)

µ

)〈
ΛQµ | ∂σU(µ, σ)

〉
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Rearranging the above gives
〈
ΛQµ | ġ

〉
= µ′

(〈
ΛQµ | ∂µU(µ, σ)

〉
+

1

µ

〈
[Λ0ΛQ]µ | g

〉)

+
(
µσ′ + ξ(σ)

) 1
µ

〈
ΛQµ | ∂σU(µ, σ)

〉

Next write λ := σµ, and note that by the chain rule we have

λ′

λ
=

σ′

σ
+

µ′

µ
(3.44)

Differentiating (3.34) gives

0 =
d

dt

〈
ΛQλ | g

〉
= −

λ′

λ

〈
[Λ0ΛQ]λ | g

〉
+
〈
ΛQλ | ∂tg

〉

= −
λ′

λ

〈
[Λ0ΛQ]λ | g

〉
+
〈
ΛQλ | ġ

〉
− µ′

〈
ΛQλ | ∂µU(µ, σ)

〉

−
(
σ′ +

ξ(σ)

µ

) 〈
ΛQλ | ∂σU(µ, σ)

〉

which, using (3.44) yields,

〈
ΛQλ | ġ

〉
+

ξ(σ)

µσ
〈[Λ0ΛQ]λ |g〉 = µ′

( 〈
ΛQλ | ∂µU(µ, σ)

〉
+

1

µ

〈
[Λ0ΛQ]λ | g

〉 )

+
(
µσ′ + ξ(σ)

)( 1
µ

〈
ΛQλ | ∂σU(µ, σ)

〉
+ λ−1

〈
[Λ0ΛQ]λ | g

〉 )

We obtain the following system of equations,

(
M11 M12

M21 M22

)(
µ′

µσ′ + ξ(σ)

)
=

( 〈
ΛQµ | ġ

〉

〈
ΛQλ | ġ

〉
+ ξ(σ)

µσ

〈
[Λ0ΛQ]λ | g

〉
)

=:

(
B1

B2

)
(3.45)

where

M11 :=
〈
ΛQµ | ∂µU(µ, σ)

〉
+ µ−1

〈
Λ0ΛQµ | g

〉

M22 := µ−1
〈
ΛQλ | ∂σU(µ, σ)

〉
+ λ−1

〈
Λ0ΛQλ | g

〉

M12 := µ−1
〈
ΛQµ | ∂σU(µ, σ)

〉

M21 :=
〈
ΛQλ | ∂µU(µ, σ)

〉
+ µ−1

〈
[Λ0ΛQ]λ | g

〉

Note the estimates,

|B1| . ‖ġ‖L2

|B2| . ‖ġ‖L2 + σ
k
2 ‖g‖H and

∣∣B2 −
〈
ΛQλ | ġ

〉∣∣ . σ
k
2 ‖g‖H

(3.46)

We claim the bounds

Claim 3.8. The following estimates hold true.
∣∣M11 − ‖ΛQ‖2L2

∣∣ . σ
1
2 + ‖g‖H (3.47)

∣∣M22 + (1− o(1))‖ΛQ‖2L2

∣∣ . σk + σ‖g‖H (3.48)

|M12| . o(1) (3.49)

|M21| . σ (3.50)

detM = M11M22 +O(σ)

where o(1) can be replaced by a constant that can be made as small as we like by taking η small
enough.
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Proof of Claim 3.8. First we prove (3.47). Recall that ∂µU(µ, σ) = − 1
µ
ΛU(µ, σ). Hence,

∣∣M11 − ‖ΛQ‖2L2

∣∣ ≤
∣∣∣∣
〈
ΛQµ |

1

µ
(ΛU(µ, σ) + ΛQµ)

〉∣∣∣∣+
∣∣∣µ−1

〈
[Λ0ΛQ]µ | g

〉∣∣∣

The second term on the right above can be bounded as follows:
∣∣∣µ−1

〈
[Λ0ΛQ]µ | g

〉∣∣∣ . ‖(r/µ)[Λ0ΛQ]µ‖L2‖r−1g‖L2 . ‖g‖H

To control the first term on the right, we first write

ΛU(µ, σ) = ΛQσµ − ΛQµµc(λ−1(σ)) + Λgc(µ, σ)

so after rescaling we have,
〈
ΛQ | (ΛU(µ, σ)µ−1 + ΛQ

〉
. |〈ΛQ | ΛQσ〉|+

∣∣〈ΛQ | ΛQ− ΛQµc(λ−1(σ))

〉∣∣

+
∣∣〈ΛQ | Λgc(λ

−1(σ))
〉∣∣

For the first term we have |〈ΛQ | ΛQσ〉| ≪ σ
1
2 . Next, observe that by (3.13),

∣∣〈ΛQ | Λgc(λ
−1
c (σ))

〉∣∣ . ‖rΛQ‖L2‖r−1Λgc(λ
−1
c (σ)‖L2 . ‖gc(λ

−1
c (σ)‖H . σk

Lastly, we use (3.11) to deduce that
∣∣∣
〈
ΛQ | ΛQ− ΛQµc(λ

−1
c (σ))

〉∣∣∣ .
∣∣µc(λ

−1
c (σ)) − 1

∣∣ 12 . σ
1
2

Combining these estimates proves (3.47). Next we treat the term M22. We have

M22 =

〈
ΛQλ |

1

µ
∂σU(µ, σ)

〉
+ λ−1

〈
[Λ0ΛQ]λ | g

〉

For the second term above, we have
∣∣λ−1

〈
[Λ0ΛQ]λ | g

〉∣∣ . ‖(r/λ)[Λ0ΛQ]λ‖L2‖r−1g‖L2 . ‖g‖H

By (3.4) and the definition of U̇(µ, σ) we have

1

µ
∂σU(µ, σ) = −

1

ξ(σ)
U̇(µ, σ) = −ΛQµσ +

(
1−

bc(λ
−1
c (σ))

ξ(σ)

)
ΛQµσ

−
1

ξ(σ)

(
Φ̇(µ, σ)− bc(λ

−1
c (σ))ΛQµσ

)
−

1

ξ(σ)
ẇc(µ, σ)

It then follows from (3.10), (3.22), and (3.7) that,
〈
ΛQλ |

1

µ
∂σU(µ, σ)

〉
= −(1− o(1))‖ΛQ‖L2 +O(σ

k
2 )

This proves (3.48). To prove (3.49) we write,

1

µ
∂σU(µ, σ) = −

ac(λ
−1
c (σ))

ξ(σ)
ΛQµµc(λ

−1
c (σ)) −

1

ξ(σ)

(
Φ̇(µ, σ) − ac(λ

−1
c (σ))ΛQµµc(λ

−1
c (σ))

)

−
1

ξ(σ)
ẇc(µ, σ)

and thus, using (3.10) (3.11), (3.12), (3.7) and (3.24) we arrive at the estimate,

|M12| =

∣∣∣∣
〈
ΛQµ |

1

µ
∂σU(µ, σ)

〉∣∣∣∣ . o(1)

Finally, we estimate (3.50).

|M21| .
∣∣〈ΛQλ | ∂µU(µ, σ)

〉∣∣+
∣∣∣∣
1

µ

〈
[Λ0ΛQ]λ | g

〉∣∣∣∣
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The second term above is controlled as follows,
∣∣∣∣
1

µ

〈
[Λ0ΛQ]λ | g

〉∣∣∣∣ . σ‖r/λΛ0ΛQλ‖L2‖r−1g‖L2 . σ‖g‖H

To estimate the first recall that

∂µU(µ, σ) = −
1

µ
ΛU(µ, σ) = −σΛQσµ + µc(λ

−1
c (σ))ΛQµc(λ

−1
c (σ))µ − (Λgc)(λ

−1
c (σ))µ

and hence
∣∣〈ΛQλ | ∂µU(µ, σ)

〉∣∣ . σ‖ΛQ‖2L2 +
∣∣∣
〈
ΛQσ | ΛQµc(λ

−1
c (σ))

〉∣∣∣+
∣∣〈ΛQσ | (Λgc)(λ

−1
c (σ))

〉∣∣

. σ

as claimed. �

With the estimates in Claim 3.8 in hand, we see that we can invert M as long as ‖g‖H and σ are
small enough and solve for (µ′, µσ′ + ξ(σ)) in (3.45). This yields,

µ′ =

[
1

M11M22
+O(σ)

]
(M22B1 −M12B2)

From Claim 3.8 and (3.46) we conclude that

|µ′| . ‖ġ‖L2 + σ
k
2 ‖g‖H

which proves (3.36). Similarly,

µσ′ + ξ(σ) =

[
1

M11M22
+O(σ)

]
(M11B2 −M21B1) (3.51)

Therefore, on the one hand we can conclude from Claim 3.8 and (3.46) that

|µσ′ + ξ(σ)| . ‖ġ‖L2 + σ
k
2 ‖g‖H

In fact, extracting the leading order from the right-hand-side of (3.51) we deduce that
∣∣∣∣µσ

′ + ξ(σ) +
1

‖ΛQ‖2
L2

〈
ΛQλ | ġ

〉∣∣∣∣ . o(1)‖ġ‖L2 + σ
k
2 ‖g‖H

proving (3.37). �

4. The poof of uniqueness

In this section we complete the proof of Theorem 1.1.

4.1. An outline of the proof of Theorem 1.1. We begin with a short outline of end of the proof
of Theorem 1.1. The purpose is to motivate the computations performed in the next subsection.

Let u(t) ∈ H be any 2-bubble in forward time as in (1.5) on the time interval [T0,∞). By
taking T0 > 0 large enough we may apply Lemma 3.6 on the time interval [T0,∞), obtaining a
decomposition

u(t) = U(µ(t), σ(t)) + g(t)

as in Lemma 3.6. By the local Cauchy theory, it will suffice to find a single time t ≥ T0 for which
we have ‖g(t)‖H = 0. The starting point is the following Taylor expansion of the conserved energy
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about the constructed trajectory U(µ, σ). For each time t ≥ T0 we have

2E(Q) = E(u(t)) = E(U (µ(t), σ(t)) + g(t))

= E(U(µ(t), σ(t))) + 〈DE(U (µ(t), σ(t))) | g(t)〉

+
〈
D2E(U(µ(t), σ(t)))g(t) | g(t)

〉
+ o(‖g‖2H)

= 2E(Q) + 〈DE(U(µ(t), σ(t))) | g(t)〉

+
〈
D2E(U(µ(t), σ(t)))g(t) | g(t)

〉
+ o(‖g‖2H)

Subtracting 2E(Q) from both sides, recalling the coercivity estimate from Lemma 3.6, i.e., (3.35),
and making the “little oh” term above smaller than half the coercivity constant c1 > 0 (which is
possible by taking T0 > 0 large enough) we arrive at the inequality

0 ≥ 〈DE(U(µ(t), σ(t))) | g(t)〉+
1

2
c1‖g(t)‖

2
H (4.1)

We will show there is necessarily a time T1 ≥ T0 such that

〈DE(U (µ(T1), σ(T1))) | g(T1)〉 ≥ −
1

4
c1‖g(T1)‖

2
H (4.2)

which together with (4.1) would imply that ‖g(T1)‖H = 0 and thus

u(T1) = U(µ(T1), σ(T1)) = (uc(λ
−1
c (σ(T1)), ·/µ(T1)), µ(T1)

−1∂tuc(λ
−1
c (σ(T1)), ·/µ(T1))),

which would prove Theorem 1.1. In the next section we analyze the dynamics of

〈DE(U(µ(t), σ(t))) | g(t)〉 .

with the goal of proving (4.2).

4.2. Analysis of the refined instability component. We now come to the heart of the argument.
For each µ, σ > 0 define

β(µ, σ) :=
1

ρkσ
k
2

D E(U (µ, σ)) =
1

ρkσ
k
2

(
−∆U(µ, σ) + r−2f(U(µ, σ))

U̇(µ, σ)

)
(4.3)

We make a few comments on how to think of β(µ, σ). Recall that

∂σU(µ, σ) = −
µ

ξ(σ)
J ◦D E(U (µ, σ))

Since ρkσ
k
2 ≃ ξ(σ), we see that β(µ, σ) is essentially a 90-degree rotation of ∂σU(µ, σ), rescaled by

µ−1 i.e.,

β(µ, σ) =
1

ρkσ
k
2

D E(U (µ, σ)) ≃
1

µ
J ◦ ∂σU(µ, σ)

Next, consider the coefficient of the projection of g(t) onto β(µ, σ), modified by a small “virial” type
correction term.

b(t) : = 〈β(µ(t), σ(t)) | g(t)〉+ 〈A0(µ(t)σ(t))g(t) | ġ(t)〉

=
1

ρkσ
k
2

〈DE(U (µ(t), σ(t))) | g(t)〉+ 〈A0(µ(t)σ(t))g(t) | ġ(t)〉
(4.4)

The correction is intended to produce cancellations of terms of critical size, but indeterminate sign,
when we compute b′(t) below.

The basic lemma for the family β(µ, σ) is the following.
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Lemma 4.1. The family of functionals β(µ, σ) is uniformly bounded in H∗. In fact, we have the
estimates,

∣∣∣
〈
β(µ, σ) − (0,ΛQµσ) | h

〉∣∣∣ = o(1)‖h‖H as σ → 0. (4.5)

for all h ∈ H. In particular,
∣∣∣b(t)−

〈
ΛQσµ, | ġ

〉∣∣∣ = o(1)‖g‖H as σ → 0. (4.6)

We also have the estimate,

‖β(µ, σ) − (0,ΛQµσ)‖L2×H = o(1)
1

µσ
as σ → 0 (4.7)

Remark 4.2. From (4.5) we see that to leading order

β(µ, σ) ≃ (0,ΛQµσ)

and is thus b(t) is closely related to the quantity that is also called b(t) in [11]. It is also related to
the refined unstable component from [8].

Proof of Lemma 4.1. The proof of (4.5) and hence also of (4.6) are direct consequences of the defi-
nition of β(µ, σ) in (4.3) and the estimates (3.15) and (3.17) from Corollary 3.4. The estimate (4.7)
follows from (3.16) and (3.18). �

Proposition 4.3. Let u(t) ∈ H be a two-bubble in forward time and define b(t) as in (4.4). For
any c0 > 0 there exists T0 > 0 such that

b′(t) ≤
kρk

2µ(t)σ(t)
σ(t)

k
2 b(t) + c0

1

µ(t)σ(t)

(
|b(t)|σ(t)

k
2 + ‖g(t)‖2H

)
(4.8)

holds uniformly on the time interval [T0,∞).

The main application of Proposition 4.3 is the following corollary.

Corollary 4.4. Suppose that u(t) ∈ H is a two-bubble in forward time. There exists T0 > 0 with
the following property. For every ǫ1 > 0 there exists T1 > 0 with T1 ∈ [T0,∞) such that

σ(T1)
k
2 b(T1) ≥ −ǫ1‖g(T1)‖

2
H

Proof of Corollary 4.4 assuming Proposition 4.3. Note that if ‖g(t)‖H = 0 for any t, then we have
u(t) ≡ U(µ(t), σ(t)) as claimed by Theorem 1.1 and there is nothing to do. So we may assume
that ‖g(t)‖H > 0 for all t for which Lemma 3.6 applies (i.e., all sufficiently large t > 0). Suppose
Corollary 4.4 fails. Fixing a sufficiently large T ′

0 as in Lemma 3.6 there there exists c2 > 0 so that
for all t ≥ T ′

0 we have

σ(t)
k
2 b(t) ≤ −c2 ‖g(t)‖

2
H (4.9)

By Proposition 4.3 we can choose T0 ≥ T ′
0 sufficiently large in order to find a uniform constant

c3 > 0 for which

b′(t) ≤ −c3
‖g(t)‖2H
µ(t)σ(t)

∀ t ∈ [T0,∞)

But this implies that b′(t) < 0 on the entire interval [T0,∞). By (4.9) we also have b(t) < 0 for all
t ∈ [T0,∞). But these two conditions are impossible since we know that b(t) → 0 as t → ∞. �
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Proof of Proposition 4.3. We compute

b′(t) =
d

dt
〈β(µ(t), σ(t)) | g(t)〉+

d

dt
〈A0(µ(t)σ(t))g(t) | ġ(t)〉

=

(
d

dt

1

ρkσ
k
2

)
〈DE(U (µ, σ)) | g(t)〉+

1

ρkσ
k
2

d

dt
〈DE(U (µ, σ)) | g(t)〉

+
d

dt
〈A0(µ(t)σ(t))g(t) | ġ(t)〉

The first leading term on the right-hand-side of (4.8) comes from differentiating σ− k
2 above. Indeed

by (3.37) we have
(

d

dt

1

ρkσ
k
2

)
〈DE(U(µ, σ)) | g(t)〉 = −

k

2

σ′

σ

1

ρkσ
k
2

〈DE(U(µ, σ)) | g(t)〉 = −
k

2

σ′

σ
b(t)

=
k

2


ξ(σ)

µσ
+

〈
ΛQµσ | ġ

〉

µσ‖ΛQ‖2
L2


 b(t) + o(1)O

(
‖g(t)‖2H

µσ

)

Using (3.10) and (4.6), and the fact that σ(t) → 0 as t → ∞ we conclude that

(
d

dt

1

ρkσ
k
2

)
〈DE(U(µ, σ)) | g(t)〉 =

kρk
2µ(t)σ(t)

σ(t)
k
2 b(t) +

k

2

〈
ΛQµσ | ġ

〉2

µ(t)σ(t)‖ΛQ‖2
L2

+
1

µ(t)σ(t)
o
(
|b(t)|σ(t)

k
2 + ‖g(t)‖2H

)

Hence Proposition 4.3 follows from the estimate

k
〈
ΛQµσ | ġ

〉2

2µσ‖ΛQ‖2
L2

+
1

ρkσ
k
2

d

dt
〈DE(U(µ, σ)) | g〉+

d

dt
〈A0(µσ)g | ġ〉 ≤ o(1)O

(‖g‖2H
µσ

)
(4.10)

We begin the proof of (4.10) by expanding the second term on the left above using (3.38).

d

dt
〈DE(U(µ, σ)) | g〉 =

〈
D2E(U (µ, σ))∂t[U(µ, σ)] | g

〉
+ 〈DE(U(µ, σ)) | ∂tg〉

=
〈
D2E(U (µ, σ))[∂tU(µ, σ)] | g

〉

+ 〈DE(U(µ, σ)) | ∂tu〉 − 〈DE(U(µ, σ)) | ∂t[U(µ, σ)]〉

=
〈
D2E(U (µ, σ))[∂tU(µ, σ)] | g

〉

+ 〈DE(U(µ, σ)) | J ◦DE(U (µ, σ) + g)〉

− µ′ 〈DE(U(µ, σ)) | ∂µU(µ, σ)〉 − σ′ 〈DE(U(µ, σ)) | ∂σU(µ, σ)〉

The fact that E(U (µ, σ)) is constant in µ, σ implies the last two lines above ≡ 0 since

0 =
d

dµ
E(U(µ, σ)) = 〈DE(U (µ, σ) | ∂µU(µ, σ)〉

0 =
d

dσ
E(U(µ, σ)) = 〈DE(U (µ, σ) | ∂µU(µ, σ)〉

Then, subtracting 0 = 〈DE(U (µ, σ)) | J ◦DEU(µ, σ)〉 we obtain

d

dt
〈DE(U (µ, σ)) | g〉 =

〈
D2E(U(µ, σ))[∂tU(µ, σ)] | g

〉

+
〈
DE(U (µ, σ)) | J ◦

[
DE(U (µ, σ) + g)−DE(U (µ, σ))

]〉 (4.11)
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Next, we re-write the first term above as follows. Recall that by (3.4) we have

∂tU(µ, σ) = µ′∂µU(µ, σ) + σ′∂σU(µ, σ)

= µ′∂µU(µ, σ) +

(
σ′ +

ξ(σ)

µ

)
∂σU(µ, σ) + J ◦DE(U(µ, σ))

Hence, using also the self-adjointness of D2E(U(µ, σ)) and the skew-symmetry of J we have
〈
D2E(U(µ, σ))[∂tU(µ, σ)] | g

〉
=
〈
D2E(U(µ, σ))[∂tU(µ, σ) − J ◦DE(U (µ, σ))] | g

〉

+
〈
D2E(U (µ, σ))J ◦DE(U (µ, σ)) | g

〉

= µ′
〈
D2E(U(µ, σ))∂µU(µ, σ) | g

〉

+

(
σ′ +

ξ(σ)

µ

)〈
D2E(U(µ, σ)∂σU(µ, σ) | g

〉

−
〈
DE(U (µ, σ)) | J ◦D2E(U(µ, σ))g

〉

Inserting this back into (4.11) we obtain

d

dt
〈DE(U (µ, σ)) | g〉

=
〈
DE(U(µ, σ)) | J ◦

[
DE(U (µ, σ) + g)−DE(U (µ, σ)) −D2E(U(µ, σ)g

]〉

+ µ′
〈
D2E(U (µ, σ))∂µU(µ, σ) | g

〉
+

(
σ′ +

ξ(σ)

µ

)〈
D2E(U (µ, σ)∂σU(µ, σ) | g

〉

Finally multiplying by σ− k
2 ρ−1

k and preparing for an application of (4.7) we obtain

1

ρkσ
k
2

d

dt
〈DE(U(µ, σ)) | g〉

=
〈
β(µ, σ) − (0,ΛQµσ) | J ◦

[
DE(U (µ, σ) + g)−DE(U (µ, σ))−D2E(U(µ, σ))g

]〉

+
〈
(0,ΛQµσ) | J ◦

[
DE(U(µ, σ) + g)−DE(U(µ, σ)) −D2E(U (µ, σ)g

]〉

+
1

ρkσ
k
2

µ′
〈
D2E(U(µ, σ))∂µU(µ, σ) | g

〉

+
1

ρkσ
k
2

(
σ′ +

ξ(σ)

µ

)〈
D2E(U(µ, σ)∂σU(µ, σ) | g

〉

(4.12)

Consider the first line in (4.12). Using (4.7) we have,
∣∣∣
〈
β(µ, σ)− (0,ΛQµσ) | J ◦

[
DE(U(µ, σ) + g)−DE(U(µ, σ)) −D2E(U (µ, σ))g

]〉 ∣∣∣

. o(1)
‖g‖2H
µσ

Next, consider the second term on the right in (4.12). Note that,
〈
(0,ΛQµσ) | J ◦

[
DE(U (µ, σ) + g)−DE(U (µ, σ)) −D2E(U(µ, σ)g

]〉

= −
1

µσ

〈
ΛQµσ | r−2

(
f(U(µ, σ) + g)− f(U(µ, σ))− f ′(U(µ, σ))g

)〉 (4.13)

We write,

f(U(µ, σ) + g)− f(U(µ, σ))− f ′(U(µ, σ))g

=
1

2
f ′′(Qµσ)g

2 +
1

2

(
f ′′(U(µ, σ)) − f ′′(Qµσ)

)
g2 +O(|g|3)
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One can readily show using U(µ, σ) = Φ(µ, σ) + wc(µ, σ), the definition of Φ(µ, σ) and the esti-
mates (3.10), (3.11), (3.12) and (3.7) that the last two terms above contribute negligible errors, i.e.,
errors of size o(1)(µσ)−1‖g‖2H. Hence,

−
1

µσ

〈
ΛQµσ | r−2

(
f(U(µ, σ) + g)− f(U(µ, σ))− f ′(U(µ, σ))g

)〉

= −
1

µσ

1

2

〈
ΛQµσ | r−2f ′′(Qµσ)g

2
〉
+ o(1)O

(‖g‖2H
µσ

)

We integrate by parts in the first term as follows,

−
1

2

〈
ΛQµσ | r−2f ′′(Qµσ)g

2
〉
= −

1

2

∫ ∞

0

∂r(f
′(Qµσ)− k2)g2 dr

=

∫ ∞

0

r−2(f ′(Qµσ)− k2)gΛg r dr = 〈Λg | Pµσg〉

= 〈Λ0g | Pµσg〉 − 〈g | Pµσg〉

where Pµσ is as in (2.2). Plugging all of this back into (4.13) we have show that
〈
(0,ΛQµσ) | J ◦

[
DE(U (µ, σ) + g)−DE(U (µ, σ)) −D2E(U(µ, σ)g

]〉

=
1

µσ
〈Λ0g | Pµσg〉 −

1

µσ
〈g | Pµσg〉+ o(1)O

(‖g‖2H
µσ

)

Next, applying the estimates (3.36) and (3.19) we have,

∣∣∣ µ′

ρkσ
k
2

〈
D2E(U(µ, σ))∂µU(µ, σ) | g

〉 ∣∣∣ . o(1)
‖g‖2H
µσ

which takes care of the third term on the right-hand side of (4.12). Next, consider the last line
of (4.12). Using the estimate (3.20) followed by (3.37) we have,

1

ρkσ
k
2

(
σ′ +

ξ(σ)

µ

)〈
D2E(U (µ, σ)∂σU(µ, σ) | g

〉
=

1

ρkσ
k
2

(
σ′ +

ξ(σ)

µ

)
γk

σ
k
2

ρkσ

〈
ΛQµσ | ġ

〉

−
1

ρkσ
k
2

(
σ′ +

ξ(σ)

µ

)
ρkσ

k
2

σ

〈
Λ0ΛQµσ | ġ

〉
+ o(1)O(

σ
k
2

σ
‖g‖H)

1

ρkσ
k
2

(
σ′ +

ξ(σ)

µ

)

= −
1

µσ

k

2

〈
ΛQµσ | ġ

〉2

‖ΛQ‖2
L2

−

(
σ′

σ
+

ξ(σ)

µσ

)〈
Λ0ΛQµσ | ġ

〉
+ o(1)O

(‖g‖2H
µσ

)

where in the last line we used (1.6), i.e., γk = ρ2k
k
2 . To recap, by inserting the previous three

estimates into (4.12) we have now shown that,

1

ρkσ
k
2

d

dt
〈DE(U(µ, σ)) | g〉 = −

1

µσ

k

2

〈
ΛQµσ | ġ

〉2

‖ΛQ‖2
L2

−

(
σ′

σ
+

ξ(σ)

µσ

)〈
Λ0ΛQµσ | ġ

〉
+

1

µσ
〈Λ0g | Pµσg〉 −

1

µσ
〈g | Pµσg〉

+ o(1)O
(‖g‖2H

µσ

)

(4.14)

Note that the first term on the right above exactly cancels the first term on the left of (4.10). The
terms on the second line are of critical size, and we now show that the differentiated virial correction
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will cancel these terms up to admissible errors and a coercive term. Indeed, we claim the estimate,

d

dt
〈A0(µσ)g | ġ〉+

1

µσ
〈Λ0g | Pµσg〉 −

(σ′

σ
+

ξ(σ)

µσ

)
〈A0(µσ)ΛQµσ | ġ〉

≤ c0
‖g‖2H
µσ

−
1

µσ

∫ Rµσ

0

(
(∂rg)

2 + k2
g2

r2

)
r dr

(4.15)

where, c0 > 0, R > 0 are as in Lemma 2.3 and c0 > 0 can be taken as small as we like independent
of µσ, and Pµσ is as in (2.2). To see this, we expand the derivative of the virial correction as follows.
Using the notation, λ = µσ we have,

d

dt
〈A0(µσ)g | ġ〉 = (

µ′

µ
+

σ′

σ
) 〈[λ∂λA0](λ)g | ġ〉+ 〈A0(µσ)∂tg | ġ〉+ 〈A0(µσ)g | ∂tġ〉 (4.16)

Note that the first term on the right above contributes an admissible error. Indeed, using the
estimates (3.36), (3.37), (3.10), and the first bullet point in Lemma 2.3 we have,

∣∣∣∣(
µ′

µ
+

σ′

σ
) 〈[λ∂λA0](λ)g | ġ〉

∣∣∣∣ .
∣∣∣∣
µ′

µ
+

σ′

σ

∣∣∣∣ ‖g‖
2
H . (σ

k
2 + ‖g‖H)

‖g‖2H
µσ

Next, we expand the second two terms on the right of (4.16) using the equation satisfied by g

in (3.39). For the second term we have,

〈A0(µσ)∂tg | ġ〉 = 〈A0(µσ)ġ | ġ〉 − µ′ 〈A0(µσ)∂µU(µ, σ) | ġ〉

− (σ′ +
ξ(σ)

µ
) 〈A0(µσ)∂σU(µ, σ) | ġ〉

(4.17)

Since A0(µσ) is antisymmetric, we have, 〈A0(µσ)ġ | ġ〉 = 0. For the second term on the right above
we use (3.3) and the first bullet point in Lemma 2.3 to deduce that

|µ′ 〈A0(µσ)∂µU(µ, σ) | ġ〉| .
|µ′|

µ
(‖ΛΦ(µ, σ)‖H + ‖Λwc(µ, σ)‖H)‖ġ‖L2 .

‖g‖2H
µ

. o(1)
‖g‖2H
µσ

where the last inequality follows from (3.9) and (3.36). Next, we treat the last term in (4.17).
Using (3.4) we write,

−(σ′ +
ξ(σ)

µ
) 〈A0(µσ)∂σU(µ, σ) | ġ〉 =

(σ′

σ
+

ξ(σ)

µσ

)〈
A0(µσ)

µσ

ξ(σ)
U̇(µ, σ) | ġ

〉

=
(σ′

σ
+

ξ(σ)

µσ

)
〈A0(µσ)ΛQµσ | ġ〉+ (µσ′ + ξ(σ))

〈
A0(µσ)

(bc(λ−1
c (σ))

ξ(σ)
− 1
)
ΛQµσ | ġ

〉

+ (µσ′ + ξ(σ))

〈
A0(µσ)

1

ξ(σ)

(
Φ̇(µ, σ) − bc(λ

−1
c (σ))ΛQµσ

)
| ġ

〉

+ (µσ′ + ξ(σ))

〈
A0(µσ)

1

ξ(σ)
ẇc(µ, σ) | ġ

〉

=
(σ′

σ
+

ξ(σ)

µσ

)
〈A0(µσ)ΛQµσ | ġ〉+ o(1)O

(‖g‖2H
µσ

)

where the last line follows from the first bullet point in Lemma 2.3 with (3.10), (3.11), (3.12),
and (3.23), and finally (3.8). Plugging the previous three estimates back into (4.17) we obtain,

〈A0(µσ)∂tg | ġ〉 =
(σ′

σ
+

ξ(σ)

µσ

)
〈A0(µσ)ΛQµσ | ġ〉+ o(1)O

(‖g‖2H
µσ

)

Lastly, we expand the term in (4.16) involving ∂tġ using (3.39). Preparing for a near identical argu-
ment to the one used to treat the virial correction in the companion paper [12, Proof of Lemma 4.6]
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we write,

〈A0(µσ)g | ∂tġ〉 = 〈A0(µσ)g | (−Lµσ)g〉

−
〈
A0(µσ)g | r−2

(
f(U(µ, σ) + g)− f(U(µ, σ))− f ′(Qµσ)g

)〉

− µ′
〈
A0(µσ)g | ˙∂µU(µ, σ)

〉
− (σ′ +

ξ(σ)

µ
)
〈
A0(µσ)g | ˙∂σU(µ, σ)

〉
(4.18)

For the first term on the right of (4.18) we recall the notation Lµσ = L0 + Pµσ and write,

〈A0(µσ)g | (−Lµσ)g〉 = −〈A0(µσ)g | L0g〉 − 〈A0(µσ)g | Pµσg〉

It then follows from (2.7) from Lemma 2.5 along with the estimate (2.9) (to treat the second term
above) that,

〈A0(µσ)g | (−Lµσ)g〉 ≤ c0
‖g‖2H
µσ

−
1

µσ

∫ Rµσ

0

(
(∂rg)

2 + k2
g2

r2

)
r dr −

1

µσ
〈Λ0g | Pµσg〉

Note that c0 > 0, R > 0 are as in Lemma 2.3 and c0 > 0 can be taken as small as we like independent
of µσ. Next, we estimate the second term on the right of (4.18) via an analysis nearly identical to
the one used to estimate the second term in [12, Eqn. (4.30)]. The difference is that here we can
only make use of the H regularity of g. First, note that by Lemma 2.3 we have,

∣∣∣
〈
A0(µσ)g | r−2

(
f(U(µ, σ) + g)− f(U(µ, σ))− f ′(Qµσ)g

)〉 ∣∣∣

. ‖g‖H‖r−2
(
f(U(µ, σ) + g)− f(U(µ, σ))− f ′(Qµσ)g

)
‖L2

Hence it suffices to establish the estimate,

‖r−2
(
f(U(µ, σ) + g)− f(U(µ, σ)) − f ′(Qµσ)g

)
‖L2 . o(1)

‖g‖H
µσ

(4.19)

To see this, we write,

f(U(µ, σ) + g)− f(U(µ, σ))− f ′(Qµσ)g

= f(Φ(µ, σ) + wc(µ, σ) + g)− f(Φ(µ, σ) + wc(µ, σ)) − f ′(Φ(µ, σ) + wc(µ, s))g

+
(
f ′(Φ(µ, σ) + wc(µ, s))− f ′(Φ(µ, σ))

)
g +

(
f ′(Φ)− f ′(Qµσ)

)
g

The contribution of the first line is handled using the pointwise estimate,

1

r2

∣∣∣f(Φ(µ, σ) + wc(µ, σ) + g)− f(Φ(µ, σ) + wc(µ, σ))− f ′(Φ(µ, σ) + wc(µ, s))g
∣∣∣ . 1

σµ
r−1g2

which follows from the definition of Φ(µ, σ), (3.10) (3.11), (3.12) and (3.7). For the second term we
use the pointwise estimate,

r−2
∣∣∣
(
f ′(Φ(µ, σ) + wc(µ, s)) − f ′(Φ(µ, σ))

)
g
∣∣∣ . 1

µσ
r−1 |wc(µ, σ)| |g|

together with (3.7). Finally, to treat the last term we note the pointwise estimate,

r−2 |f ′(Φ)− f ′(Qµσ)| .
1

µ
r−1 . o(1)

1

µσ
r−1

This is sufficient to prove (4.19). Next, we use (3.36) and (3.3) to estimate,

∣∣∣µ′
〈
A0(µσ)g | ˙∂µU(µ, σ)

〉∣∣∣ . ‖g‖2H
µ

(
‖Λ0Φ̇(µ, σ)‖L2 + ‖Λ0wc(µ, σ)‖L2

)
. o(1)

‖g‖2H
µσ
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where in the last inequality we used (3.8). Lastly, using the first bullet point in Lemma 2.3 (3.37)
and (3.4) we have,

∣∣∣∣(σ
′ +

ξ(σ)

µ
)
〈
A0(µσ)g | ˙∂σU(µ, σ)

〉∣∣∣∣ .
1

µ
‖g‖2H

µ

ξ(σ)
‖∆U(µ, σ)−

1

r2
f(U(µ, σ))‖L2

. σ
k
2
‖g‖2H
µσ

where the last inequality is by (3.18) and (3.10). This completes the proof of (4.15).
We can now complete the proof of (4.10). Combining the estimates (4.14) and (4.15) we have,

k
〈
ΛQµσ | ġ

〉2

2µσ‖ΛQ‖2
L2

+
1

ρkσ
k
2

d

dt
〈DE(U (µ, σ)) | g〉+

d

dt
〈A0(µσ)g | ġ〉

≤ c0
‖g‖2H
µσ

+

(
σ′

σ
+

ξ(σ)

µσ

)(
〈A0(µσ)ΛQµσ | ġ〉 −

〈
Λ0ΛQµσ | ġ

〉)

−
1

µσ

∫ Rµσ

0

(
(∂rg)

2 + k2
g2

r2

)
r dr −

1

µσ
〈g | Pµσg〉

Using the estimate (2.8) along with (3.37) we have,
∣∣∣
(
σ′

σ
+

ξ(σ)

µσ

)〈
(A0(µσ)ΛQµσ − Λ0ΛQµσ) | ġ

〉 ∣∣∣ ≤ 1

µσ
‖A0(µσ)ΛQµσ − Λ0ΛQµσ‖L2‖g‖2H

≤ c0
‖g‖2H
µσ

Finally, the localized coercivity estimate (2.4) from Lemma 2.1 yields,

−
1

µσ

∫ Rµσ

0

(
(∂rg)

2 + k2
g2

r2

)
r dr −

1

µσ
〈g | Pµσg〉 ≤ c0

‖g‖2H
µσ

by taking R > 0 large enough. We conclude that,

k
〈
ΛQµσ | ġ

〉2

2µσ‖ΛQ‖2
L2

+
1

ρkσ
k
2

d

dt
〈DE(U (µ, σ)) | g〉+

d

dt
〈A0(µσ)g | ġ〉 ≤ c0

‖g‖2H
µσ

where c0 is a constant that can be taken arbitrarily small, independently of µ, σ. This proves (4.10)
and completes the proof of the proposition. �

4.3. The proof of Theorem 1.1. We put the finishing touches on the the proof of Theorem 1.1.

Proof. We pick up where we left off in Section 4.1. Let u(t) ∈ H be any forward-in-time 2-bubble
solution to (1.1) on the time interval [T0,∞) where T0 > 0 is chosen sufficiently large so that
Corollary 4.4 holds, as well as (4.1). Assume for contradiction that ‖g(t)‖H > 0 for all t ≥ T0. So
on the one hand, by (4.1) we have,

0 ≥ 〈DE(U (µ(t), σ(t))) | g(t)〉+
1

2
c1‖g(t)‖

2
H. (4.20)

for all t ∈ [T0,∞) for a uniform constant c1 > 0. One the other hand, by Corollary 4.4, the definition
of b(t) in (4.4), and by possibly taking T0 larger so that σ(t) is sufficiently small, we can find T1 ≥ T0

so that,

〈DE(U(µ(T1), σ(T1))) | g(T1)〉 ≥ −
c1
4
‖g(T1)‖

2
H

which yields a contradiction in (4.20) at time T1. Thus, there exists T ≥ T0 for which ‖g(T )‖H = 0.
But this means that,

u(T ) = U(µ(T ), σ(T )) = (uc(λ
−1
c (σ(T )), ·/µ(T )), µ(T )−1∂tuc(λ

−1
c (σ(T )), ·/µ(T ))),
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i.e. u(t) agrees with uc(t) up to a fixed time translation and rescaling. This completes the proof. �
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