
HAL Id: hal-02370405
https://hal.science/hal-02370405

Submitted on 19 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Functional Divergence of Delta and Mu Opioid Receptor
Organization in CNS Pain Circuits

Dong Wang, Vivianne L. Tawfik, Gregory Corder, Sarah A. Low, Amaury
François, Allan I. Basbaum, Grégory Scherrer

To cite this version:
Dong Wang, Vivianne L. Tawfik, Gregory Corder, Sarah A. Low, Amaury François, et al.. Functional
Divergence of Delta and Mu Opioid Receptor Organization in CNS Pain Circuits. Neuron, 2018, 98
(1), pp.90-108.e5. �10.1016/j.neuron.2018.03.002�. �hal-02370405�

https://hal.science/hal-02370405
https://hal.archives-ouvertes.fr


Article
Functional Divergence of
 Delta and Mu Opioid
Receptor Organization in CNS Pain Circuits
Highlights
d DOR and MOR segregate in dorsal horn interneurons, and

amygdalar and cortical neurons

d DOR and MOR are co-expressed in dorsal horn projection

neurons and in ventral horn

d MOR is not co-degraded with DOR in neurons that co-

express both receptors in vivo

d DOR in SOM+ dorsal horn interneurons controls mechanical

pain and but not heat pain
Wang et al., 2018, Neuron 98, 90–108
April 4, 2018 ª 2018 The Authors. Published by Elsevier Inc.
https://doi.org/10.1016/j.neuron.2018.03.002
Authors

Dong Wang, Vivianne L. Tawfik,

Gregory Corder, Sarah A. Low,

Amaury François, Allan I. Basbaum,

Grégory Scherrer

Correspondence
gs25@stanford.edu

In Brief

Wang et al. show that the delta and mu

opioid receptors are present in mostly

different populations of pain neurons in

the spinal cord and brain, indicating that

they may control distinct types of pain or

distinct aspects of pain experience.

mailto:gs25@stanford.�edu
https://doi.org/10.1016/j.neuron.2018.03.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuron.2018.03.002&domain=pdf


Neuron

Article
Functional Divergence of Delta
and Mu Opioid Receptor
Organization in CNS Pain Circuits
Dong Wang,1,2,3,4 Vivianne L. Tawfik,1,2,3,4 Gregory Corder,1,2,3,4 Sarah A. Low,1,2,3,4 Amaury François,1,2,3,4

Allan I. Basbaum,5 and Grégory Scherrer1,2,3,4,6,7,*
1Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Palo Alto, CA 94304, USA
2Department of Molecular and Cellular Physiology, Stanford University, Palo Alto, CA 94304, USA
3Department of Neurosurgery, Stanford University, Palo Alto, CA 94304, USA
4Stanford Neurosciences Institute, Stanford University, Palo Alto, CA 94304, USA
5Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
6New York Stem Cell Foundation – Robertson Investigator, Stanford University, Palo Alto, CA 94304, USA
7Lead Contact

*Correspondence: gs25@stanford.edu

https://doi.org/10.1016/j.neuron.2018.03.002
SUMMARY

Cellular interactions between delta and mu opioid re-
ceptors (DORs and MORs), including heteromeriza-
tion, are thought to regulate opioid analgesia. How-
ever, the identity of the nociceptive neurons in which
such interactions could occur in vivo remains elusive.
Hereweshow thatDOR-MORco-expression is limited
to small populations of excitatory interneurons and
projection neurons in the spinal cord dorsal horn and
unexpectedly predominates in ventral horn motor
circuits. Similarly, DOR-MOR co-expression is rare
in parabrachial, amygdalar, and cortical brain re-
gions processing nociceptive information. We further
demonstrate that in the discrete DOR-MOR co-ex-
pressingnociceptiveneurons, the tworeceptors inter-
nalize and function independently. Finally, conditional
knockout experiments revealed that DORs selectively
regulate mechanical pain by controlling the excit-
ability of somatostatin-positive dorsal horn interneu-
rons. Collectively, our results illuminate the functional
organization of DORs and MORs in CNS pain circuits
and reappraise the importance of DOR-MOR cellular
interactions for developing novel opioid analgesics.

INTRODUCTION

Opioids, such as morphine, are the mainstay for the treatment of

moderate to severe pain (Fields, 2004). Classic radioligand bind-

ing studies have established that opioid receptors are present in

the dorsal horn of the spinal cord (Snyder and Pasternak, 2003),

which is a major center for the processing of pain information,

and its modulation by opioid analgesics (Basbaum et al., 2009;

Braz et al., 2014; Todd, 2010). However, the precise mecha-

nisms, and in particular the neural circuits, cell, and receptor

populations underlying opioid analgesia, remain poorly defined.
90 Neuron 98, 90–108, April 4, 2018 ª 2018 The Authors. Published b
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Cellular interactions between the delta and mu opioid recep-

tors (DORs and MORs, respectively) are thought to regulate

pain and opioid analgesic efficacy (Fujita et al., 2015; Ong and

Cahill, 2014; van Rijn et al., 2010). Co-immunoprecipitation ex-

periments, including those using spinal cord tissue, indicated

that DOR and MOR directly interact and may form heteromers

(Fan et al., 2005; Gomes et al., 2004). Furthermore, activation of

DORsbyDORagonists hasbeenproposed to induceco-internal-

ization and degradation ofMORs, thereby reducing the analgesic

efficacy of MOR agonists acutely, and contributing to morphine

tolerance (He et al., 2011). These results supported the idea

that interfering with DOR function, by gene knockout, with DOR

antagonists or with bivalent ligands with MOR agonist and DOR

antagonist properties, might potentiate morphine analgesia and

reduce morphine tolerance (Abdelhamid et al., 1991; Chefer

and Shippenberg, 2009; Daniels et al., 2005; Fujita et al., 2015;

Gomes et al., 2004; Schiller, 2005; Zhu et al., 1999). However, a

difficulty in interpreting these data result from the fact that the

DOR and MOR share approximately 60% amino acid sequence

identity in mice, such that ligands that are reported to bind selec-

tively to MOR or DOR can, at high doses, bind to both receptors.

Consequently, direct cross binding of DOR ligands to MOR,

rather than functional interaction between these receptors,might

explain some of the previous results. For example, even limited

occupancy of MOR by a DOR antagonist could reducemorphine

efficacy. In fact, studies of DOR knockout mice have led to con-

flicting conclusions, showing either no change (Scherrer et al.,

2009) or reduced morphine tolerance (Zhu et al., 1999).

Biochemical approaches used previously to study DOR-MOR

interactions could not identify the neural circuits and cells inwhich

these interactionsmight occur. Given the considerable diversity in

cell populations within somatosensory and motor control spinal

circuits, this gap in knowledge precludes understanding how

spinal DORs, MORs, and possible heteromers, control pain, and

what somatosensory modalities (e.g., heat versus mechanical

pain, acute versus chronic pain, but also itch, touch, and proprio-

ception) are sensitive to opioid ligands. Immunohistochemical

studies indicated that MOR is expressed by peptidergic nocicep-

tors, andbyexcitatoryspinal neurons, including lamina Iprojection
y Elsevier Inc.
commons.org/licenses/by/4.0/).
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neurons, and lamina II excitatory interneurons (Arvidsson et al.,

1995;Bardoni et al., 2014;Kempet al., 1996; Li et al., 1998;Scher-

rer et al., 2009; Spike et al., 2002). In contrast, theDORexpression

patterncontinues tobeasubjectof intensedebate.Studies relying

on an antibody (Ab3-17) (Dado et al., 1993) suggested that DOR is

also expressed by peptidergic nociceptors, but not by spinal neu-

rons. This conclusion followed from the observation that Ab3-17-

immunoreactivity (ir) co-localizes with substance P and CGRP in

DRG neuron cell bodies and terminals in the dorsal horn (Bao

et al., 2003; Dado et al., 1993; Guan et al., 2005; Overland et al.,

2009; Wang et al., 2010) and is lost in the dorsal horn following

deafferentation (Dado et al., 1993). Based on these findings,

DOR-MOR heteromers and cellular interactions between these

receptors in the spinal cord were thought to occur in the central

terminals of peptidergic nociceptors.

In contrast, we previously showed, using a DORGFP reporter

mouse, as well as in situ hybridization and electrophysiology in

wild-type mice, that DOR and MOR are expressed in largely

distinct populations of DRG neurons (Bardoni et al., 2014; Fran-

çois and Scherrer, 2017; Scherrer et al., 2009). Although MOR is

indeed enriched in unmyelinated peptidergic nociceptors, DOR

predominates in myelinated mechanoreceptors and unmyelin-

ated non-peptidergic nociceptors. Recent expression studies

using highly sensitive single-cell RNA sequencing confirmed

the segregated expression of DOR and MOR in DRG neurons

(Usoskin et al., 2015). Since we observed that Ab3-17-ir pattern

persists in two strains ofOprd1 knockout (DOR KO) mice (Scher-

rer et al., 2009) and does not match the distribution patterns of

Oprd1 mRNA or DOR radioligand binding, we concluded that

Ab3-17-ir might not accurately represent DOR expression in

DRG and CNS. Therefore, the identity of the spinal cord neurons

that express DOR, and the extent to which there is MOR co-

expression and potential heteromerization in these cells, remains

to be determined.

Here we provide a comprehensive histological, electrophysio-

logical, and behavioral analysis that establishes the principles of

opioid receptor functional organization in CNS circuits that trans-

mit and process pain signals.

RESULTS

DORGFP Internalization Reveals the Distribution
of DOR+ Spinal Neurons
We first used DORGFP reporter mice (Scherrer et al., 2006) and

GFP immunolabeling to determine the DOR expression pattern
Figure 1. Receptor Trafficking in DORGFP Mouse Reveals DOR+ Neur

(A) Staining with an anti-GFP antibody in spinal cord sections from either untreate

knockin mice.

(B) Oprd1 mRNA in spinal cord sections from wild-type mice.

(C) Co-localization of DORGFP with the neuronal marker NeuN.

(D) DORGFP+ cells do not express the microglia marker IBA-1.

(E) Deltorphin II activates GIRK channels in spinal cord dorsal horn neurons in w

(F) Schematic map showing the location of all recorded dorsal horn neurons in

presented deltorphin II-induced GIRK currents.

(G) Quantification of peak GIRK channel currents from deltorphin II-responsive n

neurons.

Scale bars represent 50 mM. See also Figure S1.
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in the spinal cord. Consistent with the binding pattern of DOR

radioligands (Bardoni et al., 2014; Mennicken et al., 2003;

Scherrer et al., 2009), we observed diffuse DORGFP expression

throughout the spinal cord gray matter, with a relatively brighter

DORGFP+ band in lamina II (Figure 1A, left). To identify

DORGFP+ cell bodies, we took advantage of the trafficking

properties of DOR, wherein binding of agonists results in inter-

nalization and accumulation of the receptor in perinuclear lyso-

somes for degradation (Pradhan et al., 2009; Scherrer et al.,

2006; Tsao and von Zastrow, 2000; Wang et al., 2003; Whistler

et al., 2002).

Remarkably, pre-treating DORGFPmice with the DOR agonist

SNC80 uncovered the distribution of a very large number of

DOR+ cell bodies, both in the dorsal and ventral horns (Figure 1A,

right). DORGFP+ spinal cells co-express the pan neuronal

marker NeuN (Figure 1C), but not the microglial markers IBA-1

(Figure 1D), P2Y12, or CD11b (Figures S1A and S1B), indicating

that they are neurons. Labeling of the central terminals of CGRP+

and IB4+ nociceptors, and of PKCg interneurons, indicated that

DORGFP+ neurons are particularly enriched at the ventral border

of lamina II inner (lamina IIiv) (Figures S1C and S1D). We next

used in situ hybridization and electrophysiology in wild-type

mice to further test the hypothesis that DOR is expressed by spi-

nal neurons. Consistent with the DORGFP expression pattern,

Oprd1 mRNA is present in numerous neurons throughout the

spinal cord gray matter of wild-type mice, mainly in small lamina

II neurons, and in larger neurons in the ventral horn (Figure 1B).

In CNS neurons, postsynaptic opioid receptors are generally

coupled to G protein-coupled inwardly rectifying potassium

(GIRK) channels. In spinal cord slices of wild-type mice, we

bath perfused the DOR agonist deltorphin II and recorded

GIRK channel-mediated increases in holding currents in

randomly selected neurons, focusing on lamina II. We found

that deltorphin II induced an outward current in 29.4% (20/68)

of recorded neurons (Figures 1E–1G). Deltorphin II-responsive

neurons were concentrated in lamina II inner, in agreement

with the distribution of both DORGFP and Oprd1 mRNA.

Naloxone, an opioid receptor antagonist, or barium (Ba2+), a po-

tassium channel blocker, blocked the deltorphin II-induced cur-

rents (Figure 1E). To confirm deltorphin II selectivity for DOR, we

performed identical recordings in spinal cord slices from DOR

KOmice. In only one out of 26 recorded neurons did we observe

a small deltorphin II-induced GIRK current (8.8 pA), possibly due

to deltorphin II-mediated activation of other opioid receptors in

the absence of DOR (Figures 1F and 1G). Based on these results,
ons in Spinal Cord

d or SNC80-pretreated (10 mg/kg, s.c., 2 hr before tissue collection) DORGFP

ild-type mice.

wild-type (n = 68) or DOR knockout mice (n = 26). Green recorded neurons

eurons in (F). Data are presented as mean ± SEM with dots showing individual
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we conclude that DOR is not only expressed by primary afferent

DRG neurons, but also by numerous spinal neurons, both in the

dorsal and ventral horns.

Dorsal Horn SOM+ Lamina II Excitatory Interneurons
Express DOR
We next characterized the different populations of DOR+

spinal neurons. Superficial dorsal horn neurons, which originate

from the Lbx1+ neuronal lineage, can be divided into TLX3+

excitatory and PAX2+ inhibitory neurons (Alaynick et al., 2011).

Co-immunostaining revealed that 60.5% of the DORGFP+

neurons located in lamina II express TLX3, but that only 8.5%

express PAX2 (Figures 2A, 2B, and 2E). Furthermore, we

crossed DORGFP mice with Vglut2Cre;Rosa26LSL-tdTomato and

VgatCre;Rosa26LSL-tdTomato reporter mice and found that 85.0%

of DORGFP+ lamina II neurons co-express the vesicular gluta-

mate transporter 2 (VGLUT2), while only 24.6% co-express the

vesicular GABA transporter (VGAT) (Figures 2C–2E). Consistent

with these anatomical results, whole-cell recordings from

VGLUT2/tdTomato+ or VGAT/tdTomato+ lamina II neurons in

mice with a wild-type Oprd1 allele showed that 50.0% (8/16) of

VGLUT2/tdTomato+ and 25.0% (4/16) of VGAT/tdTomato+ neu-

rons displayed deltorphin II-induced GIRK currents, respectively

(Figure 2F). For lamina II interneurons, neurotransmitter pheno-

type is thought to be correlated with action potential (AP) firing

patterns; inhibitory neurons most commonly display a tonic AP

firing pattern, while excitatory neurons generally show delayed,

gap, or single AP firing patterns (Abraira et al., 2017; Yasaka

et al., 2010). Excitatory interneurons also display more negative

resting membrane potentials, compared to inhibitory interneu-

rons (Yasaka et al., 2010). We found that 80.0% (16/20) of

DOR+ neurons show a delayed, gap, or single firing pattern

(Figures 2G and 2H) and that DOR+ neurons displayed a more

negative resting membrane potential (�72 mV), compared to

DOR-negative neurons (�64 mV) (Figure 2I). Together, these re-

sults indicate that the great majority of DOR+ neurons in the

dorsal horn are lamina II excitatory interneurons.

We further resolved the molecular identity of lamina II

DORGFP+ excitatory neurons using antibodies or reporter

mouse lines that distinguish dorsal horn interneuron subpopula-

tions, including calbindin (CALB), calretinin (CALR), nitric oxide

synthase (NOS), protein kinase C gamma (PKCg), and somato-

statin (SOM) (Figures 2J, 2K, and S2A–S2D). These experiments
Figure 2. Most DOR-Expressing Neurons in the Dorsal Horn are Lamin

(A) DORGFP+ neurons frequently co-express TLX3 (white arrowheads).

(B) DORGFP+ neurons rarely express PAX2.

(C) Most DORGFP+ neurons express VGLUT2/tdTomato (white arrowheads).

(D) Few DORGFP+ neurons express VGAT/tdTomato (white arrowheads).

(E) Quantification of (A)–(D). Dots represent individual counts in spinal cord secti

(F) Schematic map of the location of VGLUT2+ or VGAT+ neurons that responde

(G) Whole-cell recording indicated different AP firing patterns in deltorphin II-res

(H) Proportions of DOR+ or DOR- neurons showing the different AP firing pattern

(I) DOR+ neurons have a more negative resting membrane potential compared t

(J) DORGFP+ lamina II neurons frequently co-express somatostatin (white arrow

(K) Quantification of DORGFP+ neuron co-expression with multiple other neur

3–6 mice.

(L) DOR is expressed by a subpopulation of lamina I NK1R+ projection neurons.

Data are presented as mean ± SEM in (E), (I), and (K). Scale bars represent 50 m
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demonstrated that, among these markers, SOM is most often

co-expressed by DORGFP+ lamina II neurons (62.0%). Although

SOM+ neurons are distributed throughout lamina II, we found

that the great majority of DOR+ SOM+ neurons are located in

lamina IIiv, at the ventral border between laminae II-III (Figure 2J),

intermixed with PKCg+ interneurons, which only rarely express

DOR (Figures 2K and S2D). The rare DORGFP+ lamina IIiv neu-

rons that co-express NOS likely correspond to a small popula-

tion of SOM-negative inhibitory interneurons (Figures 2K and

S2C). DOR+ excitatory interneurons also frequently co-express

CALB, and to a lesser extent CALR, particularly when they are

located more dorsally in lamina II (Figures 2K, S2A, and S2B).

To complete the characterization of DOR+ neurons in the

dorsal horn, we also identified the few DOR+ neurons present

in lamina I, in laminae III-V, and in the lateral spinal nucleus

(LSN). Co-expression of DOR with neurokinin 1 receptor

(NK1R), the receptor for substance P, in large lamina I and LSN

neurons suggests that DOR is present in a subpopulation of glu-

tamatergic projection neurons that relay pain information to the

brain (Figure 2L). Finally, we determined that DOR is absent

from lamina III, which contains parvalbumin+ (PARV) inhibitory

neurons that gate mechanical hypersensitivity (Petitjean et al.,

2015) but frequently is co-expressed with PARV in deeper dorsal

horn neurons (laminae IV-V) (Figure S2E).

DOR Agonists Inhibit Activity of SOM+ Interneurons and
Decrease Mechanical Pain
A recent cell ablation study demonstrated that lamina II SOM+

interneurons are critical for acute mechanical pain and injury-

induced mechanical hypersensitivity (Duan et al., 2014). Given

our finding that DOR is co-expressed with SOM in lamina II inter-

neurons, we hypothesized that DOR+ lamina II neurons might

also be part of mechanical pain circuits. To test this hypothesis,

we first stimulated the hindpaw of DORGFP mice with a noxious

mechanical stimulus and used Fos immunostaining to identify

mechano-nociceptive dorsal horn neurons. Figures 3A and 3B

show that 40.0% of DORGFP+ lamina II neurons were Fos+,

among which 22.3% were also SOM+ (Figures S3A and S3B),

indicating that DOR is indeed expressed by dorsal horn neurons

that process cutaneous mechano-nociceptive information.

Ad and Ab fibers, including myelinated mechanonociceptors

(AMs) and low-threshold mechanoreceptors (A-LTMRs) are

essential contributors to cutaneous mechanosensation. Using
a II Excitatory Interneurons

ons from 3–6 mice.

d to deltorphin II (i.e., DOR+, green). n = 16 neurons for each.

ponsive neurons in wild-type mice.

s.

o DOR� neurons. ***p < 0.001 with unpaired t test.

heads).

onal markers. Dots represent individual counts in spinal cord sections from

M. See also Figure S2.
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spinal cord slices with dorsal root attached, we found that the

majority of DORGFP+ lamina II neurons receive mono- and

poly-synaptic Ad and Ab inputs, but rarely C fiber inputs (Figures

3C and 3D). Additionally, these recorded lamina II DORGFP+

neurons extend a process dorsally, toward lamina I (Figure 3E),

suggesting that these cells may relay mechanosensory myelin-

ated afferent input to lamina I projection neurons.

DOR agonists are particularly effective at reducing pain pro-

voked by mechanical stimuli (Cahill et al., 2001; Pradhan et al.,

2009; Scherrer et al., 2009); however, the mechanisms underly-

ing these properties remain unclear. DOR agonist antinocicep-

tive effects are observed following not only systemic but also

intrathecal delivery of the drug and were thought to result from

an action on DORs present on primary afferent central terminals.

Our finding that DOR is expressed by mechano-nociceptive dor-

sal horn neurons suggested that DOR agonists might also act

centrally on DORs in SOM+ lamina II neurons, to reduce me-

chanical pain. To test this possibility, we deleted DOR selectively

from SOM+ neurons, by crossing mice bearing conditional (i.e.,

floxed) Oprd1 alleles (Oprd1lox/lox mouse) (Gaveriaux-Ruff

et al., 2011) with mice in which Cre recombinase expression is

driven by the somatostatin gene (SomCre). We then evaluated

the ability of intrathecal deltorphin II to decrease sensitivity to

mechanical stimulation in the DOR conditional knockout mice

(DOR cKO), by stimulating the mouse hindpaw with calibrated

von Frey hairs or pinprick, and recording nociceptive withdrawal

responses. We found that the deltorphin II-induced decrease in

mechanical sensitivity observed in control littermates is lost in

DOR cKO mice (Figure 3F). Similarly, in models of neuropathic

and inflammatory mechanical hypersensitivity, deltorphin II

anti-allodynic effect was profoundly reduced following deletion

of DOR in SOM+ neurons (Figures 3G and S3G). As we did not

observe expression of DOR in the SOM+ DRG neurons (Figures

S3C and S3D), and very limited Som expression in ventral horn

(Figures S3E and S3F), the effect is dorsal horn SOM+ neuron

specific. This result suggests that intrathecal DOR agonists

act, at least in part, on DOR expressed by SOM neurons to

diminish mechanical sensitivity and that action of the drug exclu-

sively on presynaptic DORs expressed by DRG neurons is not

sufficient to cause a significant antinociceptive effect. Finally,

we also measured the effect of deltorphin II on heat sensitivity

and found that the antinociceptive action of deltorphin II in the
Figure 3. DOR Agonist Inhibits SOM+ Interneurons to Decrease Mecha

(A) Noxious mechanical stimulation of the hindpaw of DORGFP mice induced Fo

(B) Quantification of (A). Dots represent individual counts in spinal cord sections

(C) Representative traces showing Ab and Ad fiber input to DORGFP+ neurons.

(D) Summary of (C). n = 27 neurons.

(E) Morphology of a DOR+ neuron during recording.

(F) Decreased effect of intrathecal deltorphin II (1 mg) against acute mechanical no

DOR cKO mice; pinprick and von Frey frequency tests: n = 7 control mice and 7

(G) Diminished anti-allodynic effect of intrathecal deltorphin II (15 mg) against SNI-i

pinprick tests: n = 7 control mice and 7 DOR cKO mice; von Frey frequency test

(H) The antinociceptive action of intrathecal deltorphin II (1 mg) against heat nocic

test: n = 13 control mice and 14 DOR cKO mice); tail immersion test: n = 7 contr

(I) Representative trace showing deltorphin II-inducedGIRK currents (labeled in gre

(J) Deltorphin II reduces the AP firing rate and increases the AP firing threshold i

*p < 0.05, **p < 0.01, ***p < 0.001, (F)–(H), repeated-measures, two-way ANOVA

Data are presented as mean ± SEM in (B) and (F)–(H). Scale bars represent 50 m
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hotplate and tail immersion tests was intact in DOR cKO mice

(Figure 3H).

To test the possibility that deltorphin II could decrease me-

chanical sensitivity by influencing SOM+ interneuron excit-

ability, we next recorded from tdTomato+ lamina II neurons

in spinal cord slices from SomCre;Rosa26LSL-tdTomato mice. Fig-

ure 3I shows that bath application of deltorphin II caused an

increase in holding current in about half of the tdTomato+ re-

corded neurons. Furthermore, in the neurons in which we

observed this hyperpolarization (i.e., deltorphin II responsive

and thus DOR+), deltorphin II significantly decreased action

potential firing (Figure 3J). Interestingly, DORs in SOM+ neu-

rons might also be targeted by the endogenous peptide en-

kephalins. Using PenkCre mice (Francois et al., 2017), and

anterograde tracing with wheat germ agglutinin (WGA), we

not only found that approximately 52% of DOR+ neurons are

Penk+ and presumably enkephalinergic, suggesting auto-

signaling mechanisms, but also that Penk+ neurons are occa-

sionally presynaptic to DOR-expressing neurons (Figures S4A

and S4C–S4E).

DOR Is Expressed by Several Classes of Neurons
that Regulate Motor Control
We next identified the ventral horn neurons that express DOR.

Two observations suggested that DOR is expressed by V1 inhib-

itory interneurons, which include pre-motor Ia interneurons

mediating inhibition of antagonist muscles, and Renshaw cells

mediating motor neuron recurrent inhibition. First, we observed

that in spinal cord sections from Oprd1gfp/gfp;VgatCre;

Rosa26LSL-tdTomato mice the great majority of DORGFP+ ventral

horn neurons were also tdTomato+, i.e., likely GABA/glycinergic

interneurons (Figure 4A). We confirmed this observation in

another reporter mouse line, VgatCre;Rosa26LSL-ZsGreen mice

(Figure 4B). Second, these DORGFP+ ventral horn neurons

included CALB+ neurons positioned deep, close to the white

matter, identifying them as Renshaw cells (Figure 4C). To estab-

lish more definitively that DOR is expressed by V1 interneurons,

we crossed DORGFP reporter mice with mice in which tdTomato

expression is driven by the En1 gene, a marker of V1 interneu-

rons (Oprd1gfp/gfp;En1Cre;Rosa26LSL-tdTomato mice). Figure 4D

shows that the majority of V1 interneurons indeed express

DOR, including CALB+ Renshaw cells.
nical Pain

s expression in DORGFP+ dorsal horn neurons (white arrowheads).

from 3 mice.

ciception in DOR cKOmice. Von Frey threshold test: n = 13 control mice and 14

DOR cKO mice.

nduced neuropathic hypersensitivity in DOR cKOmice. Von Frey threshold and

: n = 6 control mice and 7 DOR cKO mice.

eption (hotplate and tail immersion tests) is intact in DOR cKO mice. Hotplate

ol mice and 7 DOR cKO mice.

en) in tdTomato+ lamina II neuron in slices fromSomCre;Rosa26LSL-tdTomatomice.

n SOM/tdTomato+ neurons (n = 7).

+ Bonferroni; (J), paired t test.

M. See also Figures S3 and S4.



Figure 4. DOR Is Expressed by Several Classes of Spinal Neurons Regulating Motor Control

(A and B) Staining of sections from VGAT-tdTomato (A) or VGAT-Zsgreen (B) reporter mice crossed with DORGFPmice with an anti-GFP antibody indicates that

ventral horn DOR+ neurons are inhibitory interneurons.

(C and D) DOR is expressed by En1+ V1 inhibitory neurons (D) including calbindin+ Renshaw cells (C).

(E) DOR is rarely expressed by motor neurons.

(F) DOR is expressed by cholinergic V0c neurons (white arrowheads). CC, central canal.

(G and H) Expression of DOR in Clarke’s column neurons that project to the cerebellum in naive (G) and SNC80-treated (H) DORGFP mice.

Scale bars represent 50 mM. See also Figure S5.
We next asked whether DOR is also expressed by motor neu-

rons, identified by their location and labeling with an anti-choline

acetyltransferase (ChAT) antibody (Figure 4E). We found that

DOR is very rarely expressed by motor neurons (2.8%). On the

other hand, we observed that a different class of large ChAT+

neurons, located in laminae VII/X just lateral to the central canal

and that are likely partition V0c neurons, expressDOR (Figure 4F).

Next, we examined thoracic sections and noticed a prominent
cluster of very large DOR+ neurons, dorsal but in close proximity

to V0c neurons. These likely correspond to Clarke’s column neu-

rons (Figure 4G), which are glutamatergic neurons that receive

input from proprioceptors and relay this information to the

cerebellum via the dorsal spinocerebellar tract. To confirm the

identity of this population of DOR+ neurons, we microinjected

the retrograde tracer fluorogold (FG) into the cerebellum of

DORGFP mice. This procedure successfully labeled Clarke’s
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column neurons in thoracic and L1-L2 lumbar segments and as

expected many were DORGFP+ (Figure 4H). Interestingly, DOR

is also highly expressed in other pre-cerebellar nuclei in the

brain, namely the pontine and lateral reticular nuclei (Pn and

LRt), but not the inferior olive (Figures S5A–S5C). Consistent

with these observations, DOR is present in mossy fiber terminals

that synapse onto cerebellar granule cells, but not in the molec-

ular layer where inferior olive-derived climbing fibers terminate

(Figure S5D).

Somewhat unexpectedly, these results indicate that DOR is

expressed in multiple classes of neurons that critically regulate

spinal motor control. We propose that this expression pattern

underlies the pathophysiological effects of DOR agonists onmo-

tor coordination (Beaudry et al., 2009; Jutkiewicz et al., 2005) for

which underlying mechanisms had proven elusive.

DORs and MORs Are Largely Segregated in Lamina II
Excitatory Interneurons
Our finding of DOR expression in spinal neurons suggested that

the previously proposed DOR-MOR interactions could occur

within spinal neurons. Indeed, several studies demonstrated

that MOR is present in dorsal horn neurons, both in lamina II

excitatory interneurons and in lamina I projection neurons (Aicher

et al., 2000; Kemp et al., 1996; Marker et al., 2006). Whether and

to what extent MOR is also expressed by other types of spinal

neurons is less clear. Therefore, we next used electrophysiolog-

ical and histological techniques, both in wild-type and in

a MORmCherry (Oprm1mCherry/mCherry) reporter mouse (Erbs

et al., 2015), to resolve the MOR expression pattern in the spinal

cord.

Immunolabeling with anti-RFP antibodies in MORmCherry

mice revealed the location of MOR+ cell bodies, without the

requirement of agonist-induced internalization. Consistent with

published MOR expression studies performed in wild-type

mice and rats, we observed dense MORmCherry expression in

the superficial dorsal horn, in DRG neuron terminals as well as

in lamina II interneurons (Figures 5A–5C) and NK1R+ lamina I

projection neurons (Figure 5D). Electrophysiological studies in

slices fromwild-typemice consistently showed that the selective

MOR agonist DAMGO induced GIRK-mediated currents in

a subpopulation of superficial dorsal horn neurons (40.8%,

29/71) (Figures 5E and 5F). These DAMGO-induced currents

were almost completely absent in MOR KO mice (1/11) (Figures

5E and 5F).
Figure 5. Distribution of MOR-Expressing Spinal Neurons

(A) Staining with an anti-RFP antibody in spinal cord sections from MORmCherry

(B) Double labeling of RFP and CGRP shows MORmCherry+ neurons (white arro

(C) MORmCherry+ neurons (white arrowheads) are also found in lamina II inner d

(D) MOR is also expressed by lamina I NK1R+ neurons (white arrowhead).

(E) Representative traces of MOR agonist DAMGO induced GIRK channel activa

outward current can be blocked by the MOR antagonist CTOP.

(F) Schematic map showing the location of all recorded dorsal horn neurons fro

currents were observed in those neurons filled with red.

(G) MOR+ neuron distribution in dorsal horn laminae I and II outer (CGRP), lamin

(H) Quantification of (G). Data are presented as mean ± SEM with dots showing

(I and J) Sample traces (I) show C fiber input to MORmCherry+ neurons (n = 11). S

input from C/Ad, but not Ab, fibers.

Scale bars represent 50 mM. See also Figure S4.
Interestingly, we found that the MORmCherry+ neurons in the

dorsal horn occupy a location more dorsal compared to DOR+

lamina IIiv interneurons. Thus, MORmCherry+ neurons are

particularly enriched in lamina II outer and in the dorsal part of

lamina II inner, where CGRP+ and IB4+ DRG neurons terminate,

respectively, dorsal to the band of PKCg interneurons (Figures

5B, 5C, 5G, and 5H). In agreement with this observation,

MORmCherry+ lamina II neurons receive C and Ad fiber input

(presumably C and AM nociceptors) (Figures 5I and 5J), in

contrast to the lamina II DOR+ neurons that receive inputsmostly

from Ad and Ab fibers (presumably AMs and A-LTMRs) (Figures

3C and 3D). As for DOR, however, lamina II MOR+ neurons are

often Penk+ and/or occasionally postsynaptic to Penk+ neurons

(Figures S4B–S4E).

This differential pattern strongly suggested that DOR and

MOR are expressed by distinct populations of excitatory inter-

neurons. To directly test this possibility, we crossed DORGFP

and MORmCherry reporter mice. Figure 6A shows that indeed

the majority of MORmCherry+ neurons differ from, and are

located dorsally to, DORGFP+ lamina IIiv interneurons. Note,

however, that DOR and MOR are occasionally co-expressed in

a population of lamina II interneurons (16.5%), as shown in Fig-

ure 6B. We confirmed these results in both wild-type mice and

in DORGFP mice, which have a wild-type Oprm1 allele (Figures

6C–6F). In slices fromwild-type mice, we found very few laminae

I-II neurons with GIRK-mediated currents following bath perfu-

sion of both DAMGO and deltorphin II (9.4%, 5/53) (Figures

6C–6E). Furthermore, the majority of DORGFP+ interneurons

are not labeled with an anti-MOR antibody (Figure 6F).

DOR and MOR Are Co-expressed in Some Lamina I
Projection Neurons and in V1 Ventral Horn Interneurons
We next labeled projection neurons in DORGFP;MORmCherry

(Oprd1gfp/gfp/Oprm1mCherry/mCherry) mice by microinjecting FG in

the lateral parabrachial nucleus (Figure 6G). Remarkably, we

found that multiple subpopulations of projection neurons can

be defined based on DOR and/or MOR expression and that

DOR and MOR are frequently co-expressed by lamina I projec-

tion neurons. Thus, the great majority of lamina I projection neu-

rons express MORmCherry, and among these neurons about

58.0% co-expresses DORGFP. Overall, half of the projection

neurons express both receptors (50.0%), 36.1% express only

MORmCherry, and very few express only DORGFP (6.0%) or

neither receptor (7.8%) (Figure 6G). Co-immunostaining for
knockin mice shows MOR presence in primary afferent terminals.

wheads) present in laminae I and II outer.

orsal where IB4+ primary afferent project.

tion in spinal dorsal horn neurons from wild-type or MOR knockout mice. The

m wild-type (n = 71) or MOR knockout (n = 11) mice. DAMGO-induced GIRK

a II inner dorsal (IB4), and lamina II inner ventral (PKCg).

individual counts in spinal cord sections from 3 mice.

ummary table (J) indicates that the majority of MORmCherry+ neurons receive
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Figure 6. Spinal Neurons Co-expressing DOR and MOR

(A) Limited co-expression of DOR and MOR in laminae I-II dorsal horn neurons. White arrows indicate DORGFP+ neurons, and arrowheads indicate

MORmCherry+ neurons.

(B) Quantification of (A). Data are presented as mean ± SEM from 6 mice.

(C) Representative trace showing that DAMGO and deltorphin II very rarely induced GIRK channel activation in the same lamina II neurons.

(D and E) Schematic map (D) and bar graph (E) showing the location and proportion of the neurons that responded to both deltorphin II and DAMGO (black) in wild-

type mice.

(F) Immunostaining for DORGFP and MOR in DORGFP mice confirms the segregated expression of DOR and MOR in the dorsal horn.

(G) Co-expression of DOR and MOR in lamina I projection neurons (n = 166 neurons from 3 mice).

(legend continued on next page)

100 Neuron 98, 90–108, April 4, 2018



NK1R confirmed that both opioid receptors are present in 55.5%

of NKIR+ lamina I neurons (Figures S6A and S6B). Electrophys-

iological recordings in wild-type mice also support the co-

expression of DOR and MOR in projection neurons (Figure 6H).

Sequential application of deltorphin II and DAMGO induced

GIRK currents in response to both agonists in 46.7% (7/15) of

CTB-AF555+ lamina I neurons. 33.3% (5/15) displayed only

DAMGO-mediated GIRK currents, 13.3% (2/15) only deltorphin

II-induced currents, and 6.7% (1/15) did not respond to either

agonist. Interestingly, noxious mechanical stimulus-induced

Fos expression predominated in the projection neurons that

co-expressed DORGFP and MORmCherry (65.0%), whereas a

noxious heat stimulus primarily induced Fos in MORmCherry+

projection neurons (56.1%) (Figures S6C and S6D).

Note, however, that projection neurons account for no more

than 5% of neurons in lamina I and represent an extremely small

percentage of all spinal neurons (Todd, 2010). Given the great

predominance of other neuronal and glial cell types, the co-

immunoprecipitation studies that reported direct DOR-MOR in-

teractions in spinal cord tissue were likely not adequately sensi-

tive to detect these interactions if they originated solely from this

projection neuron population. Because of the high prevalence of

DOR in ventral horn inhibitory interneurons, we reasoned that if

MOR is present in the same ventral horn neuronal population,

then DOR and MOR co-expression in spinal cord may, in fact,

prevail in motor circuits. Strikingly, we found that the majority

of the large populations of DORGFP+ ventral horn neurons do

indeed co-express MORmCherry (55.5%). Furthermore, we

found that 65.8% of DORGFP+MORmCherry+ neurons in the

ventral horn expressed VGAT (Figure 6I), suggesting that they

mostly correspond to V1 inhibitory neurons. Finally, we found

that MORmCherry, as for DORGFP, is rarely expressed bymoto-

neurons; and based on their cell body diameters, DORGFP and

MORmCherry are segregated in a and g motoneurons, respec-

tively (Figures 4E and S6E). MORmCherry is also rarely ex-

pressed by Clarke’s column or other cholinergic neurons (Fig-

ures S6F and S6G), in contrast to DOR.

DOR and MOR Organization in Brain Circuits that
Mediate Pain Affect
Opioid analgesics act not only at the DRG and spinal levels, but

also in the brain, where they notably interfere with the affective

component of pain experience. The lateral parabrachial nucleus

(LPB) represents the major brain output of spinal projection neu-

rons of the anterolateral tract (Todd, 2010). Remarkably, we

found that MORmCherry and DORGFP are expressed in distinct

subnuclei of the LPB, with DOR being predominantly present in

the dorsal part of the LPB (LPBD), while MOR is mostly ex-

pressed in the external part of the LPB (LPBE) (Figure 7A). The

amygdala and anterior cingulate cortex (ACC) are considered

key structures for the aversive quality of pain. Figures 7B and

7C shows that the segregated model of DOR and MOR expres-
(H) Representative trace showing that both deltorphin II and DAMGO induced GIR

recorded projection neurons indicates that 46.7% of them responded to both ag

(I) Triple labeling with an anti-GFP antibody, an anti-RFP antibody, and

Rosa26LSL-Zsgreen mice indicating that DOR and MOR are highly co-expressed in

Scale bars represent 50 mM. See also Figure S6.
sion seen in the DRG and dorsal horn extends to CNS circuits

that underlie pain affect. This divergent expression is most

evident in the amygdala (Figure 7B), where MOR is densely ex-

pressed by neurons of the capsular part of the central amygdala

(CeC) and by intercalated (ITC) cells, while DOR+ neurons are

mostly found in the basolateral amygdala (BLA). BLA neurons

are predominantly excitatory, receive inputs from cortical and

subcortical regions for attribution of emotional valence andmoti-

vational significance to noxious stimuli, and transmit this infor-

mation to the central amygdala. In contrast, the central amygdala

predominantly contains inhibitory neurons and is the major

output nucleus of the amygdala. It is clear, therefore, that DOR

and MOR have distinct functions in amygdalar circuits modu-

lating pain affect. Similarly, DORGFP+ and MORmCherry+ neu-

rons are segregated in different cortical layers of the ACC (Fig-

ure 7C). DOR is enriched in ACC laminae II/III, while MOR

predominates in layer V. In sharp contrast, and following the

functional organization pattern that we observed in spinal motor

circuits, almost all neurons of the pre-cerebellar Pn and LRt co-

express DORGFP and MORmCherry (Figures S7A and S7B).

DORs and MORs Internalize Independently in
Nociceptive Spinal Neurons
In contrast to DOR, which is trafficked to lysosomes and

degraded, MOR is largely recycled to the membrane and resen-

sitized after agonist-induced internalization (Tsao and von Zas-

trow, 2000; Whistler et al., 2002; Williams et al., 2013). Previous

trafficking studies, which relied primarily on in vitro heterologous

expression systems, proposed that DOR agonists regulate the

antinociceptive action of a MOR agonist by causing MOR co-

internalization and co-degradation with activated DORs (He

et al., 2011). Our identification of the lamina I-II nociceptive neu-

rons that co-express both receptors enabled asking whether

DOR and MOR co-trafficking indeed occurs in vivo.

We first examined the impact of SNC80 pre-treatment, which

induces DORGFP internalization and trafficking to lysosomes

(Pradhan et al., 2009; Scherrer et al., 2006), on MOR cellular dis-

tribution in DOR-MOR co-expressing dorsal horn neurons, using

immunostaining with anti-GFP and anti-MOR antibodies. Fig-

ure 8A shows that in control conditions DOR and MOR coexist

at the surface of the rare dorsal horn neurons that co-expresses

both receptors. SNC80 triggered robust DORGFP internalization

and accumulation in large-diameter vesicles in the perinuclear

region, consistent with its trafficking to lysosomes for degrada-

tion (Figures 8A and 8B). Most importantly, however, SNC80

treatment had no obvious impact on the distribution of MORs,

which rather than being co-internalized with DORGFP receptors,

remained at the cell surface. Because the presence of the GFP-

tag in the DORGFP mice could alter co-internalization and co-

degradation mechanisms, we repeated these experiments in

wild-type mice and again found that SNC80 did not cause

MOR trafficking to lysosomes (Figure S8A). These observations
K channel activation in a lamina I projection neuron. Summarized data from 15

onists.

VGAT-Zsgreen in sections from Oprd1gfp/gfp;Oprm1mCherry/mCherry;VgatCre;

ventral horn inhibitory interneurons.
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Figure 7. DOR and MOR Divergent Distribution in Brain Pain Circuits

(A) DOR and MOR are expressed by neurons located in different subnuclei of the lateral parabrachial nucleus. LPBD, lateral parabrachial nucleus, dorsal; LPBE,

lateral parabrachial nucleus, external; LPBC, lateral parabrachial nucleus, central; LPBV, lateral parabrachial nucleus, ventral; scp, superior cerebellar peduncle.

(B) Segregated expression of DOR- and MOR-expressing neurons in distinct amygdalar nuclei. BLA, basolateral amygdala; ITC, intercalated cells; CeC, central

amygdala, capsular; CeM, central amygdala, medial; CeL, central amygdala, lateral; MeA, medial amygdala; Pir, piriform cortex; CP, caudate putamen.

(C) Preferential distribution of neurons expressing DOR or MOR in layer II/III and V of the anterior cingulate cortex, respectively.

Scale bars represent 50 mM. See also Figure S7.
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Figure 8. MOR Is Not Co-internalized and Co-degraded with DOR in Response to DOR Agonists

(A) Co-staining with anti-GFP and anti-MOR antibodies in spinal cord sections from DORGFP mice indicates that the DOR agonist SNC80 (10 mg/kg, s.c., 2 hr

before tissue collection) causes DOR, but not MOR, internalization. White arrowheads indicate DOR+ MOR+ neurons. Scale bars represent 20 mM.

(B) Quantification of (A). Data are presented as mean ± SEM with dots showing individual neurons from 3 mice. ***p < 0.001, one-way ANOVA.

(C) DOR+MOR+ neurons are visually identified by GFP and mCherry fluorescence prior to recording.

(D) Despite SNC80 treatment, DAMGO, but not deltorphin II, still causes GIRK channels activation in spinal neurons that co-express DOR and MOR (n = 8).

(E) Effect of intrathecal deltorphin II (1 mg) against mechanical and heat nociception in wild-type mice. Co-injection of the MOR antagonist CTOP blocked the

residual deltorphin II-induced antinociception against heat pain in DOR global knockout mice. Data are presented as mean ± SEM, *p < 0.05, **p < 0.01, ***p <

0.001, repeated-measures, two-way ANOVA+Bonferroni. Von Frey threshold and hotplate tests: n = 10wild-typemice, 13DORKOmice, and 10DORKO+CTOP

mice; pinprick and tail immersion tests: n = 5 wild-type mice, 4 DOR KO mice, and 4 DOR KO+CTOP mice.

(F) DOR and MOR distribution map in pain and motor circuits. DOR is expressed by numerous populations of spinal neurons, including laminae I-II interneurons,

Clarke’s column neurons, Renshaw cells, ChAT+ V0c, and V1 inhibitory neurons in the ventral horn. DOR and MOR are often co-expressed in lamina I projection

neurons and V1 inhibitory neurons. In the brain, DORs and MORs are predominantly segregated in neurons of the lateral parabrachial nucleus (LPB), amygdala

(Amy), and anterior cingulate cortex (ACC) but are abundantly co-expressed in precerebellar motor control regions including the pontine nucleus (Pn) and lateral

reticular nucleus (LRt).

(legend continued on next page)
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suggest that in vivo, MOR is not co-internalized and co-

degraded with DOR in lysosomes. Similarly, intrathecal DAMGO

caused the internalization of MOR, presumably in recycling en-

dosomes beneath the plasma membrane (Williams et al.,

2013), without affecting the DORGFP signal, which remained at

the cell surface (Figures S8B and S8C).

We next used electrophysiology to examine the impact of DOR

trafficking to lysosomes on MOR function. Based on the co-

degradation hypothesis (He et al., 2011), one would predict

that SNC80 treatment should eliminate subsequent neuronal re-

sponses to both DOR andMORagonists. As expected, we found

that in slices from mice treated with SNC80, deltorphin II no

longer activates GIRK currents in lamina I-II neurons that co-ex-

press DORGFP andMORmCherry (0%, 0/8) (Figures 8C and 8D).

Remarkably, however, DAMGO-induced GIRK currents were

intact in these neurons (Figure 8D). Together with our histological

findings, these data suggest that DOR trafficking to and degra-

dation in lysosomes does not profoundly impact MOR function

in vivo in cells that co-express both receptors (see Discussion).

Of note, we attempted to directly probe the function of potential

DOR-MOR heteromers using the heteromer-biased agonist

CYM51010 (Gomes et al., 2013). However, control recordings

in DORKOmice revealed that this compound can cause the acti-

vation of GIRK currents in the absence of DOR (Figures

S9A–S9C).

The distinct expression pattern and trafficking properties of

DOR and MOR in dorsal horn neurons suggests that these re-

ceptors may have different functions in opioid-mediated pain

control. Our previous studies using dose responses of SNC80

(Scherrer et al., 2009) and the current analysis indicated that

DOR+ neurons in primary afferents and in the spinal cord pre-

dominate in circuits that regulate mechanical pain. On the other

hand, multiple studies showed that deltorphin II can increase the

threshold for not only mechanical but also heat pain (Beaudry

et al., 2009; Cahill et al., 2001; Gavériaux-Ruff and Kieffer,

2011; Gendron et al., 2007, 2015; Normandin et al., 2013; Por-

reca et al., 2003; Schuster et al., 2015). To address this discrep-

ancy, we next assessed the effect of intrathecal deltorphin II on

mechanical and heat pain both in wild-type and global DOR KO

mice. Consistent with previous studies, deltorphin II significantly

elevated both mechanical and heat thresholds in wild-type mice.

However, while deltorphin II-induced mechanical antinocicep-

tion was completely lost in DOR KOmice, deltorphin II-mediated

elevation of the heat pain threshold was intact (Figure 8E). These

opposing data from DOR KO mice and wild-type mice suggest

that in vivo, at the doses commonly used in the literature, intra-
(G) Schematic showing DOR and MOR distribution and function in dorsal horn p

lamina II, including those expressing SOM, CALB, CALR, or PKCg. The DOR+ S

noreceptor input and polysynaptically transmit this information to lamina I pro

transient-central cells and vertical cells. The lamina IIo vertical DOR+SOM+ neur

pathway may be controlled by inhibitory neurons expressing dynorphin (DYN+) (D

pain, lamina III VGLUT3+ neurons may receive Ab input (Peirs et al., 2015) and

CALR+), relaying this information dorsally to nociceptive neurons for the emergen

DOR+MOR+ projection neuronsmay receivemonosynaptic C/Ad nociceptive inpu

to transmit both heat and mechanical acute pain information. In the ventral ho

Renshaw cells, suggesting a function in motor output regulation. SOM, somatost

Cg; C, transient-central cells; VGLUT3, vesicular glutamate transporter type 3.

See also Figures S8 and S9.
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thecal deltorphin II can cross activate other opioid receptors in

addition to activating DOR. In support of this idea, we found

that deltorphin II-mediated antinociception against noxious

heat is blocked by the intrathecal co-injection of the MOR antag-

onist CTOP, indicating that the broadly observed effect of intra-

thecal deltorphin II against heat pain is dependent on MOR

(Figure 8E).

In summary, our analysis establishes that few spinal nocicep-

tive neurons co-express DOR and MOR and that in the rare neu-

rons in which they are co-expressed, the two receptors inter-

nalize and function independently. The schematics in Figures

8F and 8G highlight the segregated distribution and function of

DOR and MOR in major populations of primary sensory, spinal,

and brain neurons constituting pain circuits.

DISCUSSION

Functional Organization of DOR and MOR in Pain
Circuits
The spinal cord dorsal horn is an essential integrative center that

processes and transmits pain information to the brain (Basbaum

et al., 2009; Braz et al., 2014; Todd, 2010). MOR expression in

spinal neurons was described mainly in laminae I-II (Aicher

et al., 2000; Kemp et al., 1996; Spike et al., 2002; Trafton et al.,

2000). Earlier work using the anti-DOR3-17 antibody (Ab3-17) sug-

gested that DOR was only expressed at the central terminals of

peptidergic afferents and absent from spinal cord neurons (Dado

et al., 1993). We demonstrate here that both DOR and MOR are

broadly distributed in a variety of spinal interneurons and projec-

tion neurons.

We used agonist-induced receptor internalization in DORGFP

mice to reveal the distribution and identity of DOR+ neurons in

the spinal cord. We confirmed this DOR distribution pattern in

wild-type mice, by detecting Oprd1 transcripts and DOR

agonist-induced GIRK currents in spinal neurons. Interestingly,

DOR expression in spinal neurons may explain previous data re-

porting inhibition of substance P (SP) release by intrathecal DOR

agonists (Beaudry et al., 2011; Kouchek et al., 2013), despite the

segregated expression of SP and DOR in primary afferents (Bar-

doni et al., 2014; Mennicken et al., 2003; Minami et al., 1995;

Scherrer et al., 2009; Usoskin et al., 2015). SP, like DOR, is ex-

pressed by a population of excitatory interneurons in the dorsal

horn (Gutierrez-Mecinas et al., 2017; Xu et al., 2013). Therefore,

DOR agonists might directly act on DOR+ SP+ dorsal horn neu-

rons or other DOR+ connected CNS neurons, rather than on pri-

mary afferents, to depress SP spinal release.
ain circuits. DOR is expressed by multiple types of excitatory interneurons in

OM+ neurons located in lamina IIi ventral predominantly receive Ab mecha-

jection neurons, including those expressing DOR and/or MOR, via lamina II

ons may receive synaptic input from mechanonociceptors, and activity in this

uan et al., 2014). In the condition of injury-induced inflammatory or neuropathic

could engage DOR+ neurons in lamina IIi (including DOR+ PKCg+ or DOR+

ce of mechanical allodynia. In contrast, the populations of lamina I MOR+ and

ts fromMOR+peptidergic DRGneurons andmyelinatedmechanonociceptors

rn, DOR and MOR are co-expressed by V1 inhibitory interneurons, including

atin; DYN, dynorphin; CALR, calretinin; CALB, calbindin; PKCg, protein kinase



Most importantly, we found that DOR+ neurons in the dorsal

horn mainly correspond to the most ventral subpopulation of

SOM+ lamina II excitatory interneurons and to preferentially me-

chanoresponsive lamina I nociceptive projection neurons. Previ-

ous ablation and inhibitory chemogenetic studies of SOM+ dor-

sal horn neuron function showed that these cells are critical to

acutemechanical pain and injury-inducedmechanical hypersen-

sitivity (Christensen et al., 2016; Duan et al., 2014).We show here

that DOR activation in these cells causes membrane hyperpolar-

ization and reduces action potential firing via GIRK channel

opening. Therefore, DOR is optimally distributed in dorsal horn

circuits, both presynaptically at the terminals of mechanosen-

sory neurons and centrally in SOM+ neurons, to selectively con-

trol transmission of mechanical pain information to the brain. We

propose that DOR agonists reduce excitability of SOM+ inter-

neurons, mimicking the consequences of SOM+ neuron ablation

or chemogenetic inhibition (Christensen et al., 2016; Duan et al.,

2014), to limit injury-induced pathological polysynaptic neuro-

transmission between low-threshold mechanoreceptor inputs

in laminae IIiv-IV and lamina I nociceptive projection neurons

(Figure 8G). We recently described a descending pain control

circuit involving the spinal release of the endogenous DOR and

MOR agonist enkephalin (Francois et al., 2017) and the pronoci-

ceptive maladaptive function of MOR in TRPV1+ nociceptors

during prolonged agonist treatment (Corder et al., 2017). Future

studies will dissect the contribution of the different populations

of dorsal and ventral horn DOR and MOR receptor populations

to enkephalinergic pain and motor control and will determine

whether presynaptic DOR may also induce maladaptive plas-

ticity in mechanosensory neurons with sustained DOR agonist

exposure.

DOR and MOR Cooperation in Nociceptive Neurons
In Vivo

Previous studies suggested that interfering with DOR activity

could enhance morphine analgesia and reduce antinociceptive

tolerance (Abdelhamid et al., 1991; Chefer and Shippenberg,

2009; Daniels et al., 2005; Fujita et al., 2015; Gomes et al.,

2004; Schiller, 2005; Zhu et al., 1999). These findings were often

interpreted as resulting from functional interactions between

DOR and MOR, including in the same cells through heteromeri-

zation. In vitro studies using heterologous expression systems or

spinal cord tissue also provided evidence that the two receptors

may directly interact and form heteromers (Fan et al., 2005;

Gomes et al., 2004). For example, HEK293 cells overexpressing

Myc-DOR and HA-MOR constructs were used to investigate co-

operation between the two receptors (He et al., 2011). These

studies suggested that DOR agonists SNC80 or deltorphin II

can produce co-internalization and co-degradation of MOR,

which could attenuate morphine analgesia and contribute to

tolerance.

Here we make several key observations in vivo that lead us to

reconsider the physiological importance of these earlier find-

ings. First, we found that DOR and MOR are expressed in

largely distinct neurons along pain circuits. Second, we found

that DOR activation and internalization affects neither MOR

presence at the surface of neurons co-expressing both recep-

tors in vivo, nor the ability of DAMGO to activate GIRK channels,
arguing against MOR lysosomal co-degradation with DOR.

Therefore, it is unlikely that DOR intracellular control of MOR

function defines morphine-induced antinociception and adap-

tations associated with tolerance. Note, however, that given

the unknown sensitivity of immunohistological assays and re-

porter mouse lines, that the activation of a small fraction of

MORs can lead to maximal activation of GIRK currents, and

since direct receptor interactions might have other conse-

quences than co-degradation, our results do not rule out the ex-

istence of DOR-MOR heteromers. Additionally, DOR and MOR

can influence each other’s function through othermolecular and

cellular mechanisms in discrete neuronal populations or at the

circuit level in pain networks. The consequence of expressing

both receptors, rather than only one of them, on neuronal excit-

ability and neurotransmitter release, for a defined neuron in vivo,

is for example completely unexplored. Determining the precise

function of DOR+ MOR+ dorsal horn neurons will be necessary

to formulate testable predictions regarding the relevance of

DOR-MOR functional interactions for the modulation of so-

matosensory experience, including encoding of specific pain

(e.g., cutaneous versus visceral), temperature, itch, or touch

modalities. Here we provide an approach to answering these

questions as we identify trackable populations of neurons that

co-express DOR and MOR, including the small, but critical to

pain (Mantyh et al., 1997; Nichols et al., 1999), retrogradely

labeled population of nociceptive NK1R+ lamina I projection

neurons. Alternatively, the genetically defined large population

of En1+ ventral horn neurons may represent another ideal pop-

ulation for mechanistic studies of DOR-MOR cellular and mo-

lecular interactions (Figure 8F).

In conclusion, we resolve here the functional organization of

DOR and MOR, the two main opioid receptors for the control

of neurotransmission in pain circuits. This study provides the

fundamental basis for understanding the mechanism of action

of endogenous and exogenous opioids to develop improved

opioid analgesics, an urgent need given the chronic pain and

opioid epidemics (Institute of Medicine, 2011; Volkow and

McLellan, 2016).
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Anti-RFP Rabbit Abcam Cat# ab62341; RRID: AB_945213

Anti-NeuN Mouse Millipore Cat# MAB377; RRID: AB_2298772

Anti-PKCg Guinea Pig Strategic Biosolutions N/A

Anti-Calbindin Mouse Sigma-Aldrich Cat# C9848; RRID: AB_476894

Anti-Calretinin Goat Swant Cat# CG1; RRID: AB_10000342

Anti-parvalbumin Goat Swant Cat# PVG 214; RRID: AB_10000345

Anti-nNOS Rabbit Thermo Fisher Scientific Cat# 61-7000; RRID: AB_2313734

Anti-TLX3 Guinea Pig Dr. Carmen Birchmeier N/A

Anti-c-Fos Rabbit Abcam Cat# ab7963; RRID: AB_306177

Anti-PAX2 Rabbit Thermo Fisher Scientific Cat# 71-6000; RRID: AB_2533990

Anti-MOR Rabbit Abcam Cat# ab134054

Anti-CGRP Sheep Abcam Cat# ab22560; RRID: AB_725809

Anti-NK1R Rabbit Novus Biologicals Cat# NB300-119; RRID: AB_10002802

Anti-ChAT Goat Millipore Cat# AB144; RRID: AB_90650

Anti-CD11b Rat AbD Serotec Cat# MCA711G; RRID: AB_323167

Anti-Iba-1 Rabbit Wako Cat# 019-19741; RRID: AB_839504

Anti-P2Y12 Rabbit Dr. David Julius N/A

Anti-WGA Rabbit Sigma-Aldrich Cat# T4144; RRID: AB_261669

Chemicals, Peptides, and Recombinant Proteins

[D-Ala2]-Deltorphin II Sigma-Aldrich Cat# T0675

DAMGO Sigma-Aldrich Cat# E7384

CTOP Sigma-Aldrich Cat# P5296

Naloxone Sigma-Aldrich Cat# N7758

Naloxone Tocris Biosciences Cat# 0599

SNC80 Tocris Biosciences Cat# 0764

Fluorogold Thermo Fisher Scientific Cat# H22845

IB4 biotinylated Sigma-Aldrich Cat# L2140

Lucifer Yellow CH Thermo Fisher Scientific Cat# L453

Cholera Toxin Subunit B Alexa Fluor� 555 Conjugate Thermo Fisher Scientific C34776

Bicuculline Tocris Biosciences Cat# 2503

Strychnine Sigma-Aldrich Cat# S0532

CFA Sigma-Aldrich Cat# F5881

Critical Commercial Assays

RNAscope Multiplex Fluorescent Assay Advanced Cell Diagnostics Cat# 320850

RNAscope Probe- Mm-Oprd1 Advanced Cell Diagnostics Cat# 427371

RNAscope Probe- Mm-Oprd1-C2 Advanced Cell Diagnostics Cat# 427371-C2

RNAscope Probe- Mm-Sst Advanced Cell Diagnostics Cat# 404631

Experimental Models: Organisms/Strains

Mouse: DOR-EGFP Jackson Laboratories Stock#:029012; RRID: IMSR_JAX: 029012

Mouse: MOR-mCherry Jackson Laboratories Stock#:029013; RRID: IMSR_JAX: 029013

Mouse: DOR KO Jackson Laboratories Stock#:007557; RRID: IMSR_JAX: 007557

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Mouse: MOR KO Jackson Laboratories Stock#: 007559; RRID: IMSR_JAX: 007559

Mouse: DOR fl Jackson Laboratories Stock#: 030075; RRID: IMSR_JAX: 030075

Mouse: Vgat-IRES-Cre Jackson Laboratories Stock# 016962; RRID: IMSR_JAX:016962

Mouse: Vglut2-IRES-Cre Jackson Laboratories Stock# 016963; RRID: IMSR_JAX:016963

Mouse: Sst-IRES-Cre Jackson Laboratories Stock# 013044; RRID: IMSR_JAX: 013044

Mouse: En1-IRES-Cre Dr. Tom Jessell Kimmel et al., 2000

Mouse: Ai 14 (RCL-tdT) Jackson Laboratories Stock# 007914; RRID: IMSR_JAX:007914

Mouse: Ai 6 (RCL-ZsGreen) Jackson Laboratories Stock# 007906; RRID: IMSR_JAX:007906

Mouse: Penk-IRES-Cre Dr. Adam Hantman This paper

Sequence-Based Reagents

flox EX FW (50- GCAATCACACCTTGGCCATT-30) This paper N/A

flox EX RV (50- CCGATTGGGTCATTCAGGGA-30) This paper N/A

Recombinant DNA

AAV2-CBA-FLEx-WGA Dr. Reza Sharif-Naeini Petitjean et al., 2015

AAV-DJ-ef1a-DIO-eYFP Stanford University Gene Vector

and Virus Core

N/A

Software and Algorithms

pClamp10 Molecular devices N/A

Clampfit 10.3 Molecular devices N/A

Prism7 Graphpad N/A

Photoshop CS6 Adobe N/A

Illustrator CS6 Adobe N/A

Excel 2010 Microsoft N/A

Igor Pro 6 WaveMetrics N/A
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagents may be directed to, andwill be fulfilled by, the LeadContact and corresponding author,

Dr. Grégory Scherrer (gs25@stanford.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All procedures followed animal care guidelines approved by Stanford University’s Administrative Panel on Laboratory Animal Care

(APLAC) and the recommendations of the International Association for the Study of Pain. Mice were housed 2-5 per cage and main-

tained on a 12 hr light/dark cycle in a temperature controlled environment with ad lib access to food and water. We typically use male

mice with the age range from 3 to 8weeks old for our experiments. The generation and characterization ofOprd1egfp/egfpmice (Scher-

rer et al., 2006), Oprm1mCherry/mCherry mice (Erbs et al., 2015), Oprd1 knockout mice (Filliol et al., 2000), Oprm1 knockout mice

(Matthes et al., 1996), Oprd1flox/flox mice (Gaveriaux-Ruff et al., 2011), Vglut2Cre and VgatCre mice (Vong et al., 2011), SomCre mice

(Taniguchi et al., 2011), Engrailed1Cre mice (Kimmel et al., 2000), PenkCre mice (Francois et al., 2017), Cre-inducible ROSA26tdTomato

and ROSA26Zsgreen reporter mice (Madisen et al., 2010) have been described previously. C57BL/6 wild-type mice were purchased

from Jackson lab.

METHOD DETAILS

Drugs Administration
The following chemicals were used in this study: [D-Ala2]-Deltorphin II (Sigma T0675), [D-Ala2, N-Me-Phe4, Gly5-ol]-Enkephalin ac-

etate salt (DAMGO, Sigma E7384), CTOP (Sigma P5296), Naloxone (Sigma N7758), CYM51010 (Sigma SML0980), SNC80 (Tocris

Cat. No. 0764), Fluorogold (Thermo Fisher Scientific, H22845), Lucifer Yellow CH (Thermo Fisher Scientific, L453), Cholera Toxin

Subunit B (Recombinant) Alexa Fluor 555 Conjugate (Thermo Fisher Scientific, C34776). For inducing DOR internalization, SNC80

(10 mg/kg) was injected subcutaneously to lightly restrained unanesthetized mice using a 30 G needle attached to a microsyringe
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inserted through the back skin. For behavioral experiments, deltorphin II (1 mg), CTOP (100 ng) or a vehicle solution (0.9% sodium

chloride, Hospira NDC 0409-4888-10) were injected intrathecally. A 30 G needle attached to a microsyringe was inserted between

the L4/L5 vertebrae, puncturing through the dura (confirmed by the presence of a reflexive tail flick), and then 5 ml of drug was

injected.

Immunohistochemistry
We employed an immunostaining protocol described previously (Bardoni et al., 2014; Scherrer et al., 2009). Briefly, 5 to 8 week old

mice were deeply anesthetized with ketamine-xylazine and perfused transcardially with 0.1 M phosphate-buffered saline (PBS)

followed by 4% formaldehyde solution (Sigma F1635) in 0.1 M phosphate buffer (PB). The spinal cord was dissected, post-fixed

for 4 hr at 4�C, and cryoprotected overnight in 30% sucrose in PBS. Frozen spinal cord tissue was then cut at 40 mm and incubated

with a 5% NDST blocking solution (0.3% Triton X-100 sloution in 0.1 M PBS plus with 5% normal donkey serum) for at least 1 hr. The

primary antibodywas diluted in the same solution, and incubatedwith spinal cord sections overnight at 4�C. After washing the primary

antibody 3 times for 5 min with 0.3% Triton X-100 solution in 0.1M PBS, sections were incubated with secondary antibody solution in

1% NDST solution at room temperature for 2 hr. Sections were then mounted in the glass slide with Fluoromount (Southern Biotech)

after washing with PB for 3 times for 5 min. Imageswere acquired with a confocal microscope (Leica DM2500). We used the following

primary antibodies: anti-GFP: Abcam (chicken; 1:1000); Molecular Probes (rabbit; 1:1000), anti-RFP: Abcam (Rabbit; 1:1000);

anti-NeuN: EMD millipore (mouse; 1:1000); anti-PKCg: Strategic Biosolutions (guinea pig, 1:10000); anti-Calbindin: Sigma (Mouse;

1:1000); anti-Calretinin: Swant (Goat; 1:2000); anti-parvalbumin: Swant (Goat; 1:5000); anti-NOS: Thermo Fisher Scientific (Rabbit;

1:1000); anti-TLX3: Carmen Birchmeier (guinea pig; 1:10000); anti-c Fos: Abcam (rabbit; 1:500); anti-PAX2: Thermo Fisher Scientific

(rabbit; 1:50); anti-MOR: Abcam (rabbit; 1:500); anti-CGRP: Abcam (sheep; 1:2000), anti-NK1R: Novus Biologicals (Rabbit; 1:1000);

anti-ChAT: EMDMillipore (Goat; 1:100); anti-CD11b: AbD Serotec (Rat:1:1000); anti-Iba-1: Wako (Rabbit; 1:1000); Anti-WGA: Sigma

(Rabbit,1:1000) anti-P2Y12: gift fromDr. David Julius lab (Rabbit; 1:1000). To identify IB4-binding cells, biotinylated IB4 (Sigma, 1:500)

and fluorophore conjugated streptavidin (Molecular Probes, 1:1000) were used in place of primary and secondary antibodies.

In Situ Hybridization
We used Panomics’ QuantiGene ViewRNA (Affymetrix) and Advanced Cell Diagnostics RNAscope Technology (ACD Bioscience).

Briefly, wild-type mice with 5 to 8 week old were deeply anesthetized with ketamine-xylazine and perfused transcardially with

0.1MPBS followed by 4% formaldehyde solution in PB. Spinal cord or DRGwere dissected, cryoprotected in 30%sucrose overnight

and then frozen in OCT. Frozen tissue was cut at 14 mm onto Superfrost Plus slides and kept at �80�C. Tissue was thawed from

�80�C, washed with PBS at room temperature (RNAscope) or placed directly into 10% formalin for 10 min (QuantiGene ViewRNA),

and subsequently processed according to the manufacturer’s protocol. For QuantiGene ViewRNA, we treated the tissue with pro-

tease for an optimal time of 12 min and then incubated with the RNA probe set for 3 hr at 40�C. For RNAscope, we first pretreated

the tissue with solutions from the pretreatment kit to permeabilize the tissue, and then incubated with protease for 30 min and the

hybridization probe(s) for another 2 hr at 40�C.

Subcellular Fluorescence Density
The quantification of subcellular fluorescence density has been described previously (Scherrer et al., 2006). DORGFP or MOR IHC

fluorescence intensity values per surface unit (pixel) were determined using ImageJ after subtracting the nuclear background fluo-

rescence (fluorescence density, Df). Ratios of surface (Df surf) versus cytoplasmic (Df cyto) fluorescence densities were then calcu-

lated. A ratio value of 1.0 indicates equal DORGFP or MOR IHC fluorescence densities at the cell surface and in the cytoplasm.

Noxious Mechanical and Thermal Stimulation
In order to induce Fos expression in spinal cord dorsal horn neurons, the hindpaw of anesthetized DORGFP;MORmCherrymice were

either clamped with a surgical forceps (mechanical) or immersed in a 55�C water bath (thermal) for 30 s. Treatments were repeated

3 times with a 60 s interval. SNC80 was injected subcutaneously 60 min after noxious stimulation to trigger DOR internalization.

Genomic DNA Analysis
We used PCR on genomic DNA to detect exon 2 deletion in spinal cord but not DGR from Som Cre;Oprd1fl/fl mice (Figure S3C).

To confirm the selective ablation of DOR in the spinal cord somatostatin+ neurons, we designed two primers located outside

of the LoxP site for detecting the excised band. The forward primer (50- GCAATCACACCTTGGCCATT �30) and reverse primer

(50- CCGATTGGGTCATTCAGGGA�30) resulted in a 353bp DNA fragment that was seen in spinal cord but absent in DRG. Littermate

mice with the genotype SomCre; Oprd1+/+ used as a control subject.

Retrograde Tracing
Five to 8 week old DORGFP;MORmCherry or wild-type mice were anaesthetized with isofluorane and placed on a stereotaxic sur-

gical device (David Kopf Instruments). Three hundred nanoliters of fluorogold (FG, 1 mg/mL) or the B fragment of cholera toxin Alexa

fluor 555 (CTB 555, 0.5 mg/mL) were injected unilaterally with a glass micro-pipette into the lateral parabrachial nucleus (antero-pos-

terior,�5.0 mm; medio-lateral, 1.4 mm; dorso-ventral, 3.5 mm) or cerebellum (antero-posterior, �6.95 mm; medio-lateral, 1.75 mm;
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dorso-ventral, 2.5mm) at a rate of�60 nL/min. 5-7 days following injection, spinal cord and brain tissue was collected for histological

or electrophysiological analysis.

For spinal injections of Cre dependent WGA and YFP virus, thoracic vertebra L4 was exposed by carefully removing the paraspinal

muscles. The animal was then placed into a stereotaxic frame and vertebrae were immobilized using a pair of spinal adaptors. The

T12 dorsal spinous process was removed to expose the duramater and lumbar spinal cord. Viral vectors (mixed with a ratio of 2 YFP-

expressing vector for 1 WGA-expressing vector) were injected to the right of the posterior median spinal vein at a depth of 300 mm.

Pulled glass micropipettes were used to inject 250 nL of vector solution at a speed of 40 nL/min. Spinal cord tissue was collected for

histological 4 weeks after injection.

Spinal Cord Slice Preparation and Electrophysiology
Three to 8 week old mice were anesthetized with isoflurane, decapitated, and the vertebral column was rapidly removed and placed

in oxygenated ice-cold dissection solution (in mM: 95 NaCl, 2.5 KCl, 1.25 NaH2PO4, 26 NaHCO3, 50 sucrose, 25 glucose, 6 MgCl2,

1.5 CaCl2, and 1 kynurenic acid, pH 7.4, 320 mOsm). The lumbar spinal cord was isolated, embedded in a 3% agarose block and

transverse slices (400 mm thick) with dorsal roots attachedweremade using a vibratingmicrotome (Leica VT1200S). Sliceswere incu-

bated in oxygenated recovery solution (in mM: 125 NaCl, 2.5 KCl, 1.25 NaH2PO4, 26 NaHCO3, 25 glucose, 6 MgCl2, and 1.5 CaCl2,

pH 7.4, 320 mOsm) at 35�C for 1 hr. Patch-clamp recording in whole-cell configuration was performed at RT on laminae I-II neurons

visualized with an Olympus BX51WI microscope fitted with a QIClick QImaging camera. Slices were perfused at �2 mL/min with

recording solution (recovery solution containing 1 mM MgCl2 and 2 mM CaCl2). Recordings were performed in voltage-clamp

mode at a holding potential of�70 mV. Thick-walled borosilicate pipettes, having a resistance of 3-6 MOhm, were filled with internal

solution (in mM: 120 K-methyl-sulfonate, 10 NaCl, 10 EGTA, 1 CaCl2, 10 HEPES, 0.5 NaGTP, 5MgATP, pH adjusted to 7.2 with KOH,

osmolarity adjusted to 305 with sucrose). Data were acquired using a Multiclamp 700B amplifier and pClamp10 software (Molecular

Devices, USA). Sampling rate was 10 kHz and datawere filtered at 2 kHz.Wemonitored opioid receptor-mediatedGIRK currents as a

read out to determine whether a neuron expresses DOR or MOR, following bath perfusion of the DOR agonist deltorphin II (1 mM) or

MOR agonist DAMGO (1 mM). For dorsal root stimulation experiments, the dorsal root was stimulated using a DS4 Bi-phasic current

stimulator (Digitimer, UK), every 30 s for 0.2 ms with an intensity of 20 mA, 100 mA or 500 mA for Ab, Ad and C fibers, respectively

(Torsney and MacDermott, 2006). Ab, Ad or C fiber responses were characterized as monosynaptic based on the constant

conduction latency and absence of failure during a train of stimuli at 20, 10 or 1 Hz frequency, respectively. Analysis of eEPSC

peak amplitudes was done with Clampfit software (pClamp9, Molecular Devices, USA). Graphs and statistical analysis were

generated with Igor Pro and Microsoft Excel.

Behavioral Tests
For all behavior sensory assays described below, mice were acclimated to the testing environment for at least 30 min within custom-

made red plastic cylinders (10.16 cm D) on a raised perforated metal platform (60.96 cm H). Baseline testing was conducted 30 min

prior to drug injections, and drug effects were assessed at 30 min post administration.

To induce inflammation pain, 10 mL of undiluted-CFA solution (Complete Freund’s Adjuvant, Sigma F5881) was injected into the

glabrous skin of left hindpaw by a 30G needle. Behavioral assays were performed 72 hr after injection.

To induce a chronic pain state, we utilized amodified version of the SparedNerve Injury (SNI) model of neuropathic pain. This robust

and reliable model entails surgical damage to two of the sciatic nerve branches (common peroneal and tibial branches) while sparing

the third (sural branch). Following the SNI procedure, the receptive field of the lateral aspect of the hindpaw (innervated by the sural

nerve) displays a hypersensitive phenotype. To perform this peripheral nerve injury procedure, anesthesia was induced and main-

tained throughout surgery with isoflurane (4% induction, 1.5%maintenance in oxygen). The left hind-leg was shaved andwiped clean

with alcohol and betadine. A 1 cm incision was made in the skin of the upper thigh, approximately where the sciatic nerve trifurcates.

The overlying biceps femorismuscleswere retracted by blunt dissection, exposing the commonperoneal, tibial, and sural branches of

the sciatic nerve. Next, 2 mm of both the common peroneal and tibial nerves were transected and removed, with care not to distend

the sural nerve. The muscle was then sutured with 6–0 sutures, and the skin closed with tissue adhesive (3M Vetbond), followed by a

Betadine application. During recovery from surgery, mice were placed under a heat lamp until awake and achieved normal balanced

movement. Mice were then returned to their home cage and closely monitored over the following three days for well-being or the

spared nerve injury (SNI) induced neuropathic pain animals, behavioral assays were performed 28 days after the SNI surgery.

Von Frey withdrawal threshold test

A set of 8 von Frey filaments (Stoelting, Illinois), ranging from 0.007 to 6.0 g were used to assess mechanical withdrawal thresholds.

Filaments were applied perpendicular to the ventral-medial hindpaw surface with sufficient force to cause a slight bending of the fila-

ment. A positive response was characterized by a rapid withdrawal of the paw away from the stimulus fiber within 4 s. The Up-Down

method was used to determine the mechanical threshold (50% withdrawal threshold) (Chaplan et al., 1994).

Von Frey withdrawal frequency test

To evaluate mechanical sensitivity we used six von Frey filaments (0.07 g, 0.16 g, 0.4 g, 1.0 g and 1.4 g and 6 g for normal mice;

0.008 g,0.02 g,0.07 g,0.16 g,0.4 g,1 g for SNI pain model mice). Filaments were applied perpendicular to the ventral-medial hindpaw

surface with sufficient force to cause a slight bending of the filament. Each filament was applied for one second. A positive response
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was characterized by a rapid and immediate withdrawal of the paw away from the stimulus fiber. Each filament was applied a total of

5 times, and the frequency of reflexive withdrawal responses was calculated.

Pinprick withdrawal frequency test

Wegently touched the plantar surface of the hindpawwith a blunted 25G needle, andmeasured numbers of withdrawal response per

5 tries with 1 min intervals.

Hot plate test

Mice were acclimated to the testing environment as described above. The plate temperature was set to 52.5 �C. The mouse was

placed on the plate and the latency to lick and/or bite a hindpaw was scored. A cut-off of 20 s was set to prevent tissue damage.

Tail immersion test

The mouse was gently restrained and 2 cm of the tip of the tail was submerged in the 50 �C water bath, and the latency to reflexively

withdrawal the tail from thewater was recorded as a positive nociceptive reflex response. Amaximal cut-off of 20 s was set to prevent

tissue damage. Only one tail immersion was applied on a given testing session, as to prevent behavioral sensitization that can result

from multiple noxious immersions.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analysis was performed with Igor Pro, GraphPad prism 7 or Microsoft Excel software. No assumption was made

regarding the distribution of the data. Statistical comparison was performed using Student’s t test, one-way ANOVA or repeated-

measures ANOVA andBonferroni-Dunn post hoc test. Quantification data are presented asmean ±SEMwith dots showing individual

data points and p < 0.05 was considered statistically significant. Except when specifically indicated, the numbers of replications (n)

represent the total number of animals used in immunohistochemical or behavioral experiments, and the number of neurons recorded

in electrophysiological experiments.
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