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Abstract

We prove the existence of a global solution of the energy-critical focusing wave
equation in dimension 5 blowing up in infinite time at any K given points zk
of R5, where K ≥ 2. The concentration rate of each bubble is asymptotic to
ckt
−2 as t→∞, where the ck are positive constants depending on the distances

between the blow-up points zk. This result complements previous constructions
of blow-up solutions and multi-solitons of the energy-critical wave equation in
various dimensions N ≥ 3.

Résumé

Pour l’équation des ondes focalisante énergie critique en dimension 5, nous mon-
trons l’existence d’une solution globale qui explose en temps infini enK points zk
donnés arbitrairement dans R5, où K ≥ 2. Le taux de concentration de chaque
bulle se comporte asymptotiquement comme ckt−2 quand t → ∞, où ck sont
des constantes strictement positives dépendant des distances entre les points
d’explosion zk. Ce résultat complète les constructions précédentes de solutions
explosives ou de type multi-solitons pour l’équation des ondes focalisante énergie
critique en toute dimension N ≥ 3.

Keywords: ground state, multi-bubble, wave equation, energy-critical
2010 MSC: 35L70, 35B44, 35B40

1. Introduction

1.1. Main result
We consider the energy-critical focusing wave equation in dimension 5

∂2
t u(t, x) = ∆u(t, x) + f(u(t, x)), t ∈ R, x ∈ R5, (1.1)
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where f(u) := |u| 43u. Let F (u) := 3
10 |u|

10
3 . The energy functional related to

this equation

E(u, ∂tu) :=

∫
R5

(1

2
|∂tu|2 +

1

2
|∇u|2 − F (u)

)
dx

is well-defined for (u, ∂tu) ∈ Ḣ1(R5)× L2(R5) by the Sobolev inequality

‖u‖
L

10
3
≤ C‖∇u‖L2 . (1.2)

We equip the space of pairs of functions ~v = (v, v̇) with the symplectic form

ω(~v, ~w ) := 〈v̇, w〉 − 〈v, ẇ〉 = 〈J~v, ~w 〉, J =

(
0 1
−1 0

)
.

Then (1.1) is the Hamiltonian system corresponding to the Hamiltonian function
E. In other words for a solution u of (1.1), ~u = (u, ∂tu) satisfies

ω(~v, ∂t~u ) = 〈DE(~u), ~v 〉, for all ~v. (1.3)

We recall that this equation is locally well-posed in the energy space Ḣ1(R5)×
L2(R5), see [16, 26, 43, 44] and references therein. For such solutions, the energy
E(u, ∂tu) is constant in time.

Recall that the function

W (x) :=

(
1 +
|x|2

15

)− 3
2

, x ∈ R5,

is the ground state solution of the elliptic equation

∆W = W
7
3 on R5. (1.4)

Up to scaling and translation invariance, W is the unique positive solution
of (1.4). In particular, ~u(t, x) = (W (x), 0) is a stationary solution of (1.1) and
other explicit solutions of (1.1) are deduced by the sign, scaling, translation and
Lorentz invariances of the equation:

~u(t, x) = ± (W`,λ(x− `t− x0),−(` · ∇)W`,λ(x− `t− x0)) ,

where for λ > 0, x0 ∈ R5 and ` ∈ R5 with |`| < 1,

Wλ,`(x) = Wλ

(
x+ σ

`(` · x)

|`|2

)
, σ =

1√
1− |`|2

− 1, Wλ(x) = λ−
3
2W (λ−1x).

It is well-known that the ground state W achieves the optimal constant in
the critical Sobolev inequality (1.2), see [1, 45]. It is also characterized as
the threshold element for global existence and scattering (asymptotic linear
behavior) of solutions of (1.1), see [26]. Above this threshold, the study of the
large time asymptotic behavior of solutions of (1.1) raises many questions like
the following ones.
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(i) The classification of all possible long time behaviors of the solutions.
(ii) The existence and properties of finite or infinite time bubbling solutions.
(iii) The effect of the nonlinear interactions on the soliton dynamics.

Question (i) is strongly related to the soliton resolution conjecture, which pre-
dicts that any global bounded solution decomposes asymptotically as t → ∞
into a sum of a finite number K of decoupled energy bubbles plus a solution
of the linear wave equation. Such a decomposition result is proved in [12] for
radially symmetric solutions of the 3D energy-critical wave equation. In [12], a
suitable variant of the decomposition result is also proved for finite time blow-
up solutions of type-II, i.e. non ODE type. In the non radial case, a similar
decomposition result (possibly involving excited states, i.e. solutions of (1.4)
other than the ground state) is proved along a subsequence of time for dimen-
sions 3, 4, 5 in [13, 10] and extended to any odd dimensions in [41]. These
general results, valid for any initial data, do not specify the number of solitons
nor the exact asymptotic behavior of the geometric parameters of each soliton,
except a basic decoupling property of the various bubbles and the dispersive
part.

In a different direction related to question (i), solutions with initial data
close to (W, 0) have been studied by Krieger and Schlag [28], and Beceanu [2],
who constructed, in various topologies, manifolds of initial data such that the
solution converges to the soliton family in a suitable sense and provided a pre-
cise description of these solutions. Using a probabilistic approach, Kenig and
Mendelson [25] have addressed similar questions in very weak topologies. Duy-
ckaerts and Merle [14], and Krieger, Nakanishi and Schlag [27] classified the long
time behavior of all the solutions with initial data close to (W, 0) in the energy
space.

Concerning question (ii), several constructions of bubbling solutions with
various explicit type-II blow-up rates are available: see [9, 29, 31] in dimension
3, [19] in dimension 4 and [20] in dimension 5. In complement to the above men-
tioned general decomposition results, it is also relevant to study the existence
and properties of global solutions whose asymptotic behavior involves several
decoupled solitons. For the energy-critical wave equation in dimension larger
than 6, a global radial solution decomposing asymptotically as a concentrating
bubble on the top of a standing soliton of same sign is constructed in [23]. Note
that this behavior corresponds to a specific choice of sign and blow-up rate; see
a nonexistence result in [21] and a classification result in a similar framework
in [24]. In [34], a solution of (1.1) containing an arbitrary number K of bounded
traveling solitons is constructed under some restrictions on the speeds `k of the
solitons. We also refer to [35] proving inelasticity of soliton interactions in the
same context. Such works clearly relate questions (ii) and (iii) since the nonlin-
ear interactions between the two solitons are responsible either for the blow up
behavior or for the inelasticity property.

We state the main result of this paper.

Theorem 1. Let K ≥ 2 and z1, . . . , zK be any K points of R5 distinct two by
two. There exist positive constants c1, . . . , cK and a solution (u, ∂tu) : [0,∞)→
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Ḣ1(R5)× L2(R5) of (1.1) such that for all t > 0,∥∥∥∥u(t)−
K∑
k=1

1

(ckt−2)
3
2

W

(
· − zk
ckt−2

)∥∥∥∥
Ḣ1(R5)

+ ‖∂tu(t)‖L2(R5) . t−
1
3 .

This result complements the above mentioned articles, providing an example
of non radial infinite time multiple bubbling in dimension 5, in a context where
radial multiple bubbling does not seem possible. Observe that the solutions con-
structed in Theorem 1 only contain bubbles, without any linear remainder, like
in [23, 34]. Though we do not address uniqueness nor classification questions
in this article, we conjecture that t−2 is the only possible infinite time blow-up
rate for such distant blowing up multiple bubbles. Theorem 1 holds for any set
of concentration points {zk}, but the constants {ck} then strongly depend on
this choice. Indeed, in our proof, the determination of suitable constants {ck}
is related to the global minimum of some function depending on the distances
between the solitons (see Lemma 3). Our method of proof should extend to
higher space dimensions, however we do not address here the existence of suit-
able constants {ck} for N ≥ 6. We refer to Remark 4 for more comments on
{ck}.

Historically, for nonlinear dispersive equations, the construction of solutions
blowing up in finite time at K given points using minimal bubbles was initiated
in the case of the mass-critical nonlinear Schrödinger equation in [37]; see also
[36] for multiple bubble infinite time blow-up. We refer to [3, 33] for recent
analogous results for the mass-critical generalized Korteweg-de Vries equation.

Bubbling phenomena were also considered for other energy-critical dispersive
or wave models, like the wave maps [23, 24, 30, 38] and the energy-critical
nonlinear Schrödinger equation in [22]. In the parabolic setting, for the energy-
critical heat equation in dimension 5, we mention some type-II finite time blow-
up results [6, 8, 17, 42], and infinite time blow-up results [4, 7, 18]. See Remark 4
for a qualitative comparison between results in [4] and Theorem 1.

1.2. Notation
In this paper, SJ denotes the unit sphere of RJ+1 and B̄RJ denotes the unit

closed ball of RJ . We denote by B(z, r) the ball of R5 of center z and radius
r ≥ 0.

The bracket 〈·, ·〉 denotes the distributional pairing and the scalar product
in L2 and L2 × L2.

We define a smooth radial cut-off function χ satisfying χ(x) = 0 for |x| ≥ 2
3

and χ(x) = 1 for |x| ≤ 1
2 and 0 ≤ χ(x) ≤ 1 for 1

2 ≤ x ≤
2
3 .

For a function v : R5 → R and λ > 0, set

vλ(x) :=
1

λ
5
2

v
(x
λ

)
, vλ(x) :=

1

λ
3
2

v
(x
λ

)
.

Define
Λ =

5

2
+ x · ∇, Λ =

3

2
+ x · ∇.
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For ~g = (g, ġ), we denote ‖~g‖E = ‖~g‖Ḣ1×L2 . Let

X := (Ḣ1 ∩ Ḣ2)× (L2 ∩ Ḣ1).

1.3. Finite dimensional dynamics
Let z1, . . . , zK be K points of R5 distinct two by two. In this formal dis-

cussion, we neglect possible translations of the bubbles and concentrate on the
focusing behavior (this reduction will be justified by the control of translation
parameters in the proof of Theorem 1).

For λ = (λ1, . . . , λK) ∈ (0,∞)K and b = (b1, . . . , bK) ∈ RK , define

~W (λ, b) :=
∑
k

(
Wλk

(· − zk), bkλ
−1
k ΛWλk

(· − zk)
)
. (1.5)

Here, and in what follows, unless otherwise indicated, sums
∑
k are for indices

k ∈ {1, . . .K}.

Remark 2. Note that (W, bΛW ) is the first-order asymptotic expansion of the
self-similar blow-up profile ~Wb for small b.

We take a small number ε > 0 and consider the manifold

M := { ~W (λ, b) : |λ|+ |b| < ε}.

On this manifold, (λ, b) is a natural system of coordinates. The associated basis
of the tangent space is given by

∂λk
= −

(
λ−1
k ΛWλk

(·−zk), bkλ
−2
k ΛΛWλk

(·−zk)
)
, ∂bk =

(
0, λ−1

k ΛWλk
(·−zk)

)
.

We wish to compute the restriction of the flow toM. The Hamiltonian function
is

E(λ, b) := E( ~W (λ, b)).

Let (
M(λ, b) G(λ, b)
−G(λ, b) N(λ, b)

)
=

(
(Mjk)Kj,k=1 (Gjk)Kj,k=1

(−Gjk)Kj,k=1 (Njk)Kj,k=1

)
be the matrix of the symplectic form ω in this basis, in other words for j, k ∈
{1, . . . ,K},

Mjk = ω(∂λj
, ∂λk

) = λ−1
j λ−1

k

(
bjλ
−1
j 〈ΛΛWλj

(· − zj),ΛWλk
(· − zk)〉

− bkλ−1
k 〈ΛWλj

(· − zj),ΛΛWλk
(· − zk)〉

)
,

Gj,k = ω(∂λj , ∂bk) = λ−1
j λ−1

k 〈ΛWλj (· − zj),ΛWλk
(· − zk)〉,

Nj,k = ω(∂bj , ∂bk) = 0.

The motion with constraints is given by the equation(
λ′

b′

)
=

(
φ(λ, b)
ψ(λ, b)

)
:=

(
M(λ, b) G(λ, b)
−G(λ, b) N(λ, b)

)−1(
∂λE(λ, b)
∂bE(λ, b)

)
. (1.6)
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In a suitable regime for (λ, b), we claim

∂bkE(λ, b) ' ‖ΛW‖2L2bk (1.7)

∂λk
E(λ, b) ' −‖ΛW‖2L2Bk(λ) (1.8)

where

Bk(λ) = −κλ
1
2

k

∑
j 6=k

{
λ

3
2
j |zj − zk|

−3
}
, κ = −7

3
15

3
2
〈ΛW,W 4

3 〉
‖ΛW‖2L2

=
128
√

15

7π
. (1.9)

We briefly justify (1.7)-(1.8). Using the equation ∆W + f(W ) = 0, we have

DE( ~W (λ, b)) =
(
−f
(∑

k

Wλk
(· − zk)

)
+
∑
k

f(Wλk
(· − zk)),

∑
k

bkλ
−1
k ΛWλk

(· − zk)
)
.

We consider cases where {λk}, respectively {bk}, are asymptotically of the size
λ(t) > 0, respectively b(t), up to fixed multiplicative constants, where λ(t)→ 0
and (b/λ)(t) → 0 as t → ∞. The first condition means concentration (or
“grow up”) of the solitons while the second condition is natural when searching
polynomial regimes for λ, since b is related to the time derivative of λ. In
such regime, we can easily bound cross terms. In particular, from computations
similar to that of Lemma 14 below, we see that

∂bkE(λ, b) = ‖ΛW‖2L2bk +O(bλ),

which justifies (1.7).
To justify (1.8), we consider again the above expression of DE( ~W (λ, b)). The

inner product of the first components yields some constants times λ2; the second
components yield a constant times b2. Since we focus on the case b/λ� 1, this
second contribution will be negligible with respect to the first. We thus focus
on the first components. We expect the main contribution to come from∑

j 6=k

〈f ′(Wλk
(· − zk))Wλj

(· − zj), λ−1
k ΛWλk

(· − zk)〉.

Because of the asymptoticsW (x) ' 15
3
2 |x|−3 as |x| → ∞, the factorWλj (·−zj)

can be replaced by the following expression independent of x

Wλj
(zk − zj) = λ

− 3
2

j W (λ−1
j (zk − zj)) ' 15

3
2λ

3
2
j |zk − zj |

−3.

Next, we have

〈f ′(Wλk
(· − zk)), λ−1

k ΛWλk
(· − zk)〉 = λ

1
2

k 〈f
′(W ),ΛW 〉 =

7

3
λ

1
2

k 〈W
4
3 ,ΛW 〉,

so we obtain (1.8).
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From (1.7)-(1.8), we compute the main order terms of φ and ψ. Again,
estimates of cross terms as in the proof of Lemma 14, yield

G(λ, b) = ‖ΛW‖2L2 Id +O(λ).

Thus, using also N(λ, b) = 0 and the fact that M(λ, b) is of size b/λ, we obtain(
M(λ, b) G(λ, b)
−G(λ, b) N(λ, b)

)−1

= ‖ΛW‖−2
L2

(
0 −Id
Id 0

)
+O(λ) +O(b/λ).

Inserted in (1.6), these computations justify the introduction of the following
formal system for the parameters (λ, b):{

λ′k(t) = −bk(t)

b′k(t) = Bk(λ(t)) .
(1.10)

By analogy with the differential equation λ′′ = λ2, which admits the solution
λ(t) = 6t−2, we look for a solution of (1.10) of the form

λk(t) = ckt
−2, bk(t) = 2ckt

−3, (1.11)

for positive constants ck. We need to check that the system (1.10) is actually
satisfied for some choice of constants {ck}. The first equation is automatically
satisfied by the above expression of (λk, bk) and the second one is equivalent to

B(c) = −6c

where we denote

c = (c1, . . . , cK) and B = (B1, . . . , BK).

We remark that this condition is related to the existence of a critical point for
the following function V :

V : θ = (θ1, . . . , θK) ∈ SK−1
+ 7→ V (θ) = −2

3
κ
∑
k

∑
j<k

{
θ

3
2
j θ

3
2

k |zj − zk|
−3
}
,

where the notation SK−1
+ means

SK−1
+ =

{
θ = (θ1, . . . , θK) ∈ [0,∞)K :

K∑
k=1

θ2
k = 1

}
.

For later purposes (see Remark 4 below), we select a global minimum of the
function V .

Lemma 3. The following holds

(i) For any r ≥ 0 and θ ∈ SK−1
+ ,

B(rθ) = r2∇V (θ).
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(ii) The function V has a global minimum on SK−1
+ , reached at least at a point

θ ∈ SK−1
+ such that for all k = 1, . . . ,K, θk ∈ (0, 1). Moreover,

n = −θ · ∇V (θ) > 0 satisfies −∇V (θ) = nθ .

(iii) For θ ∈ SK−1
+ and n > 0 as in (ii), define

c = r θ where r =
6

−θ · ∇V (θ)
=

6

n
. (1.12)

Then, it holds B(c) = −6c.

Proof. (i) follows directly from the definitions of V and B.
Proof of (ii). As a nonconstant nonpositive continuous function defined on

the compact set SK−1
+ , the function V has a negative global minimum. Let

θ = (θ1, . . . , θK) ∈ SK−1
+ be such that θk = 0, for some k = 1, . . . ,K. For any

a ∈ [0, 1), set

θ(a) = ((1− a 4
3 )

1
2 θ1, . . . , a

2
3 , . . . , (1− a 4

3 )
1
2 θK), v(a) = V (θ(a)),

where the a
2
3 above is located at the kth row of the line vector θ(a). Observe

that θ(a) ∈ SK−1
+ and

v(a) = −2

3
κ
[
(1−a 4

3 )
3
2

∑
j,l 6=k
j<l

{
θ

3
2
j θ

3
2

l |zj−zl|
−3
}

+a(1−a 4
3 )

3
4

∑
j 6=k

{
θ

3
2
j |zj−zk|

−3
}]
.

A simple computation shows that v′(0) < 0, which proves that the global mini-
mum of the function V on SK−1

+ is not reached at such θ.
Consider θ ∈ SK−1

+ any point of global minimum for V . It follows that there
exists n ∈ R such that −∇V (θ) = nθ. In particular, taking the scalar product
by θ, we find −θ · ∇V (θ) = n, and by (i) and the expression of B, it holds
n > 0.

Proof of (iii). Let c = r θ where r is defined as in (1.12). By (i), we have
B(c) = r2∇V (θ). Using also (ii), we obtain B(c) = −6c.

Remark 4. The proof of Theorem 1 requires the fact that c is related to a
point of local minimum of V in the interior of SK−1

+ . See Section 3.4. The same
question in dimension N ≥ 5 involves the function

V (θ) = −C
∑
k

∑
j<k

{
θ

N−2
2

j θ
N−2

2

k |zj − zk|2−N
}
,

where C > 0. In the proof of (ii) of Lemma 3, the dimension N = 6 seems
critical in some sense and the fact the global minimum of V is reached only at
the interior of SK−1

+ cannot be proved in the same way for N ≥ 6. We do not
pursue this issue here.
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Though some configurations with changing signs seem possible, the proof
also uses the fact that the bubbles all have the same sign. Indeed, only nonlinear
interactions of bubbles of same sign have a focusing effect. See for instance the
nonexistence result in [21].

It is interesting to compare the situation to that of the energy critical non-
linear heat equation considered in [4]. For the latter equation, the bubbling phe-
nomenon involves the same function W . However, soliton-soliton interactions
have opposite effects. In [4], the Dirichlet boundary condition has a focusing
effect on the various positive bubbles, and the assumption on the locations of
the concentration points ensures that the defocusing effect of the soliton-soliton
interactions is lower than the focusing effect of the boundary condition. This is
why the system obtained there (formula (2.19) in [4]) is different; in particular,
dimension 4 seems critical and all dimensions higher than 5 can be treated in a
unified way.

The strategy of the proof of Theorem 1 is to construct a solution of (1.1)
converging as t→∞ to the ansatz (1.5) with parameters (λ, b) as in (1.11) and
c given by Lemma 3.

In the next section, we recall coercivity results useful to apply the energy
method in a neighborhood of the sum of decoupled solitons. In Section 3, we
prove Theorem 1.

2. Coercivity results

2.1. Single potential
Linearizing the system (1.3) around ~W = (W, 0), one obtains

∂t~g = J ◦D2E( ~W )~g =

(
0 Id
−L 0

)
~g,

where L is the following operator

Lg := −∆g − f ′(W )g = −∆g − 7

3
W

4
3 g.

For g ∈ Ḣ1(R5) we have the associated quadratic form

〈g, Lg〉 :=

∫
R5

(
|∇g|2 − f ′(W )g2

)
dx.

Lemma 5 ([40, Appendix D]). If 0 6= g ∈ Ḣ1(R5) satisfies the relations
〈∆W, g〉 = 〈∆ΛW, g〉 = 〈∆∇W, g〉 = 0 then 〈g, Lg〉 > 0.

Since 〈W,LW 〉 = − 4
3

∫
R5 W

7/3 dx < 0, the operator L has at least one negative
eigenvalue. Denote the smallest eigenvalue −ν2 (ν > 0) and the corresponding
eigenfunction Y , normalized so that ‖Y ‖L2 = 1 and Y (x) > 0 for all x ∈ R5.

9



The facts that Y (x) 6= 0 for all x ∈ R5 and that Y has exponential decay follow
from the general theory of Schrödinger operators.

Denote

L̃ := L+ ν2〈Y, ·〉Y, 〈g, L̃g〉 :=

∫
R5

(
|∇g|2 − f ′(W )g2

)
dx+ ν2〈Y, g〉2.

Lemma 6. For all g ∈ Ḣ1(R5), it holds 〈g, L̃g〉 ≥ 0. Moreover, 〈g, L̃g〉 = 0 if
and only if g ∈ span(Y,ΛW,∂x1

W, . . . , ∂x5
W )).

Proof. Let g ∈ Ḣ1(R5) and decompose g = g1 + g2 so that

g1 ∈ span(Y,ΛW,∂x1W, . . . , ∂x5W )),

〈∆W, g2〉 = 〈∆ΛW, g2〉 = 〈∆∇W, g2〉 = 0.

In order to guarantee that such a decomposition exists, we need to check that
the 7× 7 matrix 〈∆W,Y 〉 〈∆W,ΛW 〉

(
〈∆W,∂xj

W 〉
)
j=1,...,5

〈∆ΛW,Y 〉 〈∆ΛW,ΛW 〉
(
〈∆ΛW,∂xjW 〉

)
j=1,...,5(

〈∆∂xj
W,Y 〉

)
j=1,...,5

(
〈∆∂xj

W,ΛW 〉
)
j=1,...,5

(
〈∆∂xj

W,∂xk
W 〉
)
j,k=1,...,5


is non-singular. The upper left term is non-zero because ∆W = −f(W ) < 0 and
Y > 0. We also have 〈∆W,ΛW 〉 = 0 and, using symmetry considerations, we
obtain that the matrix is lower-triangular with non-zero entries on the diagonal.

Since L̃g1 = 0, using Lemma 5 we obtain

〈g, L̃g〉 = 〈g2, L̃g2〉 ≥ 0,

with equality if and only if g2 = 0.

Remark 7. It follows that −ν2 is the only negative eigenvalue of L.

Lemma 8. There exists η > 0 such that, for any g ∈ Ḣ1(R5),∫
R5

(
|∇g|2−f ′(W )g2

)
dx ≥ η‖∇g‖2L2−

(
(ν2+1)〈Y, g〉2+〈∆ΛW, g〉2+|〈∇W, g〉|2

)
.

Proof. If this is false, then there exists a sequence gn ∈ Ḣ1 such that for
n = 1, 2, . . . ∫

R5

f ′(W )g2
n dx = 1

and ∫
R5

(
|∇gn|2 − f ′(W )g2

n

)
dx

≤ 1

n
‖∇gn‖2L2 −

(
(ν2 + 1)〈Y, gn〉2 + 〈∆ΛW, gn〉2 + |〈∇W, gn〉|2

)
.

10



These inequalities imply in particular that the sequence (gn) is bounded in
Ḣ1(R5). Upon extracting a subsequence, we can assume gn ⇀ g in Ḣ1(R5). By
the Rellich theorem, we have

∫
R5 f

′(W )g2 dx = 1 and thus g 6= 0. Moreover, it
holds

lim
n→∞

〈Y, gn〉 = 〈Y, g〉, lim
n→∞

〈∆ΛW, gn〉 = 〈∆ΛW, g〉, lim
n→∞

〈∇W, gn〉 = 〈∇W, g〉.

Hence, by the Fatou property, g satisfies

〈g, L̃g〉+ 〈Y, g〉2 + 〈∆ΛW, g〉2 + |〈∇W, g〉|2 ≤ 0.

By Lemma 6, this implies

g ∈ span(Y,ΛW,∇W ) and 〈Y, g〉 = 〈∆ΛW, g〉 = |〈∇W, g〉| = 0.

This is impossible, since the 7× 7 matrix 〈∆ΛW,ΛW 〉
(
〈∆ΛW,∂xjW 〉

)
j=1,...,5

〈∆ΛW,Y 〉(
〈∂xj

W,ΛW 〉
)
j=1,...,5

(
〈∂xj

W,∂xk
W 〉
)
j,k=1,...,5

(
〈∂xj

W,Y 〉
)
j=1,...,5

〈Y,ΛW 〉
(
〈Y, ∂xj

W 〉
)
j=1,...,5

〈Y, Y 〉


is non-singular (this matrix is upper-triangular with non-zero entries on its
diagonal).

Lemma 9. For any η > 0 there exists R = R(η) > 0 such that for all g ∈
Ḣ1(R5), ∫

|x|≤R
|∇g|2 dx−

∫
R5

f ′(W )g2 dx ≥ −η‖∇g‖2L2 − ν2〈Y, g〉2.

Proof. By contradiction, suppose there exists η > 0 and a sequence gn ∈ Ḣ1

such that it holds
∫
R5 f

′(W )g2
n dx = 1 and∫

|x|≤n
|∇gn|2 dx−

∫
R5

f ′(W )g2
n dx ≤ −η‖∇gn‖2L2 − ν2〈Y, gn〉2.

In particular, gn is bounded in Ḣ1, and upon extracting a subsequence we
can assume that gn ⇀ g ∈ Ḣ1. By Rellich’s theorem,

∫
R5 f

′(W )g2 dx = 1,
in particular g 6= 0. We also have 〈Y, g〉 = limn→∞〈Y, gn〉. Observe that
1{|x|≤n}∇gn ⇀ ∇g in L2(R5), where 1 denotes the indicator function. Thus, by
the Fatou property, it holds 〈g, L̃g〉+η‖∇g‖2L2 ≤ 0, which contradicts Lemma 6.

2.2. Multiple potentials
For λ, µ ∈ (0,∞) and x, y ∈ R5 we denote

δ((λ, x), (µ, y)) :=
∣∣∣ log

(λ
µ

)∣∣∣+
|x− y|
λ

.

11



We say that two sequences (λn, xn) and (µn, yn) are orthogonal if

lim
n→∞

δ((λn, xn), (µn, yn)) =∞.

Let K ≥ 1; in what follows
∑
k denotes

∑K
k=1. For (λ(k), x(k)) ∈ (0,∞) × R5,

we use the notation

W (k)(x) :=
(
λ(k)

)− 3
2W

(
(x− x(k))/λ(k)

)
and similarly for other functions.

Lemma 10. There exist η > 0 such that the following holds. Let (λ(k), x(k)) ∈
(0,∞) × R5 for k = 1, . . . ,K satisfy δ((λ(j), x(j)), (λ(k), x(k))) ≥ η−1 for all
j 6= k. Let U ∈ Ḣ1(R5) satisfy∥∥∥U −∑

k

W (k)
∥∥∥
Ḣ1
≤ η.

Then for any g ∈ Ḣ1(R5)∫
R5

(
|∇g|2 − f ′(U)g2

)
dx ≥ η‖∇g‖2L2

−
∑
k

{
(ν2 + 1)〈(λ(k))−2Y (k), g〉2

+ 〈(λ(k))−2(∆ΛW )(k), g〉2 + |〈(λ(k))−2(∇W )(k), g〉|2
}
.

Proof. Assume that the conclusion fails. There exist sequences (λ
(k)
n , x

(k)
n ),

Un ∈ Ḣ1(R5) and gn ∈ Ḣ1(R5) such that

lim
n→∞

δ((λ(j)
n , x(j)

n ), (λ(k)
n , x(k)

n )) =∞, for j 6= k,

lim
n→∞

∥∥∥Un −∑
k

W (k)
n

∥∥∥
Ḣ1

= 0,

and∫
R5

(
|∇gn|2 − f ′(Un)g2

n

)
dx ≤ 1

n
‖∇gn‖2L2 −

∑
k

(ν2 + 1)〈(λ(k))−2Y (k)
n , gn〉2

−
∑
k

〈(λ(k))−2(∆ΛW )(k)
n , gn〉2 −

∑
k

|〈(λ(k))−2(∇W )(k)
n , gn〉|2,

with the normalization
∫
R5 f

′(Un)g2
n dx = 1. Here, Y (k)

n =
(
λ

(k)
n

)− 3
2Y
(
(x −

x
(k)
n )/λ

(k)
n

)
and similarly for other functions.

The sequence gn being bounded in Ḣ1(R5), by [15, Théorème 1.1], upon
extracting a subsequence, there exist pairwise orthogonal sequences (µ

(j)
n , y

(j)
n )

12



and a sequence of profiles ψ(j) ∈ Ḣ1 such that

gn =

J∑
j=1

(
µ(j)
n

)− 3
2ψ(j)

(
(·−y(j)

n )/µ(j)
n

)
+r(J)

n with lim
J→∞

lim sup
n→∞

‖r(J)
n ‖L 10

3
= 0,

(2.1)
and

‖gn‖2Ḣ1 =

J∑
j=1

‖ψ(j)‖2
Ḣ1 + ‖r(J)

n ‖2Ḣ1 + o(1) as n→∞. (2.2)

Without loss of generality, we assume that (y
(j)
n , µ

(j)
n ) = (x

(j)
n , λ

(j)
n ) for j =

1, . . . ,K. Indeed, if for some k ∈ {1, . . . ,K} the sequence (x
(k)
n , λ

(k)
n ) is or-

thogonal to all the sequences (y
(j)
n , µ

(j)
n ), we can simply include it in the profile

decomposition with identically zero corresponding profile. If, on the contrary,
there exists j such that (x

(k)
n , λ

(k)
n ) is not orthogonal to (y

(j)
n , µ

(j)
n ), then, up to

extracting a subsequence, we can assume that

lim
n→∞

λ(k)
n /µ(j)

n = λ0 ∈ (0,∞) and lim
n→∞

x(k)
n − y(j)

n = x0 ∈ R5.

Changing ψ(j) if necessary, we can replace (y
(j)
n , µ

(j)
n ) with (x

(k)
n , λ

(k)
n ).

From limn→∞ ‖Un −
∑
kW

(k)
n ‖Ḣ1 = 0 and (2.1) we deduce

1 = lim
n→∞

∫
R5

f ′(Un)g2
n dx =

∑
k

∫
R5

f ′(W )
(
ψ(k)

)2 dx.
This shows that at least one of the profiles ψ(1), . . . , ψ(K) is not identically zero.
We also have

lim
n→∞

(
λ(k)

)−2〈Y (k)
n , gn〉 = 〈Y, ψ(k)〉,

lim
n→∞

(
λ(k)

)−2〈(∆ΛW )(k)
n , gn〉 = 〈∆ΛW,ψ(k)〉,

lim
n→∞

(
λ(k)

)−2〈(∇W )(k)
n , gn〉 = 〈∇W,ψ(k)〉.

The Pythagorean formula (2.2) thus yields∑
k

{
〈ψ(k), L̃ψ(k)〉+

〈
Y, ψ(k)

〉2
+
〈
∆ΛW,ψ(k)

〉2
+
∣∣〈∇W,ψ(k)

〉∣∣2} ≤ 0.

This contradicts Lemma 6, as in the proof of Lemma 8.

3. Construction of multi-bubble solutions

Let K ≥ 2 and z1, . . . , zK be K points of R5 distinct two by two. Set

d :=
1

2
min
j 6=k
|zj − zk| > 0 and z = (z1, . . . , zK).

We consider c ∈ (0,∞)K as given by (iii) of Lemma 3. Let T0 > 1 to be taken
large enough.
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3.1. Modulation and bootstrap
Let

λ = (λ1, . . . , λK) ∈ (0,∞)K , b = (b1, . . . , bK) ∈ RK , y = (y1, . . . , yK) ∈ (R5)K ,

and denote Γ = (λ1, b1, y1, . . . , λK , bK , yK).
For all 1 ≤ k ≤ K, we set

Wk := Wλk
(· − yk) =

1

λ
3
2

k

W

(
· − yk
λk

)
,

∇kWk := (∇W )λk
(· − yk) =

1

λ
3
2

k

∇W
(
· − yk
λk

)
,

and similarly,

ΛkWk := (ΛW )λk
(· − yk), ∆kΛkWk := (∆ΛW )λk

(· − yk), Yk := Yλk
(· − yk).

Note that the above functions all have the same scaling; in particular, ∇kWk =
λk∇Wk. We also define

~Y ±k = (ν−1Yk,±λ−1
k Yk), ~Z±k =

1

2
λ−1
k (νλ−1

k Yk,±Yk),

〈~Y ±k , ~Z
±
k 〉 = 1, 〈~Y ±k , ~Z

∓
k 〉 = 0.

(3.1)

Last, we set (recall that
∑
k means

∑K
k=1)

WΓ =
∑
k

Wk, ~WΓ =
∑
k

~Wk, ~Wk =
(
Wk, bkλ

−1
k ΛkWk

)
.

The strategy of the proof is to construct solutions ~u of (1.1) of the form

~u(t) = ~WΓ(t) + ~g(t) (3.2)

with ‖~g(t)‖E � 1 on intervals of time [T0, T ], and where the choice of the time-
dependent C1 parameter vector Γ(t) will ensure the orthogonality conditions

〈∆kΛkWk, g〉 = 0, 〈∇kWk, g〉 = 0, 〈ΛkWk, ġ〉 = 0 (3.3)

and will approximately follow the regime (1.11). We denote

a±k := 〈~Z±k , ~g〉. (3.4)

In the next lemma, we construct well-prepared initial conditions at t = T ≥
T0 with sufficiently many free parameters (α0, α1, . . . , αK) related to instabilities
(see Remark 12).
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Lemma 11. For any T > T0 and any (α0, α1, . . . , αK) ∈ B̄RK+1 , there exists a
data ~u(T ) = ~u[T, (α0, α1, . . . , αK)] ∈ X such that

~u(T ) = ~WΓ(T ) + ~g(T ),

with Γ(T ) defined by

r(T ) = |c|T−2 + T−
12
5 α0, λ(T ) = r(T )

c

|c|
,

b(T ) = 2(r(T ))
3
2
c

|c| 32
, y(T ) = z,

(3.5)

and ~g(T ) satisfies (3.3) and for all k = 1, . . . ,K,

‖~g(T )‖E . T−4, 〈~Z+
k (T ), ~g(T )〉 = 0, 〈~Z−k (T ), ~g(T )〉 = T−4αk, (3.6)

where ~Z±k (T ) are defined as in (3.1) for Γ = Γ(T ).
Moreover, ~u(T ) is continuous in X with respect to rT and a−k,T .

Proof. For Γ = Γ(T ) fixed as in (3.5), we consider ~g = ~g(T ) = (g, ġ) of the
form

~g =
∑
k

{
b+k
~Y +
k + b−k

~Y −k +
((ck · ∇k)Wk, 0)

‖∂x1
W‖2L2

+
dk(ΛkWk, 0)

‖∇ΛW‖2L2

+
ek(0,ΛkWk)

λk‖ΛW‖2L2

}
.

Consider the linear map Ψ : (R9)K → (R9)K defined as follows:

Ψ
(
(b+k , b

−
k , ck, dk, ek)k=1,...,K

)
=
(
〈~Z+

k , ~g 〉, 〈~Z
−
k , ~g 〉, λ

−2
k 〈∇kWk, g〉, λ−2

k 〈∆kΛkWk, g〉, λ−1
k 〈ΛkWk, ġ〉

)
k=1,...K

.

It is easy to check that for T large enough the matrix of Ψ is a perturbation of
the block matrix diagK(A) where the 9 × 9 matrix A is upper-triangular with
entries 1 on the diagonal (the only nonzero entries off the diagonal are due to
〈Y,∆ΛW 〉 6= 0). Moreover,∣∣∣Ψ−1

( (
0, T−4αk, 0, . . . , 0

)
k=1,...,K

)∣∣∣ . T−4,

and so ‖~g‖E . |(b+k , b
−
k , ck, dk, ek)k=1,...,K | . T−4. The continuity property is

clear.

We introduce the following bootstrap estimates

‖~g‖E ≤ t−
11
3 , (3.7)

|λ− ct−2| ≤ t− 7
3 , (3.8)

|b− 2ct−3| ≤ t− 10
3 , (3.9)

|y − z| ≤ t− 7
3 , (3.10)∑

k

(a+
k )2 ≤ t−8, (3.11)
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and
t
24
5

(
|λ| − |c|t−2

)2
+ t8

∑
k

(a−k )2 ≤ 1. (3.12)

Remark 12. The parameters α0, α1, . . . , αK and the bootstrap estimate (3.12)
are related to backwards instabilities to be controlled: the backward exponential
instability of each soliton (controlled by (αk)k=1,...,K), and a one-dimensional
instability related to the reduced system of ODE, controlled by α0.

Let ~u ∈ C(Imax; Ḣ1 × L2) where Imax 3 T , be the maximal solution of (1.1)
corresponding to any data ~u(T ) as given by Lemma 11. Since ~u(T ) ∈ X, by
persistence of regularity (see for instance Appendix B of [20]), we have ~u ∈
C(Imax;X). Such regularity will allow energy computations without density
argument.

Define

T? := inf{t ∈ [T0, T ] : on the interval [t, T ], ~u is well-defined
and decomposes as (3.2) where Γ and ~g satisfy (3.7)-(3.12)}.

Lemma 13. It holds T0 ≤ T? ≤ T and if T? > T0 then

(i) Equality is reached at t = T? in at least one of the inequalities (3.7)-(3.12).
(ii) On [T?, T ], it holds

|λ′ + b| . t−
11
3 , (3.13)

|y′| . t−
11
3 , (3.14)

|b′ −B(λ)| . t−
14
3 , (3.15)∣∣∣ (a±k )′ ∓ νλ−1

k a±k

∣∣∣ . t−4, (3.16)

where B = (B1, . . . , BK) is defined by (1.9).

We begin with a technical lemma.

Lemma 14. Under the bootstrap estimates (3.7)-(3.12), the following bounds
hold, for j 6= k,

〈λ−1
j Wj , λ

−1
k Wk〉 . t−2, 〈W

5
3
j ,W

5
3

k 〉 . t−10 log t,

〈λ−1
j |∇jWj |, λ−1

k |∇kWk|〉 . t−6, ‖WkW
4
3
j ‖L 10

7
. t−6.

(3.17)

Proof (Proof of Lemma 14). First, by change of variable

〈λ−1
j Wj , λ

−1
k Wk〉 = 〈λ̃−1

j Wλ̃j
(· − t2zj), λ̃−1

k Wλ̃k
(· − t2zk)〉,

where λ̃j := t2λj ∼ 1 and λ̃k := t2λk ∼ 1. The right-hand side term is estimated
by dividing R5 into three regions: Dj := B(t2zj , t

2d), Dk := B(t2zk, t
2d) and
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Dj,k = R5 \ (Dj ∪Dk). In order to estimate the integral outside both balls, we
use the bound |W (x)| . |x|−3 and the Cauchy-Schwarz inequality and obtain∫

Dj,k

|y − t2zj |−3 · |y − t2zk|−3 dy .
∫ ∞
t2d

r−2 dr . t−2.

For Dj , we observe ∫
Dj

|y − t2zj |−3 dy .
∫ t2d

0

r dr . t4,

so using also the trivial L∞ bound of order t−6 for the second factor on Dj , we
obtain a bound of order t−2 for the contribution of Dj . This justifies the first
bound in (3.17).

The other estimates in (3.17) are proved similarly, using |∇W (x)| . |x|−4.

In the sequel we will make use of various pointwise estimates obtained from
the Taylor expansion of the nonlinearity f . We claim that for all u, v ∈ R

|f(u+ v)− f(u)− f(v)− f ′(u)v| . |u| 23 |v| 53 . (3.18)

To prove (3.18), we consider several cases. If |v| ≤ 1
2 |u|, then by Taylor expan-

sion, we have

|f(u+ v)− f(u)− f(v)− f ′(u)v| . |u| 13 |v|2 . |u| 23 |v| 53 .

If 1
2 |u| ≤ |v| ≤ 2|u|, then

|f(u+ v)|+ |f(u)|+ |f(v)|+ |f ′(u)v| . |u| 73 + |v| 73 . |u| 23 |v| 53 .

Last, if 2|u| ≤ |v|, then

|f(u+ v)− f(v)|+ |f(u)|+ |f ′(u)v| . |v| 43 |u|+ |u| 73 + |u| 43 |v| . |u| 23 |v| 53 .

Next, it is easily checked by induction on J ≥ 1 that the following holds

∣∣∣f( J∑
j=1

vj

)
−

J∑
j=1

f(vj)
∣∣∣ ≤∑

j 6=l

|vj ||vl|
4
3 .

By the triangle inequality and (3.18), we deduce, for any u, vj ∈ R,

∣∣∣f(u+

J∑
j=1

vj

)
− f(u)−

J∑
j=1

f(vj)− f ′(u)

J∑
j=1

vj

∣∣∣ . |u| 23 J∑
j=1

|vj |
5
3 +

∑
j 6=l

|vj ||vl|
4
3 .

(3.19)

Proof (Proof of Lemma 13). At t = T , Lemma 11 provides an initial data
as in (3.2) with the estimates (3.7)-(3.12). Indeed, (α0, α1, . . . , αK) ∈ B̄RK+1
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implies that (3.12) holds at t = T . This gives (3.8)-(3.9). Moreover, (3.7),
(3.10) and (3.11) are clear from Lemma 11.

By the local Cauchy theory for (1.1), it is clear that if a solution ~u satis-
fies (3.2) with (3.7)-(3.12) on some interval [t, T ], then the solution ~u also exists
on [t− τ, T ], for some τ > 0.

To decompose ~u(t) for t < T , the strategy is to express the orthogonality
conditions (3.3) as a non-autonomous differential system DΓ′(t) = F(t,Γ(t)),
where F is continuous in t and locally Lipschitz in Γ, and the matrix D is a
perturbation of the block matrix diagK(D0) ∈ R7K×7K , where

D0 = diag
(
‖∇ΛW‖2L2 , ‖ΛW‖2L2 ,

(
‖∂xj

W‖2L2

)
j=1,...,5

)
∈ R7×7.

Then, (i) will follow from the Cauchy-Lipschitz theorem and continuity argu-
ments. Moreover, estimates in (ii) will follow from similar computations com-
bined with (3.7)-(3.12).

Formally, the evolution equation of ~g(t) := (g, ġ)(t) is

∂t~g = J DE( ~WΓ + ~g)− λ′∂λ ~WΓ − b′∂b ~WΓ − y′ · ∂y ~WΓ (3.20)

which rewrites as

∂tg = ġ +

K∑
k=1

λ−1
k (λ′k + bk)ΛkWk +

K∑
k=1

λ−1
k y′k · ∇kWk, (3.21)

∂tġ = ∆g + f(WΓ + g)−
K∑
k=1

f(Wk) (3.22)

+

K∑
k=1

λ−2
k λ′kbkΛkΛkWk −

K∑
k=1

λ−1
k b′kΛkWk +

K∑
k=1

λ−2
k bk(y′k · ∇k)ΛWk.

Proof of (3.13)-(3.14). We differentiate with respect to time the identity
0 = 〈λ−1

k ∆kΛkWk, g〉 which is the first orthogonality condition in (3.3) and we
use (3.21)

0 =
d
dt
〈λ−1
k ∆kΛkWk, g〉

=
〈
λ−1
k ∆kΛkWk, ġ +

∑
j

λ−1
j (λ′j + bj)ΛjWj +

∑
j

λ−1
j (y′j · ∇j)Wj

〉
− 〈λ′kλ−2

k Λk∆kΛkWk, g〉 − 〈λ−2
k (y′k · ∇k)∆kΛkWk, g〉.

Rewrite the first term on the right-hand side as

〈λ−1
k ∆kΛkWk, ġ〉 =

〈
λ−1
k ∆kΛkWk, ∂tu−

∑
k

λ−1
k bkΛkWk

〉
.

Note that ∂tu is continuous in L2 as a function t and λ−1
k ∆kΛkWk is locally

Lipschitz in L2 as a function of Γ. Thus, 〈λ−1
k ∆kΛkWk, ∂tu〉 is continuous

18



in t and locally Lipschitz in Γ. For the second term above, one checks the
same properties. Regularity in t and Γ for all other terms appearing in the
computations is proved similarly and omitted.

First, we estimate terms containing g and ġ,∣∣〈λ−1
k ∆kΛkWk, ġ〉

∣∣ . ‖λ−1
k ∆kΛkWk‖L2‖ġ‖L2 . ‖~g‖E ,

next ∣∣〈λ′kλ−2
k Λk∆kΛkWk, g〉

∣∣ . |λ′k|‖λ−2
k Λk∆kΛkWk‖

L
10
7
‖g‖

L
10
3

. |λ′k|‖g‖Ḣ1 . |λ′ + b|‖~g‖E + |b|‖~g‖E ,

and similarly
|〈λ−2

k (y′k · ∇k)∆kΛkWk, g〉| . |y′|‖~g‖E .

Next, we claim that the matrix Mλ with coefficients

mλ
jk := −〈λ−1

k ∆kΛkWk, λ
−1
j ΛjWj〉

is diagonally dominant and that its inverse is uniformly bounded. Indeed, for
j = k, it holds

mλ
kk = 〈λ−1

k ∆kΛkWk, λ
−1
k ΛkWk〉 = ‖∇ΛW‖2L2 ,

and for j 6= k, by (3.17)

|mλ
jk| =

λj
λk
|〈λ−1

k ∇kΛkWk, λ
−1
j ∇jΛjWj〉| . t−6.

Last, by symmetry 〈∆ΛW,∇W 〉 = 0, and so〈
λ−1
k ∆kΛkWk, λ

−1
k (y′k · ∇k)Wk

〉
= 0;

for j 6= k, by (3.17)∣∣〈λ−1
k ∆kΛkWk, λ

−1
j (y′j · ∇j)Wj〉

∣∣ . t−6|y′|.

Collecting these estimates, using ‖~g‖E . t−
11
3 and |b| � 1, we obtain

|λ′ + b| . (1 + |y′|) t− 11
3 . (3.23)

We differentiate with respect to time the identity 0 = 〈λ−1
k ∇kWk, g〉 which

is the second orthogonality condition in (3.3) and we use (3.21)

0 =
d
dt
〈λ−1
k ∇kWk, g〉

=
〈
λ−1
k ∇kWk, ġ +

∑
j

λ−1
j (λ′j + bj)ΛjWj +

∑
j

λ−1
j (y′j · ∇j)Wj

〉
− 〈λ−2

k λ′kΛk∇kWk, g〉 − 〈λ−2
k (y′k · ∇k)∇kWk, g〉.
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First, we have

|〈λ−1
k ∇kWk, ġ〉| ≤ ‖λ−1

k ∇kWk‖L2‖ġ‖L2 . ‖~g‖E .

Second, by 〈ΛW,∇W 〉 = 0 and (3.17), we obtain for any k, j,

|〈λ−1
k ∇kWk, λ

−1
j (λ′j + bj)ΛjWj〉| . t−2|λ′ + b|.

Then, for j = k, it holds

〈λ−1
k ∇kWk, λ

−1
k (y′k · ∇k)Wk〉 = y′k‖∂x1W‖2L2 ,

and for j 6= k, by (3.17)

|〈λ−1
k ∇kWk, λ

−1
j ∇jWj〉| . t−6.

Next, as before,

|〈λ−2
k λ′kΛk∇kWk, g〉| . |λ′k|‖λ−2

k Λk∇kWk‖
L

10
7
‖g‖

L
10
3

. |λ′k|‖g‖Ḣ1 . |λ′ + b|‖~g‖E + |b|‖~g‖E ,

and
|〈λ−2

k (y′k · ∇k)∇kWk, g〉| . |y′|‖~g‖E .

Collecting these estimates, using ‖~g‖E . t−
11
3 and |b| � 1, we obtain

|y′| . t−2|λ′ + b|+ t−
11
3 . (3.24)

Combining (3.23) and (3.24), we have proved |λ′ + b| + |y′| . t−
11
3 , which is

(3.13)-(3.14).
Proof of (3.15). We differentiate the identity 〈ΛkWk, ġ〉 = 0 (third orthogo-

nality condition in (3.3)) with respect to time and we use (3.22)

0 =
d
dt
〈ΛkWk, ġ〉

= −〈λ′kλ−1
k Λ2

kWk, ġ〉 − 〈λ−1
k (y′k · ∇k)ΛkWk, ġ〉

+
〈

ΛkWk,∆g + f(WΓ + g)−
∑
j

f
(
Wj

)〉
+
〈

ΛkWk,
∑
j

λ−2
j λ′jbjΛjΛjWj

〉
−
〈

ΛkWk,
∑
j

λ−1
j b′jΛjWj

〉
+
〈

ΛkWk,
∑
j

λ−2
j bj(y

′
j · ∇j)ΛWj

〉
.

For the first two terms, we observe from (3.13), |b| . t−3 and ‖~g‖E . t−
11
3

|〈λ′kλ−1
k Λ2

kWk, ġ〉| ≤ |λ′k|‖λ−1
k Λ2

kWk‖L2‖ġ‖L2 . |λ′|‖~g‖E . t−
20
3 ,
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and from (3.14),

|〈λ−1
k (y′k · ∇k)ΛkWk, ġ〉| ≤ ‖λ−1

k (y′k · ∇k)ΛkWk‖L2‖ġ‖L2 . |y′|‖~g‖E . t−
22
3 .

For the next line in the identity above, we set

I1 = 〈ΛkWk,∆g + f(WΓ + g)− f(WΓ)〉, I2 =
〈

ΛkWk, f(WΓ)−
∑
j

f
(
Wj

)〉
.

We first note that, using the cancellation LΛW = 0,

I1 = 〈ΛkWk, f(WΓ + g)− f(WΓ)− f ′(Wk)g〉
= 〈ΛkWk, f(WΓ + g)− f(WΓ)− f ′(WΓ)g〉
+ 〈ΛkWk, (f

′(WΓ)− f ′(Wk))g〉
= I3 + I4.

By the Taylor inequality,

|f(WΓ + g)− f(WΓ)− f ′(WΓ)g| .W
1
3

Γ |g|
2 + |g| 73 ,

and so, by Holder and Sobolev inequalities

|I3| .
∫
W

4
3

Γ |g|
2 +

∫
WΓ|g|

7
3 . ‖WΓ‖

4
3

Ḣ1
‖g‖2

Ḣ1 + ‖WΓ‖Ḣ1‖g‖
7
3

Ḣ1
. t−

22
3 .

By the Taylor inequality,

|f ′(WΓ)− f ′(Wk)| .
∑
j 6=k

(
W

4
3
j +W

1
3

k Wj

)
,

and thus
|I4| .

∑
j 6=k

∫ (
WkW

4
3
j +W

4
3

k Wj

)
|g|

. ‖g‖
L

10
3

∑
j 6=k

(
‖WkW

4
3
j ‖L 10

7
+ ‖W

4
3

k Wj‖
L

10
7

)
.

For j 6= k, by (3.17) we have |I4| . t−6‖~g‖E . t−
29
3 . Therefore, |I1| . t−

22
3 .

We turn to I2 and set

I2 =
〈

ΛkWk, f(WΓ)−
∑
j

f
(
Wj

)
− f ′(Wk)

∑
j 6=k

Wj

〉
+
〈

ΛkWk, f
′(Wk)

∑
j 6=k

Wj

〉
= I5 + I6.
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Using (3.19), we have

|ΛWk|
∣∣∣f(WΓ)−

∑
j

f
(
Wj

)
− f ′(Wk)

∑
j 6=k

Wj

∣∣∣
.W

5
3

k

∑
j 6=k

W
5
3
j +Wk

∑
j 6=l,j 6=k,l 6=k

WjW
4
3

l

.
∑
j 6=l

W
5
3
j W

5
3

l .

Thus, using (3.17), we obtain |I5| . t−10 log t.
Last, to estimate I6, we only have to consider 〈ΛkWk, f

′(Wk)Wj〉 for all
j 6= k. By change of variable,

〈ΛkWk, f
′(Wk)Wj〉 =

7

3
λ
− 3

2
j λ

3
2

k

∫
R5

W (x)
4
3 ΛW (x)W

(
λk
λj
x− zj − zk

λj

)
dx.

For |x| ≥ λ−1
k d, it holds by W (x) ≤ |x|−3 and then Cauchy-Schwarz inequality∫

|x|≥λ−1
k d

W
4
3 (x)|ΛW (x)|W

(
λk
λj
x− zj − zk

λj

)
dx

. λ4
k

∫
W (x)W

(
λk
λj
x− zj − zk

λj

)
dx

. λ4
k . t−8.

For |x| ≤ λ−1
k d, it holds

∣∣∣W (
λk
λj
x− zj − zk

λj

)
−W

(
zj − zk
λj

) ∣∣∣ . |x| ∣∣∣∣zj − zkλj

∣∣∣∣−4

. t−8|x|,

and by the explicit expression of W , for |y| ≥ 1,∣∣∣W (y)− 15
3
2 |y|−3

∣∣∣ ≤ |y|−5.

We obtain for such x,∣∣∣W (
λk
λj
x− zj − zk

λj

)
−15

3
2λ3

j |zj−zk|−3
∣∣∣ . ∣∣∣∣zj − zkλj

∣∣∣∣−5

+ t−8|x| . t−8(1+ |x|).

We deduce from these estimates∣∣∣ ∫
R5

W (x)
4
3 ΛW (x)W

(
λk
λj
x− zj − zk

λj

)
dx− 15

3
2 〈W 4

3 ,ΛW 〉λ3
j |zj − zk|−3

∣∣∣
. t−8 + t−8

∫
|x|≤λ−1

k d

(1 + |x|)W 7
3 (x) dx . t−8.
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Therefore,∣∣∣∣〈ΛkWk, f
′(Wk)Wj〉 −

7

3
15

3
2 〈W 4

3 ,ΛW 〉λ
3
2
j λ

3
2

k |zj − zk|
−3

∣∣∣∣ . t−8,

and by the definition of Bk(λ) and κ in (1.9),

|I6 − λk‖ΛW‖2L2Bk(λ)| . t−8.

Next, for j 6= k, using (3.17),

|〈ΛkWk, λ
−2
j λ′jbjΛjΛjWj

〉
| . |λ′||b|t−2 . t−8,

while the identity 〈ΛW,ΛΛW 〉 = 0 takes care of the corresponding term for
j = k.

For the terms 〈ΛkWk, λ
−1
j b′jΛjWj〉, we observe if j = k that

〈ΛkWk, λ
−1
k ΛkWk〉 = λk‖ΛW‖2L2 ,

and if j 6= k, by (3.17), |〈ΛkWk, λ
−1
j ΛjWj〉| . t−4.

Last, for any j, k,

|〈ΛkWk, λ
−2
j bj(y

′
j · ∇j)ΛWj〉| . |b||y′| . t−

20
3 .

Collecting these estimates, we have proved, for all k = 1, . . . ,K,

|b′k −Bk(λ)| . t−
14
3 + t−2|b′|,

and since |Bk(λ)| . t−4, (3.15) follows.
Proof of (3.16). By the definition of a±k in (3.4), we compute d

dta
±
k =

〈∂t ~Z±k , ~g〉+ 〈~Z±k , ∂t~g〉. First,

∂t ~Z
±
k = λ′k∂λk

~Z±k + y′k · ∂yk ~Z
±
k ,

Since Y is exponentially decaying, we obtain from the definition of ~Z±k , (3.13)-
(3.14) and (3.7)-(3.11), the estimate

|〈∂t ~Z±k , ~g〉| .
(∣∣∣∣λ′kλk

∣∣∣∣+

∣∣∣∣ y′kλk
∣∣∣∣) ‖~g‖E . t−

14
3 .

Second, using (3.20),

〈~Z±k , ∂t~g〉 = 〈~Z±k , J DE( ~WΓ + ~g)〉 − 〈~Z±k ,λ
′∂λ ~WΓ〉

− 〈~Z±k , b
′∂b ~WΓ〉 − 〈~Z±k ,y

′ · ∂y ~WΓ〉.

Using
λ′∂λ ~WΓ =

∑
j

(
λ−1
j λ′jΛjWj , λ

−2
j λ′jbjΛjΛjWj

)
,
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〈Yk,ΛkWk〉 = 0, |〈~Z±k ,ΛjWj〉| . t−6 for j 6= k, and estimates (3.9), (3.13), we
obtain

|〈~Z±k ,λ
′∂λ ~WΓ〉| . t−4.

Similarly, using

b′∂b ~WΓ =
∑
j

(
0, λ−1

j b′kΛjWj

)
,

y′ · ∂y ~WΓ =
∑
j

(
λ−1
j (y′j · ∇j)Wj , λ

−2
j bj(y

′
j · ∇j)ΛjWj

)
,

〈Yk,∇kWk〉 = 0,

and estimates (3.9), (3.14), (3.15), it holds

|〈~Z±k , b
′∂b ~WΓ〉|+ |〈~Z±k ,y

′ · ∂y ~WΓ〉| . t−4.

Now, we have

J DE( ~WΓ + ~g) =

=
(∑

j

λ−1
j bjΛjWj , f(WΓ + g)−

∑
j

f(Wk)− f ′(Wk)g
)

+ J D2E(Wk)~g.

As before, for all j, it holds |〈~Z±k , (λ
−1
k bjΛjWj , 0)〉| . t−4, and arguing as in the

proof of (3.15)∣∣∣〈λ−1
k Yk, f(WΓ + g)−

∑
j

f(Wk)− f ′(Wk)g
〉∣∣∣ . t−4.

Last, we check that 〈~Z±k , J D2E(Wk)~g〉 = ±νλ−1
k a±k , by direct computations

and LY = −ν2Y , which completes the proof of (3.16).

The following statement is the main part of the proof of Theorem 1.

Proposition 15. For any T > T0, there exist (α0, α1, . . . , αK) ∈ B̄RK+1 such
that the solution ~u of (1.1) with data ~u(T ) given by Lemma 11 satisfies T? = T0.

In Sections 3.2-3.5, devoted to the proof of Proposition 15, we tacitly use the
following direct consequences of (3.7)-(3.12) and Lemma 13

λk(t) ' t−2, bk(t) ' t−3, |λ′k(t)| . t−3, |b′k(t)| . t−4, |y′k(t)| . t−
11
3 ,

|B(λ(t))| . t−4,
∣∣∣ d
dt
B(λ(t))

∣∣∣ . t−4.
(3.25)

3.2. Refined approximate solution
Lemma 16. There exist smooth radially symmetric functions Q, S satisfying
on R5, for all β ∈ N5,

LQ =
105π

128
f ′(W ) + ΛW, |∂βxQ(x)| . |x|−1−|β|,

LS = ΛΛW, |∂βxS(x)| . |x|−1−|β|.
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For a proof, see [20, Proposition 2.1]. Note that the explicit constant 105π
128 is

related to the orthogonality condition〈105π

128
f ′(W ) + ΛW,ΛW

〉
= 0.

In the framework of Proposition 15, we set

Qk := Qλk
(· − yk), Sk := Sλk

(· − yk),

P :=
∑
k

χ
( · − zk

d

)(
λkBk(λ)Qk + b2kSk

)
,

where χ is defined in §1.2. We consider the following refined decomposition of
u

φ := WΓ + P, h := g − P so that u = WΓ + g = φ+ h.

Lemma 17. Under the bootstrap estimates (3.7)-(3.12), it holds

‖g − h‖Ḣ1 = ‖P‖Ḣ1 . t−5, (3.26)

‖∂tg − ∂th‖Ḣ1 = ‖∂tP‖Ḣ1 . t−6, (3.27)

and∥∥∥∂tġ − {∆h+ f(φ+ h)− f(φ) +
∑
k

(λ′k + bk)bkλ
−2
k ΛkΛkWk

+
∑
k

λ−2
k bk(y′k · ∇k)ΛkWk −

∑
k

(b′k −Bk(λ))λ−1
k ΛkWk

}∥∥∥
L2

. t−5.
(3.28)

Proof. In order to prove (3.26), note first from (3.10) that |x−yk| ≥ d implies
χ((x− zk)/d) = 0, and thus the Chain Rule yields

‖χ((· − zk)/d)Qk‖Ḣ1 . ‖Qλk
‖L2(|x|≤d) + ‖∇Qλk

‖L2(|x|≤d).

Using λk . t−2, we have

‖Qλk
‖L2(|x|≤d) . λk

(∫ d/λk

0

r−2r4 dr
) 1

2

. λ
− 1

2

k . t (3.29)

and

‖∇Qλk
‖L2(|x|≤d) .

(∫ d/λk

0

r−4r4 dr
) 1

2

. λ
− 1

2

k . t. (3.30)

Similar estimates involving Sλk
hold. Using also |λkBk(λ)| + |bk|2 . t−6, we

have proved (3.26).
In order to bound ∂tP , we write

∂t(λkBk(λ)Qk) =
( d
dt

(λkBk(λ))
)
Qk −Bk(λ)(y′k · ∇k)Qk −Bk(λ)λ′kΛkQk.
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Note that the cut-off χ
( ·−zk

d

)
is independent of t. For the first term on the right-

hand side, the required bound follows from (3.29) and | ddt (λkBk(λ))| . t−7.
For the second term, we use (3.30) (for these terms, we get a stronger bound
. t−6− 8

3 ). Finally, the last term is similar to the first one. Terms involving Sk
are bounded similarly.

In view of (3.22), the refined bound (3.28) is equivalent to∥∥∥∆P + f
(
WΓ +P

)
−
∑
k

f(Wk)−
∑
k

(
b2kλ
−2
k ΛkΛkWk +Bk(λ)λ−1

k ΛkWk

)∥∥∥
L2

. t−5.

First, consider the complement of the union of the balls B(zk, d/2). In this
region all the terms which do not involve P are controlled by t−5 in L2 norm
(we call such terms negligible). Indeed, this follows from estimates in (3.25) and

‖f(Wk)‖L2(|x−zk|≥d/2) = λ−1
k ‖f(W )‖L2(|x|≥d/(2λk))

. λ−1
k

(∫ ∞
d/(2λk)

r−14r4 dr
) 1

2

. λ
7
2

k ,
(3.31)

‖λ−1
k ΛkΛkWk‖L2(|x−zk|≥d/2) = ‖ΛΛW‖L2(|x|≥d/(2λk)) . λ

1
2

k , (3.32)

‖λ−1
k ΛkWk‖L2(|x−zk|≥d/2) = ‖ΛW‖L2(|x|≥d/(2λk)) . λ

1
2

k . (3.33)

Now fix k ∈ {1, . . . ,K} and consider the ball B(zk, d). We have just seen
that in the sum

∑K
j=1 f(Wj) only j = k is significant. Next, we will prove that∥∥∥f(WΓ + P

)
− f(Wk)− f ′(Wk)

∑
j 6=k

Wj − f ′(Wk)P
∥∥∥
L2(B(zk,d))

. t−5. (3.34)

Note that in B(zk, d) we have Wk & t−3, whereas for j 6= k we have Wj . t−3

and |P | . t−3. From (3.18), we have

|f(u+ v)− f(u)− f ′(u)v| . |u| 13 |v|2 + |v| 73 .

Applying this estimate to u = Wk and v =
∑
j 6=kWj+P , so that |u|

1
3 |v|2+|v| 73 .

t−5, and integrating over the ball B(zk, d) we get (3.34).
Next, we show that for all j 6= k we have

‖f ′(Wk)Wj − (15)
3
2λ

3
2
j |zk − zj |

−3f ′(Wk)‖L2(B(zk,d)) . t−5. (3.35)

We consider separately x ∈ B(yk,
√
λk) and x /∈ B(yk,

√
λk). In the first case,

(3.10) yields |x− zk| . t−1, which implies∣∣∣ Wj(x)

Wj(zk)
− 1
∣∣∣ . t−1 and so Wj(x) = (15)

3
2λ

3
2
j |zk − zj |

−3 +O(t−4).
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Since ‖f ′(Wk)‖L2 . λ
1
2

k . t−1, (3.35) is proved for the region B(yk,
√
λk).

Consider now the region B(zk, d) \ B(yk,
√
λk). We have

‖f ′(Wk)‖L2(|x−yk|≥
√
λk) =

√
λk‖f ′(W )‖

L2(|x|≥λ−1/2
k )

. t−1
(∫ ∞

1/
√
λk

r−8r4 dr
) 1

2

. t−1λ
3
4

k � t−2.

Since in B(zk, d) we have Wj . t−3, the proof of (3.34) is complete. Recalling
the definition of Bk(λ) from (1.9), estimate (3.35) can be rewritten as∥∥∥f ′(Wk)Wj +

105π

128
Bk(λ)λ

− 1
2

k f ′(Wk)
∥∥∥
L2(B(zk,d))

. t−5.

Resuming, we have reduced the proof of (3.28) to showing that∥∥∥∆P + f ′(Wk)P −Bk(λ)
(105π

128
λ
− 1

2

k f ′(Wk) + λ−1
k ΛkWk

)
−b2kλ−2

k ΛkΛkWk

∥∥∥
L2(B(zk,d))

. t−5.
(3.36)

In the region |x − zk| ≤ d
2 , it holds χ(x−zkd ) = 1 and χ(

x−zj
d ) = 0 for j 6= k;

thus the above expression equals 0 from the definition of P and Lemma 16. It
remains to show that for the cut-off region d

2 ≤ |x− zk| ≤ d, this term is indeed
negligible. By the estimates (3.31), (3.32), (3.33) dealing with the exterior of
the balls B(zk, d/2), the terms in (3.36) not involving P are negligible in this
region. Thus it sufficient to show that

‖|∆Qk|+ |∇Qk|+ |Qk|+ f ′(Wk)|Qk|‖L2( d
2≤|x−zk|≤d) . t

(the terms involving Sλk
being bounded analogously). For the four terms above,

the inequalities

t2
(∫ ∞

d/(2λk)

r−6r4 dr
) 1

2

. t,
(∫ d/λk

0

r−4r4 dr
) 1

2

. t,

t−2
(∫ d/λk

0

r−2r4 dr
) 1

2

. t, t2
(∫ ∞

d/(2λk)

(r−4r−1)2r4 dr
) 1

2 � t,

provide the desired estimate.

3.3. Energy estimates
Lemma 18. Let any ε > 0 and R > 0. There exists a radially symmetric
function q = qε,R ∈ C3,1(R5) with the following properties

(i) q(x) = 1
2 |x|

2 for |x| ≤ R.
(ii) There exists R̃ (depending on ε and R) such that q is constant for |x| ≥ R̃.
(iii) |∇q(x)| . |x| and |∆q(x)| . 1 for all x ∈ R5, with constants independent

of ε and R.
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(iv)
∑

1≤j,l≤5(∂xjxl
q(x))vjvl ≥ −ε

∑5
j=1 |vj |2, for all x ∈ R5, v ∈ R5.

(v) ∆2q(x) ≤ ε|x|−2, for all x ∈ R5.

Such a function is constructed in Lemma 4.5 of [22] for dimensions N ≥ 6, and
the construction for N = 5 follows from arguments in [20] and [22].

Fix a function q as in Lemma 18 and define the operators

[Akh](x) =
3

10

1

λk
∆q
(x− yk

λk

)
h(x) +∇q

(x− yk
λk

)
· ∇h(x),

[Akh](x) =
1

2

1

λk
∆q
(x− yk

λk

)
h(x) +∇q

(x− yk
λk

)
· ∇h(x).

Lemma 19. For any k = 1, . . . ,K, the operators Ak and Ak satisfy the follow-
ing properties.

(i) The families

{Ak;λk > 0, yk ∈ R5}, {Ak;λk > 0, yk ∈ R5},
{λk∂λk

Ak;λk > 0, yk ∈ R5}, {λk∂λk
Ak;λk > 0, yk ∈ R5},

{λk∂ykAk;λk > 0, yk ∈ R5} and {λk∂ykAk;λk > 0, yk ∈ R5}

are bounded in L(Ḣ1, L2), with norms depending on q.
(ii) For any g, h ∈ Ḣ1 ∩ Ḣ2,

〈Akh, f(h+ g)− f(h)− f ′(h)g〉 = −〈Akg, f(h+ g)− f(h)〉.

(iii) For any η > 0, choosing ε > 0 small enough in Lemma 18, it holds for all
g ∈ Ḣ1 ∩ Ḣ2,

〈Akg,∆g〉 ≤
η

λk
‖g‖2

Ḣ1 −
1

λk

∫
|x−yk|<Rλk

|∇g(x)|2 dx.

Proof. (i) Denote

Ah =
3

10
(∆q)h+∇q · ∇h, Ah =

1

2
(∆q)h+∇q · ∇h.

Since the functions ∆q and ∇q have compact supports, it is clear that A :

Ḣ1 → L2 is a bounded operator. For a function h, let hk(x) = λ
− 3

2

k h
(
x−yk
λk

)
.

Note that (Akhk)(x) = λ
− 5

2

k (Ah)
(
x−yk
λk

)
. Moreover, ‖Akhk‖L2 = ‖Ah‖L2 and

‖hk‖Ḣ1 = ‖h‖Ḣ1 . Thus, Ak : Ḣ1 → L2 is a bounded operator with the same
norm as A. The same argument applies to Ak and A.

We compute

λk∂λk
Ak = − 1

2λk
∆q
(x− yk

λk

)
− 1

2λk

x− yk
λk

· ∇∆q
(x− yk

λk

)
− x− yk

λk
· ∇2q

(x− yk
λk

)
· ∇,
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and

λk∂ykAk = − 1

2λk
∇∆q

(x− yk
λk

)
−∇2q

(x− yk
λk

)
· ∇.

Thus, the same arguments provide the desired results.
(ii) The relation 〈Ah, f(h + g) − f(h) − f ′(h)g〉 = −〈Ag, f(h + g) − f(h)〉

is proved in [23, Lemma 3.12], and the relation for Ak follows immediately by
change of variable.

(iii) The estimate is proved for A in [23, Lemma 3.12] and follows for Ak by
change of variable.

We establish energy estimates for the pair (h, ġ). We define

I :=

∫
R5

{1

2
(ġ)2 +

1

2
|∇h|2 −

(
F (φ+ h)− F (φ)− f(φ)h

)}
dx,

and
Jk := −bk〈ġ, Akh〉.

Set
H := I +

∑
k

Jk.

Lemma 20. For any δ > 0, choosing ε > 0 small enough in Lemma 19, it holds

H′ ≥ −δt− 25
3 . (3.37)

Proof. In this proof, the sign “'” means that equality holds up to error terms
of order t−

26
3 . We call such error terms “negligible”.

We start by computing I ′. We have by integration by parts,

I ′ = 〈∂tġ, ġ〉−〈∂th,∆h+f(φ+h)−f(φ)〉−〈∂tφ, f(φ+h)−f(φ)−f ′(φ)h〉. (3.38)

By (3.28) in Lemma 17, the third orthogonality condition in (3.3) and (3.7),
we have

〈∂tġ, ġ〉 ' 〈ġ,∆h+ f(φ+ h)− f(φ)〉

+
∑
k

(λ′k + bk)bkλ
−2
k 〈ΛkΛkWk, ġ〉+

∑
k

bkλ
−2
k 〈(y

′
k · ∇k)ΛkWk, ġ〉.

Moreover, by (3.26)-(3.27) in Lemma 17 and (3.7),

〈∂th,∆h+ f(φ+ h)− f(φ)〉 ' 〈∂tg,∆h+ f(φ+ h)− f(φ)〉.

Now, we claim that

〈∂th,∆h+ f(φ+ h)− f(φ)〉 ' 〈ġ,∆h+ f(φ+ h)− f(φ)〉. (3.39)

Note that (3.21) and (3.13)-(3.14) imply

‖∂tg − ġ‖Ḣ1 . t−
5
3 . (3.40)
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Since

‖f(φ+h)−f(φ)−f ′(φ)h‖Ḣ−1 . ‖f(φ+h)−f(φ)−f ′(φ)h‖
L

10
7

. ‖h‖2
Ḣ1 . t−

22
3

(3.41)
(the last bound follows from (3.7) and (3.26)), we have

〈∂tg,∆h+ f(φ+ h)− f(φ)〉
= 〈ġ,∆h+ f(φ+ h)− f(φ)〉+ 〈∂tg − ġ,∆h+ f(φ+ h)− f(φ)〉
' 〈ġ,∆h+ f(φ+ h)− f(φ)〉+ 〈∂tg − ġ,∆h+ f ′(φ)h〉.

Now, we check that the last term is negligible. Fix k ∈ {1, . . . ,K}. Using (3.21),
then (3.13)-(3.14) and the cancellations LΛW = 0, L∇W = 0, it is sufficient to
prove that∣∣〈ΛkWk,∆h+ f ′(φ)h〉

∣∣ =
∣∣〈ΛkWk, (f

′(φ)− f ′(Wk))h〉
∣∣ . t−7,∣∣〈∇kWk,∆h+ f ′(φ)h〉

∣∣ =
∣∣〈∇kWk, (f

′(φ)− f ′(Wk))h〉
∣∣ . t−7.

Both inequalities will follow from∫
R5

Wk|f ′(φ)− f ′(Wk)||h| dx . t−7. (3.42)

In the exterior of all the balls B(zj , d) we have

Wk|f ′(φ)− f ′(Wk)| .
∑
j

f(Wj)

and

‖f(Wj)‖
L

10
7 (|x−zj |≥d)

.
(∫ ∞

d/(2λj)

r−10r4 dr
) 7

10

. λ
7
2
j . t−7,

which yields an estimate better than (3.42) for this region. In the ball B(zj , d)
for j 6= k we have

|f ′(φ)− f ′(Wk)| . f ′(Wj) + f ′(P ).

Note that ‖f ′(Wj)‖L2 =
√
λj‖f ′(W )‖L2 . t−1. Also, since ‖P‖L∞ . t−3, we

obtain
‖f ′(φ)− f ′(Wk)‖L2(B(zj ,d)) . t−1,

hence Hölder inequality yields∫
B(zj ,d)

Wk|f ′(φ)− f ′(Wk)||h| dx . t−1‖Wk‖L5(B(zj ,d))‖h‖L 10
3 (B(zj ,d))

. t−4− 11
3 � t−7,

which proves (3.42) in the ball B(zj , d). In B(zk, d) we write

|f ′(φ)− f ′(Wk)| . |f ′′(Wk)|
(
|P |+

∑
j 6=k

Wj

)
+ f ′(P ) +

∑
j 6=k

f ′(Wj),
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so that in particular

Wk|f ′(φ)− f ′(Wk)| . t−3(Wk + f ′(Wk)).

We have ‖f ′(Wk)‖
L

10
7

= λ
3
2

k ‖f ′(W )‖
L

10
7

. t−3 and

‖Wk‖
L

10
7 (B(zk,d))

. λ2
k

(∫ 2d/λk

0

r−
30
7 r4 dr

) 7
10

. t−3,

hence we obtain by Hölder inequality∫
B(zk,d)

Wk|f ′(φ)− f ′(Wk)||h| dx . t−6t−
11
3 � t−7.

This finishes the proof of (3.42), which means we have proved (3.39).
Next, we consider the last term in (3.38). Using the equality ∂tφ = ∂tu −

∂th =
∑
k bkλ

−1
k ΛkWk + ġ − ∂th, estimates (3.27) and (3.40) implies that∥∥∥∂tφ−∑

k

bkλ
−1
k ΛkWk

∥∥∥
Ḣ1

. t−
5
3 .

Thus, using also (3.41),

〈∂tφ, f(φ+ h)− f(φ)− f ′(φ)h〉 '
∑
k

bkλ
−1
k 〈ΛWk, f(φ+ h)− f(φ)− f ′(φ)h〉.

We conclude that

I ′ '
∑
k

(λ′k + bk)bkλ
−2
k 〈ΛkΛkWk, ġ〉+

∑
k

bkλ
−2
k 〈(y

′
k · ∇k)ΛkWk, ġ〉

−
∑
k

bkλ
−1
k 〈ΛkWk, f(φ+ h)− f(φ)− f ′(φ)h〉.

(3.43)

These remaining terms can only be estimated by Ct−
25
3 , which is the critical

size for the energy method. Thus, they have to be cancelled by similar terms
coming from the virial correction J , see below (3.51). The original idea of
such a virial correction in a blow-up context is due to [39] for the mass critical
nonlinear Schrödinger equation, and was extended to the energy-critical wave
and Schrödinger equations in [20, 22]. The presentation here follows closely the
one in [20, 22, 23].

Let η > 0 arbitrarily small. We compute J ′k from its definition

J ′k =− b′k〈ġ, Akh〉 − bkλ′k〈ġ, (∂λk
Ak)h〉 − bk〈ġ, y′k · (∂ykAk)h〉

− bk〈ġ, Ak∂th〉 − bk〈∂tġ, Akh〉.
(3.44)

First, by (i) of Lemma 19, (3.7), (3.25) and (3.26), we have

|b′k〈ġ, Akh〉|+ |bkλ′k〈ġ, (∂λk
Ak)h〉|+ |bky′k〈ġ, (∂ykAk)h〉|

. t−4‖ġ‖L2‖h‖Ḣ1 . t−
28
3 .
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Next, by (i) of Lemma 19, (3.7) and (3.27), we have

|bk〈ġ, Ak(∂th− ∂tg)〉| . t−3‖ġ‖L2‖∂th− ∂tg‖Ḣ1 . t−
38
3 ,

which implies bk〈ġ, Ak∂th〉 ' bk〈ġ, Ak∂tg〉. Using (3.21) and 〈ġ, Akġ〉 = 0 (by
integration by parts), we have

〈ġ, Ak∂tg〉 =
∑
j

{
λ−1
j (λ′j + bj)〈ġ, AkΛjWj〉+ λ−1

j 〈ġ, Ak(y′j · ∇jWj)〉
}
.

We first consider j = k in the above sum. We claim that for R large enough in
the choice of q in Lemma 19, it holds

‖AkΛkWk − λ−1
k ΛkΛkWk‖L2 + ‖Ak∇kWk − λ−1

k Λk∇kWk‖L2 ≤ η. (3.45)

Indeed, for |x| ≤ R, we have AΛW (x) = ΛΛW (x), and for |x| ≥ R, using (iii)
of Lemma 19 and the decay of W , we have |AΛW (x)| + |ΛΛW (x)| ≤ C|x|−3.
Thus, ‖AΛW − ΛΛW‖L2 ≤ CR−

1
2 , and estimate (3.45) for ΛkWk follows by

change of variable. The estimate on ∇kWk is proved similarly. For j 6= k, one
checks that ‖AkΛjWj‖L2 + ‖Ak∇jWj‖L2 . t−1.

Using also Λ∇ = ∇Λ, it follows from what precedes and |b|‖ġ‖L2 . t−
25
3

that ∣∣∣bk〈ġ, Ak∂th〉 − {bkλ−2
k (λ′k + bk)〈ġ,ΛkΛkWk〉

+ bkλ
−2
k 〈ġ, (y

′
k · ∇kΛkWk)〉

}∣∣∣ ≤ Cηt− 25
3 .

Finally, we use (3.28), A = ∆q
5 +A and (i)-(iii) of Lemma 19 to estimate the

last term in (3.44) as follows

− bk〈∂tġ, Akh〉 ≥ −ηbkλ−1
k ‖h‖

2
Ḣ1

+ bkλ
−1
k

{∫
|x−yk|<Rλk

|∇h(x)|2 dx− 1

5

〈
∆q
( · − yk

λk

)
h, f(φ+ h)− f(φ)

〉}
+ bk〈Akφ, f(φ+ h)− f(φ)− f ′(φ)h〉

− bk
K∑
j=1

(λ′j + bj)bjλ
−2
j 〈ΛjΛjWj , Akh〉 − bk

K∑
j=1

bjλ
−2
j y′j〈∇jΛjWj , Akh〉

+ bk

K∑
j=1

(b′j −Bj(λ))λ−1
j 〈ΛjWj , Akh〉 − Ct−

35
3 .

(3.46)
The first line of (3.46) is lower bounded by −Cηt− 25

3 . For the second line, we
first observe that since |∆q(x)| . 1 for all x ∈ R5, using also (3.41), we have∣∣∣〈∆q

( · − yk
λk

)
h, f(φ+ h)− f(φ)

〉
−
〈

∆q
( · − yk

λk

)
h, f ′(φ)h

〉∣∣∣ . t−11. (3.47)

We claim that∫
|x−yk|<λkR̃

|f ′(φ)− f ′(Wk)|h2 . t−
31
3 ,

∫
|x−yk|>λkR

|f ′(Wk)|h2 . R−2t−
22
3 .

(3.48)
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Indeed, by Holder and Sobolev inequalities, and then Taylor expansion∫
|x−yk|<λkR̃

|f ′(φ)− f ′(Wk)|h2

. ‖h‖2
Ḣ1‖f ′(φ)− f ′(Wk)‖

L
10
3 (|x−yk|<λkR̃)

. ‖h‖2
Ḣ1

∑
j 6=k

(
‖Wj‖

4
3

L
10
3 (|x−yk|<λkR̃)

+ ‖WjW
1
3

k ‖L 5
2 (|x−yk|<λkR̃)

)
. ‖h‖2

Ḣ1

∑
j 6=k

‖Wj‖
L

10
3 (|x−yk|<λkR̃)

. ‖h‖2
Ḣ1 |λ|

3
2 . t−

31
3 .

Similar estimates give
∫
|x−yk|>λkR

|f ′(Wk)|h2 . ‖h‖2
Ḣ1R

−2 . R−2t−
22
3 and thus

(3.48) is proved.
From the definition of q in Lemma 19, ∆q(x) = 5 for |x| ≤ R and ∆q(x) = 0

for |x| ≥ R̃. Thus, (3.47) and (3.48) imply that∣∣∣1
5

〈
∆q
( · − yk

λk

)
h, f(φ+ h)− f(φ)

〉
−
∫
|x−yk|<λkR

f ′(Wk(x))h2(x) dx
∣∣∣

. R−2t−
25
3 .

Therefore, up to negligible terms, the second line of (3.46) is estimated by

bkλ
−1
k

∫
|x−yk|<Rλk

{
|∇h(x)|2 − f ′(Wk(x))h2(x)

}
dx− CR−2t−

25
3 .

Using (3.26), (3.11)-(3.12) and the definitions of Z±k , it holds

|〈λ−2
k Yk, h〉|2 . ‖h− g‖2

Ḣ1 + |〈λ−2
k Yk, g〉|2 . t−10 + (a−k )2 + (a+

k )2 . t−8. (3.49)

Thus, applying Lemma 9 to h, with R large enough, we have the lower bound∫
|x−yk|<Rλk

{
|∇h(x)|2 − f ′(Wk(x))h2(x)

}
dx ≥ −η‖∇h‖2L2 −Ct−8 ≥ −2ηt−

22
3 .

Next, we claim that

‖λkAkφ− ΛkWk‖
L

10
3

. t−1 +R−2, (3.50)

which, combined with (3.41), implies that the third term in the right-hand side
of (3.46) is equal to

bkλ
−1
k 〈ΛkWk, f(φ+ h)− f(φ)− f ′(φ)h〉

up to negligible terms. To prove (3.50), we just observe that since AkWk =
λ−1
k ΛkWk for |x− yk| ≤ Rλk and Akφ = AkWk = 0 for |x− yk| ≥ R̃λk, it holds

‖λkAkφ− ΛkWk‖
L

10
3
≤ ‖λkAk(φ−Wk)‖

L
10
3 (|x−yk|<R̃λk)

+ ‖λkAkWk − ΛkWk‖
L

10
3 (|x−yk|>Rλk)

. t−1 +R−2.
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Finally, we claim that the last three terms of (3.46) are negligible. Indeed,
this is a consequence of Lemma 13, (i) of Lemma 19 and the bound ‖h‖Ḣ1 .
t−

11
3 .
We conclude that

J ′k ≤ −(λ′k + bk)bkλ
−2
k 〈ΛkΛkWk, ġ〉 − bkλ−2

k 〈(y
′
k · ∇k)ΛkWk, ġ〉

+ bkλ
−1
k 〈ΛkWk, f(φ+ h)− f(φ)− f ′(φ)h〉 − C(η +R−2)t−

25
3 .

(3.51)

Combining (3.43) and (3.51), we obtain, with δ > 0 arbitrarily small and under
the bootstrap assumptions, that H′ ≥ −δt− 25

3 , which is (3.37).

3.4. Control of the scaling parameters
In this subsection, we prove that for all t ∈ [T?, T ],

|λ− ct−2| ≤ 1

2
t−

7
3 , (3.52)

|b− 2ct−3| ≤ 1

2
t−

10
3 . (3.53)

The argument is one of the original aspects of this article compared to previous
works on multi-solitons. Equations (3.13) and (3.15) are necessary but not
sufficient to estimate λ and b. Indeed, to control a one-dimensional instability
related to |λ|, we need to use specific approximate Lyapunov functionals F and
G and the following bound on |λ| from (3.12)∣∣|λ| − |c|t−2

∣∣ ≤ t− 12
5 , for all t ∈ [T?, T ]. (3.54)

Recall that (3.12) gathers all terms for which a topological argument is required
(see next subsection).

Proof (Proof of (3.52)-(3.53)). For t ∈ [T?, T ] denote r := |λ|, and define
θ ∈ SK−1

+ , ρ ∈ R and b⊥ ∈ RK by the relations

λ = rθ, b = ρθ + b⊥, b⊥ ⊥ θ.

Note that from (3.5), b⊥(T ) = 0 and θ(T ) = c/|c|. We will prove that for all
t ∈ [T?, T ]

|b⊥| ≤ t− 31
9 , (3.55)

|θ − c/|c|| ≤ t− 4
9 . (3.56)

Projecting (3.13) first on θ, and then on its orthogonal complement, we obtain,
for all t ∈ [T?, T ],

|r′ + ρ| . t−
11
3 , (3.57)

|θ′ + b⊥/r| . t−
5
3 . (3.58)
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From (3.15) and (i) of Lemma 3 we get

(b⊥)′ = b′ − (ρθ)′ = r2∇V (θ)− ρ′θ − ρθ′ +O(t−
14
3 ). (3.59)

Consider the following quantity

F :=
1

2
r−3|b⊥|2 + V (θ).

Let
τ := inf{t ∈ [T?, T ] : (3.55) and (3.56) hold on [t, T ]}

and suppose that τ > T?. We check that for all t ∈ [τ, T ] we have

F ′ & −t− 19
9 . (3.60)

Indeed, we have

F ′ = −3

2
r′r−4|b⊥|2 + r−3(b⊥)′ · b⊥ + θ′ · ∇V (θ). (3.61)

From (3.55), (3.57) and (3.54) we obtain∣∣∣r′r−4|b⊥|2 + r−4ρ|b⊥|2
∣∣∣ . t−

11
3 +8− 62

9 = t−
23
9 � t−

19
9 . (3.62)

From (3.55), (3.54) and (3.59) we obtain∣∣r−3(b⊥)′ · b⊥ − r−3
(
r2∇V (θ)− ρ′θ − ρθ′

)
· b⊥

∣∣ . t6−
14
3 −

31
9 = t−

19
9 . (3.63)

Using θ · b⊥ = 0 and∣∣r−3ρθ′ · b⊥ + r−4ρ|b⊥|2
∣∣ ≤ r−3ρ|b⊥|

∣∣θ′ + b⊥/r∣∣ . t6−3− 31
9 −

5
3 = t−

19
9 ,

this yields ∣∣r−3(b⊥)′ · b⊥ −
(
r−1∇V (θ) · b⊥ + r−4ρ|b⊥|2

)∣∣ . t−
19
9 .

Since c/|c|−1 is a critical point of V |SK−1
+

and V is smooth in its neighborhood
(see Lemma 3), (3.56) implies that the component of ∇V (θ) orthogonal to θ is
O(t−

4
9 ). Thus (3.58) yields

|θ′ ·∇V (θ)−(−b⊥/r) ·∇V (θ)| = |(θ′+b⊥/r) ·∇V (θ)| . t−
4
9−

5
3 = t−

19
9 . (3.64)

Formula (3.61) and the bounds (3.62), (3.63) and (3.64) yield

F ′ =
3

2
r−4ρ|b⊥|2 + r−1∇V (θ) · b⊥ + r−4ρ|b⊥|2 − r−1∇V (θ) · b⊥ +O(t−

19
9 ),

which proves (3.60), because ρ > 0.
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Integrating (3.60) between t ∈ [τ, T ] and T yields

1

2
r−3|b⊥|2 + V (θ)− V (c/|c|) . t−

10
9 .

Since V attains its global minimum at c/|c|, this implies

r−3|b⊥|2 . t−
10
9 and so |b⊥| . t−3− 5

9 = t−
32
9 . (3.65)

Thus (3.58) implies |θ′| . t−
14
9 ; in particular, using θ(T ) = c

|c| , we obtain the
following improved bound on [τ, T ]

|θ − c/|c|| . t−
5
9 . (3.66)

Bounds (3.65) and (3.66) show that (3.55) and (3.56) cannot break down at
t = τ , thus proving that (3.55) and (3.56) indeed hold on [T?, T ].

By the triangle inequality, (3.54) and (3.56) we have

|λ−ct−2| = |rθ−ct−2| ≤ |r−|c|t−2|+|c|t−2|θ−c/|c|| . t−
12
5 +t−2t−

4
9 � t−

7
3 ,

which proves (3.52).
Now, we analyse the evolution of (r, ρ). For θ ∈ SK−1 set

n(θ) := −θ · ∇V (θ).

Taking the inner product of (3.59) with θ gives

ρ′ = −r2n(θ)− (b⊥)′ · θ +O(t−
14
3 ).

Note that (3.58) and (3.55) imply in particular |θ′| . t−
31
9 +2 = t−

13
9 . Since

b⊥ · θ = 0 for all t, we have∣∣(b⊥)′ · θ
∣∣ =

∣∣b⊥ · θ′∣∣ ≤ |b⊥|∣∣θ′∣∣ . t−
31
9 −

13
9 � t−

14
3 ,

and thus
ρ′ = −r2n(θ) +O(t−

14
3 ).

Since n(θ) is smooth in a neighborhood of θ = c/|c| (see Lemma 3), (3.56)
yields the estimate |n(θ)− n(c/|c|)| . t−

4
9 . Thus

ρ′ = −r2n(c/|c|) +O(t−
40
9 ). (3.67)

Consider
G :=

1

2
ρ2 − 2|c|−1r3.

Using r . t−2, ρ . t−3, (3.57), (3.67) and the fact that |c| = 6(n(c/|c|))−1 (see
(1.12)), we compute

G′ = −r2ρn(c/|c|) + 6|c|−1r2ρ+O(t−
40
9 t−3 + t−4t−

11
3 ) = O(t−

67
9 ).
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Since G(T ) = 0 by (3.5), we obtain by integration on [t, T ],(
ρ− 2|c|− 1

2 r
3
2

)(
ρ+ 2|c|− 1

2 r
3
2

)
= 2G . t−

58
9 ;

thus (3.54) yields ∣∣ρ− 2|c|− 1
2 r

3
2

∣∣ . t−
31
9 , (3.68)

and last (3.57) implies ∣∣r′ + 2|c|− 1
2 r

3
2

∣∣ . t−
31
9 . (3.69)

The bound (3.68) also implies, again using (3.54),∣∣ρ− 2|c|t−3
∣∣ . t−

31
9 + t−3

∣∣(t2r) 3
2 − |c| 32

∣∣ . t−
31
9 + t−3− 2

5 . t−
17
5 .

By the triangle inequality and previous estimates, we have

|b− 2ct−3| = |ρθ + b⊥ − 2ct−3| ≤ |b⊥|+
∣∣ρ− 2|c|t−3

∣∣+ 2|c|t−3
∣∣θ − c/|c|∣∣

. t−
31
9 + t−

17
5 + t−

31
9 � t−

10
3 ,

which proves (3.53).

3.5. Closing the bootstrap argument
Now, we prove that for all t ∈ [T?, T ], it holds

‖~g‖E ≤
1

2
t−

11
3 , (3.70)

|y − z| ≤ 1

2
t−

7
3 , (3.71)

K∑
k=1

(a+
k )2 ≤ 1

2
t−8. (3.72)

Proof (Proof of (3.70)-(3.72)). First, from (3.6) and (3.26), it follows that
‖h(T )‖Ḣ1 ≤ ‖g(T )‖Ḣ1 + ‖h(T )− g(T )‖Ḣ1 . T−4, and thus it holds

H(T ) . T−8.

Hence, integration of (3.37) implies H(t) ≤ δt−
22
3 and thus I(t) ≤ 2δt−

22
3 , for

all t ∈ [T?, T ].
From (3.3) and (3.26), it holds

|〈λ−2
k ∆kΛkWk, h〉|+ |〈λ−2

k ∇kWk, h〉| . t−5.

Besides, from (3.49), we recall that |〈λ−2
k Yk, h〉|2 . t−8. Therefore, applying

Lemma 10 and standard arguments to estimate
∫
|F (φ+ h)− F (φ)− f(φ)h−

f ′(φ)h2| � t−
22
3 , we obtain the following estimate, for δ small enough,

‖∇h‖2L2 + ‖ġ‖2L2 . I + t−8 ≤ 1

3
t−

22
3 ,
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This yields (3.70) on ~g using again the estimate on g − h from (3.26).
Bound (3.71) follows immediately from (3.14), y(T ) = z (see (3.5)) and

integration. In order to prove (3.72), we observe that (3.16) and (3.11) yields∣∣∣ d
dt

∑
k

(a+
k )2 − 2ν

∑
k

(a+
k )2

λk

∣∣∣ . t−8,

hence, by (3.8) there is C > 0 (independent of t) such that

d
dt

∑
k

(a+
k )2 ≥ Ct2

∑
k

(a+
k )2 +O(t−8). (3.73)

It is clear that (3.72) holds for t close to T . Supposing that (3.72) breaks
down for the first time at some T1 ∈ (T?, T ), we would have on the one hand
d
dt
∑K
k=1 |a

+
k (T1)|2 ≤ 0; on the other hand (3.73) yields d

dt
∑K
k=1 |a

+
k (T1)|2 > 0.

This contradiction proves (3.72).

Finally, we complete the proof of Proposition 15, dealing with the remaining
bootstrap estimate (3.12). For the sake of contradiction, suppose that for any
(α0, α1, . . . , αK) ∈ B̄RK+1 , it holds T? = T?(α0, α1, . . . , αK) ∈ (T0, T ]. It follows
from (3.52)-(3.53) and (3.70)-(3.72) that on [T?, T ], equality is reached in none
of the estimates (3.7)-(3.11). Therefore, from (i) of Lemma 13, equality has to
be reached at t = T? in estimate (3.12).

Recall that r := |λ| and set also

ã0(t) := t
12
5 (r(t)− |c|t−2), ãk(t) := t4a−k (t)

so that from (3.5)-(3.6),

ã0(T ) = α0 and ãk(T ) = αk for k = 1, . . .K.

The contradiction assumption says that for any (α0, α1, . . . , αK) ∈ B̄RK+1 , for
all t ∈ [T?, T ] it holds

(ã0(t), ã1(t), . . . , ãK(t)) ∈ B̄RK+1 , (ã0(T?), ã1(T?), . . . , ãK(T?)) ∈ SK .

Consider the application Φ : B̄RK+1 → SK defined by

Φ(α0, α1, . . . , αK) := (ã0(T?), ã1(T?), . . . , ãK(T?)).

To prove that Φ is continuous, we only need to check that (α0, α1, . . . , αK) 7→
T? is continuous. This property is deduced from the following transversality
condition: for any T1 ∈ [T?, T ] such that (ã0(T1), ã1(T1), . . . , ãK(T1)) ∈ SK , it
holds

K∑
k=0

ã′k(T1)ãk(T1) < 0. (3.74)
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Proof of (3.74). On the one hand, for k = 1, . . . ,K, estimate (3.16) yields

(a−k )′(T1)a−k (T1) = − ν

λk(T1)

(
a−k (T1)

)2
+O(T−4

1 |a
−
k (T1)|),

and so
ã′k(T1)ãk(T1) = T 8

1 (4T−1
1 a−k (T1) + (a−k )′(T1))a−k (T1)

= − ν

2λk(T1)
ãk(T1)2 +O(|ãk(T1)|).

Using |O(|ãk(T1)|)| ≤ ν
4λk(T1) ãk(T1)2 + CT−2

1 for some constant C and taking
the sum for k = 1, . . . ,K, we obtain

K∑
k=1

ã′k(T1)ãk(T1) ≤ −
K∑
k=1

ν

4λk(T1)
ãk(T1)2 + CT−2

1 . (3.75)

On the other hand, using the definition of ã0 and then (3.69), it holds

ã′0(T1) =
12

5
T

7
5

1 (r(T1)− |c|T−2
1 ) + T

12
5

1 (r′(T1) + 2|c|T−3
1 )

=
12

5
T

7
5

1 (r(T1)− |c|T−2
1 )− 2|c|− 1

2T
12
5

1 (r(T1)
3
2 − |c| 32T−3

1 ) +O(T
− 47

45
1 ).

Observe that (3.54) implies

2|c|− 1
2T1

r(T1)
3
2 − |c| 32T−3

1

r(T1)− |c|T−2
1

= 2|c|− 1
2
r(T1)T 2

1 + (r(T1)T 2
1 )

1
2 |c| 12 + |c| 32

(r(T1)T 2
1 )

1
2 + |c|

= 3 +O(T
− 2

5
1 ),

so that
ã′0(T1) = −3

5
T−1

1 a0(T1) +O(T
− 47

45
1 ).

This estimate combined with (3.75) and
∑K
k=0 ãk(T1)2 = 1 yield

K∑
k=0

ã′k(T1)ãk(T1) ≤ −3

5
T−1

1

K∑
k=0

ãk(T1)2 +O(T
− 47

45
1 ) = −3

5
T−1

1 +O(T
− 47

45
1 ) < 0,

provided that T1 is large enough, which proves (3.74).
Therefore, Φ is continuous on B̄RK+1 and its restriction to SK is the identity.

This is a contradiction with the no-retraction theorem.

3.6. Proof of Theorem 1 from Proposition 15
We follow the strategy by compactness from [5, 20, 23, 32, 37, 39], using the

uniform estimates of Proposition 15 on a sequence of well-prepared solutions
of (1.1).

Consider the solution ~un given by Proposition 15 for T = Tn where Tn := n >
T0. On the interval [T0, Tn], this solution is well-defined and its decomposition
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(Γn, ~gn) satisfies the uniform estimates (3.7)-(3.10). In particular, from ~un =
~WΓn + ~gn, we check that, for all t ∈ [T0, Tn]∥∥∥∥un(t)−

∑
k

1

(ckt−2)
3
2

W

(
· − zk
ckt−2

)∥∥∥∥
Ḣ1

+ ‖∂tun(t)‖L2 ≤ Ct− 1
3 . (3.76)

We take a possibly larger T0 so that CT−
1
3

0 < η where η > 0 is the constant of
Proposition 22.

Since the sequence (~un(T0))n is bounded in Ḣ1 × L2, after extraction of a
subsequence, there exists ~u0 in Ḣ1×L2 such that ~un(T0) ⇀ ~u0 weakly in Ḣ1×L2.
Fix T > T0. From Proposition 22 applied to the compact set

K =
{(∑

k

1

(ckt−2)
3
2

W

(
· − zk
ckt−2

)
, 0
)
, t ∈ [T0, T ]

}
,

the solution ~u of (1.1) corresponding to ~u(T0) = u0 is well-defined and it holds
~un(t) ⇀ ~u(t) weakly in Ḣ1×L2 on [T0, T ]. By (3.76) and the properties of weak
convergence, the solution ~u satisfies, for all t ∈ [T0, T ]∥∥∥∥u(t)−

∑
k

1

(ckt−2)
3
2

W

(
· − zk
ckt−2

)∥∥∥∥
Ḣ1

+ ‖∂tu(t)‖L2 . t−
1
3 .

Since T ≥ T0 is arbitrary, the solution ~u is defined and satisfies the conclusion
of Theorem 1 on [T0,∞). We obtain a solution defined on [0,∞) with similar
properties by time translation.

4. Appendix. Weak continuity of the flow near a compact set

We reproduce two statements from Appendix A.2 of [23] with the only dif-
ference that they are given here for general solutions and not only for radially
symmetric solutions. Using the result of profile decomposition stated in [11,
Proposition 2.8], the proofs are similar up to dealing with additional position
parameter.

Proposition 21. There exists a constant η > 0 such that the following holds.
Let ~u : [t0, Tmax) → Ḣ1 × L2 be a maximal solution of (1.1) with Tmax <
∞. Then for any compact set K ⊂ Ḣ1 × L2 there exists τ < Tmax such that
dist(~u(t),K) > η for all t ∈ [τ, Tmax).

Proposition 22. There exists a constant η > 0 such that the following holds.
Let K ⊂ Ḣ1 × L2 be a compact set and let ~u : [T1, T2]→ Ḣ1 × L2 be a sequence
of solutions of (1.1) such that

dist(~un(t),K) ≤ η, for all n ∈ N and t ∈ [T1, T2].

Suppose that un(T1) ⇀ ~u0 weakly in Ḣ1 × L2. Then the solution ~u(t) of (1.1)
with the initial condition ~u(T1) = ~u0 is defined for t ∈ [T1, T2] and

~un(T1) ⇀ ~u(t), weakly in Ḣ1 × L2 for all t ∈ [T1, T2].
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