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SPIKE DETECTION FOR CALCIUM ACTIVITY

HERMINE BIERMÉ, CAMILLE CONSTANT, ANNE DUITTOZ, AND CHRISTINE GEORGELIN

Abstract. We present in this paper a global methodology for the spike detection in a biological context of

fluorescence recording of GnRH-neurons calcium activity. For this purpose we first propose a simple stochastic

model that could mimic experimental time series by considering an autoregressive AR(1) process with a linear
trend and specific innovations involving spiking times. Estimators of parameters with asymptotic normality

are established and used to set up a statistical test on estimated innovations in order to detect spikes. We

compare several procedures and illustrate on biological data the performance of our procedure.
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1. Introduction

The neurohormone gonadotropin-releasing hormone (GnRH) controls the reproductive function in males
and females mammals. GnRH controls the secretion of two pituitary hormones: luteinizing hormone (LH)
and follicle stimulating hormone (FSH) that control the secretion of sexual hormones by gonads (estrogens,
progesterone from ovary and androgens from testis) and gametogenesis (follicle development and spermatoge-
nesis). GnRH is synthesized and secreted by a small number of neuroendocrine neurons, the so-called GnRH
neurons. Studies on large animals such as sheep, allowed serial blood sampling from portal vessels in conscious
animals and revealed that GnRH secretion was pulsatile and that every LH pulse was preceded by a GnRH
pulse (Levine et al. 1982 [24], Clarke et al. 1982 [9], Caraty and al. in 1982 [8]).

Understanding the mechanisms underlying this pulsatility of secretion is one key-clue for the comprehension
of infertility linked to hypothalamic dysfunctions. GnRH-neurons are dispersed in the anterior hypothalamus
and in situ and simultaneous measurement of numerous neurons cannot be achieved. In vitro approaches have
allowed to decipher part of some electrophysiological mechanisms [27, 34], showing the existence of periodic
synchronization of electrical activity (see Moenter 2010 [27] for a review), intracellular calcium activity corre-
lated with secretion (Constantin et al. 2009 [10], see Wray 2010 [34] for a review). In the present paper, data
was obtained from in vitro primary cultures of GnRH neurons derived from mouse embryonic nasal placodes
(see Constantin et al. 2009 [10] for biological methodology). In a previous study, Georgelin et al ([16]) showed
the existence of a paracrine/ autocrine regulation by endogenous released GnRH on intracellular calcium ac-
tivity in the neuronal population. The application of a GnRH antagonist blocking the paracrine/autocrine
loop abolished high synchronization events between GnRH neurons which can be defined by a great percentage
of neurons simultaneously exhibiting a peak of intracellular calcium (calcium event at a time t). This peaks
have a duration of several seconds (3-8) and reflect a sustained increase in intracellular calcium. One crucial
step in analyzing data is to correctly detect calcium peaks.

Fluctuations on ([Ca2+]i) are recorded as fluorescence signals captured at a given frequency (here 1 acqui-
sition per second). This fluorescence is directly proportional to the amount of intracellular calcium. However,
the intensity of fluorescence may present baseline variations due to methodological causes (fading) or environ-
mental causes (pH, temperature...) but also to high frequency and low amplitude variation in intracellular
calcium due synaptic input from neurons in the network. It is then important to be able to isolate the real
signal from the noise. Fluorescence was quantified at each unit of time as the mean fluorescence intensity
measured in each neuron (cell body) identified as a GnRH neuron. This leads to trajectories like the one
showed in Figure 1.

The aim of this paper is to improve the detection of so-called calcium events. A [Ca2+]i peak was detected
at time t if the fluorescence value at t was greater or equal to the average value of the 5 previous points plus
cf times the standard deviation of five previous point. This coefficient cf is empirically fixed by the biologists
to separate ”true calcium events” of so-called ”noisy calcium events” regardless the observed neuron. Because
the decision of being a calcium event is strongly linked to this coefficient cf and will deeply influence the
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Figure 1. Neuronal trajectory from biological data: complete trajectory at left, first 100
values at right.

synchronization analysis, we want to have a robust method to decide whether a peak is an event or not and
that could take in account the variability in the fluorescence response. Therefore we proposed a model for the
calcium signal and two tests to determine the pics and we will compare them in Section 4.

Inspired by continuous Integrate-And-Fire models (see [7] or [17]), we propose a discrete stochastic model
for single recording trajectories. Such a discretization procedure allows us to identify the model with an
autoregressive process of order 1 (AR(1)) with a linear trend. Such a model can also be viewed as a linear
trend with autoregressive errors and we can use main results developed for time series [5] and especially AR(1)
processes. Spiking times are then described through the innovation process.

Several results were proposed to estimate the linear or autoregressive coefficients [30, 32]. We compare
here the two main strategies: the first one based on a global contrast function and the second one (called
two step estimation) based on a first estimation of the trend followed by the regression coefficient estimate
on the detrended series in the spirit of [31]. Then this allows us to get access to estimated innovations, cor-
responding to a Gaussian mixture with two components with identical standard deviation. Therefore we can
use classical mixture estimation [26] and devoted package (fitgmdist in Matlab and Mclust in R [14]) to
estimate parameters and the two classes of times: those that are spiking times and those that are not. Hence
we propose several tests for spiking times and compare their sensitivity/specificity on simulated trajectories
and show their relevance compared to the initial strategy.

The paper is organized as follows. In Section 2 we describe the parametric model and explain the role of
each parameters in link with our biological context. We set and study estimators in Section 3. We obtain
explicit asymptotic variances and compare two strategies on some numerical simulations. Section 4 is devoted
to our different test strategies, whose efficiency is compared using ROC curves on simulated data. We conclude
this paper by several examples from a biological experiment. Some numerical illustrations and technical proofs
are postponed to an Appendix section.

2. Model

2.1. Discrete model. In our biological context, the fluctuation of the calcium concentration is due on the
one hand to natural clearance and on the other hand to sudden supplies released from the Reticulum. But
ionic channels near the membrane of neurons can provide puffs of calcium and one has to consider also that
indirect measurement can provide experimental noise. Moreover, a lot of experiments exhibit a more or less
linear trend (see Section 5) probably due to the response fatigue of the fluorescence.
In a continuous setting, several models for spiking neurons like stochastic leaky integrate-and-fire models [7]
have been proposed. In their simplest form, they are solutions of the diffusion equation (see [20]):

dXt =
1

τ
(µ(t)−Xt)dt+ λdNt + σdWt,

where µ is a time inhomogeneous input, W a Brownian motion and N an homogeneous Poisson process
indepedent from W . We refer to [12] for a complete review on parameter estimation in the case λ = 0. Note
that in general this equation is used to model the voltage potential for which one can extract electrophysiological
events and restrict the study between consecutive spikes. In our context of calcium signals we are precisely
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interested in detecting spiking activity (see [1]). Since our observed data are recorded in a discrete sampling
with a constant step time and in order to take every phenomenon into account, we consider a kind of discrete
version obtained from an infill scheme for this model (see Section 6.1 for more details). Hence we assume to
observe the n ≥ 1 points of the following autoregressive process with linear trend:

(1) ∀k ∈ {0, ..., n− 1}, Xn,k+1 = φXn,k + a+ bk/n+ λUk+1 + σεk+1

where

• φ ∈ [0, 1) is the coefficient of the autoregressive process, linked to the clearance of the calcium;
• a ∈ R and b ∈ R correspond to the coefficients of the linear drift.
• (Uk)k∈{1,...,n} represents the jump times (instants of release from the Reticulum) : it is a family of iid

random variables with common distribution B(ν) for some ν ∈ [0, 1), the jump rate; the jump size is
given by λ ∈ (0,+∞).

• (εk)k∈{1,...,n} represents the experimental noise or stochastic flux from the channels at the membrane

with ratio given by σ ∈ (0,+∞): it is a family of iid random variables with common distribution
N (0, 1).

Let us remark that we have simplified the Poisson process giving spiking times by a simple Bernoulli
sequence. This approximation may be justify when the lapse time of acquisition is very short. Actually,
considering an homogeneous Poisson point process of intensity µ > 0, the interspiking duration is given by
iid exponential random variables of parameter µ such that their entire upper part is given by iid geometrical
random variables of parameter ν = 1− e−µ.

We give an illustration of a typical realization of this sequence in Figure 2. In order to understand the
effect of the parameters in the the final trajectory we have also plotted the purely jumps one (case without
noise nor drift) and the drifted jumps ones (only noise is removed). The initial value X0 has been chosen as
the experimental one observed in Figure 1. Let us emphasize that due to both regression coefficient and noise
contributions jumps are not necessarily local maxima of the sample paths.

Figure 2. One simulation of a trajectory for ν = 0.15, λ = 10, φ = 0.5, n = 100. From left
to right: only the jumps innovations (σ = a = b = X0 = 0), the same jumps innovations with
a drift (a = 1200, b = −30, X0 = 520, σ = 0) the same jumps innovations with a drift and
a gaussian noise (a = 1200, b = −30, X0 = 520, σ = 5): the jumps times are marked with a
cross.

In the sequel we will consider the centered innovations (Zk)k corresponding to

Zk = λ (Uk − ν) + σεk,

in such a way that (Zk)k is an iid sequence of centered random variables with common variance σ2
Z = λ2ν(1−

ν) + σ2. As a consequence, denoting m = a+ λν we may simply rewrite (1) as

(2) ∀k ∈ {0, ..., n− 1}, Xn,k+1 = φXn,k +m+ bk/n+ Zk+1.

The introduction of a and b in the regression equation contributes to a linear trend of the sequence. It will
therefore be convenient to assume furthermore that

(3) ∀k ∈ {0, ..., n}, Xn,k = Yk + cn + dk/n

with (Yk)k a stationary centered solution of the AR(1) equation

(4) Yk+1 = φYk + Zk+1,
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It follows that the relation between a, b, cn and d is given by

(5) cn(1− φ) + d/n = a+ λν, d(1− φ) = b iff cn = c− b

n(1− φ)2
, with c =

a+ λν

1− φ
and d =

b

1− φ
.

Actually, under (3) we have

Xn,k+1 = cn + d
k + 1

n
+ Yk+1

= cn + d
k + 1

n
+ φYk + Zk+1 by (4)

= φXn,k + (1− φ)cn + (1− φ)d
k

n
+ d

1

n
+ Zk+1 by (3)

= φXn,k + (a+ λν) + b
k

n
+ Zk+1,

by (5), so that we get (2). Let us remark that when (X̃n,k)0≤k≤n is any solution of (2), one will have

(6) X̃n,k = Xn,k + φk(X̃n,0 −Xn,0),

that could be used to extend results in this more general setting using the fact that |φ| < 1.
The unknown parameters are therefore given by (a, b, φ, λ, ν, σ) or equivalently by (c, d, φ, λ, ν, σ). Our

strategy will consist in first estimating the innovation process (Zk)k through the estimation of (m, b, φ) for
m = a+ λν and then working on the estimated innovations in order to complete the estimation of the whole
parameters and detect times of jumps simply defined as Jn = {k ∈ {1, . . . , n} ; Uk = 1}.

3. Parameter Estimation

3.1. Preliminary useful results concerning AR(1) processes. In this section we first give some useful
theoretical results when considering (Yk)k a stationary centered solution of the AR(1) equation (4) (see [5]
for instance). Assuming that (Zk)k is an iid sequence with E(Zk) = 0 and Var(Zk) = σ2

Z < +∞, one can
represent (Yk)k as a causal MA(∞) process:

(7) Yk =

+∞∑
n=0

φnZk−n,

where the convergence of the series holds in L2(Ω). In particular, it follows that (Yk)k is a stationary centered
second order process with covariance function given by

ρY (k) = Cov(Yk, Y0) =
φ|k|

1− φ2
σ2
Z .

In order to compute asymptotic variances for the proposed estimators we will need the following results, that
we give under general assumptions on innovations since it may be usefull for other settings.

Theorem 1. Let (Zk)k be a sequence of iid centered random variables with E(Z4
0 ) < +∞ and (Yk) its associated

AR(1) process with autoregression coefficient φ ∈ (−1, 1) given by (7). Then we have the following asymptotic
normality

1√
n

(
n−1∑
k=0

Yk,

n−1∑
k=0

k

n
Yk,

n−1∑
k=0

(Y 2
k − ρY (0)),

n−1∑
k=0

YkZk+1

)
d−→

n→+∞
N (0,Σ1) ,

with

Σ1 =
σ2
Z

(1− φ)2


1 1

2

E(Z3
0)

(1+φ)σ2
Z

0

1
2

1
3

E(Z3
0)

2(1+φ)σ2
Z

0

E(Z3
0)

(1+φ)σ2
Z

E(Z3
0)

2(1+φ)σ2
Z

(E(Z4
0 )−3σ4

Z)

(1+φ)2σ2
Z

+ 2σ2
Z

(1+φ2)
(1−φ)(1+φ)3

2σ2
Zφ

(1+φ)2

0 0
2σ2
Zφ

(1+φ)2 σ2
Z

1−φ
1+φ

 .

This result implies consistency of the corresponding empirical means but actually we have even stronger
convergence as stated in the following corollary.

Corollary 1. Let (Zk)k be a sequence of iid centered rv with E(Z4
0 ) < +∞ and (Yk) its associated AR(1)

process with autoregression coefficient φ ∈ (−1, 1) given by (7). Then we have the following convergence almost
surely and in L2:
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i) 1
n

n−1∑
k=0

Yk → 0 and 1
n

n−1∑
k=0

k
nYk → 0;

ii) 1
n

n−1∑
k=0

Y 2
k → ρY (0) = 1

1−φ2σ
2
Z ;

iii) 1
n

n−1∑
k=0

YkZk+1 → 0 and 1
n

n−1∑
k=0

YkYk+1 → ρY (1) = φ
1−φ2σ

2
Z .

Moreover, denoting Y n = 1
n

n−1∑
k=0

Yk, one has

1√
n

(
n−1∑
k=0

[(
Yk − Y n

)2 − ρY (0)
]
,

n−1∑
k=0

[(
Yk − Yn

) (
Yk+1 − Y n

))
− ρY (1)

]
d−→

n→+∞
N (0,Σρ) ,

with

Σρ = ρY (0)2

(
(η − 3) + 2 1+φ2

1−φ2 φ(η − 3) + 4φ
1−φ2

φ(η − 3) + 4φ
1−φ2 (η − 3)φ2 + 4 φ2

1−φ2 + 1 + φ2

)
,

where η =
E(Z4

0 )

σ4
Z

. Hence, for φ̂n :=

n−1∑
k=0

(Yk−Yn)(Yk+1−Y n)
n−1∑
k=0

(Yk−Y n)
2

we have

√
n
(
φ̂n − φ

)
d−→

n→+∞
N
(
0, 1− φ2

)
.

Proof. It is sufficient to remark that when (Uk)k∈N is a sequence of L2 centered random variables with
|Cov(Uk, Ul)| ≤ r(|k − l|), for all l, k ∈ N and r satisfying

∑
k∈N r(k) < +∞ then

1

n

n−1∑
k=0

Uk −→
n→+∞

0 and
1

n

n−1∑
k=0

k

n
Uk −→

n→+∞
0 a.s. and in L2.

Actually, with a slight abuse of notation, let Un := 1
n

n−1∑
k=0

k
nUk and note that

Var
(
Un
)

=
1

n2

n−1∑
k=0

n−1∑
l=0

kl

n2
Cov(Uk, Ul)

≤ C

n
,

with C =
∑
k∈Z r(|k|). This proves that (Un)n converges to 0 in L2 since E(Un) = 0 by assumption. Moreover,

by Markov’s inequality one has P(|Un| ≥ ε) ≤ C
nε2 for ε > 0 ensuring that (Un2)n converges a.s. to 0 according

to Borel Cantelli lemma. Now, let n ∈ N∗ and note that, for n2 + 1 ≤ l ≤ (n+ 1)2, we can write

Ul =

(
n2

l

)2

Un2 +
1

l

l−1∑
k=n2

k

l
Uk.

It follows that

Vn := sup
n2+1≤l≤(n+1)2

|Ul| ≤ |Un2 |+ 1

n2

(n+1)2−1∑
k=n2

|Uk|,

and then satisfies ‖Vn‖L2 ≤
√
C
n +

√
r(0) 2n+1

n2 ≤ 4
√
C
n . Markov’s inequality and Borel Cantelli lemma allow

again to conclude that (Vn)n converges a.s. to 0 and therefore (Un)n also. The result for 1
n

n−1∑
k=0

Uk can be even

more easily obtained following the same sketch of proof. Now it is enough to remark that assumptions are
fulfilled with Uk = Yk for i) and Uk = Y 2

k − ρY (0) for ii) according to Lemma 1 Equation (5) (see Appendix).
For iii) we can use Uk = YkZk+1 with Lemma 1 Equation (3) and using the AR(1) equation (4) we can write

1

n

n−1∑
k=0

YkYk+1 = φ
1

n

n−1∑
k=0

Y 2
k +

1

n

n−1∑
k=0

YkZk+1 −→
n→+∞

φρY (0) = ρY (1) a.s. and in L2.
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The central limit theorem and φ-estimator that follow are classical results (see [5] for instance) that we can

recover by Theorem 1. Actually, since Y n = OP

(
1√
n

)
the asymptotic normality follows from the fact that(

n−1∑
k=0

[
Y 2
k − ρY (0)

]
,

n−1∑
k=0

[YkYk+1 − ρY (1)]

)

is just a linear transformation of

(
n−1∑
k=0

[
Y 2
k − ρY (0)

]
,
n−1∑
k=0

YkZk+1

)
with corresponding matrix given by A =(

1 0
φ 1

)
and we find Σρ = AΣ3,4

tA, where Σ3,4 denotes the extracted matrix of Σ1 corresponding to lines

and rows number 3 and 4, that corresponds to the asymptotic covariance matrix obtained in Proposition 7.3.4.

of [5]. Then using delta-method for g(x, y) = y
x we may prove the asymptotic normality of φ̂n with asymptotic

variance given by Dg(ρY (0), ρY (1))Σρ
tDg(ρY (0), ρY (1)) where Dg(ρY (0), ρY (1)) = 1

ρY (0)

(
−φ 1

)
. �

Remark 1. Let us mention that these convergences may be strengthen using ergodic properties of (Yk)k.
Actually, according to [2], since the innovation Z0 has a non trivial absolutely continuous component and
E(log(Z0)+) < +∞, the AR(1) process (Yk)k is strong mixing and hence ergodic. Therefore, by the ergodic
theorem (see Corollary 9.1.3 of [13] for instance), for any measurable function g : R→ R such that E(g(Y0)2) <
+∞ we have

1

n

n−1∑
k=0

g(Yk)→ E(g(Y0)), almost surely and in L2.

Let us also note that these results may be extended to non stationary solutions of the AR(1) equation whatever
the initial solution is in view of (6).

3.2. Estimation of the innovations (Zk)k∈{1,...,n}.

3.2.1. Estimation of m = a + λν, b and φ. In view of (2), we first derive an estimator for θ := (m, b, φ) =
(a − λν, b, φ) as a contrast based estimator. To this end let us consider the contrast function, defined for

θ̃ = (m̃, b̃, φ̃) ∈ R3 as

Mn(θ̃) =

n−1∑
k=0

(
Xn,k+1 − φ̃Xn,k − m̃− b̃

k

n

)2

.

The minimizer of this quadratic functional is given by

(8) θ̂(1)
n := (tAn(X)An(X))−1 tAn(X)X = (m̂(1)

n , b̂(1)
n , φ̂(1)

n )

where An(X) =

 1 0 Xn,0

...
1 n−1

n Xn,n−1

 is the random matrix of coefficients. Adapting classical proofs for

M-estimators (see [33] for instance), we prove the following results (see Appendix).

Theorem 2. Let us assume that (Xn,k)0≤k≤n satisfies (2) for some θ = (m, b, φ), following from (3), with
(Zk) an iid sequence of centered random variables with E(Z4

k) < +∞. Then,

(9) θ̂(1)
n := (tAn(X)An(X))−1 tAn(X)X −→

n→+∞
θ a.s.

Moreover,
√
n
(
θ̂(1)
n − θ

)
d−→

n→+∞
N (0,Σ2) ,

where, for σ2
Z := Var(Z0), the matrix Σ2 is given by

Σ2 =

 m2 1+φ
1−φ + 4σ2

Z mb 1+φ
1−φ − 6σ2

Z −m(1 + φ)

mb 1+φ
1−φ − 6σ2

Z b2 1+φ
1−φ + 12σ2

Z −b(1 + φ)

−m(1 + φ) −b(1 + φ) 1− φ2

 ,

or equivalently, writing c = m
1−φ and d = b

1−φ , by

Σ2 =

 c2
(
1− φ2

)
+ 4σ2

Z cd
(
1− φ2

)
− 6σ2

Z −c
(
1− φ2

)
cd
(
1− φ2

)
− 6σ2

Z d2
(
1− φ2

)
+ 12σ2

Z −d
(
1− φ2

)
−c
(
1− φ2

)
−d
(
1− φ2

)
1− φ2

 .
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Remark 2. Let us note that for m and b be fixed, asymptotic variances of (m̂
(1)
n )n and (b̂

(1)
n )n are increasing

as φ increases to 1, while it is the opposite for c and d be fixed since in this case m = c(1−φ) and b = d(1−φ)
become smaller with φ.

We check empirically this result for different values of φ in Figure 21, postponed to Section 6.4. As expected,
in view of the asymptotic variance, the performances are better for φ not too close from 1.

3.2.2. Estimation of the trend. Theorem 2 allows us to build an estimator of the parameters c = m
1−φ and

d = b
1−φ linked with the observed linear trend driven by cn = c− d

n(1−φ) and d by considering

ĉ(1)
n =

m̂
(1)
n

1− φ̂(1)
n

− b̂
(1)
n

n(1− φ̂(1)
n )2

and d̂(1)
n =

b̂n

1− φ̂n
.

Since cn → c, as n→ +∞, we can deduce from Theorem 2 both strong consistency and asymptotic normality.

Proposition 1. Under the assumptions of Theorem 2

√
n
(

(ĉ(1)
n , d̂(1)

n , φ̂(1)
n )− (c, d, φ)

)
d−→

n→+∞
N (0,Σ3) ,

with

(10) Σ3 =


4σ2
Z

(1−φ)2 − 6σ2
Z

(1−φ)2 0

− 6σ2
Z

(1−φ)2
12σ2

Z

(1−φ)2 0

0 0 1− φ2

 .

Proof. We consider the function from R3 to R3 defined ∀(x, y, z) ∈ R3 by:

g (x, y, z) =

(
x

1− z
,

y

1− z
, z

)
,

such that
√
n
((
ĉ(1)
n , d̂(1)

n , φ̂(1)
n

)
− (c, d, φ)

)
=
√
n
(
g(θ̂(1)

n )− g(θ)
)

d−→
n→+∞

N
(
0, Dg(θ)Σ2

tDg(θ)
)
.

by Theorem 2 and the delta-method ([33]), with

Dg(θ) =
1

1− φ

 1 0 c
0 1 d
0 0 1− φ

 .

�

Remark 3. Note that the asymptotic covariance does not depend on c, d and that we get an asymptotic

independence between
(
ĉ
(1)
n , d̂

(1)
n

)
and φ̂

(1)
n in contrast with previous results.

We illustrate this result in Figure 22 (see Section 6.4) and compare for several values of φ and σ in Figure
3 below.

Figure 3. Comparison with 1000 simulations, ν = 0.3, λ = 1, c = 15, d = −10, n = 100,
X0 = cn. On the left: with respect to φ ∈ {0, 0.1, . . . , 0.9, 0.95}, in red σ = 0.1, in black
σ = 0.3 and in blue σ = 0.5. On the right with respect to σ ∈ {0, 0.05, . . . , 0.5}, in red
φ = 0.1, in black φ = 0.5 and in blue φ = 0.9
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We can notice that, as expected, φ̂(1) does not depend on the noise σ of the signal, but all the estimators

ĉ
(1)
n , d̂

(1)
n , φ̂(1) depend of φ.

Now, a classical way to deal with trend consists in first estimating it and then removing it. When doing

so, we have a 2-step estimation procedure by first getting estimators ĉ
(2)
n and d̂

(2)
n given by linear regression of

(Xn,k)0≤k≤n and then computing the autoregression coefficient φ̂
(2)
n by considering the autocorrelation function

at lag 1 of the linear regression residuals given by

(11) Ŷn,k := Xn,k − ĉ(2)
n − d̂(2)

n k/n = Yk + (cn − ĉ(2)
n ) + (d− d̂(2)

n )k/n.

More precisely, by (3) together with the fact that 1
n+1

∑n
k=0

k
n = 1

2 and 1
n+1

∑n
k=0

(
k
n −

1
2

)2
= n+2

12n , we
have for n > 1,

d̂(2)
n =

12n

n+ 2
× 1

n+ 1

n∑
k=0

(
k

n
− 1

2
)
(
Xn,k −Xn

)
=

12n

n+ 2
× 1

n+ 1

n∑
k=0

(
k

n
− 1

2
)

(
Yk − Y n + d

(
k

n
− 1

2

))
where Xn = 1

n+1

∑n
k=0Xn,k and Y n = 1

n+1

∑n
k=0 Yk, while

ĉ(2)
n = Xn −

1

2
d̂(2)
n

= cn + Y n −
1

2
(d̂(2)
n − d).

It follows that

φ̂(2)
n =

n−1∑
k=0

(Ŷn,k+1 − Ŷ n)(Ŷn,k − Ŷ n)×

(
n∑
k=0

(Ŷn,k − Ŷ n)2

)−1

,

where Ŷ n = 1
n+1

∑n
k=0 Ŷn,k.

In order to compare with our first estimators we can check that they have the same asymptotic covariance
matrix.

Proposition 2. Let us assume that (Xn,k)0≤k≤n satisfies (2) for some θ = (m, b, φ), following from (3) with

d = b
1−φ , c = m

1−φ , cn = c− d
n(1−φ) , and (Zk)k an iid sequence of centered random variables.

If E(Z4
k) < +∞, then E

(
ĉ
(2)
n

)
= cn and E

(
d̂

(2)
n

)
= d with(

ĉ(2)
n , d̂(2)

n , φ̂(2)
n

)
−→

n→+∞
(c, d, φ) a.s. and

√
n
(

(ĉ(2)
n , d̂(2)

n , φ̂(2)
n )− (c, d, φ)

)
d−→

n→+∞
N (0,Σ3) ,

with Σ3 given by (10) of Proposition 1.

Proof. We first remark that d̂
(2)
n − d = An · Sn+1(Y ), where

Sn(Y ) =
1

n

(
n−1∑
k=0

Yk,

n−1∑
k=0

k

n
Yk,

n−1∑
k=0

(Y 2
k − ρY (0)),

n−1∑
k=0

YkZk+1

)
,

have been introduced in Theorem 1 and An =
(
−6 n

n+2 , 12n+1
n+2 , 0, 0

)
→ A = (−6, 12, 0, 0). Similarly, ĉ

(2)
n −cn =

(e1 − 1
2An) · Sn+1(Y ), with e1 = (1, 0, 0, 0).

If E(Z4
k) < +∞, from Corollary 1 we have Sn+1(Y ) −→

n→+∞
0 a.s. and in L2 with E (Sn+1(Y )) = 0, proving the

first statement. Moreover, by Theorem 1 we have
√
nSn+1(Y )

d−→
n→+∞

N (0,Σ1). Then, one can remark that

for h ∈ {0, 1} we have by (11)

1

n

n−1∑
k=0

[
(Ŷn,k+h − Ŷ n)(Ŷn,k − Ŷ n)− ρ(h)

]
=

1

n

n−1∑
k=0

Yk+hYk − ρ(h) +Rn,

where the remaining term Rn tends to 0 a.s. with
√
nRn → 0 in probability using Slutsky Theorem and

asymptotic normality of Sn+1(Y ). These lines ensure strong consistency of
(
ĉ
(2)
n , d̂

(2)
n , φ̂

(2)
n

)
. For asymptotic



SPIKE DETECTION FOR CALCIUM ACTIVITY 9

normality, since

√
n

(
ĉ(2)
n , d̂(2)

n ,
1

n+ 1

n∑
k=0

Y 2
k ,

1

n+ 1

n∑
k=0

Yk+1Yk − (cn, d, ρ(0), ρ(1))

)
= Mn

√
nSn+1(Y ),

for Mn =


1 + 3 n

n+2 −6n+1
n+2 0 0

−6 n
n+2 12n+1

n+2 0 0

0 0 1 0
0 0 φ 1

 −→
n→+∞

M :=


4 −6 0 0
−6 12 0 0
0 0 1 0
0 0 φ 1

 and cn = c+O(1/n), we obtain

√
n

((
ĉ(2)
n , d̂(2)

n ,
1

n

n−1∑
k=0

(Ŷn,k+1 − Ŷ n)(Ŷn,k − Ŷ n),
1

n

n−1∑
k=0

(Ŷn,k − Ŷ n)2

)
− (c, d, ρ(0), ρ(1))

)
d−→

n→+∞
N (0,MΣ1

tM),

and the stated result follows by the delta-method. �

We compare these two procedures in Figure 4. It seems that even for n = 100 both behave relatively
similarly. This is also the case for larger values of n as illustrated in Figure 25. We only remark that the global
estimation seems less biased for φ as φ is increasing than the 2-Step estimation but its standard deviation is
a little bit higher. Let us emphasize that we chose initial conditions in order to be close from the chosen line
and we saw that the global estimation was more robust with the choice of initial condition. Let us also remark
that while the standard deviation for the estimate of φ is decreasing according to (1− φ2)1/2 as φ tends to 1,
absolute value of bias is increasing. Note also that the estimate of c is naturally biased (asymptotically not
biased) but the estimate for d seems not too biased.

Figure 4. Comparison with 1000 simulations, ν = 0.3, λ = 1, c = 15, d = −10, n = 100,
X0 = cn with respect to φ ∈ {0, 0.1, . . . , 0.9, 0.95} on the left and to σ ∈ {0, 0.05, . . . , 0.5} on
the right. Straight line for the global estimation and dashed line for the 2-step estimation.
On the left in red σ = 0.1, in black σ = 0.3 and in blue σ = 0.5. On the right, in red φ = 0.1,
in black φ = 0.5 and in blue φ = 0.9.

For comparison we plot the theoretical values of the standard deviation in Figure 5.
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Figure 5. Theoretical asymptotic standard deviation for ν = 0.3, λ = 1, n = 100, with
respect to φ ∈ {0, 0.1, . . . , 0.9, 0.95} on the left and to σ ∈ {0, 0.05, . . . , 0.5} on the right. On
the left in red σ = 0.1, in black σ = 0.3 and in blue σ = 0.5. On the right, in red φ = 0.1, in
black φ = 0.5 and in blue φ = 0.9.

3.2.3. Estimation of the innovations. Theorem 2 and the 2-step estimation of Proposition 2 provide us two
ways for the estimations of innovations (Zk)k∈{1,...,n}. Namely, we can consider for all k ∈ {1, ..., n}:

(12) Ẑ
(1)
k = Xn,k − φ̂(1)

n Xn,k−1 − m̂(1)
n − b̂(1)

n

k − 1

n
or

(13) Ẑ
(2)
k = Ŷn,k − φ̂(2)

n Ŷn,k−1 with Ŷn,k given in (11).

Proposition 3. Under the assumptions of Theorem 1, we have for i = 1, 2 and α ∈ (0, 1/4),

∀k ≥ 1, Ẑ
(i)
k −→

n→+∞
Zk a.s. and nα sup

1≤k≤n
|Ẑ(i)
k − Zk|

P−→
n→+∞

0.

Proof. Let k ≥ 1, according to (12), choosing n large enough such that |cn| ≤ 2|c| and 1 ≤ k ≤ n,

|Ẑ(1)
k − Zk| ≤

∣∣∣φ− φ̂(1)
n

∣∣∣ |Xn,k−1|+
∣∣∣m− m̂(1)

n

∣∣∣+
∣∣∣b− b̂(1)

n

∣∣∣
≤

∣∣∣φ− φ̂(1)
n

∣∣∣ (|Yk−1|+ 2|c|+ |d|) +
∣∣∣m− m̂(1)

n

∣∣∣+
∣∣∣b− b̂(1)

n

∣∣∣
Note that by Theorem 1, this implies that Ẑ

(1)
k −→Zk a.s. since (m̂

(1)
n , b̂

(1)
n , φ̂

(1)
n ) is a strongly consistent

estimator of (m, b, φ). Moreover for α ∈ (0, 1/4), let us choose β ∈ (1/4, 1/2− α). For ε > 0 we write

P( sup
0≤k≤n−1

|Yk| > εnβ) ≤ P
(
{|Y0| > εnβ} ∪

(
n−1
∪
k=1
{|Yk| > εnβ , |Yk−1| ≤ εnβ}

))
≤ P

(
{|Y0| > εnβ} ∪

(
n−1
∪
k=1
{|Zk| > (1− |φ|)εnβ , |Yk−1| ≤ εnβ}

))
≤ P(|Y0| > εnβ) + (n− 1)P(|Z0| > (1− |φ|)εnβ)

≤ E(Z4
0 )

(1− |φ|)4ε4
n1−4β .

Hence, 1
nβ

sup0≤k≤n−1 |Yk| tends to 0 in probability and

nα sup
1≤k≤n

|Ẑ(1)
k −Zk| ≤ n

α+β
∣∣∣φ− φ̂(1)

n

∣∣∣×[ 1

nβ
sup

0≤k≤n−1
|Yk|

]
+nα

[
(2|c|+ |d|)

∣∣∣φ− φ̂(1)
n

∣∣∣+
∣∣∣m− m̂(1)

n

∣∣∣+
∣∣∣b− b̂(1)

n

∣∣∣] ,
that tends to 0 in probability in view of Theorem 2 as 0 < α < α+ β < 1/2.

Since Ŷn,k − Yk = (cn − ĉ(2)
n ) + (d− d̂(2)

n )k/n we can also write for 1 ≤ k ≤ n

Ẑ
(2)
k − Zk = [Ŷn,k − Yk]− φ̂(2)

n [Ŷn,k−1 − Yk−1] + (φ− φ̂(2)
n )Yk−1,

in such a way that

|Ẑ(2)
k − Zk| ≤ |cn − ĉ

(2)
n |+ |d− d̂(2)

n |
(

1 + |φ̂(2)
n |
)

+ |φ− φ̂(2)
n ||Yk−1|.



SPIKE DETECTION FOR CALCIUM ACTIVITY 11

This ensures that Ẑ
(2)
k −→

n→+∞
Zk a.s. and that nα sup1≤k≤n |Ẑ

(2)
k − Zk| converges in probability for all α ∈

(0, 1/4) following the same lines as previously. �

Then, in the sequel, we will explicitly use our assumptions on the distribution of the innovations in order
to complete estimation of all the parameters. Actually, this may be justified as in [23], when the common
distribution of innovations has a density f(., θ) for some parameter θ ∈ Θ, with Θ an open set of Rk, k ≥ 1.

Then, when considering an estimator θ̂ that maximizes the log-likelihood function

Ln(θ) :=

n∑
k=1

log(f(Zk, θ)),

one can use an estimator
ˆ̂
θ that maximizes the estimated log-likelihood function

L̂n(θ) :=

n∑
k=1

log(f(Ẑk, θ)),

with (Ẑk) the estimated innovations and obtain consistency and asymptotic normality under regularity as-
sumptions on f (see Corollary of Theorem 4.1 [23]).

3.3. Estimation of λ, ν and σ2. Let us recall that we assume that Zk = λ(Uk − ν) +σεk, for U ∼ B(ν) and
εk ∼ N (0, σ2). This implies that Zk is a mixture between two Gaussian. More precisely, the density of Z0 is
given by

fZ0
(z;ψ) = (1− ν)γ−λν,σ2(z) + νγλ(1−ν),σ2(z), for z ∈ R

where ψ := (ν, λ, σ) and γm,ρ2 denotes the density of a normal variable of mean m and of variance ρ2.
Note that Maximum likelihood estimation even in this simple context of two Gaussian components suffers

from several computational drawbacks [11, 22] and Fisher matrix are not explicitly tractable [3]. Then, it is
classical to use the EM-algorithm to estimate the mixture parameters. We impose that the two components

share the same variance and we consider the estimated innovations for all k ∈ {1, ..., n}, Ẑ(i)
k , for i = 1 or 2. We

can use the R function Mclust on these estimated innovations [14] or the Matlab function fitgmdist, and we
impose it two components with the same variance: one for the peaks, the other one for the innovations without
peaks. This algorithm gives estimators of the model by iterations of two steps: expectation of the completed
log-likelihood of the estimated innovations and choice of parameters which maximize this expectation. At
each iteration, the log-likelihood of the estimated innovations increases, which enables us to have a better
estimation at a given iteration than at the previous one. We can refer to [29] for more details. The algorithm
stops when the log-likelihood increases by increments smaller than a tolerance. It gives us the parameters of
the clustering:

• the estimated mean of each gaussian (µ̂1, µ̂2): once sorted such that µ̂1 ≤ µ̂2 we should have µ̂1 that
estimates −λν and µ̂2 that estimates λ(1− ν) so we can use µ̂2 − µ̂1 as an estimator of λ;

• the estimated proportion of each gaussian (p̂1, p̂2): we keep p̂2 as an estimator of ν;
• the common estimated variance v̂ which estimates σ2.

Then we denote by ψ̂
(i)
n := (ν̂

(i)
n , λ̂

(i)
n , σ̂

(i)
n ) the corresponding estimators obtained by using (Ẑ

(i)
k )1≤k≤n. The

main problems of the EM-algorithms are that it not ensures to have the estimator of maximum likelihood
if there exist local maxima (importance of the initialization) and that the convergence can be slow. We can
refer to [26] to choose the initialization and to [21] to study different types of convergence. Here we use five
replicates for each estimation and apply this algorithm with the previous estimated innovation so that we

obtain two estimators ψ̂
(i)
n := (ν̂

(i)
n , λ̂

(i)
n , σ̂

(i)
n ) for i = 1, 2. We present bias as well as empirical 95% confidence

intervals in Figure 6, while a specific comparison between global estimation and 2-step estimation for bias and
standard deviation is presented in Figure 7.

Surprisingly, we notice that the estimators of ν, λ and σ seem not to depend on φ, whatever the estimation
of the innovations (global or 2-step) and both of them performs rather similarly. We can also remark that here
is a stronger bias for the λ estimation and as expected standard deviations increase with respect to σ.

Let us finally remark that we are therefore able to estimate the whole set of parameters since one can then
set

â(1)
n = m̂(1)

n − λ̂(1)
n ν̂(1)

n .
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Figure 6. Comparison with 1000 simulations, ν = 0.3, λ = 1, c = 15, d = −10, n = 100,
X0 = cn for EM estimators using estimated innovations from Theorem 2. On the left: with
repect to φ ∈ {0, 0.1, . . . , 0.9, 0.95}, in red σ = 0.1, in black σ = 0.3 and in blue σ = 0.5. On
the right with repect to σ ∈ {0, 0.05, . . . , 0.5}, in red φ = 0.1, in black φ = 0.5 and in blue
φ = 0.9

Figure 7. Comparison with 1000 simulations, ν = 0.3, λ = 1, c = 15, d = −10, n = 100,
X0 = cn with respect to φ ∈ {0, 0.1, . . . , 0.9, 0.95}. Straight line for the global estimation and
dashed line for the 2-Step estimation. On the left in red σ = 0.1, in black σ = 0.3 and in blue
σ = 0.5. On the right φ = 0.1, in black φ = 0.5 and in blue φ = 0.9.

4. Spike detection

4.1. Tests on estimated innovations. Let us recall that the innovations of the process X are given by

∀k ∈ {1, ..., n}, Zk = λ (Uk − ν) + σεk = Xk − φXk−1 − a− λν − b
k − 1

n
,

which can be estimated through Ẑ
(i)
k where i = 1 or 2.

We have already remarked that Zk is a mixture between two gaussians (see Section 3.3). As we want to
detect the spikes, we have to find the k ∈ {1, ..., n} such that Uk+1 = 1. Therefore we can define two tests.
• T : we consider for a threshold s ∈ R the probabilities:

PF := PF (s, ν, λ, σ) = P (Zk > s|Uk+1 = 0) = 1− Φ

(
s+ λν

σ

)
PT := PT (s, ν, λ, σ) = P (Zk > s|Uk+1 = 1) = 1− Φ

(
s− λ(1− ν)

σ

)
,

where Φ is the cumulative distribution function of a standard normal variable. We consider also for a tolerance
α ∈ (0, 1):

sα = min {s ∈ R|PF ≤ α} = σq1−α − λν,
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where q1−α denotes the quantile of order 1− α of a standard Gaussian random variable. The test T consists
in considering the instant k as a peak if Zk > sα. Then PF is the false detection probability at each time k
and PT is the true detection probability at each time k.

• Tc: EM algorithm can provide us the a posteriori probabilities ν̂k = P
(
Uk = 1| (Zk)1≤k≤n

)
which are the

probabilities, given (Zk)1≤k≤n, that the instant k is a peak. Then Tc consists in considering the instant k as
a peak if

1− ν̂k = P
(
Uk = 0| (Zk)1≤k≤n

)
≤ α,

for a tolerance α. Let us note that the clustering by default is usually given by choosing α = 1
2 .

Then, for i ∈ {1, 2} we denote T (i) and T
(i)
c the tests T and Tc, used respectively with the estimations

(Ẑ
(i)
k )1≤k≤n.

In order to enlight performances of both tests we consider a trajectory of size n + 1 with n = 100. We
recall that (Uk)1≤k≤n is the sequence of {0, 1}-valued variables with true spiking times given by 1 and, for

a tolerance α on false detection, (T
(i)
k (α))1≤k≤n, respectively (T

(i)
c,k(α))1≤k≤n, the sequence of {0, 1}-valued

variables with detected spiking times given by 1 using estimated innovations Ẑ
(i)
k and ψ̂

(i)
n = (ν̂

(i)
n , λ̂

(i)
n , σ̂

(i)
n ),

described in the previous section. Then we can compute the true and false positive rates as

τ
(i)
T (α) := #{1 ≤ k ≤ n;Uk = 1, T

(i)
k (α) = 1}/#{1 ≤ k ≤ n;Uk = 1},

τ
(i)
F (α) := #{1 ≤ k ≤ n;Uk = 0, T

(i)
k (α) = 1}/#{1 ≤ k ≤ n;Uk = 0},

and similarly we write τ
(i)
c,T (α) and τ

(i)
c,F (α) when T (i) is replaced by T

(i)
c .

We estimate the true and false detection probabilities by considering N = 1000 independent simulations of
sample paths and computing the empirical mean of the sample

(14) P̂
(i)
T (α) =

1

N

N∑
l=1

(
τ

(i)
T (α)

)(l)

and P̂
(i)
F (α) =

1

N

N∑
l=1

(
τ

(i)
F (α)

)(l)

,

as well as

(15) P̂
(i)
c,T (α) =

1

N

N∑
l=1

(
τ

(i)
c,T (α)

)(l)

and P̂
(i)
c,F (α) =

1

N

N∑
l=1

(
τ

(i)
c,F (α)

)(l)

.

We first present numerical results when φ is varying in Figure 8 with also 95% confidence intervals for α = 0.01
as previously. Surprisingly, despite the values of φ near 1 affect the quality of the first estimated values, it
seems to have no consequence on the results of the different tests since their performances do not vary too
much with φ, as it was also the case for the second estimates using EM-algorithms. However the performances
are highly depending on the level of noise σ as we can see in Figure 9 where we have plotted results according
to σ varying between 0 and 0.5. As remarked previously, tests are performing similarly choosing the first or
the second method of innovations. However as σ is increasing the level of T is higher than α but not exceeding
0.1. In contrast Tc seems to have a lower false detection rate but it has also a lower true detection rate.

A usual way to compare tests is to use ROC curves (for Receiver Operating Characteristic) that enable to
measure a binary test’s sensitivity. We can refer to [25] for more details. Since our tests depend on a level

α ∈ (0, 1) we can compute empirical ROC curves defined as the location of the pairs (P̂
(i)
F (α), P̂

(i)
T (α)) given

by (14) for T (i) or (P̂
(i)
c,F (α), P̂

(i)
c,T (α)) given by (15) for T

(i)
c when α is varying between 0 and 1. Let us quote

that we can also compute the theoretical ROC curve associated to T and in this case the pairs (PF , PT ) are
related through the fact that the measure d′ defined in [18] by

d′ = Φ−1(PT )− Φ−1(PF ),

where Φ is the cumulative distribution function of a standard normal variable, is constant. With the expressions
of PT and PF and the symmetry of Φ we obtain d′ = λ

σ , so each theoretical curve can be associated to a value

of the ratio λ
σ (and each point of a curve is related to a tolerance α and a threshold sα). Note that d′ increases

when PT increases and when PF decreases, that is to say when the test is more sensitive and in our case it
corresponds to a decrease of σ when λ is constant. This is confirmed by Figure 10 where the area under curve
is decreasing with respect to σ increasing in {0.1, 0.3, 0.5}. The first ROC curve confirms that there is no

significant difference between T (1) and T (2) for this kind of simulations. We omit a similar result for T
(1)
c and
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Figure 8. Comparison with 1000 simulations, ν = 0.3, λ = 1, c = 15, d = −10, n = 100,
X0 = c with respect to φ ∈ {0, 0.1, . . . , 0.9, 0.95}. Threshold given by α = 0.01. In red
σ = 0.1, in black σ = 0.3 and in blue σ = 0.5. First line: True positive rate according to the
different Tests. Second line: false positive rate

Mean of TPR Mean of FPR Std of TPR Std of FPR

Figure 9. Comparison with 1000 simulations, ν = 0.3, λ = 1, c = 15, d = −10, n = 100,
X0 = c with respect to σ ∈ {0, 0.05, . . . , 0.5}. Threshold given by α = 0.01. In red φ = 0.1,
in black φ = 0.5 and in blue φ = 0.9. Straigth line with dot for T (1), dashed line with plus

for T (2), dashed line with dot for T
(1)
c , dotted line with cross for T

(2)
c .

T
(2)
c . The second ROC curve shows that T (1) seems to be better than T

(1)
c and especially as σ is increasing

for a fixed φ = 0.5. It reveals that for a rate of false positive detection that we can tolerate, we can find a

threshold which provides a bigger rate of true positive detection with T (1) than with T
(1)
c . This is also true

for different values of φ since ROC curves completely coincide with φ for both tests as shown in the two last
figures.

4.2. Multiple test correction on false rate detection. In order to correct our tests according to a level
β ∈ (0, 1) of false detection we propose to use the following corrections. For the first test, we use the correction
proposed by Benjamini-Höchberg [4]. By this way we improve the power of a simple Bonferroni correction
that would consist in choosing β = α/n meanwhile controling the false rate detection at the level β. More
precisely, for all 1 ≤ k ≤ n, let us recall that

Zk = λ(Uk − ν) + σεk,

such that under the assumption that {Uk = 0} we have Zk+λν
σ ∼ N (0, 1). Hence we consider Ẑk+λ̂ν̂

σ̂ , where

Ẑk, λ̂, ν̂, σ̂ are estimators of Zk, λ, ν, σ and compute its associated p-value as

pk = 1− Φ

(
Ẑk + λ̂ν̂

σ̂

)
,

where Φ is the cumulative distribution function of the standard Gaussian distribution. We sort (pk)k such
that p(1) ≤ p(2) ≤ . . . ≤ p(n), and set p∗n = pn. Then we compute iteratively for k ranging from n − 1 to
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Figure 10. ROC curves obtained with 1000 simulations, ν = 0.3, λ = 1, c = 15, d = −10,
n = 100, X0 = cn. In red σ = 0.1, in black σ = 0.3 and in blue σ = 0.5. First: φ = 0.5, solid
line with cross for T (1), dashed line with dot for T (2). Second: φ = 0.5, solid line with cross

for T (1), dashed line with dot for T
(1)
c . Third and Fourth: T (1) (left) and T

(1)
c (right) with

several values of φ, solid line with cross for φ = 0.1, dotted line for φ = 0.9, dashed with plus
for φ = 0.5.

1 the quantity p∗k = min(p∗k+1,
n
k pk). Then, using our two way of estimation, we can define for i = 1, 2 and

1 ≤ k ≤ n,

(16) T̃
(i)
k (β) = 1 if p∗k

(i) ≤ β and T̃
(i)
k (β) = 0 otherwize.

For the second test, we know from Theorem 1 of [28] that the optimal decision for false discovery rate is given
by

∀1 ≤ k ≤ n, ν̂k ≥ t∗,
for some cutoff t∗ = c∗

1+c∗ = 1
1+1/c∗ . In order to control the number of false positive detection at a level β we

first remark that the number of false positive, corresponding to the number of false discovery, is given by
n∑
k=1

(1− Uk)1ν̂k≥t∗ ,

such that the posterior expected false positive number is given by
n∑
k=1

(1− ν̂k)1ν̂k≥t∗ ≤
1− t∗

t∗

n∑
k=1

t∗1ν̂k≥t∗ ≤
1− t∗

t∗

n∑
k=1

ν̂k ≤
1− t∗

t∗
nν̂,

since
n∑
k=1

ν̂k = nν̂ by EM algorithm, which is the estimated expected number of jumps. Hence we propose to

bound the false detection rate by 1−t∗
t∗

ν̂
1−ν̂ = 1

c∗
ν̂

1−ν̂ and choose c∗(β) = 1
β

ν̂
1−ν̂ in order that 1

c∗
ν̂

1−ν̂ ≤ β. Then,

using our two way of estimation, we can define for i = 1, 2 and 1 ≤ k ≤ n,

(17) T̃
(i)
c,k(β) = 1 if ν̂

(i)
k ≥

1

1 + β 1−ν̂
ν̂

and T̃
(i)
c,k(β) = 0 otherwize.

As for previous ones, on simulations, these new tests perform similarly for each method of estimation
meaning that there is not significant difference between i = 1 and i = 2, and are not affected by the values
of φ. We therefore focus on the comparison for the first estimation i = 1 and φ = 0.5. We present these
results in Figure 11 that emphasizes that these corrections achieve the required false detection rate in contrast

with previous tests. The powers seem also comparable and are better than T
(1)
c but lower than T (1). This

is confirmed with ROC curves of Figure 12 where the corresponding values for α = β = 0.01 are plotted in
green. However in term of AUC comparison it seems that T 1 is better than T̃ 1 (first plot) that behaves as T 1

c

(second plot). The two last plots are concerned with T̃ 1
c . First let us mention that we make evolves α ∈ (0, 1)

and β ∈ (0, 1) for the corrected tests. Doing this we can check that the cutoff for T̃ 1
c is always larger than ν̂

that is around to ν = 0.3 in our experiments. Hence letting β ∈ (0, 1) does not allow to reach a rate 1 for
false positive and we restrict the axis of curves between 0 and 0.3 consequently. Interestingly the third ROC
curve shows a similar behavior between T 1 and T̃ 1

c and consequently we have improved the power of T 1
c still

controlling the rate of false positive. The last plot proves that the Bayesian correction of T̃ 1
c could do better

than the frequentist one of T̃ 1.
In Figure 23 several realizations are obtained considering fixed c, d also with the same jumps. Hence the

linear slope is now identical for each realizations and the different values of φ only change a little the initial
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Mean of TPR Mean of FPR Std of TPR Std of FPR

Figure 11. Comparison with 1000 simulations, ν = 0.3, λ = 1, c = 15, d = −10, n = 100,
X0 = c and φ = 0.5, with respect to σ ∈ {0, 0.05, . . . , 0.5}. Threshold given by α = β = 0.01.

In black red straigth line for T (1) and black dashed line for Tc
(1), in blue dotted line with plus

for T̃ (1)(β) and in red with cross for T̃
(1)
c (β).

Figure 12. ROC curves obtained with 1000 simulations, ν = 0.3, λ = 1, c = 15, d = −10,
n = 100, X0 = cn and φ = 0.5. In red σ = 0.1, in black σ = 0.3, in blue σ = 0.5, in green
values obtained for α = 0.01 or β = 0.01. Dotted line with dot and a green star for T (1) (first

and third), Tc
(1) (second), T̃ (1) (last); dashed line with dot and a green square for T̃ (1) (first

and second), for T̃
(1)
c (third and last)

value. Let us emphasize that we chose as initial conditions cn in order to have a point on the line. This choice
corresponds to an ideal case for the 2-step estimations and it performs very similarly than the first global way
of estimation. However we have remarked that the global estimation is more robust to changes with respect
to initial conditions. We present in Figure 24 several realizations obtained considering fixed a, b and with the
same jumps. The different values of φ contribute to changes in the linear trend and sample paths are very
different. We give corresponding computed true positive rate in Table 2 and Table 4 and false positive rate
in Table 3 and Table 5 for a fixed level chosen as α = β = 0.01 for initial and corrected tests, using the two
estimation procedures. Whatever the chosen test is, the performances are getting worser as σ is increasing.
However, tests T and Tc are not performing similarly for a fixed level. The true and false positive rate for T
are higher than for Tc. Despite we have chosen α = 0.01 we can obtain up to 0.1 for false positive rate of T ,
in the worst case σ = 0.5, while false positive rate of Tc are of the accurate order. This is corrected with T̃
and T̃c. In the worst case the false positive rate is 0.04 for T̃ (3 false detected jumps) and 0.01 for T̃c (1 false
detected jump). We also improve the true positive rate compared to Tc but it remains quite far from the one
of T .

5. Data analysis

We have considered a biological experiment of Anne Duittoz’s team, composed with 14 trajectories of
neurons observed during 600 seconds. More precisely, the observed values correspond to Calcium Green-1
mean fluorescence intensity of 14 selected regions corresponding to neurons in a Calcium imaging recording
(see Figure 13). Inferring individual spikes from fluorescence signals is a high challenging problem but calcium
imaging should allow to characterize neuronal events in vivo [1].
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Figure 13. Image recording of 14 different Neurons. On the left: a typical image of the
movie of 600 seconds (one frame per second). On the right: the locations of the 14 selected
neurons with recorded paths under statistical analysis.

In order to apply our spike detection methodology we restrict the time domain to {301, . . . , 421} of length
n+1 with n = 120, where goodness of fit for the model seems reasonable. In this time period our two methods
of estimation give similar results and we only present results obtained for the first one for sake of conciseness.
Before presenting results on recorded neurons we present in Figure 14 results obtained on the movie where
estimation is performed pixel by pixel with a size of image given by 247 × 325 coded with 8 Bytes meaning

that the values are in {0, . . . , 255}. Note that, as expected, ĉ
(1)
n captures the global image with a slope d̂

(1)
n

around 0 except near neurons where we can also observe values of φ̂
(1)
n greater than 0.5. Despite λ̂

(1)
n and

σ̂
(1)
n seem coherent, ν̂

(1)
n is very noisy and we will see that this estimation can perform badly, especially when

outliers are present.

ĉ
(1)
n d̂

(1)
n φ̂

(1)
n

λ̂
(1)
n ν̂

(1)
n σ̂

(1)
n

Figure 14. Estimation results on the recorded movie during the time lapse {301, . . . , 421}.
Each pixel is analyzed as a realization of (3) with n = 120, whose parameters are estimated
according to Section 3. Values of each pixels are given through the corresponding colorbar on
the right of each image.

Then we restrict on the recorded neurons sample paths. In order to compare them, we normalized them
in such a way that the time period corresponds to {0, . . . , n} with initial value taken at 100 (see Figure 15),
meaning that we multiply the signals by 100 divided by initial value.
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Neurons Normalization

Figure 15. Recorded Neurons. On the left: the 14 selected trajectories (Xj
k)301≤k≤421 for

j = 1, . . . , 14. On the right: the 14 normalized trajectories for which the time is set to be
{0, . . . , 120} and the initial value is 100, corresponding to (Xj

k+301 × (100/Xj
301))0≤k≤120 for

j = 1, . . . , 14.

In the whole experiment, we notice a high variability of the estimated parameters between the different
neurons, especially for φ and λ, as it can be seen in Table 1. The last column correspond to the p-value
obtained by performing a Kolmogorov-Smirnov goodness of fit test on the estimated innovation compared
with the estimated Gaussian mixture. The Kolmogorov-Smirnov test is accepted for all neurons with a level
given by the smallest p-value obtained for Neuron R4. This neuron is the only to exhibit an increasing
trajectory.

Neuron ĉ
(1)
n d̂

(1)
n φ̂

(1)
n λ̂

(1)
n ν̂

(1)
n σ̂

(1)
n X0 KSp− value

R1 101.2366 −6.9581 0.6732 2.5227 0.3718 0.9237 651.8600 0.6390
R2 99.1601 −6.2252 0.6929 1.4693 0.9916 0.2338 830.3800 0.8835
R3 99.2140 −7.6091 0.5887 2.5859 0.1469 0.6058 711.8500 0.2548
R4 97.6087 2.8797 0.6736 6.8259 0.1398 1.5634 885.1000 0.0165
R5 100.5374 −11.3993 0.4375 1.2457 0.2279 0.6656 617.1600 0.9908
R6 98.9209 −5.4705 0.7755 0.9122 0.0953 0.3720 732.3100 0.6739
R7 99.1936 −6.0570 0.8222 0.6450 0.9754 0.2547 722.6300 0.6982
R8 98.8731 −7.1818 0.8776 0.3688 0.6338 0.1376 783.6500 0.9776
R9 99.0390 −6.0332 0.8480 0.6253 0.0528 0.3078 647.0400 0.6350
R10 98.8467 −6.7943 0.7899 0.2901 0.9277 0.1967 660.1700 0.9049
R11 99.2561 −4.7800 0.7338 0.7595 0.3311 0.2590 732.3500 0.9390
R12 98.7342 −6.7195 0.7011 0.5676 0.7958 0.5834 858.1600 0.9022
R13 98.0884 −7.9994 0.8304 0.5031 0.1080 0.2048 668.5300 0.8813
R14 98.7415 −3.9130 0.7226 0.4726 0.3493 0.2322 620.6200 0.9853

Table 1. Estimated parameters for recorder Neurons. Estimation results on the normalized
trajectories (see Figure 15) according to Section 3. In bold for R4 the only positive value
estimated for d, corresponding to an increasing path for which the Kolmogorov Smirnov test
between estimated innovation and estimated Gaussian mixture gives the smallest p-value (see
column KS). In bold for R2, R7, R10, EM-estimations of ν are close from 1: these trajectories
can not be analyzed directly by this model.

Note that Neurons R2, R7 and R10 exhibit a too high level for ν̂. This can be explained by some few
outliers in sample paths as explained in Figure 16. We restrict our attention on Neuron R2 and plot at
left its sample path and the estimated trend (first) and the estimated innovations (second). Then we plot
histogram and cumulant distribution function of innovations compared with the estimated Gaussian mixture.
The red star corresponds to the minimal value of innovation that is an outlier for our Gaussian mixture model,
corresponding to a big negative jump as we can see with the previous recorded value in blue star on R2.

However EM algorithm isolates this value as a single Gaussian component that explains the high value of ν̂
(1)
n

(see Table 1).
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R2 Innovations Histogram CDF

Figure 16. Outliers for Neuron R2. First figure: normalized trajectory of neuron R2 with
a big negative jump in red star just after the blue star. The estimated trend is plotted in
dashed red line. Second figure: plot of estimated innovations of R2 with a negative outlier in
red star, corresponding to the negative jump of R2. Third figure: normalized histogram of
estimated innovations of R2 and estimated Gaussian mixture density in dashed red line. Last
figure: empirical cumulant distribution function of estimated innovations of R2 in blue and
estimated Gaussian mixture cumulant distribution function in dashed red line.

Then we proceed to our two different corrected tests T̃ and T̃c for level β ∈ (0.001, 0.05) (see (16) and (17)).
In Figure 17 we represent the rate of detected spikes by Neurons for the whole experiments. As expected
we recover high detection rate for Neurons R2 and R7 but not for Neuron R10 (in dashed orange lines).
Restricting to the other Neurons shows that Neuron R8 (in green dashed line) also exhibits a strange behavior

with respect to detection. The comparison between the two tests again shows a better power for T̃ .

T̃ T̃c T̃ T̃c

Figure 17. Rate of spike detection according to test T̃ of (16) and test T̃c of (17) with
respect to the level β of false positive detection. On the right: the whole experiment with
the 14 recorded Neurons. On the right: Neurons R2, R7 and R10 are removed in view of ν
estimates given by Table 1.

This is confirm in Figure 18 where we restrict the study to the eleven remaining neurons. Interestingly
T̃c(β) seems to detect synchronisation event involving more neurons at level β = 0.01.
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T̃ (β) T̃c(β) T̃ (β) T̃c(β)

Figure 18. Test T̃ (β) of (16) and Test T̃c(β) of (17) for 11 Neurons (Neurons R2, R7 and
R10 are removed), in red for β = 0.01, in blue for β = 0.02 and in black for β = 0.03. On
the right: frequency of neurons detecting a spike per times. On the right: frequency of spike
times per neurons.

The time 306 is detected by more than 30% of the neurons and this percentage is not influenced by the
level β. It is therefore probably a synchronisation event of the experiment. It involves Neurons R1, R5, R8
and R14 for T̃ , while T̃c detects also Neuron R6. At time 328 both Neurons R1, R3, R4, R5, R8 are detected
to have a spike by T̃ and T̃c at level β = 0.01. It also involves Neuron R11 at level β = 0.02. Finally, time
405 is detected for Neurons R1, R3, R4, R8 both for T̃ and T̃c at level β = 0.01 and involves Neuron R5 for
T̃ at level β = 0.03 and T̃c at level β = 0.02. The sample paths with estimated spikes are presented in Figure
19. Note that Neuron R8 is involved in all these particular times. It is actually the Neuron having the higher
rate of spiking times but it also has the greater value of φ that makes difficult to visually distinguish spiking
times (see Figure 20).

R1 R3 R4 R5

R6 R11 R13 R14

Figure 19. Several neurons with normalized paths and detecting spike times with cross for
T̃ (β) of (16) and circle for T̃c(β) of (17) with β = 0.01. The estimated trend is plotted in red
dashed line.
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R8 Innovations Histogram CDF

Figure 20. Innovations for Neuron R8. First figure: normalized trajectory of neuron R8. The
estimated trend is plotted in dashed red line. Second figure: plot of estimated innovations
of R8. Third figure: normalized histogram of estimated innovations of R8 and estimated
Gaussian mixture density in dashed red line. Last figure: empirical cumulant distribution
function of estimated innovations of R8 in blue and estimated Gaussian mixture cumulant
distribution function in dashed red line.

In this biological problematic, there are still several issues to work on. In particular, we had to restrict arbi-
trarily time interval under study to avoid misleading estimates due to heterogeneous parts of the trajectories.
This comes from the fact that our simple model does not fit a whole trajectory but can fit some parts with
different parameters. It should therefore be necessary to adapt the procedure or the model with a piecewise
one in order to mimic data trajectories. Then estimation and detection methods would have to be adapted
to this more complex setting, using change-point analysis or sliding window for instance. The algorithm EM
is also very sensitive with the presence of outliers. This could be manually corrected in practice but this
procedure will be very time consuming.

Acknowledgments: We would like to sincerely thank the reviewers for their valuable comments and
challenging remarks that helped us to improve substantially this paper.

6. Appendix

6.1. From continuous time to discrete time. We assume to observe a process X over a time interval
[0, T ], T ∈ R+, satisfying

dXt =
1

τ
(µ(t)−Xt)dt+ λdNt + σdWt,

for a linear trend µ(t) = c + d
T t, c ∈ R+, d ∈ R, τ, σ, λ ∈ (0,+∞), and W a Brownian motion independent

from N a Poisson process of parameter ν ∈ (0, 1]. It follows, writing γ = 1/τ that

(18) d
(
eγtXt

)
= γeγt

(
c+

d

T
t

)
dt+ σeγtdWt + λeγtdNt.

Now, we assume to have (n+ 1) observations uniformly distributed on [0, T ]: X0, XT
n

, ..., Xk Tn
, ..., XT . For

k ∈ {0, ..., n}, we will note Xn,k for Xk Tn
. Moreover, we introduce φn := e−γ

T
n . By integrating (18) over

[k Tn , (k + 1)Tn ], we have:

φ−(k+1)
n Xn,k+1 − φ−kn Xn,k = c

(
φ−(k+1)
n − φ−kn

)
+
d

n

(
(k + 1)φ−(k+1)

n − kφ−kn
)
− d

γT

(
φ−(k+1)
n − φ−kn

)
+ σ

∫ (k+1)Tn

k Tn

eγtdWt + λ

∫ (k+1)Tn

k Tn

eγtdNt.



22 HERMINE BIERMÉ, CAMILLE CONSTANT, ANNE DUITTOZ, AND CHRISTINE GEORGELIN

Or equivalently:

Xn,k+1 = φnXn,k + c (1− φn) + d
k

n
(1− φn) +

d

n
− d

γT
(1− φn)

+ σ

∫ (k+1)Tn

k Tn

eγ(t−(k+1)Tn )dWt + λ

N
(k+1) T

N∑
j=N

k T
n

eγ(sj−(k+1)Tn ),

where (sj)j are the points of the Poisson process N . Assuming n is large enough:

d

n
− d

γT
(1− φn) =

d

n
− d

γT

(
1− e−γ Tn

)
=
d

n
− d

γT

(
−γ T

n
+ o

(
1

n

))
= o

(
1

n

)
;

∫ (k+1)Tn

k Tn

eγ(t−(k+1)Tn )dWt =
(
W(k+1)Tn

−Wk Tn

)
+ o

(
1

n

)
,

with W(k+1)Tn
−Wk Tn

∼ N
(
0, Tn

)
and N(k+1)Tn

−Nk Tn ∼ P
(
ν Tn
)
. Then

P
(
N(k+1)Tn

−Nk Tn = 1
)

= ν
T

n
+ o

(
1

n

)
and P

(
N(k+1)Tn

−Nk Tn = 0
)

= 1− ν T
n

+ o

(
1

n

)
,

so we can consider the following approximation

Xn,k+1 = φnXn,k + c (1− φn) + d
k

n
(1− φn) + σεk+1 + λUk+1,

where for all k ∈ {0, ..., n}, εk ∼ N
(
0, Tn

)
, Uk ∼ B

(
ν Tn
)

are independant variables. In this paper we first

consider this approximation for a fix time interlaps T
n = 1.

6.2. Proof of Theorem 1. By Cramer-Wold device, it is sufficient to prove that for all u, v, w and x in R:

1√
n

n−1∑
k=0

∆n,k
d−→

n→+∞
N (0, l) ,

where we denote ∆n,k =
(
u+ v kn + wYk + xZk+1

)
Yk − wρY (0) for all n ≥ 1 and k ∈ {0, ...n} and

l =
(
u v w x

)
Σ1

t
(
u v w x

)
.

As usual for proving asymptotic normality in time series we consider and (mn)-dependent approximation of (Yk)

defined through Y
(mn)
k =

∑mn
j=0 φ

jZk−j and denote ∆
(mn)
n,k =

(
u+ v kn + wY

(mn)
k + xZk+1

)
Y

(mn)
k −wρY (mn)(0),

where ρY (mn)(0) = Var(Y
(mn)
k ). Let us remark that we may write

∆n,k = ∆
(mn)
n,k +

(
u+ v

k

n
+ xZk+1

)
Rmn,k + wR2

mn,k + 2wY
(mn)
k Rmn,k + w (ρY (mn)(0)− ρY (0))

where Rmn,k =
∑+∞
j=mn+1 φ

jZk−j = φmn+1Yk−mn−1. We will show that we can find c > 0 such that

(19) ‖ 1√
n

n−1∑
k=0

(∆n,k −∆
(mn)
n,k )‖L2 ≤ c|φ|mn .

Then, since |φ| < 1 as soon as mn → +∞, by Slutsky theorem, it is sufficient to prove that

1√
n

n−1∑
k=0

∆
(mn)
n,k

d−→
n→+∞

N (0, l) .

For that, since now (∆
(mn)
n,k ) is a sequence of mn-dependent random variables, it is enough to check the three

points of Theorem 2 from [19] concerning central limit theorem for mn dependent centered random variables.

Namely, in our setting, considering Un,k =
∆

(mn)
n,k√
n

, it follows from
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i) Var

(
n−1∑
k=0

Un,k

)
= 1

n Var

(
n∑
k=0

∆
(mn)
n,k

)
−→

n→+∞
l;

ii) there exists C > 0 such that
n−1∑
k=0

E(U2
n,k) ≤ C, for all n ≥ 1;

iii) for all ε > 0, Ln(ε) = m2
n

n−1∑
k=0

E(U2
n,k1|Un,k|≥εm−2

n
) −→
n→+∞

0.

In order to prove that and to compute explicitly the covariance matrix we need the following result.

Lemma 1. Let (Zk)k be a sequence of iid centered rv with E(Z4
0 ) < +∞ and (Yk) its associated AR(1) process

with autoregression coefficient φ ∈ (−1, 1). Then, for all n ≥ 1 and k, l ∈ {0, ..., n− 1} we have

(1) Cov
(
Yk, Y

2
l

)
=

E
(
Z3

0

)
1− φ3

φ
1
2 (l−k)+ 3

2 |l−k|,

(2) Cov (Yk, YlZl+1) = 0,

(3) Cov (YkZk+1, YlZl+1) =
σ2
Z

1− φ2
E
(
Z2

0

)
1{k=l},

(4) Cov
(
Y 2
k , YlZl+1

)
= 2

σ4
Z

1− φ2
φ2(k−l)−11{k≥l+1},

(5) Cov
(
Y 2
k , Y

2
l

)
= Cov

(
Y 2
k , Y

2
l

)
=

σ4
Z

1− φ2

(
φ2|l−k|(E(Z4

0 )− 3σ4
Z)

σ4
Z(1 + φ2)

+
2φ2|l−k|

1− φ2

)
.

It follows that one can find a constant c > 0 such that

|Cov(∆n,k,∆n,l)| ≤ c|φ||k−l|.

Proof. We first consider k and l such that 0 ≤ k ≤ l ≤ n− 1:

(1) Cov
(
Yk, Y

2
l

)
=

+∞∑
m,n,p=0

φm+n+pE (Zk−mZl−nZl−p) .

Since the centered variables Zk are i.i.d., the terms of this sum are equal to zero except if the indices k −m,
l − n and l − p are equal then if p = n = l − k +m. So we have:

Cov
(
Yk, Y

2
l

)
=

+∞∑
m=0

φ3m+2(l−k)E
(
Z3
k−l
)

=
E
(
Z3

0

)
1− φ3

φ2(l−k).

(2) Since Zl+1 is independant of YkYl, we get Cov(Yk, YlZl+1) = 0.
(3) Since Zl+1 is independant of YkYlZk+1 if k < l, we have

Cov (YkZk+1, YlZl+1) = E (YkZk+1YlZl+1)1{k=l}

= E
(
Y 2
k Z

2
k+1

)
1{k=l}

= E
(
Y 2
k

)
E
(
Z2
k+1

)
1{k=l}

=
σ4
Z

1− φ2
1{k=l}.

(4) Since Zl+1 is independant of Y 2
k Yl, we obtain Cov

(
Y 2
k , YlZl+1

)
= 0.

(5) We have

Cov
(
Y 2
k , Y

2
l

)
=

+∞∑
m,n,p,q=0

φm+n+p+qE (Zk−mZk−nZl−pZl−q)− ρY (0)2.

The terms of this sum are equal to zero except if the indices k−m, k− n, l− p, l− q are all equal or equal in
twos, then we deduce that

Cov
(
Y 2
k , Y

2
l

)
=

σ4
Z

1− φ2

(
φ2(l−k)(E(Z4

0 )− 3σ4
Z)

σ4
Z(1 + φ2)

+
2φ2(l−k)

1− φ2

)
.
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Now if we have 0 ≤ l < k ≤ n− 1, we can check the equalities (3) and (5) using symetric property. For the
other ones:
(1)

Cov
(
Yk, Y

2
l

)
=

+∞∑
m,n,p=0

φm+n+pE (Zk−mZl−nZl−p) .

The terms of this sum are equal to zero except if the indices k−m, l−n and l− p are equal then if p = n and
m = n+ k − l.

Cov
(
Yk, Y

2
l

)
=

+∞∑
n=0

φ3n+k−lE
(
Z3
k−l
)

=
E
(
Z3

0

)
1− φ3

φk−l.

(2)

Cov (Yk, YlZl+1) =

+∞∑
m,n=0

φm+nE (Zk−mZl−nZl+1)

= 0

since the centered variables Zk−m, Zl−n and Zl+1 cannot be all equal.
(4) We can prove by induction that

Cov
(
Y 2
k , YlZl+1

)
= 2

σ4
Z

1− φ2
φ2(k−l)−1.

Actually, for k = l + 1

Cov
(
Y 2
l+1, YlZl+1

)
= Cov

(
(φYl + Zl+1)

2
, YlZl+1

)
= φ2Cov

(
Y 2
l , YlZl+1

)
+ Cov(Z2

l+1, YlZl+1) + 2φVar (YlZl+1)

= 0 + 0 + 2φVar(Yl)Var(Zl+1)

= 2
φ

1− φ2
σ4
Z

which proves the property for k = l + 1. Now assuming that the result holds for k > l we get

Cov
(
Y 2
k+1, YlZl+1

)
= Cov

(
(φYk + Zk+1)

2
, YlZl+1

)
= φ2Cov

(
Y 2
k , YlZl+1

)
+ Cov(Z2

k+1, YlZl+1) + 2φCov (YkZk+1, YlZl+1) .

As k > l, the two last terms are equal to zero and

Cov
(
Y 2
k+1, YlZl+1

)
= φ2Cov

(
Y 2
k , YlZl+1

)
= 2

σ4
Z

1− φ2
φ2(k+1−l)−1,

which proves using induction that (4) holds for any k ≥ l + 1.
Hence, since |φ| < 1, one can find a constant c > 0 such that

|Cov (∆n,k,∆n,l)| ≤ c|φ||k−l|.

�

Since Y mnk = Yk − φmn+1Yk−mn−1, we can check that there exists c > 0 such that∣∣∣Cov
(

∆n,k −∆mn
n,k ,∆n,l −∆mn

n,l

)∣∣∣ ≤ c|φ|2mn |φ||k−l| and
∣∣∣Cov

(
∆mn
n,k ,∆

mn
n,l

)∣∣∣ ≤ c|φ||k−l|.
Hence

Var

(
1√
n

n−1∑
k=0

(
∆n,k −∆mn

n,k

))
≤ c|φ|2mn

1− |φ|
,
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that proves (19) and i) will follow from the fact that 1
nVar

(
n−1∑
k=0

∆n,k

)
→

n→+∞
l. Hence, we compute

Var

(
n−1∑
k=0

∆n,k

)
= Var

(
n−1∑
k=0

(
u+ v

k

n
+ wYk + xZk+1

)
Yk

)

=

n−1∑
k,l=0

Cov

((
u+ v

k

n
+ wYk + xZk+1

)
Yk,

(
u+ v

l

n
+ wYl + xZl+1

)
Yl

)

=
1

n

n−1∑
k,l=0

(
u2n+ uv(k + l) + v2 kl

n

)
Cov(Yk, Yl) + (uwn+ vwk) Cov

(
Yk, Y

2
l

)
+ (uwn+ vwl)Cov

(
Y 2
k , Yl

)
+

1

n

n−1∑
k,l=0

(uxn+ vkx)Cov (Yk, YlZl+1) + (uxn+ vlx)Cov (YkZk+1, Yl) + nx2Cov (YkZk+1, YlZl+1)

+
1

n

n−1∑
k,l=0

xwnCov
(
Y 2
k , YlZl+1

)
+ xwnCov

(
YkZk+1, Y

2
l

)
+ nw2Cov

(
Y 2
k , Y

2
l

)
.

Now in order to get an explicit asymptotic variance we need the following computations.

Lemma 2. For |φ| < 1, we have the following behaviors when n tends to +∞:

(1)

n∑
i=0

n∑
j=0

φ|j−i| = n
1 + φ

1− φ
+ o(n);

(2)

n∑
i=0

n∑
j=0

iφ|j−i| =
n2

2

1 + φ

1− φ
+ o(n2);

(3)

n∑
i=0

n∑
j=0

ijφ|j−i| =
n3

3

1 + φ

1− φ
+ o(n3);

(4)

n∑
i=0

n∑
j=0

φ
1
2 (j−i)+ 3

2 |j−i| = n
1 + φ+ φ2

1− φ2
+ o(n);

(5)

n∑
i=0

n∑
j=i+1

φ2(j−i)−1 = n
φ

1− φ2
+ o(n);

(6)

n∑
i=0

n∑
j=0

iφ
1
2 (j−i)+ 3

2 |j−i| =
n2

2

1 + φ+ φ2

1− φ2
+ o(n2).

Then we obtain that 1
nVar

(
n−1∑
k=0

∆n,k

)
→

n→∞
l, where

l = u2 σ2
Z

1− φ2

1− φ
1 + φ

+ uv
σ2
Z

1− φ2

1 + φ

1− φ
+ v2 σ2

Z

1− φ2

1 + φ

3(1− φ)
+ 2uw

E
(
Z3

0

)
σ2
Z(1− φ3)

1 + φ+ φ2

1− φ2

+ vw
E
(
Z3

0

)
1− φ3

1 + φ+ φ2

2(1− φ2)
+ w2 σ4

Z

1− φ2

1 + φ2

1− φ2

(
E
(
Z4

0

)
− 3σ4

Z

σ4
Z(1 + φ2)

+
2

1− φ2

)

+ 4wx
σ4
Z

1− φ2

φ

1− φ2
+ x2 σ4

Z

1− φ2

=
σ2
Z

(1− φ)2

(
u2 + uv + 2uw

E(Z3
0 )

σ2
Z(1 + φ)

+
v2

3
+

E
(
Z3

0

)
σ2
Z(1 + φ)

vw

)

+
σ2
Z

(1− φ)2

(
w2

(
(E
(
Z4

0

)
− 3σ4

Z)

σ2
Z(1 + φ)2

+ 2
σ2
Z

(
1 + φ2

)
(1− φ)(1 + φ)3

)
+ 4wx

σ2
Zφ

(1 + φ)2
+ x2σ2

Z

1− φ
1 + φ

)
=

(
u v w x

)
Σ1

t
(
u v w x

)
6= 0.
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For ii) note that for k < n

|Un,k| =
∣∣∣∣ 1√
n

∆mn
n,k

∣∣∣∣ ≤ 1√
n
Vk,

where Vk = |u| + |v|Wk + |w|(W 2
k + ρY (0)) + |x||Zk+1|Wk with Wk =

∑+∞
j=0 |φ|j |Zk−j |. Since E(Z4

0 ) < +∞,

we have for all α ∈ (0, 4]

‖Wk‖Lα ≤ ‖Z0‖Lα
1

1− |φ|
.

Hence, by Cauchy-Schwarz inequality,

‖Vk‖L2 ≤ |u|+ |v|‖Wk‖L2 + |w|
(
‖Wk‖2L4 + ρY (0)

)
+ |x|‖Zk+1‖L4‖Wk‖L4 ≤ C,

where

C = |u|+ |v|‖Z0‖L2

1

1− |φ|
+ |w|

(
‖Z0‖2L4

1

(1− |φ|)2
+ ρY (0)

)
+ |x|‖Z0‖2L4

1

1− |φ|
.

and ii) holds since
∑n−1
k=0 E(U2

n,k) ≤ 1
n

∑n−1
k=0 ‖Vk‖2L2 ≤ C2.

For iii) we remark that since E(V 2
0 ) < +∞ one has

E(V 2
k 1Vk>n1/8) = E(V 2

0 1V0>n1/8) −→
n→+∞

0,

and we can choose mn = min
(
E(V 2

0 1V0>n1/8)−1/4, n1/8
)
−→

n→+∞
+∞, in such a way that for ε > 0,

Ln(ε) = m2
n

n−1∑
k=0

E
(
U2
n,k1m2

n|Un,k|>ε
)

≤ m2
n

n−1∑
k=0

1

n
E
(
V 2
k 1m2

n√
n
|Vk|>ε

)
≤ m2

nE(V 2
0 1V0>εn1/4),

where we have used the fact that
m2
n√
n
≤ n−1/4 in the last inequality. Since εn1/4 > n1/8, for n sufficiently

large, we obtain

Ln(ε) ≤ m−2
n ,

such that iii) holds.

6.3. Proof of Theorem 2. Let us write

Hn(X) = tAn(X)An(X) =


n

n−1∑
k=0

k
n

n−1∑
k=0

Xk

n−1∑
k=0

k
n

n−1∑
k=0

(
k
n

)2 n−1∑
k=0

k
nXk

n−1∑
k=0

Xk

n−1∑
k=0

k
nXk

n−1∑
k=0

X2
k

 .

In view of (3), if (Xn,k) satisfies (2) for some θ = (m, b, φ) ∈ R2×]− 1, 1[, we can write Xn,k = cn + d kn + Yk
with Y a stationary centered solution of the AR(1) equation (4), namely

Yk+1 = φYk + Zk+1,

and cn, d are given by (5) ie cn = c− b
n(1−φ)2 , d = b

1−φ and c = m
1−φ .

Hence, according to Corollary 1 and Lemma 1 above, the following convergences hold a.s and in L2:

1

n

n−1∑
k=0

Xn,k = cn + d
1

n

n−1∑
k=0

k

n
+

1

n

n−1∑
k=0

Yk −→
n→+∞

c+ d/2,

1

n

n−1∑
k=0

k

n
Xn,k = cn

1

n

n−1∑
k=0

k

n
+ d

1

n

n−1∑
k=0

(
k

n

)2

+
1

n

n−1∑
k=0

k

n
Yk −→

n→+∞
c/2 + d/3,

1

n

n−1∑
k=0

X2
n,k = c2n + 2cnd

1

n

n−1∑
k=0

k

n
+ d2 1

n

n−1∑
k=0

(
k

n
)2 +

1

n

n−1∑
k=0

Y 2
k + +2cn

1

n

n−1∑
k=0

Yk + 2d
1

n

n−1∑
k=0

k

n
Yk

−→
n→+∞

c2 + d2/3 + cd+ ρY (0),
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with ρY (0) = σ2
Z/(1− φ2) as the stationary solution of the AR(1) equation. Therefore

1

n
Hn(X) −→

n→+∞
H :=

 1 1/2 c+ d/2
1/2 1/3 c/2 + d/3
c+ d/2 c/2 + d/3 c2 + d2/3 + cd+ ρY (0)

 a.s. and in L2.

Note that for all (u, v, w) ∈ R3,(
u v w

)
H t

(
u v w

)
= (u+ cw)2 +

1

3
(v + dw)2 + w2ρY (0) + (u+ cw)(v + dw)

=

(
(u+ cw) +

1

2
(v + dw)

)2

+
1

12
(v + dw)2 + w2ρY (0),

and therefore the matrix H is positive definite.
Now let us consider for θ̃ = (m̃, b̃, φ̃) ∈ R3, the contrast function

Mn(θ̃) = t(Xn −An(X)θ̃)(Xn −An(X)θ̃) =

n−1∑
k=0

(
Xn,k+1 − φ̃Xn,k − m̃− b̃

k

n

)2

,

where Xn := (Xn,k+1)0≤k≤n−1. Let us write θ = (m, b, φ) the true parameter such that

Xn,k+1 − φXn,k −m− b
k

n
= Zk+1,

meaning that Xn − An(X)θ = Z for Z := (Zk+1)0≤k≤n−1. Then θ̂n = argminθ̃∈R3Mn(θ̃) satisfies Jn(θ̂n) = 0

for Jn = ∇Mn. But Jn(θ̃) = −2tAn(X)(Xn −An(X)θ̃) and Jn(θ) = Jn(θ)− Jn(θ̂n) = −2Hn(X)(θ − θ̂n). On
the other hand, since Xn −An(X)θ = Z, we get

Jn(θ) = −2



n−1∑
k=0

Zk+1

n−1∑
k=0

k
nZk+1

n−1∑
k=0

Xn,kZk+1

 .

We will prove that −1
2n Jn(θ) −→

n→+∞
0 a.s. and in L2 with −1

2
√
n
Jn(θ)

d−→
n→+∞

N (0,Σ), with Σ = σ2
ZH. Since

(Xn,k) satisfies (3) for θ the true parameter, we can write

1

n

n−1∑
k=0

Xn,kZk+1 = cn ×
1

n

n−1∑
k=0

Zk+1 + d× 1

n

n−1∑
k=0

k

n
Zk+1 +

1

n

n−1∑
k=0

YkZk+1.

Each empirical mean will tend to 0 a.s. and in L2 according to Corollary 1 (choosing φ = 0 for i)). This
allows to conclude for the first point using the fact that (cn) is a bounded sequence. Using the fact that

(θ − θ̂n) =
(

1
nHn

)−1 −1
2n Jn(θ) we can conclude for the a.s. convergence. Now to prove the convergence in

distribution, we use again the Cramer-Wold device (see Proposition 6.3.1 of [5] for instance) and consider for
(u, v, w) ∈ R3 r {0},

1√
n

n−1∑
k=0

(
u+ v

k

n
+ wXn,k

)
Zk+1 =

1√
n

n−1∑
k=0

(
(u+ cnw) + (v + dw)

k

n
+ wYk

)
Zk+1.

The convergence will follow from a Lindeberg condition for triangular array of martingales [6]. Actually, let us

write ∆n,k+1 =
(
(u+ cnw) + (v + dw) kn + wYk

)
Zk+1 and Sn,l =

∑l
k=0 ∆n,k+1. We may consider the filtration

Fn,l = σ(Zk, k ≤ l) = Fl. It follows that

E(∆n,k+1|Fn,k) = E(∆n,k+1|Fk) =

(
(u+ cnw) + (v + dw)

k

n
+ wYk

)
E(Zk+1) = 0 a.s.
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since Zk+1 is centered and independent from Fk and (Sn,l) is a martingale triangular array. Then let us write
Sn
sn

:=
Sn,n−1

sn
, where s2

n = Var(Sn,n−1). Hence according to Theorem 2 of [6] or [15] if

1

s2
n

n−1∑
k=1

E(∆2
n,k+1|Fk)

P−→
n→+∞

1,(20)

and
1

s2
n

n−1∑
k=1

E(∆2
n,k+11|∆n,k+1|>εsn |Fk)

P−→
n→+∞

0, for all ε > 0,(21)

we have Sn
sn

d−→
n→+∞

N (0, 1).

So let us first compute the asymptotic variance. We write 〈S〉n =
∑n−1
k=1 E(∆2

n,k+1|Fk) and note that s2
n =

E(〈S〉n). In our setting, it is clear that

E(∆2
n,k+1|Fk) = σ2

Z

(
(u+ cnw) + (v + dw)

k

n
+ wYk

)2

.

By Corollary 1 we have 1
n

n−1∑
k=0

Yk → 0, 1
n

n−1∑
k=0

k
nYk → 0 and 1

n

n−1∑
k=0

Y 2
k → ρY (0) a.s. and therefore,

1

n

n−1∑
k=0

E(∆2
n,k+1|Fk) −→

n→+∞
s2 := σ2

Z

(
(u+ cw)2 +

1

3
(v + dw)2 + w2ρY (0) + (u+ cw)(v + dw)

)
a.s.

Note that we may deduce from these lines that the asymptotic covariance matrix is given by

Σ = σ2
Z

 1 1
2 c+ d

2
1
2

1
3

c
2 + d

3

c+ d
2

c
2 + d

3 c2 + d2

3 + ρY (0) + cd

 = σ2
ZH.

Moreover, since (u, v, w) 6= 0 and H is positive definite we check that s2 > 0. Then,

s2
n

n
= E

(
1

n

n−1∑
k=0

E(∆2
n,k+1|Fk)

)
−→

n→+∞
s2,

and (20) follows by writing

1

s2
n

n−1∑
k=0

E(∆2
n,k+1|Fk) =

n

s2
n

× 1

n

n−1∑
k=0

E(∆2
n,k+1|Fk).

Now it remains to prove the Lindenberg condition (21). So let us fix N ∈ N∗ large enough such that for

all n ≥ 2N we have sn > s2
√
N , choose C > 0 such that |∆n,k+1| ≤ C(1 + |Yk|)|Zk+1| and remark that for

n ≥ 2N , we have

1

n

n−1∑
k=0

E(∆2
n,k+11|∆n,k+1|>εsn |Fk) ≤ 1

n

n−1∑
k=0

E(∆2
n,k+11|∆n,k+1|>εs

√
N |Fk)

≤ C2

n

n−1∑
k=0

E((1 + |Yk|)2Z2
k+11|C(1+|Yk|)|Zk+1|>εs

√
N |Fk).

Hence, by stationarity, we get

E

(
1

n

n−1∑
k=0

E(∆2
n,k+11|∆n,k+1|>εsn |Fk)

)
= C2E((1 + |Y0|)2Z2

11|(1+|Y0|)|Z1|>εs
√
N/C) −→

N→+∞
0,

since E((1 + |Y0|)2Z2
1 ) < +∞, and allows to get (21). We have therefore Sn

sn

d−→
n→+∞

N (0, 1) and consequently,

by Slutsky’s theorem, −1
2
√
n
Jn(θ) = sn√

n
Sn
sn

d−→
n→+∞

N (0, s2). But −1
2
√
n
Jn(θ) = 1

nHn(X)
√
n(θ − θ̂n), and we can

write
√
n(θ − θ̂n) =

(
1

n
Hn(X)

)−1 −1

2
√
n
Jn(θ).
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Again, by Slutsky’s theorem, we may deduce that
√
n(θ − θ̂n)

d−→
n→+∞

H−1N (0,Σ) = N
(
0, H−1ΣtH−1

)
= N

(
0, σ2

ZH
−1
)
.

Note that det(H) = ρY (0)
12 , so

Σ2 = σ2
ZH
−1 = (1− φ2)

 c2 + 4ρY (0) cd− 6ρY (0) −c
cd− 6ρY (0) d2 + 12ρY (0) −d
−c −d 1

 ,

with c = m
1−φ , d = b

1−φ and ρY (0) = 1
1−φ2σ

2
Z .
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6.4. Numerical results. We first present some histograms obtained with 1000 simulations, ν = 0.3, λ = 1,
σ = 0.2, and n = 1000. The red lines correspond to the theoretical gaussian distribution with variance
computed according to Theorem 2.

φ = 0.1 φ = 0.5 φ = 0.9

Figure 21. Histograms for a = 5, b = −5. First row: (m̂
(1)
n −m). Second row: (̂b

(1)
n − b).

Third row: (φ̂
(1)
n − φ).

φ = 0.1 φ = 0.5 φ = 0.9

Figure 22. Histograms for c = 5, d = −5, n = 1000. First row: (ĉ
(1)
n − c). Second row:

(d̂
(1)
n − d).
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Now we present typical realizations of trajectories for several choices of parameters but with the same jumps
(in red star) in order to illustrate the parameters effect on shapes and tests. We set ν = 0.3, λ = 1, n = 100
and consider tests: in blue cross detected jumps with T (1) for level α = 0.01, in green cross detected jumps
with the multiple test correction T̃ (1) for level β = 0.01, in black plus detected jumps with the multiple test

correction T̃
(1)
c for level β = 0.01 and magenta plus indicate the detected jumps for T

(1)
c for level α = 0.01.

We add circle for the corresponding detected jumps using T (2) in blue, T̃ (2) in green, T̃
(2)
c in black and T

(2)
c

in magenta. The blue line, respectively green line, is the estimated line with the first, respectively the second,
estimators. The dot red line corresponds to the straight line with parameters (cn, d) induced by our choices of
values. The corresponding true and false positive rates are given in tables. We first present results for c = 15,
d = −10 in Figure 23 and Tables 2 and 3.

φ = 0.1 φ = 0.5 φ = 0.9

Figure 23. Test over one simulation for c = 15, d = −10, b = d(1 − φ), a = c(1 − φ) − λν,
X0 = cn, with cn = c − d/(n(1 − φ)). First line: σ = 0.1, second line: σ = 0.3, third line:
σ = 0.5.
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σ = 0.1 σ = 0.3 σ = 0.5
φ 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

T (1) 1 1 1 0.9032 0.9677 0.8387 0.8710 0.5484 0.3226
T (2) 1 1 1 0.9032 0.9677 0.8387 0.8710 0.5484 0.2903

T̃ (1) 1 1 1 0.7419 0.9355 0.8065 0.6452 0.2258 0.0645

T̃ (2) 1 1 1 0.7097 0.9355 0.8065 0.6452 0.2258 0.0645

T̃c
(1)

1 1 1 0.6219 0.8065 0.7419 0.6129 0.2258 0.1613

T̃c
(2)

1 1 1 0.6219 0.7742 0.7419 0.6129 0.2903 0.0645

Tc
(1) 1 1 1 0.5484 0.7419 0.6774 0.6129 0.1613 0.0645

Tc
(2) 1 1 1 0.5484 0.7419 0.6774 0.6129 0.1613 0.0645

Table 2. TPR for tests over one simulation for ν = 0.3, λ = 1, c = 15, d = −10, b = d(1−φ),
a = c(1− φ)− λν, X0 = cn, with cn = c− d/(n(1− φ)) and n = 100, as shown in Figure 23
with tolerance α = β = 0.01. The number of jumps is 31.

σ = 0.1 σ = 0.3 σ = 0.5
φ 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

T (1) 0.0145 0.0145 0 0.0145 0.0290 0.0290 0.1159 0.0145 0
T (2) 0.0145 0 0 0.0145 0.0290 0.0290 0.1159 0.0145 0

T̃ (1) 0 0 0 0.0145 0 0.0145 0.0435 0 0

T̃ (2) 0 0 0 0.0145 0 0.0145 0.0435 0 0

T̃c
(1)

0 0 0 0.0145 0 0 0.0145 0 0

T̃c
(2)

0 0 0 0.0145 0 0 0.0145 0 0

Tc
(1) 0 0 0 0 0 0 0.0145 0 0

Tc
(2) 0 0 0 0 0 0 0.0145 0 0

Table 3. FPR for tests over one simulation for ν = 0.3, λ = 1, c = 15, d = −10, b = d(1−φ),
a = c(1− φ)− λν, X0 = cn, with cn = c− d/(n(1− φ)) and n = 100, as shown in Figure 23
with tolerance α = β = 0.01. The number of jumps is 31.

σ = 0.1 σ = 0.3 σ = 0.5
φ 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

T (1) 1 1 1 0.9 0.9 0.7333 0.5 0.6 0.3
T (2) 1 1 1 0.9 0.9 0.7333 0.5333 0.6 0.2667

T̃ (1) 1 1 1 0.7333 0.8 0.6333 0.2 0.4667 0

T̃ (2) 1 1 1 0.7333 0.8 0.6333 0.2 0.4667 0

T̃c
(1)

1 1 0.9667 0.6667 0.6333 0.6333 0.2333 0.4 0

T̃c
(2)

1 1 0.9667 0.6667 0.6667 0.6333 0.2333 0.4333 0

Tc
(1) 1 1 0.9667 0.5333 0.6333 0.5667 0.2 0.2333 0

Tc
(2) 1 1 0.9667 0.5333 0.6333 0.5667 0.2 0.6667 0

Table 4. TPR for tests over one simulation for ν = 0.3, λ = 1, a = 5, b = −5, b = d(1− φ),
a = c(1− φ)− λν, X0 = cn, with cn = c− d/(n(1− φ)) and n = 100, as shown in Figure 24
with tolerance α = β = 0.01. The number of jumps is 30.
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φ = 0.1 φ = 0.5 φ = 0.9

Figure 24. Test over one simulation for a = 5, b = −5, d = b/(1 − φ), cn = (a + λν)/(1 −
φ)− b/(n(1− φ)2), X0 = cn. First line: σ = 0.1, second line: σ = 0.3, third line: σ = 0.5.

σ = 0.1 σ = 0.3 σ = 0.5
φ 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

T (1) 0 0.0286 0 0 0 0.0286 0.0143 0.0571 0
T (2) 0 0.0286 0 0 0 0.0286 0.0143 0.0571 0

T̃ (1) 0 0.0143 0 0 0 0.0143 0 0.0143 0

T̃ (2) 0 0.0143 0 0 0 0.0143 0 0.0143 0

T̃c
(1)

0 0 0 0 0 0.0143 0 0.0143 0

T̃c
(2)

0 0 0 0 0 0.0143 0 0.0143 0

Tc
(1) 0 0 0 0 0 0.0143 0 0 0

Tc
(2) 0 0 0 0 0 0 0.0143 0 0

Table 5. FPR for tests over one simulation for ν = 0.3, λ = 1, a = 5, b = −5, b = d(1− φ),
a = c(1− φ)− λν, X0 = cn, with cn = c− d/(n(1− φ)) and n = 100, as shown in Figure 24
with tolerance α = β = 0.01. The number of jumps is 30.
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Figure 25. Means and standard deviation of the estimators of φ, cn and d, according Theo-
rem 2 (first column) or linear regression (second colum), over 100 simulations of (Xn,k)0≤k≤n,
for n ∈ {100, 200, ..., 5000} with φ = 0.9, ν = 0.3, λ = 1, c = 15, d = −10, X0 = cn, with
cn = c− d/(n(1− φ))
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scope, TSA 61125, 11 bd Marie et Pierre Curie, 86073 Poitiers Cedex 9, France
Email address: hermine.bierme@math.univ-poitiers.fr, camille.constant@math.univ-poitiers.fr

Anne Duittoz, CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
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