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Abstract 

The motivation of this review paper is to present a detailed summary of different collision models 

developed in the framework of the direct simulation Monte Carlo (DSMC) method. The emphasis 

is put on a newly developed collision model, i.e., the Simplified Bernoulli trial (SBT), which 

permits efficient low-memory simulation of rarefied gas flows. The paper starts with a brief 

review of the governing equations of the rarefied gas dynamics including Boltzmann and Kac 

master equations and reiterates that the linear Kac equation reduces to a non-linear Boltzmann 

equation under the assumption of molecular chaos. An introduction to the DSMC method is 

provided, and principles of collision algorithms in the DSMC are discussed. A distinction is made 

between those collision models that are based on classical kinetic theory (time counter, no time 

counter (NTC), and nearest neighbor (NN)) and the other class that could be derived 

mathematically from the Kac master equation (pseudo-Poisson process, ballot box, majorant 

frequency, Null collision, Bernoulli trial and its variants). To provide a deeper insight, the 
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derivation of both collision models, either from the principles of the kinetic theory or the Kac 

master equation, is provided with sufficient details. Some discussions on the importance of 

subcells in the DSMC collision procedure are also provided and different types of subcells are 

presented. The paper then focuses on the simplified version of the Bernoulli trials algorithm 

(SBT) and presents a detailed summary of validation of the SBT family collision schemes (SBT 

on transient adaptive subcells: SBT-TAS, and intelligent SBT: ISBT) for a broad spectrum of 

rarefied gas-flow test cases, ranging from low speed, internal nano flows to external hypersonic 

flow, emphasizing first the accuracy of these new collision models and second, demonstrating 

that the SBT family scheme, if compared to other conventional and recent collision models, 

requires small number of particles per cell to obtain sufficiently accurate solutions.  

Keywords: Rarefied flow, Boltzmann equation, Kac master equations, DSMC, collision models, 

simplified Bernoulli trials, micro/nano flows, hypersonic flow.     
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1. Introduction 

With the rapid progress in design and utilization of micro/nano-electro-mechanical-system 

(MEMS/NEMS), the requirement for detailed analysis of fluid and thermal characteristics in 

these systems increases. Flow in MEMS/NEMS reveals rarefied behavior as the characteristic 

length of these devices is comparable to the gas mean free path. Therefore, flow treatment in 

MEMS/NEMS requires the same numerical approach as the flow over high altitude flying 

objects. The scaling parameter determining the degree of flow rarefaction is the Knudsen number, 
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which is defined as the ratio of the gas mean free path () to the characteristics dimension (L) of 

the geometry. That is Kn= /L. Different rarefaction regimes are defined according to the 

Knudsen number, i.e., continuum (Kn<0.001), slip (0.001<Kn<0.1), transition (0.1<Kn<10), and 

free molecular (Kn>10) [1]. However, it should be reminded that this classification is mainly 

based on data obtained from experiments and numerical studies of isothermal gaseous flows in 

long one-dimensional (1D) microchannels. For flows in 2D and 3D complex geometries, the 

range of above regimes is debatable and should be reconsidered for each studied problem 

separately [2]. The fundamental kinetic equations describing the rarefied gas flow are the 

Boltzmann nonlinear equation [3] and its probabilistic alternative the linear Kac stochastic 

equation [4-5].  

Direct simulation Monte Carlo (DSMC) is a statistical approach widely employed for treating 

rarefied gas flows [6-8]. The straightforwardness and strong physical logic of its procedures are 

some of the advantages of the DSMC method for studying rarefied gas flows. The basic DSMC is 

defined as a numerical particle representation of the Boltzmann equation. However, Kac 

stochastic equation was also utilized to derive alternative collision models [9-10]. The first 

published paper on DSMC by Graeme Bird was concerned to the simulation of a 0-D relaxation 

problem [11]. In that paper, 30,000 collision events per hour were simulated using the hard sphere 

model of 500 simulator particles. With today’s computers, more than 10 billion collision events 

can be simulated per hour for this relaxation problem. Progress in computer technology and 

development of new DSMC models has allowed for very complex physics to be modeled in the 

DSMC method, i.e., chemical reactions, evaporation, and condensation of substances, ionization 

and radiation [12-13]. In DSMC, the time evolution of the particle system within a small time 

interval (t)  is split into two consecutive steps – free motion of all particles and collisions of 

particles localized in the neighborhoods of given points in the space, i.e. in cells of a 

computational grid assuming  fixed their coordinates and changing only their velocities in results 
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of binary collisions. The collision algorithm plays the significant role in the DSMC method and 

calculates the most sophisticated term of the Boltzmann or Kac stochastic equation. In this review 

we are focused on the more complicated collision step, which defines the basic features of the 

DSMC method. The DSMC schemes could be categorized into two general classes/groups 

concerning the treatment of collisions. Considering the Boltzmann definition for the kinetic 

equation of a rarefied gas, the concept of the first -group of collision schemes is based on the 

principle of the maximum collision rate per time step. In this group, the “No Time Counter 

(NTC)” [14] scheme, considers a superior number of maximum collision rate per time step which 

determines the number of randomly selected particle pairs that should be checked for accepted 

collision, while the other methods in this group, e.g. “Time Counter (TC)” [15], “Null Collision 

(NC)” [16-17], and “Majorant Frequency Scheme (MFS)” [10] use a time-interval of 𝛿𝑡𝑖 for each 

captured collision and a time-step interval of ∆𝑡 for the DSMC procedure, and continue the 

collision process until ∑ 𝛿𝑡𝑖 > ∆𝑡𝑖 . It should be noted that besides the inherent discretization 

problems of deterministic numerical approaches, DSMC calculations are accompanied by two 

extra problems: (a) the presence of statistical noise in output results, and (b) the dependence of 

results on the number of particles per cell and possibility of repeated collisions. It has been shown 

[18-21] that a modified variance reduced Monte Carlo simulation, which takes into account the 

asymptotic properties of near continuum low-speed regimes, is capable of overcoming the first 

problem. In response to the second problem, other type collision schemes, proposed by 

Belotserkovskii and Yanitskiy [22] and Yanitskiy [9], were constructed on the base of the Kac 

stochastic equation. Contrary to the former group of collision schemes, the latter group, in 

accordance with the Kac stochastic model, defines a collision probability function for each 

particle pair and check all pair combinations for collision occurrence. The Yanitskiy approach [9, 

22] then led to the introduction of the Bernoulli-Trials collision scheme (BT) which benefitted 

from the avoidance of the repeat collisions. Stefanov introduced a simplified variant of the 

Bernoulli Trials scheme entitled as ‘SBT’ [23-24]. Unlike the former scheme (BT), which has a 



6 

 

quadratic dependency of the computational cost on the particle number in cells, the latter one 

(SBT) has a linear dependency and a higher computational efficiency. As an evolution of the SBT 

scheme to a method which can intelligently prefer collisions for closer pairs, Goshayeshi et al. 

[25] introduced an intelligent variant of the SBT scheme entitled as “ISBT” which provides semi-

cognition of distance for the collision scheme. This semi-cognition reduces approximately 25-

32% of the overall mean collision separation distance (MCS) in collision cells. Understanding the 

recent notes of Gallis et al. [26-27] in the preference of choosing a near neighbor partner rather 

than the nearest neighbor one, which consequently leads to the saving of the collision scheme 

from losing some of its probable collisions during the advection phase of particles, the ISBT 

scheme also follows the same strategy of near neighbor pair-selection.  

Considering the fact that smaller mean collision separation distances would cause more realistic 

collisions and prevent from the angular momentum reduction, the modifications have been 

proposed to both groups of collision schemes. Based on the logic of the first group, LeBeau et al. 

[28] introduced the virtual sub-cell (VSC) method which performs an O(N
2
) operation to sort all 

N simulators in a cell to find the nearest-neighbor to any simulator chosen for collision. 

Alternatively, Bird [29] proposed the transient adaptive sub-cell (TAS) scheme that subdivides 

cells into sub-cells, and collision pairs are selected from the same or neighboring sub-cells. In the 

second group of collision schemes, however, there were some constraints in the development of 

modifications to reduce MCS. For instance, because the collision process is conducted in a 

hierarchical order of indexed particles, it is not possible to directly search for the nearest pair in 

such a way like the VSC does, or search in the neighboring subcells in a way that NTC-TAS 

does. Therefore, in the case of TAS usage, it became only possible to have subcells adapted with 

4-5 particles. Therefore, the selection of the nearest-neighbor in the second group of collision 

schemes is bound with the nearer neighbor selection [30].  

The aim of the current review is to present and evaluate a recent Kac-based collision model in the 

direct simulation Monte Carlo (DSMC) method, Simplified Bernoulli trial (SBT) and its variants, 
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i.e., SBT on transient adaptive subcells (SBT-TAS) and intelligent SBT (ISBT) in the treatment 

of a wide spectrum of rarefied gas flows either at micro/nano scales or hypersonic flow regimes. 

Accuracy, memory and CPU requirements, time consumption and rigorousness of this collision 

family will be discussed in details. The paper continues with a derivation of the mathematical 

relation between the Boltzmann and Kac master equations and then introduces the collision 

schemes based on classical kinetic theory (Boltzmann Equation) in the DSMC method followed 

by the derivation of Kac-based family collision models such as the Bernoulli trial (BT) and 

Simplified Bernoulli trial family schemes and presentation of validations of the SBT collision 

family. 

 

2. Collision models based on the Boltzmann equation 

The most detailed level of description of a system consisting of large number (N) of molecules is 

given by the Newton equation. The evolution equations of this system are given by [31]: 

 𝑚𝑗

𝑑2�⃗�𝑗

𝑑𝑡2
= ∑ 𝑅𝑖𝑗

𝑁

𝑖≠𝑗

 

(1) 

, where Rij is the force between pair (i-j). However, the solution of such a system is difficult due 

to requirement of specifying of the initial coordinates and velocity of each molecule in the 

system, complexity of the force function, as well as solving a 3N differential-coupled equation. 

Following the Gibbs formalism, rather than considering a single system, an ensemble of systems 

in the 6N-dimensional (3 space and 3 velocity coordinate, i.e. phase space, for each particle) is 

distributed according to the N-particle velocity (probability) distribution function (FN). This 

ensemble system could be treated by the Liouville equation, which describes the time evolution 

of the phase space distribution function [31]: 

𝜕𝐹𝑁

𝜕𝑡
+ ∑ 𝑐𝑖

𝜕𝐹𝑁
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𝑚
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𝜕𝐹𝑁

𝜕𝑐𝑖
= 0 

(2) 

https://en.wikipedia.org/wiki/Distribution_function
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The Liouville equation and all the succeeding kinetic equations following from the BBGKY 

hierarchy (Bogoliubov–Born–Green–Kirkwood–Yvon hierarchy, or sometimes called 

Bogoliubov hierarchy) including the last Boltzmann equation have a probabilistic nature because 

their main unknown is the probability distribution function. Though Liouville equation is simpler 

than the Newton equation, it considers collisions of N molecules and its solution is quite 

challenging. A less expensive description is attained by approximating the flow description using 

only n-particle distribution functions, which determine the probability to simultaneously find n 

particles independently of the state of the remaining (N–n) particles. Following the BBGKY 

hierarchy, a chain of linked equations could be obtained for reduced n-particle distribution 

functions, where the equation for the single-particle distribution function f(t, 𝑥(𝑙), 𝑐) corresponds 

to the Boltzmann equation, which considers only binary collisions. The flowchart of hierarchy of 

the governing equations is shown in Fig. 1. Boltzmann equation does not describe the motion of 

particles, as Newton’s equation does, but the time-dependent change of the probability 

distribution function. In fact, the Boltzmann equation is a nonlinear, seven-dimensional, integro-

differential equation governing the spatio-temporal evolution equation of the one-particle velocity 

distribution function f(t, 𝑥(𝑙), 𝑐). The velocity distribution function quantifies the number of 

particles, f(t, 𝑥(𝑙), 𝑐) d𝑥(𝑙) dc, which are located in an infinitesimal volume 𝑑𝑥(𝑙) at position 𝑥(𝑙) 

and whose velocities are in the infinitesimal interval 𝑑𝑐 around 𝑐. The Boltzmann equation is 

given by [32] 

 

(3) 

, where n is number density, t is time, r is space vector, c is velocity space vector, F is external 

force per unit mass, cr is the relative velocity between a molecule of velocity class c and one with 

velocity class c1, σT dΩ is the differential cross-section for the collision of a molecule of class c 

with another one having class c1 such that their post-collision velocities are c* and c1*, 

       
4

2 * *

1 1 1

0

. . rnf c nf F nf n f f ff c d dc
t r c
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respectively, and functions f, f1, f* and f1* are the corresponding velocity distribution functions 

for the molecule and its collision partner before and after the collisions. In fact, f is the probability 

of finding a particle in the velocity space volume element 𝑑3𝑐around 𝑐, provided that the particle 

is located in the space volume element 𝑑3𝑥 around 𝑥. Collision in the Boltzmann equation is an 

instantaneous, random jump process in particles velocity localized in a point. Boltzmann equation 

is valid for dilute gasses so that only binary collisions between the molecules are possible. The 

sophisticated and nonlinear properties of the collision integral and its containing of seven 

variables create severe difficulties for the numerical analysis of the Boltzmann equation. High 

dimensionality and probabilistic nature of the kinetic processes as well as complex molecular 

collision models are among the main prerequisites for the application of the direct simulation 

Monte Carlo method to handle the Boltzmann equation. Direct simulation Monte Carlo, as 

developed by Bird [6], is a numerical simulation of the evolution of a collection of particles. 

Historically, the application of Monte Carlo method for rarefied gas flows was initiated by the 

pioneering works of Kogan and Perepukhov for simulation of free-molecular flows around flying 

objects [32]. In fact, Bird used principles of Monte Carlo method, such as acceptance-rejection, to 

perform numerical computations of the collision terms of the Boltzmann equation, as will be 

described in the following section. It should be noted that the first DSMC application by Bird was 

aimed for simple homogeneous relaxation problems, in which a non-equilibrium gas velocity 

distribution is driven toward equilibrium by intermolecular collisions [11]. A flowchart depicting 

different collision models employed in the DSMC method is shown in Fig. 2. In the following, 

details of these collision models are provided with sufficient discussions. 

 

 

 



10 

 

 

 

Fig. 1: Flowchart of hierarchy of governing equations  
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Fig. 2: DSMC collision models derived from the Boltzmann equation and Kac master equation. 

 

2.1 Time counter (TC) collision model  

The time counter method is the first collision schemes introduced by Bird [14]. In this method, 

the total number of collisions in a cell is assumed to be: 

𝑁𝐶𝑜𝑙𝑙 =
Δ𝑡𝑁𝑛𝐹𝑛𝑢𝑚𝜎𝑇𝑐𝑟̅̅ ̅̅ ̅̅

2
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Where overbar quantity means averaged valued, and 𝑛 = 𝑁/𝑉𝑐 is number density. For every 

particle pair chosen at random, the following time increment is added to the time counter of the 

cell: 

Δ𝑡𝑐𝑜𝑙𝑙 =
2

𝑁𝑛𝐹𝑛𝑢𝑚 𝜎𝑇𝑐𝑟
 

(5) 

 

Fig. 3 TC collision procedure 

The TC model assumes that each collision contributes equally in the temporal advancement of the 

collision numbers in the cell. The procedure is repeated until 

∑ Δ𝑡𝑐𝑜𝑙𝑙 ≤ Δ𝑡𝑐𝑒𝑙𝑙 

(6) 

Flowchart of the TC collision model is shown in Fig. 3. The computational cost of TC algorithm 

is of the order O(N). It is mentioned that TC model needs around 20 particles per cell to produce 

correct results. However, the TC model could not produce correct solution under extreme non-

equilibrium conditions such as the front of a very strong shock. In fact, the acceptance of an 

unlikely collision can advance the time by an interval that is much larger than the time step and 

Time 
advancm

ent 

• Advance time step of the collision using Eq. (5)  

pair (i,j) 

• Random selection of a collision pair (i,j) from Nl particle 
in cell l.  

Velocity 
update 

•change the particle velocities 

Ending 
condition 

• Repeat the procesure until condition of Eq. (6) is 
satisfied  
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the overall collision rate can be distorted. Lutisan [33] showed that TC model could not reproduce 

Poisson distribution function for probability distribution of number of collisions.   

2.2 No-Time-Counter (NTC) collision model [8, 14]  

According to the classical kinetic theory utilized in deriving the Boltzmann equation, the collision 

probability (P) between two particles over the time interval dt is equal to the ratio of volume 

swept by their total collision cross section moving at the relative speed (cr) to the volume of the 

cell which contains particles (Vc), i.e., 

𝑃 = 𝐹𝑁𝜎𝑇𝑐𝑟𝑑𝑡/𝑉𝑐 (7) 

The average number of simulated particles in a cell is N=nVc/Fn, where n is the gas number 

density and FN is the ratio of number of real molecules to simulated particles. All possible 

collisions could be checked by choosing all N(N-1)/2 collision pairs in the cell and checking the 

collision probability P for all of them, i.e., collision is accepted if P>Rnf. This collision algorithm 

is called Bernoulli trials (BT) [9], and is inefficient because P is a small quantity and number of 

choices is proportional to the square of number of particles, O (N
2
). To increase the efficiency of 

the collision procedure and reduce the computational costs to O(N), Bird suggested to repair the 

TC scheme by using the idea of maximum collision cross-section approach well known in Monte 

Carlo methods used for simulation of linear integral equations describing the transport of 

neutrons. The idea appears almost around the same time in the papers of Koura [16] and Bird 

[14]. Then, the acceptance-rejection technique and no time counter method or null-collision 

methods were used for the first time in DSMC. The universal acceptance-rejection technique [34] 

requires a superior estimation of the collision probability. It can be written as: 

𝑃𝑚𝑎𝑥 = 𝐹𝑁(𝜎𝑇𝑐𝑟)𝑚𝑎𝑥𝑑𝑡/𝑉𝑐 (8) 

The number of pair selections per time step is calculated by multiplying this equation by N(N-

1)/2. Therefore, in this procedure, that is called “No Time Counter (NTC) method, the maximum 

number of particle pairs checked for collision is computed as: 
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𝑁𝑐𝑜𝑙𝑙 = 1/2𝑁(𝑁 − 1)𝐹𝑁(𝜎𝑇𝑐𝑟)𝑚𝑎𝑥𝑑𝑡/𝑉𝑐 (9) 

, and this number of pairs is selected at each cell per time step, and the collision of pair (𝑖, 𝑗) is 

accepted with the following probability given by Eq. (10).  

(𝜎𝑇𝑐𝑟)𝑖𝑗

(𝜎𝑇𝑐𝑟)𝑚𝑎𝑥
> 𝑅𝑓 

(10) 

Note that initially, (𝜎𝑇𝑐𝑟)𝑚𝑎𝑥 is set to an appropriately chosen reference value in each cell, and 

then it is updated if the product of (𝜎𝑇𝑐𝑟) of the chosen pair becomes larger than the reference 

value. This procedure keeps the computational expanse of NTC as O(N). The sequence of NTC 

collision procedure is shown in Fig. 4. First, an upper limit, i.e., Ncoll pairs to be checked is 

calculated; second, by using acceptance-rejection procedure the actual number of accepted 

collisions in a cell is defined. 

 

Fig. 4 NTC collision procedure, repeated Ncoll time for each DSMC collision cell. 

It should be reminded that in Bird’s monograph [8], and other references describing NTC, instead 

the term 𝑁(𝑁 − 1) was written the product 𝑁�̅�, where over bar quantity means averaged value. 

The relation of the collision process to the Poisson distribution and its consequence, i.e., equality 

Ncoll 

• Compute maximum number of collision pairs (Eq. (9)) 

pair (i,j) 

• Selection of a collision pair (i,j) randomly from Nl particle 
in cell l.  

if accepted 

• checking the collision probability (Eq. (10)) 

Velocity 
update 

•change the particle velocities if collision is accepted  
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of �̅�(𝑁 − 1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  =  𝑁2̅̅ ̅̅  , were pointed out by Yanitskiy [9], then reemphasized and utilized, as given 

in Eq.(10), by Stefanov and Cercignani [35], and finally utilized by Bird in his sophisticated 

algorithm [36-37]. 

An insufficient number of particles per cell can be a source of stochastic errors in the NTC model. 

However, if enough number of particles in cells is employed, NTC scheme is an efficient 

approach for modeling the intermolecular collisions. But, NTC scheme is CPU demanding in 

complex, 3D simulations where a huge number of cells and particles are required for proper flow 

simulation. In fact, NTC scheme requires enough number of particles per cell, i.e., N=10-20, to 

provide accurate results. However, due to random selection of collision pairs, one of the main 

shortcomings of the NTC collision is the possibility of repeated collisions, i.e., the same pair of 

particles is selected repeatedly for collision within one or several successive time steps without  

occurrence of events of collisions with other particles. This results in inaccuracy of the collision 

process in cells containing small number of particles. One remedy is to construct an array and 

keeping track of the record of collision pairs to avoid repeated collisions for a particle pair. 

However, this introduces additional complexities. To use the acceptance-rejection procedure, the 

pairs should be chosen randomly from the whole available set of N particles to keep a correct 

probability for collision corresponding to the Boltzmann collision frequency. In this case, all 

probabilities and collision frequencies are calculated correctly. Direct avoiding of repeated 

collisions means that one introduces a condition that leads to a non-uniform distribution of 

probabilities, because for the first chosen pair one chooses randomly among N(N-1)/2 pair of 

particles but the second choice is performed from among (N)(N-1)/2-1 pairs of particles. The 

effect is stronger if one keeps this direct collision control condition for successive time steps. 

Evidently, this error is minor for large number of particles but it is of considerable importance if 

there are a few particles per cell. There is another disadvantage in the NTC scheme, the use of 

remainders to keep an accurate number of collisions in time. The problem arises from the 

practical calculation of Ncoll  by using eq. (9), which, in general case,  is not an integer value and 
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the integer part of Ncoll is used. When the number Ncoll is large it works fine but when Ncoll ~ 1 or 

less the reminder procedure introduces additional error related to the fact the probability 

distribution of the remainders gives different from the Poisson law variation of the number of 

collisions.  

 

2.3 Nearest Neighbor (NN) scheme 

LeBeau et al. [28] introduced the “virtual subcell” (VSC) method as an improvement in the 

particle selection procedure of the NTC, in which the first particle is chosen randomly, while the 

second partner is selected from available neighbors of the selected particle, i.e., the nearest 

neighbor (NN) of a given particle is found and selected. The flowchart of NN collision model is 

shown in Fig. 5. Method VSC needs the collision separation distance to be calculated for all 

available particles in the cell to find the nearest neighbor one. To reduce computational costs to 

O(N), Bird proposed to avoid the calculation of all intermolecular distances at the start of 

collision procedure and restrict to the calculation of an  intermolecular distance between the first 

randomly chosen particle, i, and the nearest among the other particles.    

The NTC-NN algorithm was implemented in the new versions of DSMC codes distributed by 

Gream Bird [13]. Bird et al. [38] and Gallis et al. [39] compared the convergence behavior of the 

NN collision model compared with the standard NTC one, and showed that NN achieves high 

efficiency as it minimizes the mean collision separation between collision partners; however, the 

new algorithm is very sensitive to the selection of the time step and almost for all cell needs 

smaller time steps compared to the original NTC. They showed that NN significantly reduces the 

computational resources required for a DSMC simulation to achieve a particular level of accuracy 

if its computational set-up is chosen appropriately. As a modification of NN model, Macrossan 

[40] suggested the ‘pseudo-subcell’ collision method, in which the search for a collision partner 

discontinues if a ‘near-enough’ particle is found, i.e. whenever another particle is found within 
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the ‘pseudo-subcell’ of radius  centered on the first particle. Macrossan showed that in 

structured cells, the pseudo-subcell method gives a 5% increase in mean collision separation 

(MCS) compared to the NN method, and is up to 20% faster than the NN method.  

As mentioned, NN needs lower time steps as it ignores a key point in pair selection: within a time 

step particles with higher velocities may reach and collide particles, which are further than their 

nearest neighbor; therefore, a small enough time step should be utilized. On the other hand, 

according to the Boltzmann equation, the working space is phase space with three coordinates 

(positions) and three velocities variables. From this view point, NN takes into account only the 

space of coordinates using the criterion of minimum distance for colliding pairs. This means that 

NN works well when the whole velocity distribution function is available at every coordinate 

point. To have this fulfilled, one should have enough particles in all small volumes. Otherwise, 

there will be negative effects and erroneous solutions. Bird [37] showed that NN needs at least 7 

particles per collision cell to predict equilibrium collision frequency correctly.  

It should be noted that Bird states that lower values of separation of free paths (SOF), which is 

the ratio of mean collision separation (MCS) to the mean free path (SOF=MCS/) largely self-

validates the accuracy of DSMC solutions [13]. However, it should be mentioned that this is a 

necessary but not a sufficient condition. So, it should be noted that low SOF did not always 

guarantee correct solution if it is not accompanied with enough particle per cells (PPC) and fine 

enough cell. 
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Fig. 5 NN collision procedure 

2.4 A note on DSMC cells and subcells  

The DSMC method uses the cell for the selection of collision partners and for the sampling of the 

macroscopic properties. To avoid statistical scatters and reduce inherent errors in the standard 

NTC method, the number of DSMC particles per cell should be as large as possible, generally 

around twenty. On the other hand, in the selection of collision pairs, it is desirable to choose close 

particles and reduce the mean collision separation of pairs and minimize the smearing of 

gradients. These conflicting requirements can be remedied by dividing the sampling cell into a set 

of sub-cells and perform pair selection and collision from inside the subcells [8]. However, the 

first use of the subcells was suggested after the objection raised by Meiburg [41]. As angular 

momentum is not conserved in a simulated collision, Meiburg [41] concluded that if colliding 

particles are selected from opposite sides of a cell, the collision introduces significant error. 

Meiburg pointed out this process in a flow with vorticity and noted that the angular velocity of 

the collision partners about the center of the collision is not necessarily conserved. However, Bird 

Ncoll 
• Compute number of collision pairs (Eq. (9)) 

pair (i,j) 

• Select the first collision particle (i) randomly from Nl 
particle in cell l. The second particle (j) is the closest 
one to particle (i) 

if 
accepted 

• checking the collision probability (Eq. (10)) 

Velocity 
update 

•change the particle velocities if collision is accepted  
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mentioned that this is essentially a cell size effect, i.e., the cell size must be very small in 

comparison with the mean free path in regions with large gradients, such as Knudsen layers. As 

Bird mentioned, the problem with Meiburg's calculation was that the cells he had used had a 

linear dimension of 3 which was excessively large by a factor of at least ten [42]. However, to 

overcome this problem, Bird [43] introduced subcells within each cell, where a potential collision 

partner is selected from the same subcell or from a nearby subcell if no collision partner could be 

found in the same subcell. Thus, the use of subcells reduces the mean collision separation (MCS) 

to a fraction of the subcell size, rather than a fraction of the cell size. Stefanov et al. [44-45] 

suggested the idea of dynamic subdivision of subcells, or as called: collision cells. They adjusted 

the subcell such that the subcell size remains smaller than the mean free path (λ) at every time 

step. In order to provide a sufficient number of subcells that is compatible with the instantaneous 

number of particles inside each collision cell, Bird proposed the transient adaptive subcell (TAS) 

technique [46-47]. TAS technique was successfully employed in combination with NTC collision 

model in structured [46] and unstructured cells [48].  

 

Fig. 6: Schematic of the number of subcells in each cell using TAS, bold lines depict cell borders and 

narrow lines depict subcell borders [49].  
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In fact, before reaching the steady state, the number of particles in each cell varies during the 

computational process; consequently, the number of transient subcells varies according to local 

density gradients, see Fig. 6. To determine the number of subcells in each direction in a 2-D cell, 

number of particles per subcell, PPSC, should be set as one of the inputs. For each cell, this 

transient layer of subcells is fabricated by a special number of divisions along x (Dx) and y (Dy) 

directions as follows: 

                                 𝐷𝑥 = √
𝑁𝑐

𝐴𝑅 × 𝐸𝑛𝑣𝑒𝑙𝑜𝑝 × 𝑃𝑃𝑆𝐶
                                                                            (11) 

 

                             𝐷𝑦 = 𝐷𝑥  × 𝐴𝑅 ;  𝐴𝑅 =
∆𝑦𝑐𝑒𝑙𝑙

∆𝑥𝑐𝑒𝑙𝑙
;  𝐸𝑛𝑣𝑒𝑙𝑜𝑝 =  

V𝑐

∆𝑦𝑐𝑒𝑙𝑙  × ∆𝑥𝑐𝑒𝑙𝑙
                          (12) 

, where 𝐴𝑅 is the aspect ratio, 𝑃𝑃𝑆𝐶 is the desired number of particles per subcell and 𝐸𝑛𝑣𝑒𝑙𝑜𝑝 is 

used to increase the number of subcells, in case the cell is not fully rectangular. Using TAS, the 

selection of collision pairs is performed in subcells level, therefore, the effect of cell-size on the 

accuracy of the solution is reduced and much coarser basic collision cells could be employed. 

However, to apply correctly the TAS strategy one should complete it with a second element 

concerning the time step. The time step should be coupled with the smallest subcell size in order 

to fulfil the well-known Courant condition, which for the DSMC method could be replaced with a 

simple rule required on the stage of particle free motion i.e. the time step to be chosen small 

enough in order the probability for all particles to pass further than one neighboring subcell to 

tend to zero. As shown in section 3.9.2 this point was taken into account for controlling the time 

step. 

In the sophisticated version of DSMC, the idea of using cells and subcells was upgraded to use 

separate sampling and collision cells. In the NN collision model, collision cells should be adapted 

to 7 particles and sampling cells are adapted to around 20 particles, respectively [37].    
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3. Kac Master Equation 

3.1 Introduction 

In the homogenous case, i.e. a kinetic equation without streaming term, the time evolution of 

velocity distribution function of N particle system 𝐹𝑁(𝑙)(𝑡, 𝑥(𝑙), 𝑐𝑁(𝑙)) due to inter-molecular 

collision could be described by the Kac stochastic model [4-5, 9]. The Kac master equation is a 

probabilistic analog of Liouville equation considering only binary collisions of the particles with 

given probability. Consider a system of { 𝑥(𝑙), 𝐶𝑁(𝑙)} = { 𝑥𝑗
(𝑙)

(𝑡𝑘), 𝑐𝑗
(𝑙)

(𝑡𝑘) }, 𝑗 =

1, . . . , 𝑁(𝑙) particles in a cell (l) with volume 𝑉(𝑙). The Kac stochastic model can be described by 

the following direct Kolmogorov equation: 

 
𝜕

𝜕𝑡
𝐹𝑁(𝑙)(𝑡, 𝑥(𝑙), 𝑐𝑁(𝑙))

=
1

𝑉𝑙
∑ 𝑔𝑖𝑗

1≤𝑖<𝑗≤𝑁𝑙

∫ [𝐹𝑁(𝑙)(𝑡, 𝑥(𝑙), 𝑐𝑁(𝑙)
𝑖𝑗) − 𝐹𝑁(𝑙)(𝑡, 𝑥(𝑙), 𝑐𝑁(𝑙))]

4𝜋

 𝑑𝜎𝑖𝑗 

 

 

 

(13) 

 

, where 𝐹𝑁(𝑙)(𝑡, 𝑥(𝑙), 𝑐𝑁(𝑙)
𝑖𝑗) is the N-particle probabilistic velocity distribution function after the 

collision of i-j particles, i.e., 𝑐𝑁(𝑙)
𝑖𝑗 = {𝑐1, … . . , 𝑐𝑖−1, 𝑐𝑖

′, 𝑐𝑖−1, … . , 𝑐𝑗−1, 𝑐𝑗
′, 𝑐𝑗+1, … . , 𝑐𝑁(𝑙)}, which 

denotes that velocities of pair i-j particles are updated to their post-collision velocities. The sum 

over 1 ≤ 𝑖 < 𝑗 ≤ 𝑁𝑙 means summation over N(N−1)/2 collision pairs. Kac stochastic model is a 

linear integro-differential equation that describes the time behavior of the N-particle distribution 

function. In fact, The Kac stochastic model is a jump-like strictly Markovian process over the 

hypersphere Ω(𝑁, 𝐸, 𝑃) of 3N-4 dimensions in Euclidean space R3N, where N is the number of 

particles, E is the kinetic energy and P is the momentum of velocity components. This 

hypersphere is formed by crossing of a hypersphere of total kinetic energy of particles 𝑐1
2 +

⋯ . +𝑐𝑛
2 = 𝐸 = Cte  with three hyperplanes 𝑐1 + ⋯ . +𝑐𝑛 = 𝑃 = Cte. Strictly Markovian 

processes are described by a pair of adjoined equations, i.e., direct and reverse Kolmogorov 

equations [50].    

The one particle distribution function could be obtained from 𝐹𝑁(𝑙)(𝑡, 𝑥(𝑙), 𝑐𝑁(𝑙)
𝑖𝑗) as follows:  



22 

 

𝑓1
(𝑛)

(𝑐1,𝑥
(𝑙), 𝑡) = ∫ 𝐹𝑁(𝑙)(𝑡, 𝑥(𝑙), 𝑐𝑁(𝑙))

𝑐2
2+⋯+𝑐𝑛

2=𝑛−𝑐2
𝑑𝜎  (14) 

, i.e., the integration over all velocity classes, expect to that of c1, results in a reduced distribution 

function of velocity class c1. Assuming number of particles approaches infinity and using the 

local assumption of molecular chaos, which permits to write two-particle distribution function in 

terms of one particle distribution function: 

𝑓2(𝑐1, 𝑐2, 𝑥(𝑙), 𝑡) = 𝑓1(𝑐1, 𝑥(𝑙), 𝑡)𝑓1(𝑐2, 𝑥(𝑙), 𝑡) (15) 

, the Boltzmann equation without the streaming term could be recovered from the Kac stochastic 

model. 

In general, the hypothesis of molecular chaos is one of the most discussed assumptions in kinetic 

theory and statistical physics. There are not well-defined criteria for its validity. However, it can 

be accepted as a good approximation that the molecular chaos hypothesis is valid if the gas is 

close to a local equilibrium state and the provided number of particles, N, becomes very large. It 

is obvious that the Kac master equation does not require the fulfillment of molecular chaos 

hypothesis although it is partly used for generating stochastic collision parameters. One can 

conclude that all collision schemes derived from the Kac master equation keep this property. 

Following this line, it could be shown that most of collision schemes, except the Nanbu collision 

scheme [17], have a more direct connection to the Kac master equation than the Boltzmann 

equation. In fact, similar to Liouville equation, Kac model contains all possible correlation 

between particles velocities. Reducing N-particle distribution function via BBGKY chain of 

equations one consequently neglects (N-1)-particle correlation functions. The last is all binary 

correlation functions, among them are self-correlations functions that means velocity and other 

kind of fluctuations. The last relation between velocity distribution functions is between two-

particle and one-particle distribution functions, which reads as:  

𝑓2(𝑐1, 𝑐2, 𝑥(𝑙), 𝑡) = 𝑓1(𝑐1, 𝑥(𝑙), 𝑡)𝑓1(𝑐2, 𝑥(𝑙), 𝑡) + 𝐶𝑜𝑟𝑟(𝑐1, 𝑐2) (16) 
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Where 𝐶𝑜𝑟𝑟(𝑐1, 𝑐2) corresponds to correlations between distribution functions of 𝑐1 and 𝑐2. 

Molecular chaos assumption means 𝐶𝑜𝑟𝑟(𝑐1, 𝑐2) = 0, which leads to equality (15) employed in 

the derivation of the Boltzmann equation. Thus, the correlations do not exist in the Boltzmann 

equation solution. But DSMC can evaluate them realistically as shown in the Bird’s monograph 

[8] and supported, for example, by numerical results shown in Ref. [44] obtained for velocity 

correlations and fluctuations showing that the DSMC method adequately evaluates binary 

correlation functions, which cannot be obtained from the Boltzmann equation. This circumstance 

determines the place of the DSMC method in flowchart of hierarchy of the governing equation 

shown in Fig. 1. However, it should be noted that the calculation of the maximum collision rate 

used in collision schemes based on TC and NTC collision algorithms is founded on the Eq. (4) of 

the classic Boltzmann kinetic theory, which reflects on the classification of the models given in 

Fig. 2. 

In the operator form, Kac stochastic model, Eq. (13), could be written as follows [9]: 

𝜕

𝜕𝑡
𝐹𝑁(𝑙)(𝑡, 𝑥(𝑙), 𝑐𝑁(𝑙)) = [ ∑ 𝑤𝑖𝑗

1≤𝑖<𝑗≤𝑁𝑙

(𝑇𝑖𝑗 − 𝐼)] 𝐹𝑁(𝑙)(𝑡, 𝑥(𝑙), 𝑐𝑁(𝑙))

= 𝜐(𝑇 − 𝐼)𝐹𝑁(𝑙)(𝑡, 𝑥(𝑙), 𝑐𝑁(𝑙)) 

(17) 

, where 

𝐼𝜓 = 𝜓,    𝑇𝑖𝑗 = ∫ 𝜓(𝑐𝑖𝑗)𝐵(𝑔𝑖𝑗 , 𝜃)𝑑Ω(𝜃),
4𝜋

 

𝑇𝜓 = ∑ 𝑤𝑖𝑗

1≤𝑖<𝑗≤𝑁𝑙

𝑇𝑖𝑗𝜓 

 

(18) 

(19) 

, and 𝐵(𝑔𝑖𝑗 , 𝜃) is a scattering kernel [51]. The transformation 𝑇𝑖𝑗𝐹𝑁(𝑙)(𝑡, 𝑥(𝑙), 𝑐𝑁(𝑙)) results in 

probability density distribution of 𝑐𝑁(𝑙)
𝑖𝑗over Ω(𝑁, 𝐸, 𝑃) after the collision of a pair (𝑐𝑖 , 𝑐𝑗) under 

the condition that before the collision point 𝑐𝑁(𝑙) is distributed over Ω(𝑁, 𝐸, 𝑃) with the 

probability density 𝐹𝑁(𝑙)(𝑡, 𝑥(𝑙), 𝑐𝑁(𝑙)).  
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In the Kac model, the probability of time interval between two successive collisions is distributed 

according to the exponential distribution of a Poisson process as follows:  

𝑃𝑟𝑜𝑏(𝛿𝑡 > 𝑡) = 𝑒−𝜐𝑡 

𝜐 = ∑ 𝑤𝑖𝑗

1≤𝑖<𝑗≤𝑁𝑙

;        𝑤𝑖𝑗 =
𝜎𝑖𝑗𝑔𝑖𝑗

𝑉𝑙
 

 

(20) 

 

, where collision probability of pair (i, j) as denoted by (𝑤𝑖𝑗) is a function of σij, which is the 

collision cross-section, and gij = |ci − cj|, which is the particles relative velocities. 

In case of the given state at time t0, the operator form of the Kac master equation could be solved 

at time 𝑡 with the definition of the transition operator 𝐺(𝑡) in the following form: 

FN(l)(t, x(l), CN(l)) = G(t) FN(l)(t0, x(l), CN(l)) (21) 

Where the transition operator G(t) could be written as: 

𝐺(𝑡) = 𝑒𝑥𝑝 [𝑡 ∑ 𝑤𝑖𝑗

1≤𝑖<𝑗≤𝑁𝑙

(𝑇𝑖𝑗 − 𝐼)] = exp [𝑡𝑣(𝑇 − 𝐼)] (22) 

In the next sections, following Yanitskiy [9], a family of collision models derived from Kac 

stochastic model and built from different variations of the exponential transitional operator 

formula, Eq. (22), will be discussed. These collision models define a collision probability 

function for each particle pair and checks all pair combinations for collision. In fact, the modeling 

of collision is converted to a statistical realization of the evolution of Kac’s model during a period 

of time. 

3.2 A Pseudo-Poisson Process (Collision Frequency Technique) 

Considering small time step, we could assume:  𝜐 = 𝜐𝑐 + 𝑂(𝑡), neglecting the higher order terms, 

the operator G is approximated as follows [9]:  
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𝐺1(𝑡) = 𝑒𝑥𝑝[𝑡𝜐𝑐(𝑇𝑖𝑗 − 𝐼)] = exp (−𝑡𝜐𝑐) ∑
(𝑡𝜐𝑐)𝑠

𝑠!
𝑇𝑠

∞

𝑠=0

 

where:  𝑇 = ∑ 𝑊𝑖𝑗

1≤𝑖<𝑗≤𝑁𝑙

𝑇𝑖𝑗;        𝑊𝑖𝑗 =
𝑤𝑖𝑗

𝜐𝑐
 

(23) 

 

(24) 

The above-mentioned algorithm is exact for pseudo-Maxwellian molecules, where the collision 

probability does not depends on relative velocity, and it has an order of accuracy of O(t) in the 

general case. Frequency 𝜐𝑐 is computed at each time step and order of computations is O (N
2
). 

Sampling of the number of collisions s(t) is performed according to probability distribution 

P(𝑡𝜐𝑐). A pair of colliding particles is sampled with the probability of 𝑊𝑖𝑗. 

For non-Maxwellian gases, the following algorithm is performed [52] (see Fig. 7):  

1- Collision time for a pair of (i, j) with velocities (V, V1) is sampled form the exponential 

distribution with the collision frequency 𝜐𝑐  as follows: 

𝑃𝑟𝑜𝑏(𝛿𝑡𝑐) = 𝜐𝑐𝑒−𝜐𝑐𝑡 (25) 

In an inverse sampling method widely employed in the Monte Carlo method, the sampled time 

step is given by: 

𝛿𝑡𝑐 =
−𝑙𝑛(𝑅𝑛𝑓)

𝑣𝑐
 (26) 

The above procedure is continued until  ∑ 𝛿𝑡𝑐 exceeds cell time step. The pseudo-Poisson process 

was applied for the first time by Koura in the collision model [52] for counting the collision of a 

non-Maxwellian gas, where the collision frequency was computed  as follows: 

𝜐𝑐 ≈
𝐹𝑁

𝑉𝑐
∑ ∑ (𝜎𝑖𝑗𝑔𝑖𝑗)

𝑗=1,≠𝑖

𝑁

𝑖=1

 (27) 

However, in this case one needs to choose a pair for collision with a given probability. For this 

purpose, Koura derived it from the Boltzmann assumption of molecular chaos (for details see 
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[52]). This fact led us to link the Koura’s approach more to the Boltzmann equation, than the Kac 

stochastic model.  

It should be reminded that 𝜎𝑖𝑗 is a function of relative velocity and other gas properties, i.e. for 

variable had sphere gases, it is given by: 

 𝜎𝑖𝑗 = 𝜋𝑑𝑟𝑒𝑓 
2 1

Γ(2.5 − 𝜔)
(
2𝑘𝑇𝑟𝑒𝑓

𝑚𝑟𝑔2
)𝜔−0.5 (28) 

Where 𝜔 is the viscosity-temperature exponent: it is equal to 0.5 for hard sphere gases and is 

equal to 1 for Maxwell molecules [8]. Main drawbacks of the collision frequency technique are 

the significant time required for computation of Eq. (27) and the assumption of constant 𝜐𝑐 during 

the time step; which requires the condition of 𝜐𝑐/𝜐𝑐 ≪ 1where 𝜐𝑐 is the difference between 

𝜐𝑐 at two successive time steps.  

 

Fig. 7 Pseudo-Poisson (collision frequency) collision procedure. 

 

Pair selection  

• Select a pair randomly 

frequncy 
calculation 

• Compute collision frequncy (Eq. 27) and sample time step from 
Poisson distribution using Eq. (26) 

collision 
check 

• choose a pair for collision with a given probability, i.e., see [52] 

Velocity 
update 

•change the particle velocities and advance time step until cell time 
step is reached.    
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3.3 Majorant frequency scheme (MFS) collision scheme  

Majorant frequency scheme (MFS) could be derived either from the Leontovich master kinetic 

equation (MKE), which describes the behavior of an N-particle gas model with binary collisions 

[10, 53-54], or from the Kac master equation [55]. Similar to Kac master equation, Leontovich 

equation may be transformed to the Boltzmann equation as N→ ∞ and the molecular chaos 

condition is satisfied. Full details of the derivation of the MFS scheme from the Kac master 

equation is provided in Ref. [55]. In the MFS scheme, the time between two eventual collisions is 

computed from a Poisson distribution with the maximum (majorant) probability value as follows:  

𝑃𝑟𝑜𝑏(𝛿𝑡𝑐) = 𝜐𝑚𝑎𝑥𝑒−𝜐𝑚𝑎𝑥𝑡 (29) 

𝛿𝑡𝑐 =
−𝑙𝑛(𝑅𝑛𝑓)

𝑣𝑚𝑎𝑥
 (30) 

The collisional pair is uniformly chosen from 𝑁(𝑁 − 1)/2 available pairs. The majorant 

frequency is defined as: 

𝜐𝑚𝑎𝑥 = 1/2𝑁(𝑁 − 1)𝐹𝑁(𝜎𝑇𝑐𝑟)𝑚𝑎𝑥/𝑉𝑐 (31) 

MFS scheme starts with calculating this frequency. MFS performs as many collisions in one time 

step until the summation of computed 𝛿𝑡𝑐 's exceeds the specified cell time step. The procedure of 

MFS collision is shown in Fig. 8. More details of MFS scheme and its validation could be found 

in Refs. [10, 55]. It is worth noting that the choice of the collision frequency in form Eq. (31), 

which contains an assumption for statistical independency of molecular velocities, and 

respectively, is based on the molecular chaos hypothesis, is important for understanding the 

stochastic properties of the MFS collision algorithm and its close relation with the Bird’s NTC 

scheme. The MFS model improves the probabilistic characteristics of the process by including the 

Poisson process for determining the maximum number of pairs of particles. Unlike Bird’s NTC, 

in MFS it is an integer random number obeying the Poisson law and its averaged value within a 

time step is exactly equal to the calculated in NTC maximum number of particle pairs to check 
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for collision by using Eq. (9). Thus, the MFS algorithm avoids the use of reminders, included in 

NTC to balance the integer number of collisions during the simulation. 

 

Fig. 8 The Majorant Frequency Scheme procedure per each cell. 

3.4 Bernoulli Trials [9] 

For small interval 𝑡, operator G(t) can be expanded with respect to 𝑡 degrees and  terms of order 

equal or higher than O(t2) are neglected. The transition operator G(t) corresponding to this 

approximation is obtained as: 

𝐺2(𝑡) ≈ ∏ 𝑒𝑥𝑝

1≤𝑖<𝑗≤𝑁𝑙

[𝑡(𝑇𝑖𝑗 − 𝐼)𝑤𝑖𝑗] = ∏ ∏ exp[𝑡(𝑇𝑖𝑗 − 𝐼)𝑤𝑖𝑗]

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

 (32) 

One could replace the exponential term in every co-factor in Eq. (32) by a linear approximation 

over t, thus:  

•Calculation of the majorant frequency from Eq. (31), 
[sum time step]0 

•Calculating the time to the next eventual collision from 
the Poisson distribution using Eq. (30)   

• If [sum time step]=[sum time step]+time step exceeds 
DSMC time step (dt), end the loop, otherwise    

•choose collision pair (i,j) randomly from Nl particle in 
cell l.  

•checking the collision probability (Eq. (10)), Note: 
Employed random number should be different from 
that used in Eq. (30)  

•change particle velocities if collision is accepted  

Frequency 

calculation 

Sample 

time step 

Total time 

check 

Pair 

selection 

Probability 

check 

Velocity 

update 
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𝐺2(t) = ∏ ∏ [(1 − 𝑡𝑤𝑖𝑗)I + 𝑡𝑤𝑖𝑗Tij]  

N(l)

j=i+1

N(l)−1

i=1

= ∏ ∏ [(1 − Wij)I + WijTij] 

N(l)

j=i+1

N(l)−1

i=1

 (33) 

, where 

Wij =
𝜎𝑖𝑗𝑔𝑖𝑗𝑡

𝑉(𝑙)
.  (34) 

Every co-factor in the right-hand-side of Eq. (33) transforms the probability distribution function 

𝐹𝑁(𝑙)(𝑡, 𝑥(𝑙), 𝑐𝑁(𝑙)) over Ω(𝑁, 𝐸, 𝑃) into 𝐹𝑁(𝑙)̅̅ ̅̅ ̅̅ (𝑡, 𝑥(𝑙), 𝑐𝑁(𝑙)) over Ω(𝑁, 𝐸, 𝑃) according to: 

𝐹𝑁(𝑙)̅̅ ̅̅ ̅̅ (𝑡, 𝑥(𝑙), 𝑐𝑁(𝑙)) = (1 − twij)𝐹𝑁(𝑙)(𝑡, 𝑥(𝑙), 𝑐𝑁(𝑙)) + twij ∫ 𝜓(𝑐𝑖𝑗)𝐵(𝑔𝑖𝑗, 𝜃)𝑑Ω(𝜃)
4𝜋

 (35) 

If the time step t is considered small such that: 

𝑝𝑖𝑗 = 𝑡𝑤𝑖𝑗 ≤ 1 (36) 

For all possible values of 𝑐𝑁(𝑙), Eq. (33) may have an apparent probability approach. The collision 

scheme based on Eq. (33) considers all N(N-1)/2 pairs of particles (𝑐𝑖 , 𝑐𝑗) and to consider the 

collision of each pair of (𝑐𝑖, 𝑐𝑗) with probability 𝑝𝑖𝑗. This scheme is of first order accuracy in 

terms of time but its computational costs is of order N
2
. The condition given by Eq. (36) could be 

replaced with a weaker one as follows: 

𝑃{𝑡𝑤𝑖𝑗 > 1} ≪ 1 (37) 

by choosing appropriate time step and cell size. The above procedure states that for all of the 

available particle pairs in the collision cell (l), the acceptance-rejection should be checked, i.e. the 

following inequality should be checked for all available particle pairs(i,j) {i <  j = 1, . . . , N(l)}   

(before their velocities are changed to post collision values): 

Wij =
σijgijt

V(l)
> 𝑅𝑛𝑓 

(38) 

The procedure of SBT is depicted in Fig. 9.  
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Fig. 9 BT collision procedure [9, 23-24] 

3.5 Ballot Box collision scheme [9] 

If the transition operator is approximated by a linear term in terms of t as: 

𝐺3(𝑡) = 𝐼 + 𝑡 ∑ 𝑤𝑖𝑗

1≤𝑖<𝑗≤𝑁𝑙

(𝑇𝑖𝑗 − 𝐼) 
(39) 

,  the  number of particle pairs is denoted  by k= N(N-1)/2, and if one introduces the time step (t) 

inside the summation operator into the operator G3(t), replacing 𝑡𝑤𝑖𝑗 by 
1

k
(𝑘𝑡𝑤𝑖𝑗), then:    

G3(t) = [1 − ∑
1

k
(𝑘𝑡𝑤𝑖𝑗)

1≤𝑖<𝑗≤𝑁𝑙

]I + ∑
1

k
(𝑘𝑡𝑤𝑖𝑗)Tij

1≤𝑖<𝑗≤𝑁𝑙

 (40) 

This form of operator G3(t) can be interpreted in a straightforward way that lead to the Ballot Box 

collision model. The condition 𝑃𝑖𝑗{𝑘𝑡𝑤𝑖𝑗 > 1} ≪ 1 should also be satisfied. In the Ballot Box 

scheme, the following procedure is performed one times for each cell (see Fig. 10): 

Inexing and 
first particle 

selection 

• Local cross referencing of particle is performed in the cell 

•choose first particle in sequense from list:   i=1, ... ,Nl-1 

second particle 
selection 

• Choose the second particle from the list of indexed particles, i.e., 
j=i+1, ..., Nl   

if accepted 
• checking the collision probability (Eq. (38)) 

Velocity update 

•change the particle velocities if collision is accepted  
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a) At each time step, only a single pair of molecules is randomly selected with the 

probability of 1/k from the whole range of particles. 

b) The possibility of collision is evaluated with the probability of 𝑊𝑖𝑗 = 𝑘𝑡𝑤𝑖𝑗.  

Wij =
N(N − 1)σijgijt

2V(l)
> 𝑅𝑛𝑓 

(41) 

If the collision was accepted, the velocities are upgraded to their post-collision values. The 

laboriousness of the scheme depends linearly on the number of particles, i.e., O(N). The problem 

with the Ballot Box scheme is that 𝑡 ≪ ∆𝑡 (∆𝑡 is the optimal time step of simulation) in order to 

fulfill condition {P(𝑘𝑡𝑤𝑖𝑗 > 1)}<<1. The collision algorithm Ballot-Box must be repeated 𝑚 

times in time step ∆𝑡, so that ∆𝑡 = 𝑚𝑡. As a result, within the time step ∆𝑡 the scheme cannot 

prevent from repeated collisions.   

 

Fig. 10 Ballot Box collision procedure per each cell [9]. 

 

 

Time step 
division 

• Divide cell time step to m smaller time steps, i.e.,  t=mt, and 
perform the following procedure m times per each cell  

Pair selection 

•Select at random a pair particles i and j from  the set of N(N-1)/2 
pairs 

Collision 
check 

• checking the collision probability (Eq. 41) 

Velocity 
update 

•change the particle velocities if collision is accepted  
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3.6 Null-collision (maximum frequency approach) 

This method is first derived by Koura [16] for pseudo-Maxwellian gases and then extended and 

modified to arbitrary gases, (g) [10] (and called majorant frequency therein). In the Null-

collision scheme, the maximum evaluation of the 𝜐 in (N, E, P) is computed in terms of 

𝜐𝑚𝑎𝑥(N, E, P). The collision operator T is replaced with Tmax while it keeps the condition of: 

𝜐0(𝑇𝑚𝑎𝑥 − 𝐼) = 𝜐(𝑇 − 𝐼), therefore, the transition operator is written as follows:    

G4(t) = exp[𝑡𝜐𝑚𝑎𝑥(𝑇𝑚𝑎𝑥 − 𝐼)] 

𝑇𝑚𝑎𝑥 = (1 −
𝜐

𝜐𝑚𝑎𝑥
) 𝐼 +

𝜐

𝜐𝑚𝑎𝑥
𝑇 

(42) 

(43) 

As the maximum value 𝜐𝑚𝑎𝑥 is a constant, G4(t) defines a transition operator of a pseudo-

Poisson process where the number of collisions are distributed according to  

𝑃𝑠(𝜐𝑚𝑎𝑥𝑡) =
(𝑡𝜐𝑚𝑎𝑥)𝑠

𝑠!
 exp (−𝑡𝜐𝑚𝑎𝑥) 

(44) 

Any pair selected for collision possibility has a collision chance of  
𝜐

𝜐𝑚𝑎𝑥
 and collision rejection 

chance of (1 −
𝜐

𝜐𝑚𝑎𝑥
). Similar to Ballot-Box scheme and to introduce an equal opportunity for 

selecting a pair for collision, the maximum frequency value, 𝑤𝑚𝑎𝑥 is computed. Values of 𝜐𝑚𝑎𝑥 

and 𝑤𝑚𝑎𝑥 are chosen such that: 𝜐𝑚𝑎𝑥 = 𝑘𝑤𝑚𝑎𝑥, where k is the number of particle pairs, then 

𝑇𝑚𝑎𝑥 is transformed to:  

𝑇𝑚𝑎𝑥 = ∑
1

𝑘
1≤𝑖≤𝑗≤𝑁

[(1 −
𝑤𝑖𝑗

𝑤𝑚𝑎𝑥
) 𝐼 +

𝑤𝑖𝑗

𝑤𝑚𝑎𝑥
𝑇𝑖𝑗] 

(45) 

The numerical procedure of Koura’s method is as follows:  

Repeat the procedure below s-times [16]:  

1- Compute maximum frequency as follows:  
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𝜐𝑚𝑎𝑥 = (
1

2
)𝑛𝑁(𝑆)𝑚𝑎𝑥 

(46) 

𝑆𝑚𝑎𝑥 = σ(𝑔)𝑚𝑎𝑥 (47) 

2- A random pair (i,j) is selected with the same probability from all particles. 

3- The collision is accepted with the probability of  
𝑤𝑖𝑗

𝑤𝑚𝑎𝑥
, i.e., if  

𝑤𝑖𝑗

𝑤𝑚𝑎𝑥
> 𝑅𝑛𝑓 collision is 

accepted. 

4- Collisions are ended if summation of collision time (sampled from the Poisson 

distribution) exceeds the cell time step. 

∑ 𝛿𝑡𝑛 ≤ 𝑡 < ∑ 𝛿𝑡𝑛
𝑠+1
𝑛=1

𝑠
𝑛=1 ,  

𝑃(𝛿𝑡 > 𝑡) = 𝜐𝑚𝑎𝑥 𝑒−𝜐𝑚𝑎𝑥𝑡 

(48) 

If 𝜐𝑚𝑎𝑥=cte, this technique is one of the possible approaches to generate a Poisson random value 

𝑠(𝑡). A classical algorithm for producing a random number from a Poisson distribution is 

developed by Knuth [56], as given in appendix 1. 

 

Fig. 11 Null collision procedure per each cell. 

 

maximum 
frequncy 

calculation and 
time step 
sampling 

•Compute maximum frequncy (Eq. 46) and sample time step from 
the Poisson distribution (For example, see appendix 1)  

pair (i,j) 

•Select the particle pais (i, j) randomly from Nl particle in cell l. 

if accepted 
• checking the collision probability (Eq. (10)) 

Velocity 
update 

•change the particle velocities if collision is accepted  
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3.7 Simplified Bernoulli-trials  

Bernoulli-trials (BT) scheme checks collisions with a given probability for all available collision 

pairs, i.e., N(N-1), which makes this algorithm quite time consuming, i.e. O(N
2
). Recently, 

Stefanov [23-24] showed that in small time-step intervals, it is possible to simplify the collision 

process and instead of checking all available possibilities, for the first selected as shown in BT 

particle, say i, one can choose randomly the second particle among the next sorted-particles in the 

list. Hence the number of selections would be reduced to (N-1) while theoretically the probability 

for collision of each pair remains unchanged based on the strict Markov process equal to the 

corresponding one in the BT method. Thus, in SBT each chosen particle pair is checked for 

collision only once within a time step and possibility of repeated collision is prevented while the 

computational costs are much reduced compared to the BT method.  

As simplification, Stefanov showed that it is possible to extend the internal product in the right 

hand side of the G(t) (Eq. 22) in a series of j with respect to 𝑡 to reach to a new simplified 

transition operator G5(t) as follows [23]:   

G5(t) = ∏ [(1 − ∑
1

k
(𝑘𝑡𝑤𝑖𝑗)

N(l)

j=i+1

) I + ∑
1

k
((𝑘𝑡𝑤𝑖𝑗)Tij)

N(l)

j=i+1

]

N(l)−1

i=1

 (49) 

, where k = (N(l) − i).  The algorithmic interpretation of operator G5(t) states that instead of 

checking N(N-1) pairs (Note that the inner  product in Eq. (33) considering all possible collision 

pairs N(N-1) is replaced here by a summation), it is possible in each acceptance-rejection, select 

the second collision particle at random and reduce the number of collision checking to (N-1). The 

SBT algorithm permits simulations with far less number of particles per cell compared to NTC, < 

N > ~ 1-2, where < > means mean value, and with reduced computational costs compared to BT 

algorithm. The numerical procedure of SBT is as follows: Particles in the l
th 

cell should be locally 

indexed to produce a particle list numbered as 1…N
l
. The first particle of the collision pair (i, j), 
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say i, is selected in sequence from the following particle list: i = 1…N
l
-1. The second particle, say 

j, is chosen randomly with the probability of 1/k from k = N
l 
–i particles taking place in the list 

after particle i. 

𝑗 = (𝑖 + 1) + 𝑖𝑛𝑡(𝑘 × 𝑅𝑛𝑓1) (50) 

Each pair is then checked for collision with the probability, which with taking into account factor 

𝐹𝑛𝑢𝑚 and time step ∆𝑡 reads 

𝑊𝑖𝑗 =
(𝑁𝑙  – 𝑖 )𝐹𝑛𝑢𝑚∆𝑡𝜎𝑖𝑗𝑔𝑖𝑗

𝑉𝑙
> 𝑅𝑛𝑓2. (51) 

It should be noted that the ∆𝑡 should be adjusted so that in great amount 𝑊𝑖𝑗 does not exceed 

unity , say 

𝑝𝑟𝑜𝑏{𝑊𝑖𝑗 ≥ 1} → 0 (52) 

It is worth noting that the probability for 𝑊𝑖𝑗 > 1 should be kept always close to zero by 

choosing appropriate time step and cell size. The SBT procedure avoids the production of at least 

part of the eventually successively repeated collisions which occurs in the NTC scheme when it is 

applied with a small number of particles. More details of the theoretical background of this 

scheme are available in Refs. [23-24]. The sequence of SBT collision procedure is shown in Fig. 

12. 



36 

 

 

Fig. 12 SBT collision procedure per each cell 

One of the benefits of SBT appears if one decreases cell size (dx) and time step (dt) without 

increasing the number of particles. Thus, this refines the simulation process when approaching 

closely the real process of molecular dynamic collision. The difference is only that SBT process 

is stochastic (random choice of the collision parameters). Simply, this process is localization of 

collisions more precisely with O(dx,dt) error. This process is not possible in NTC and NN 

methods because these algorithms always calculate a maximum number of collisions based on 

formula that estimate a gas in equilibrium and allows an estimation requiring a larger number of 

collisions. The situation with MFS scheme is better than NTC and NN, as there are not reminders 

in the estimation of real number of collisions with an integer, but all of these schemes assume a 

Poisson distribution of the collision pairs to be checked for collision. However, this idea does not 

work well when there are small number of particles because these schemes must to define 

preliminary a number of pairs (random or not) to be checked. Here it is possible the situation that 

the Poisson distribution or Ncoll formula gives 5 pairs to be checked even when there are only 2 

particles in the cell. Or Poisson distribution predicts one pair to be checked when there are 5 

particles in the cell. This happens very often when there are small mean numbers of particle in the 

 

Particle 
sorting and 

indexing 

•local cross-referencing of particles in cell l to number 
particles from 1 to Nl 

first particle 
selection 

•choosing first particle in sequense from list:   i = 1, ... ,Nl-1 

           second 
particle 

selection 

• choosing the other particle from Eq. (50). 

if accepted 
•checking the collision probability from Eq. (51) 

velocity 
update 

•change particle velocities 
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cell. This gives considerable fluctuations in the collision process which leads to considerable 

errors in results. 

3.7.1 A note on repeated collisions in SBT and NTC 

The SBT procedure, as described in Sec. 3.7, prevents the possibility of repeated collisions in 

each time step. However, for possible repeated collisions in successive time steps that can occur 

in SBT there are two possible, one mathematical and other physical, answers. The mathematical 

answer is based on the fact that the SBT algorithm was derived from the Kac collision model 

assuming a strict Markov collision process within a time step [49]. The collision is based on its 

initial state, i.e., set of particle velocities in a cell at the beginning of each time step and the 

transition collision probabilities determined for each particle pair in a cell. After completing the 

collisions within a time step, a new state, i.e. velocity distribution is formed that is employed in 

the initial state for the collisions within the next step. At this moment, the step of particle free 

motion that changes the set of particles in the considered cell is neglected. It is obvious that the 

past of the collision history in a strict Markovian process is neglected. That is, the error realized 

by repeated collisions is included in the error of the Markov approximation of the collision 

process. Practically, the second answer is that first the exchange of particles between cells during 

the particle free motion occurs and then the probability of a collision of a given pair depends on 

the time step – the smaller time step leads to smaller probability for collision. The probability for 

a repeated collision is proportional to the product of pair probabilities. Therefore, it can be shown 

that the order of the events is O(t
2
). Since the accuracy of the splitting scheme is O(t), one can 

neglect the repeated collisions as introducing an error of higher order for very small time steps. 

Altogether with the particle free motion step this allows to neglect the effect of the repeated 

collisions realized in successive time steps. 
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In the NTC and NN schemes, on the other hand, the situation is different, i.e., the decrease of 

time step leads to decrease of the maximum collision number in a collision cell within a time step. 

However, for a given particle pair the collision probability is determined by the acceptance-

rejection rule with the probability given by Eq. (10) that does not depend on time step. Thus, the 

probability for a repeated collision of a twice chosen pair in the NTC algorithm does not decrease 

with the decrease of time step. That is why; NTC codes must introduce a preventing repeated 

collision rule within more time steps. However, the direct prevention of repeated collisions 

introduces extra errors in all schemes using the maximum collision frequency approach (NTC, 

MFS, Null-collision) when the number of particles per each cell is small. These schemes are 

based on the combination of acceptance-rejections procedure and the random choice of the 

particle pairs. When the number of particles is small, to complete the time step the collision 

procedure may check many times the same pair that previously was chosen and rejected. Next 

time the routine can choose the same pair and check it until a collision was realized. Using the 

direct prevention procedure, a conditional probability with removing from consideration some 

pairs destroys the correct random choice of pairs and the non-uniformity of probability 

distribution becomes significant. This leads to deviation from the correct probability, given in the 

Kac stochastic model for collision of each particle pair. This explains while the NTC, NN and 

MFS schemes cannot work accurately with small number of particles in cells. This point will be 

supported with the results presented in the following sections.   

3.8 SBT on dual grids [24]  

One reason for errors in the DSMC method stems from particles that are at a collision separation 

distance and have the potential to be selected as a collision pair, but they are not checked for 

collision as they are located in two neighboring cells. This difficulty may be overcome by using a 

dual grid (staggered grid) that is created by translation of cells (or subcells). This strategy 

improves the collision accuracy specially when there are a few particles per cell. For an 



39 

 

orthogonal grid, displaced grids are created by translating cells in each axis direction by a 

distance equal to a half-cell size. Figure 13 shows the formation of the displaced grid in 

structured cells. In this figure, solid lines show the main grid and dashed lines show the displaced 

grid that is obtained by displacing the main gird by a magnitude of Δ𝑥/2 in axial direction and 

Δ𝑦/2 in normal direction. It should be noted that the number of cells in the displaced grid is 

(𝑁𝐶𝑋 + 1)(𝑁𝐶𝑌 + 1), where 𝑁𝐶𝑋 and 𝑁𝐶𝑌 are the number of cells in the original gird in 𝑥 and 

𝑦 directions, respectively. The volume of internal cells in the displaced grid is equal to the 

volume of internal cells in the main grid. Nevertheless, the volume of boundary cells must be 

adjusted. Figure 13 also depicts two particles that in spite of being so close, they are not selected 

for collision as they are in two different cells in the main grid. After the grid is being displaced, 

these particles belong to one cell and possibility of collision will be checked. It should be noted 

that the numerical results obtained by using the dual staggered grid showed a slight improvement 

with regard to the space resolution compared to a single grid SBT application. 

 

Fig. 13 Schematic of the displaced grid (dashed line): solid lines are the main grid, grey cell is a typical cell 

created after grid displacement. (copied with permission from Ref. [57])  
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3.9 SBT on transient adaptive subcells (SBT-TAS) [49] 

Previous works [24] showed that computational efficiency of the SBT method decreases with 

increasing the number of particles in a collision cell. Using TAS technique, this problem may be 

avoided because the transient adaptive subcells are set dynamically in such a way that the number 

of particles always remains limited in every subcell. During the simulation, the particle 

distribution in cells is not uniform; therefore, there may be subcells which are empty or contain 

only one particle. In this case, no collisions are possible in such cells. In the NTC-TAS approach 

suggested by Su et al. [48], if such a case occurs, usually a search among the neighboring subcells 

is performed to find a partner for collision pair. It could be shown that there is no need to follow 

this procedure in the SBT-TAS algorithm. Instead, it is suggested to use a two-half-time-step 

collision algorithm and shift the transient adaptive subcell grid in the second half-time step in 

order to prevent the reduction of collision frequency in the cell. By using a dual subcell grid, the 

single particles in cells within the first half-time step will have the chance to find a collision 

partner within the second half-time step.  

3.9.1 SBT-TAS: volume estimation on curved boundaries [30] 

Unlike the NTC collision scheme, the collision probability function of the SBT scheme, Eq. 51, 

depends on subcell volumes, therefore, there is a necessity of having an accurate volume 

computation (approximation) of subcells in the SBT scheme. TAS divides the collision cell into 

equally spaced rectangular spaces, and the SBT procedure can independently operate within their 

space. By producing subcell divisions over a generally shaped collision cell, there are three types 

of subcell (Fig. 14-a):  

(1) The first group is those which are out of the borders of the collision cell and they are not 

considered in the flow.  
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(2) The second group is those which are in flow but they are vacant, thus they are assumed 

inactive in the collision occurrence.  

(3) The third group of subcells is the ones that are totally or partially in the flow and at the same 

time contain at least one particle. These subcells called as “in-flow active” subcells. They are the 

subcells that SBT could use them as the areas for performing a collision. In the probability 

function of the SBT scheme, Equation (51), V𝑙 is the volume that is assigned to the particles. 

Since the collision cell is considered as a homogeneous space, Goshayeshi et al. [30] suggested 

that the cell volume is equally distributed among only in-flow active subcells (type 3). In regards 

of this definition, we can modify the probability function in the form of the Equation (53). For the 

lth subcell, it will be: 

Wij
𝑙 = Fnum (N𝑙 − i) (σg)ij  

∆t

V𝑙
 

  V𝑙 =
Vc

NStype 3
 

(53) 

 

(54) 

, where wij
l  is the collision probability of the pair (i, j) in the lth subcell, Nl is the number of 

indexed particles for this subcell, NStype 3 is the number of type 3 subcells, and Vl is calculated in 

a way that all the collision volume (Vc) is equally distributed among type 3 subcells. 

Corresponding to this volume propagation, Fig 14-b demonstrates how the cell volume is 

heterogeneously divided among the type 3 subcells. Eq. (54) could be substituted the direct 

calculation of the subcell volume, which could be relatively time consuming. This equation 

preserves a consistency with probabilistic nature of the DSMC method and is not limited to 

boundary cells, i.e., it could be utilized for all subcells in the simulation domain.  
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Fig. 14: Different subcell types produced around a circular cylinder (grey region); (a) rectangular 

subcell divisions for indexing particles, (b) subcell divisions based on the assigned volume in the 

estimation of probability function (divisions are tried to represent an equivalent volume of V𝑙) .  

3.9.2 SBT-TAS: Time step interval control [30] 

Previous investigation showed that there is a requirement of time step interval control at the 

subcell level [30]. There are some restricting rules on time step in the DSMC method, in both of 

motion and collision stages of particles. In this sense, any manipulation that violates these rules 

will result in errors. The SBT’s features require that the TAS implementation to depend on the 

local parameters of the subcells. In fact, SBT cannot accept dependent TAS grids similar to NN 

or NTC does. This incapability comes from the nature of SBT, which force the scheme to 

determine the collision-frequency by investigating through binary considerations of particles, 

unlike other schemes that fulfill this task with one step estimation of the total number of collision 

events. Consequently, implementing TAS in SBT will produce the so called “subcells” as smaller 

collision cells, while the time step interval employed in these subcells are used from main cells. 
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This time step interval is calculated such that it produces a consistency between the allowed 

distances for the movement (transit time) and the allowed collision-frequency based on the mean 

collision time which has been determined in the main cell. Of course, there is no necessity that 

the mean collision time of the main cell and each of its subcells be the same.  

Fig. 15 depicts this probable time variation in a series of subcells. In SBT-TAS implementation, 

all the subcells, S1,…, S5 has the same working-time-step equal to the main cell time-step 

(𝑇𝑖𝑚𝑒 𝐶). Consequently, the subcell S1 receives a larger time step than its actual value, while in 

case of S2-S5, they accept smaller values. In other words, the relation between the working-time-

step and actual-time-step of S1-S5 subcells in relative to the Time C will be as follows: 

𝑇𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 𝑎𝑐𝑡𝑢𝑎𝑙 𝑆1 < 𝑊𝑜𝑟𝑘𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 𝑆1−𝑆5 = 𝑇𝑖𝑚𝑒 𝐶 < 𝑇𝑖𝑚𝑒 𝑠𝑡𝑒𝑝𝑎𝑐𝑡𝑢𝑎𝑙 𝑆2−𝑆5 

 

 

Fig. 15: Variation of the mean collision time among the subcells of a typical cell. 
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This phenomenon will be intensified if the considered cell is placed in complex regions such as 

shock interactions. In these situations, implementing SBT-TAS using collision cell time step will 

lead to a time-error, and the violations of DSMC’s movement and collision decoupling will occur. 

In this state, those subcells that have a time step smaller than their actual value (S2-S5 subcells), 

will under-predict number of collisions. On the other hand, subcells that have a time-step larger 

than the actual value, subcell S1, over-predict the number of collisions, while particle-transition 

paths are larger than the allowed amount. Consequently, violations of movement and collision 

decoupling will emerge in these subsets, see Fig. 16. 

 

Fig. 16: S1 subcell and time-step violation. 

The violation time-scale, i.e., as called Time-Slip, 𝑆𝑣 =
𝑇𝑀−𝐶

𝑇𝐴
, is a constant that almost preserves 

its magnitude, even when the time-step of the cell (𝑇𝑀−𝐶) is being controlled in such a way that it 

becomes equal to the available smallest mean collision time among concurrent subcells of the 

collision cell. Therefore, any attempt to avoid this error by reducing the working time-step will be 
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unsuitable and it will just decrease the speed of the numerical procedure, while the 𝑆𝑣 still exists 

in the cell space as a time-scaling factor.  

In the SBT scheme, the acceptance-rejection depends on the value of the probability function 

(𝑤𝑖𝑗
𝑙 ) of the two colliding particle pairs (𝑖, 𝑗) in the 𝑙𝑡ℎ subcell. It is observed that the cells that are 

probable of containing S1 subcells are mostly placed in the shock or shock-shock interaction 

regions. The sensible characteristic of these cells is that they have a heterogeneous distribution of 

particles within their space, which is a key factor in generating S1 subcells. With increasing the 

usage of the TAS grid on these cells, the number of S1 subcells will also increase. Hence, the TAS 

grid should be fabricated over these cells on such an extent that there would be no S1 subcell. We 

assume that 𝑊𝑖𝑗
𝑙 > 1 is a sign of the presence of S1 subcells. Therefore, the controlling variable 

for each collision cell is defined as this: 

𝐶. 𝑉 =  
𝑁𝐸

𝑁𝐶
 

(55) 

, where NE is the times that wij
l > 1 occurs and NC is the number of collision occurrences. In fact, 

it is a ratio between the times that the probability function (wij
l ) exceeds the acceptable limit to 

the all times that collision happens in that area, and at this work, it is also called as P-exceed ratio 

or P_E_R. Therefore, the implemented solution suggested in Ref. [30] is to enable the system to 

sense the degree of the generated error and secure it to a safe zone, where the threat of creation S1 

subcells is at the minimum state. At the same time, this solution should let the TAS system to 

work with its maximum capacity for the SBT scheme. This combination of SBT-TAS with this 

control mechanism is called as, “SBT-TAS C.M.”. 

3.10 Intelligent SBT (ISBT) 

The SBT collision scheme is designed to obtain correct collision frequencies with the minimum 

number of particles per cell. A modified version of this scheme, called intelligent SBT (ISBT) has 
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a semi-perception of inter-particle distances and is able to prioritize the acceptance of closer 

pairs, was suggested by Goshayeshi et al. [25]. The aim of developing of ISBT is to alter the 

particle sorting and acceptance-rejection process in the SBT scheme to bias the selections in 

support of closer partners. ISBT has two main stages. The aim of the first step is to define a smart 

way of locally indexing particles. The particle indexing should be modified in a way that a semi-

perception of distance appears in the indexing process, i.e. in a collision cell with 𝑁𝑐 particles, it 

should be an indexing method that satisfies the condition of (𝛿𝑖 < 𝛿𝑗 , 0 < 𝑖 < 𝑗 ≤ 𝑁𝑐), where 𝛿𝑖 

is the distance of the 𝑖𝑡ℎ particle to a reference point ® (see Fig. 17-a). Investigations over the 

optimized location of the ® point exhibits that the indexed points, relative to their hierarchical 

order, would be closer to each other if the ® point is located on the corners of a rectangle that 

surrounds the particles (compare Figs. 17 (b-c)). Therefore, Goshayeshi et al. [25] suggested the 

random selection of cell/subcell corners to efficiently index particles quite close to each other. 

However, since the 𝛿 distance does not consider the angular distances, there are still some 

particles that are indexed successively while they are far from each other, specifically those 

particles on the opposite sides of the diagonal (e.g. particles 4 and 5 in the Fig. 17-c). Statistically, 

these particles are not the majority and, on the other hand, any other way for particle indexing 

would unavoidably produce situations that some indexed particles would be far from each other. 

It is crucial to note that while along the indexing direction (diagonal RB in Fig. 17-a) particles are 

prevented to collide in opposite corners (because they are indexed at the bottom and the top of the 

hierarchical order), along the other one (diagonal AC in Fig. 17-a) particles might be indexed as 

neighbors, and their collision, reverse the angular momentum associated with that collision pairs. 

Since these kinds of collisions might be inevitably supported in the ISBT scheme, as a solution, 

Goshayeshi et al. [25] suggested using elongated cell/subcells. In a quadrangular cell/subcell 

(‘RABC’ in Fig. 17-d) the maximum distance (MD) that two far-indexed particles could have is 

√2 times greater than the side length. However, using elongated cell/subcell obliges the time step 
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to be reduced accordingly. Therefore, in cases of hypersonic shock interaction simulations, 

Goshayeshi et al. [25] suggested using elongated cells/subcells with elongation factor of two 

(𝑚 = 2), while the time step is reduced about one third. Therefore, ISBT technique could be 

implemented alongside with the transient adaptive sub-cell technique (TAS) as described in Sec. 

3.9. 

 

 

 

 

 

 

(a) (b) (c) 

 

(d) 

Fig. 17: Distribution of some particles in a cell/subcell; (a) a system of particle indexing based on the 

distance of particles to a definite center point ®, (b) the indexing results for a group of nine particles when 

the ® is located on the center of the cell, (c) when this point is on the left-down corner of the cell, and (d) 

the geometrical comparison between one quadrangle cell/subcell (“RABC”) and its equal-area elongated 

cell/subcell (“RDEF”), while the calculated values for the maximum distance (MD) between two far-

indexed particles are shown; they denote that elongated cell/subcell has smaller MD value. 
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(Reprinted with permission from B. Goshayeshi, E. Roohi, and S. Stefanov, Phys. Fluids 27, 107104 
(2015).  Copyright 2015 American Institute of Physics) 

 

The ISBT procedure could be implemented as follows:  

The first particle, i.e. 𝑖, is sequentially selected from 1 to 𝑁𝑐, while its pair, i.e. 𝑗, at each sequent 

is randomly selected among the further indexed particles, according to the previous paragraph and 

following Eq. (50). The main difference with the SBT is that instead of regenerating the second 

random number (𝑅𝑛𝑓2), which was used in the acceptance-rejection section of the SBT scheme in 

Eq. (51), ISBT does not produce any new random number and implements the first generated one 

(𝑅𝑛𝑓1): 

                                              𝑊𝑖𝑗 ≥ 𝑅𝑛𝑓1 (56) 

, where 𝑊𝑖𝑗 is calculated through the Eq. (51). Figure 18 show the sequences of the ISBT 

procedures. As a result of this policy, pseudo-circular subcells (Fig. 19) will be created that allow 

an easier acceptance for closer available-pairs and a more difficult condition for further particles; 

it is because that smaller number for 𝑗, as the second particle in the hierarchical list of indexed 

numbers, is only obtained if the 𝑅𝑛𝑓1 is closer to zero, and conversely, greater number for 𝑗, as 

the second particle, is merely obtained if the 𝑅𝑛𝑓1 is further from zero. 
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Fig. 18 ISBT collision procedure 

 

Fig. 19: Pseudo-circular subcells in the ISBT scheme that causes a biased selection for closer collision 

pairs. (Reprinted with permission from B. Goshayeshi, E. Roohi, and S. Stefanov, Phys. Fluids 27, 107104 
(2015).  Copyright 2015 American Institute of Physics)  
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•local cross-referencing of particles from 1 to Nc  based on their 
distances to the cell corner. 
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selection  

• Sequential selection of the first particle: i=1, Nc 

second 
particle 
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• choosing the other particle from Eq. (50). 

if accepted 

•checking the collision probability from Eq. (51) using the same 
random number used in Eq. (50) 

velocity 
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4. Validations of the SBT collision family 

After presenting different collision algorithms in the framework of the DSMC method, this 

section presents a brief review of results obtained with the SBT collision family emphasizing the 

accuracy and suitability of this collision model for a wide spectrum of rarefied flow fields.     

4.1 Collision frequency ratio from SBT-TAS and ISBT 

The equilibrium collision frequency ratio of a cavity flow at 𝐾𝑛 = 0.005, Tw=300 K, simulated 

on a 25×25 grid using SBT-TAS technique, is shown in Fig. 20 [49]. In this state, the theoretical 

equilibrium collision rate per molecule (𝐶𝐹𝑡ℎ) is given by [8]: 

                          𝐶𝐹𝑡ℎ = 4𝑛𝑑2 √
𝜋 𝐾𝐵 𝑇𝑟𝑒𝑓

𝑚𝑠
 (

𝑇

𝑇𝑟𝑒𝑓
)1−𝜔                                                                      

(57) 

, where 𝑛, 𝑑, 𝐾𝐵, 𝑇𝑟𝑒𝑓, 𝑚𝑠, and are number density, gas molecular diameter, Boltzmann 

constant, reference temperature, molecular mass, and viscosity-temperature exponent, 

respectively. 𝐶𝐹𝑛𝑢𝑚 represents the numerical value of this theoretical equilibrium collision rate 

that is calculated by the division of the number of collisions in each cell (𝑁𝑐𝑜𝑙𝑙 ) on the execution 

time (𝑇𝑖𝑚𝑒) and half of the mean particle numbers per cell (0.5 Np): 

                                                  𝐶𝐹𝑛𝑢𝑚 =
𝑁𝑐𝑜𝑙𝑙

0.5 𝑁𝑝 𝑇𝑖𝑚𝑒
                                                                      

(58) 

𝐶𝐹𝑟𝑎𝑡𝑖𝑜 is the ratio of the 𝐶𝐹𝑛𝑢𝑚 to its theoretical value—given by Eq. (57)—it must have a 

magnitude close to unity. Using TAS and setting 2 particles per subcell, i.e., PPSC=2, 16×16 

subcells were employed in each cell in average. As Fig. 20 shows, mean deviation of the 

equilibrium collision frequency ratio of one is in order of 10−4 and its maximum is about 0.2%. 

This proves that number of collisions in SBT-TAS scheme is accurate and coincides with the 

theory even using small number of particles per subcells (collision cells), i.e. two particles.   
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Fig. 20 SBT-TAS results for the equilibrium collision frequency ratio in the cavity using a 25×25 grid with 

16×16 subcells per each cell and PPSC=2 [49].  

 

The collision frequency of the ISBT scheme in an equilibrium state, for the argon flow in the 

cavity test case with Ulid= 0 m/s, Kn=0.01 and with surface and fluid temperatures have the same 

value of 273 K is evaluated using DS2V code [25]. Fig. 21-a, demonstrates the ability of the 

ISBT scheme to correctly predict the number of collisions, and Fig. 21-b, states that the deviation 

of the 𝐶𝐹𝑟𝑎𝑡𝑖𝑜 from the unity in the ISBT collision scheme, similar to the SBT scheme, is 

bounded with acceptable limit of 0.002. As the simulated cavity has diffuse reflecting walls, the 

eventual correlations cannot propagate at long distances 

The dimensionless number, 𝑆𝑂𝐹, which is the mean collision separation distance (𝑀𝐶𝑆) divided 

by the local mean free path (λ), is selected as a parameter for measuring the quality of collisions. 

Table 1 states that the ISBT, compared with the SBT collision scheme, reduced the 𝑆𝑂𝐹 value 

quite considerably. 
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(a) (b) 

Fig. 21: (a) contour of CFratio in the cavity at the equilibrium state, using the 100×100 grid and 10 particles 

per cell, calculated by the ISBT scheme, and (b) CFratio along the horizontal center line calculated by the 

NN, ISBT and SBT schemes. (Reprinted with permission from B. Goshayeshi, E. Roohi, and 
S. Stefanov, Phys. Fluids 27, 107104 (2015).  Copyright 2015 American Institute of Physics) 

 

Table 1: Comparison of the 𝑆𝑂𝐹 = (
𝑀𝐶𝑆

𝜆
) value in the lid-driven cavity flow between NN, ISBT and SBT 

collision schemes. (Reprinted with permission from B. Goshayeshi, E. Roohi, and S. Stefanov, Phys. Fluids 
27, 107104 (2015).  Copyright 2015 American Institute of Physics) 

Collision scheme Division 

size in 

DS2V code 

𝑆𝑂𝐹 value 𝑆𝑂𝐹 normalized by the NN 

value 

𝑆𝑂𝐹 normalized by the 

SBT value 

NN 100-100 0.0477 1 0.182 

ISBT 100-100 0.1740 3.66 0.666 

SBT 100-100 0.2621 5.49 1 

 

4.2 Fourier flow: comparison with theory  

The convergence behavior and accuracy of the DSMC technique for Fourier problems for near-

continuum conditions was investigated for the NTC method [58-59]. A similar evaluation was 

made for the SBT method [60]. The hard-sphere argon was simulated at the reference pressure 
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and temperature: Pinit=Pref= 266.644×10−5 Pa and Tinit=Tref=273.15 K, and Kn=0.0237. Fig. 22-a 

shows that the Sonine-polynomial coefficients ak/a1 for k=2,3 obtained from the DSMC away 

from walls agree with the theoretical value for NTC and SBT with a few particles per cell. Fig. 

22-b compares the heat conductivity ratio (theoretical to DSMC) from NTC and SBT solutions 

and show that both numerical solutions agree with each other.  

 
a) Comparison of coefficients of Sonine-

polynomial obtained from the Chapman-

Enskog expansion with DSMC solution  

 
b) Comparison of DSMC and theoretical 

values for conductivity ratio  

 
c) Dependency of NTC and SBT solutions for 

the wall heat flux on the cell size (Nc) and 

PPC. 

 

 
d) Dependency of NTC and SBT solutions 

for the conductivity ratio on the cell size 

 

Fig. 22: (a) Comparison of SBT and NTC solution methods for Fourier flow.  



54 

 

Fig. 22-c compares dependency of the SBT and NTC solutions for the wall heat flux on the 

number of particles per cell (PPC) and cell size. Both solutions agree with each other, however, 

SBT used a smaller time step. Fig. 22-d compares the dependency of NTC and SBT solutions for 

the conductivity ratio on the cell size, for both of the investigated PPC’s, SBT and NTC solutions 

for the conductivity ratio approach to unity as cell size reduces. 

4.3 Cavity flow  

The SBT solution was compared with the NTC and MFS methods for the cavity geometry at 

Kn=0.005 and a moving lid at the velocity of 𝑈𝑙𝑖𝑑 = 100 𝑚/𝑠 and 10 𝑚/𝑠 [57]. Cavity flow is 

considered as a classical test case for DSMC solvers [61-67]. Variable hard sphere (VHS) model 

of the monatomic argon, m=6.63×10
-26 

Kg and d=4.17×10
-10 

m was considered as the gaseous 

flow. Using a 400 × 400 grid cells, the minimum required particle per cell was investigated for 

the NTC scheme. As Fig. 23 depicts temperature on the centerline of the cavity, < 𝑁 > = 20 (< 

> means average) could reasonably provide the sufficient accuracy for the NTC scheme. Fig. 24 

compares temperature in the vertical centerline from the NTC with the SBT and MFS solutions. 

The figure indicates that the only scheme which provide accurate results with N=2 is the SBT 

scheme.   
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Fig. 23 Effect of number of particle per cell on the accuracy of the NTC collision scheme in prediction of 

temperature field in the horizontal centerline of the cavity. (reproduced with permission from [57]) 

    

Fig. 24 Comparison of the SBT, MFS and NTC schemes in prediction of thermal pattern in the vertical 

centerline of the cavity. (reproduced with permission from [57]) 

 

Table 2 compares the required relative computational time of the SBT and NTC schemes for the 

cavity flow. The figure shows that SBT scheme with two particles requires less computational 
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time compared with the NTC solutions with 5 and 20 particles per cell, while the NTC needs 

around 20 particles per cell to predict accurate solutions, as shown in Fig. 23. 

Table 2. Relative computational time for cavity flow. (reproduced with permission from [57]) 

 <N> time 

SBT 2 0.79 

   

NTC 250 1.15 

 125 1.07 

 20 1 

 5 0.98 

 2 0.75 

 

For the case of Kn=0.005, Tw=300 K and Ulid= 100 m/s, 25×25 grid, PPC=512 and PPSC=2, 

solution of the SBT on dual grid (SBT-Dual) is compared with the SBT-TAS and NTC solutions, 

the latter here called correct solution and is obtained on a 200×200 grid with 2 fixed subcells in 

each direction and 20 particles per cell [49]. Since the employed grid is coarse, it is quite 

expected that if we do not employ TAS, incorrect SBT solution will be attained, as is shown in 

Fig. 25, which depicts velocity components and temperature profile on the horizontal axis of the 

cavity. The figure shows that using dual grid does not improve the accuracy of the SBT-TAS 

solution more. Fig. 26 compares SOF from the SBT-Dual, SBT-TAS and SBT-TAS-Dual. The 

figures shows that using TAS drastically reduced the SOF, and use of dual grid reduced the SOF 

by half, however, had not any impact of the accuracy because the respective SOF was almost 

below 0.3, the minimum value that Bird stated could guarantee accuracy of solutions [13].       
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Fig. 25  Results of the TAS technique on the horizontal axis of the cavity obtained using 25×25 grid- 

PPC=512, PPSC=0.5 [49] 

 

 

Fig. 26 SOF (MCS/) in the cavity flow 

(a) SBT without applying TAS (b) SBT-TAS (c) SBT-TAS-Dual [49] 
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4.4 Flat plate flow  

Hypersonic flow over a small scale plat of length 90 nm with the surface temperature of 𝑇𝑤𝑎𝑙𝑙 =

500𝐾, Kn= 0.01 and Tin=300 K was considered as a test case for the SBT, NTC, MFS and SBT-

TAS schemes [57]. The effect of number of particles per each cell is depicted in Fig. 27, where 

the figure indicates that both of NTC and MFS schemes require around 20 particles per cell to 

predict particle independent results while the pure SBT scheme works well even with one particle 

per cell in this case, i.e., sensitivity of the SBT solution to the PPC is quite low.    

 

Fig. 27 Effect of average number of particles per cell on the accuracy of the temperature profile at y/L=0.2 

for the flat plate case. Profiles are shifted to right for MFS and SBT schemes to make differences more 

clear. (reproduced with permission from [57]) 

 

Fig. 28 compares effect of using TAS on improving the SBT results over a coarse grid of 70×42 

cell with PPC=28 and PPC=2. The figure shows that results without using TAS are inaccurate 

while use of TAS make the SBT solution as accurate as benchmark case, obtained on 370×222 

grid and PPC=20 using NTC. Fig. 29 also indicates that use of TAS considerably decreases SOF 

compared to no-TAS case. 
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Fig. 28 Effect of using TAS technique for improving the results in 70×42 grid with PPC=56 and PPC=2 

along the lines Y/L = 0. 08 and Y/L = 0. 2 

 

 

Fig 29. Effect of using TAS on decreasing 𝑆𝑂𝐹 = MCS/λ for the flat plate flow; 

Grid: 70×42, (a) without TAS (b) with TAS. 
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4.5 Rarefied flow past an airfoil  

Rarefied supersonic and subsonic gas flow around a small-scale NACA 0012 airfoil was 

simulated using SBT and collision scheme [68-69]. The small-scale airfoils are widely employed 

in micro-air-vehicles. Flow field is investigated at Mach=2, Kn=0.26 and α=45°. Fig. 30 shows 

distribution of pressure coefficient and normalized slip velocity on the airfoil surface obtained 

using different values of PPC using SBT. In this case, the figure well indicate that SBT could 

provide accurate solution using even PPC=1. In addition, SBT solution shows almost no 

variations, expect statistical noises, in results with the changes in PPC. Figures 30-c-d compares 

the normalized density from the DSMC solution with the experimental contour provided in Refs. 

[70-71]. The figure shows a suitable agreement between the numerical and experimental data.      

 
a) Cp distribution 

 

 
b) Normalized slip velocity 
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c) SBT solution for normalized density 

 

 

 
d) Experimental picture for airfoil density [70-71] 

Fig 30. Flow field investigation around an airfoil using SBT collision technique [68].  

4.6 Micro and nano Nozzle flow 

Flow inside micro and nano nozzles has been of interest of various researchers, see [72-75]. 

Accuracy of the SBT technique in treating rarefied micro and nano scale nozzle was considered 

[76]. Nitrogen flow with an inlet Knudsen number of Kninlet=7.781×10
-4

 was considered. Fig. 31 

shows that SBT technique using PPC=2 at the steady state condition could provide particle 

independent results. Fig. 32 compares Mach number contours inside the micronozzle using both 

of SBT and NTC schemes, where both solutions show a good agreement. It should be noted that 

NTC needs PPC=10 to provide accurate solutions for all flow properties inside the nozzle.        
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(a) 

 
(b) 

 

Fig. 31 Particle dependency of the SBT scheme for (a) Mach number, (b) normalized temperature at the 

nozzle exit [76].  

 

Fig. 32 Comparison of SBT and NTC techniques for Mach number contours inside the micronozzle [76].  

4.7 Hypersonic flow over cylinder and biconic geometry  

Hypersonic flows over the cylinder and biconic geometry are famous test cases in rarefied gas 

dynamics considered by various researchers to evaluate their DSMC solvers and algorithms [77-

84]. Goshayeshi et al. [25, 30] evaluated the performance of the SBT, SBT-TAS and ISBT 

techniques in treating rarefied hypersonic flows. For the cylinder case, Mach 10 (2634.1 m/s) 

flow of argon at T=200 K passing over a 12 inch circular cylinder with a fully diffusive surface at 

Ts=500 K and a nominal free-stream Knudsen number of 0.01 is considered.  
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(a) 

 

  

(b) (c) 

 

Fig. 33: a) Comparison of the temperature contour from NN, ISBT-TAS, and SBT-TAS 

b-c) Comparison of surface properties (heat flux, shear stress, pressure, slip velocity) in the 

cylinder flow problem (Reprinted with permission from B. Goshayeshi, E. Roohi, and S. Stefanov, Phys. 

Fluids 27, 107104 (2015).  Copyright 2015 American Institute of Physics) 

 

Fig. 33-a shows a comparison of temperature contour around the cylinder from NN, ISBT-TAS, 

and SBT-TAS techniques. All SBT solutions match NN solution; however, ISBT matches the NN 

solution in the wake region much better. Figs. 33-b-c compares surface properties (heat flux, 

shear stress, pressure, slip velocity) over the cylinder. For all investigated properties, there is an 

excellent agreement between the SBT family results and those of NN. 

Hypersonic nitrogen flow of Mach 15.6 passing over a 25°-55° degree biconic geometry is a quite 

complex test case for numerical schemes as it consists of a laminar recirculation zone, laminar 
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expanding zone, high-speed low-density region, and low-speed high-density region [80-84]. Fig. 

34 shows the biconic and structure of different shock interactions occurred over this geometry.   

 
 

Fig. 34: Biconic geometry (left) and shock structures (right) around the geometry obtained by DSMC 

(Reprinted with permission from B. Goshayeshi, E. Roohi, and S. Stefanov, Phys. Fluids 27, 107104 
(2015).  Copyright 2015 American Institute of Physics) 

 

A comparison of the heat flux and pressure distribution over the biconic geometry, from SBT-

TAS, ISBT-TAS, NN and experimental data is shown in Fig. 35. Fig. 36 shows contour of 

temperature and SOF from ISBT-TAS and NN over the biconic surface. All numerical solutions 

show almost a suitable match between ISBT-TAS and NN.   
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Fig. 35: Comparison of heat flux and pressure distribution around the biconic geometry from different DSMC 

models, (Reprinted with permission from B. Goshayeshi, E. Roohi, and S. Stefanov, Phys. Fluids 27, 107104 

(2015).  Copyright 2015 American Institute of Physics) 

 

 

 

(b) (c) SOF= MCS/ 

Fig. 36: a) Comparison of ISBT-TAS and NN collision schemes in treating hypersonic external flow over biconic, a) 

temperature contours, b) contours of SOF (Reprinted with permission from B. Goshayeshi, E. Roohi, and 
S. Stefanov, Phys. Fluids 27, 107104 (2015).  Copyright 2015 American Institute of Physics) 

4.8 Re-entry test case with chemical reactions [85] 

The SBT-TAS and NN collision models are applied to treat a typical hypersonic atmospheric re-entry 

problem exposing to dissociation and recombination chain reactions of real-air. The Total Collision 
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Energy (TCE) [86-87] model, with reactions listed in Table 3, is used to simulate chemical reactions in 

both collision schemes of NN and SBT-TAS. Fig. 37-a shows the schematic of the re-entry geometry and 

also indicates investigated working conditions. Fig. 37-b shows temperature contours from both SBT-

TAS and NN scheme, with suitable agreement expect small differences in the wake region. Figs. 37-c-d 

compares temperature jump and species distribution over the surface, with an almost reasonable 

agreement between both schemes.        

Table 3: The employed chemical reactions in the investigated test case.  

No. Reactions 

Dissociation/Recombination reactions 

1 O2+N↔O+O+N 

2 O2+NO↔O+O+NO 

3 O2+N2↔O+O+N2 

4 O2+O2↔O+O+O2 

5 O2+O↔O+O+O 

6 N2+O↔N+N+O 

7 N2+O2↔N+N+O2 

8 N2+NO↔N+N+NO 

9 N2+N2↔N+N+N2 

10 N2+N↔N+N+N 

11 NO+N2↔N+O+N2 

12 NO+O2↔N+O+O2 

13 NO+NO↔N+O+NO 

14 NO+O↔N+O+O 

15 NO+N↔N+O+N 

Exchange reactions 

16 NO+O↔O2+N 

17 N2+O↔NO+N 
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a) Schematic of the re-entry geometry 

 

b) Temperature contours from NN and SBT-TAS  

 

c) Temeperature jump over the geometry surface: 

comparison of the NN and SBT-TAS 

 

d) Species concentration: comparison of the NN and 

SBT-TAS  

 

Fig. 37: Comparison of SBT-TAS and NN solutions for re-entry flow with chemical reactions [85].  

5. Concluding remarks 

The current paper provides a review of the DSMC collision schemes, originating either from the 

Boltzmann equations (i.e., TC, NTC, NN) or the Kac stochastic model (i.e., MFS, null collision, BT, SBT 
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families). Collision models derived from the Boltzmann equation are derived according to the principles 

of the classic kinetic theory, i.e., considering the concept of a collision cylinder and the maximum number 

of collisions that could occur in the ratio of the collision cylinder volume to the cell volume. These 

models needs around 10-20 particles per cell and usually suffer from eventually repeated collisions. On 

other side, the straightforward attempt to prevent repeated collision makes the collision frequency 

incorrect for small number of particle in cell. The models based on the Kac stochastic model are mainly 

derived from it by using mathematical operations, i.e., simplification and re-arrangement of the transition 

operator (G(t)) that appears in the Kac stochastic equation. These approximations keep the basic 

properties of the Kac model within small enough time step at arbitrary mean number of particles in cells 

when the time step and cell size are coupled in an appropriate manner. The first Kac-based models, such 

as the BT and Pseudo-Poisson (collision frequency) models, suffered from high computational costs, 

while a newly developed collision class, called the Simplified Bernoulli trial (SBT), has comparable 

computational costs to the standard models based on the Boltzmann equation such as NTC. A wide 

spectrum of rarefied flow test cases, ranging from simple equilibrium collision frequency to complicated 

shock-shock interactions and chemically reacting flows, was simulated by using the SBT collision family 

models and it was shown that SBT collision family could provide accurate solutions using small particles 

per cell. The benefit of the SBT collision model will be more clearly pronounced in complex 3D 

simulations, where a large number of particles is required if one relies on the standard NTC scheme. A 

hybrid NTC-SBT scheme could be also utilized for these complex 3D cases [88-89]. 
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Appendix 

Algorithm for sampling from the Poisson distribution:  

Input: (𝛿𝑡 × 𝜐0) 

Output: int (n-1) 

𝐿 = 𝑒−𝜐0𝑡 

a=1 

n=1 

while 𝑎 ≥ 𝐿 

𝑈𝑛 = 𝑅𝑎𝑛𝑑(𝑠𝑒𝑒𝑑) 

𝑎 = 𝑈𝑛𝑎 

𝑛 = 𝑛 + 1 

End 
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