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SPIKE DETECTION FOR CALCIUM ACTIVITY

HERMINE BIERMÉ, CAMILLE CONSTANT, ANNE DUITTOZ, AND CHRISTINE GEORGELIN

Abstract. We present in this paper a global methodology for the spike detection in a biological context of

fluorescence recording of GnRh-neurons calcium activity. For this purpose we first propose a simple stochastic

model that could mimic experimental time series by considering an autoregressive AR(1) process with a linear
trend and specific innovations involving spiking times. Estimators of parameters with asymptotic normality

are established and used to set up a statistical test on estimated innovations in order to detect spikes. We

compare several procedures and illustrate on biological data the performance of our procedure.
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1. Introduction

The neurohomone gonadotropin-releasing hormone (GnRH) controls the reproductive function in males and
females mammals. GnRH controls the secretion of two pituitary hormones: luteinizing hormone (LH) and
follicle stimulating hormone (FSH) that control the secretion of sexual hormones by gonads (estrogens, proges-
terone from ovary and androgens from testis) and gametogenesis (follicle development and spermatogenesis).
GnRH is synthesized and secreted by a small number of neuroendocrine neurons, the so-called GnRH neurons.
Studies on large animals such as sheep, allowed serial blood sampling from portal vessels in conscious animals
and revealed that GnRH secretion was pulsatile and that every LH pulse was preceded by a GnRH pulse
(Levine et al. 1982 [17], Clarke et al. 1982 [7], Caraty and al. in 1982 [6]).

Understanding the mechanisms underlying this pulsatility of secretion is one key-clue for the comprehension
of infertility linked to hypothalamic dysfunctions. GnRH-neurons are dispersed in the anterior hypothalamus
and in situ and simultaneous measurement of numerous neurons cannot be achieved. In vitro approaches have
allowed to decipher part of some electrophysiological mechanisms [20, 26], showing the existence of periodic
synchronization of electrical activity (see Moenter 2010 [20] for a review), intracellular calcium activity corre-
lated with secretion (Constantin et al. 2009 [8], see Wray 2010 [26] for a review). In the present paper, data
was obtained from in vitro primary cultures of GnRH neurons derived from mouse embryonic nasal placodes
(see Constantin et al. 2009 [8] for biological methodology). In a previous study, Georgelin et al ([12]) showed
the existence of a paracrine/ autocrine regulation by endogenous released GnRH on intracellular calcium ac-
tivity in the neuronal population. The application of a GnRH antagonist blocking the paracrine/autocrine
loop abolished high synchronization events between GnRH neurons which can be defined by a great percentage
of neurons simultaneously exhibiting a peak of intracellular calcium (calcium event at a time t). This peaks
have a duration of several seconds (3-8) and reflect a sustained increase in intracellular calcium. One crucial
step in analyzing data is to correctly detect calcium peaks.

Fluctuations on ([Ca2+]i) are recorded as fluorescence signals captured at a given frequency (here 1 acqui-
sition per second). This fluorescence is directly proportional to the amount of intracellular calcium. However,
the intensity of fluorescence may present baseline variations due to methodological causes (fading) or environ-
mental causes (pH, temperature...) but also to high frequency and low amplitude variation in intracellular
calcium due synaptic input from neurons in the network. It is then important to be able to isolate the real
signal from the noise. Fluorescence was quantified at each unit of time as the mean fluorescence intensity Fk
measured in each neuron (cell body) Nk identified as a GnRH neuron. This leads to trajectories like the one
showed in Figure 1.

The aim of this paper is to improve the detection of so-called calcium events. A [Ca2+]i peak was detected
at time t if the fluorescence value at t was greater or equal to the average value of the 5 previous points plus
cf times the standard deviation of five previous point. This coefficient cf is empirically fixed by the biologists
to separate ”true calcium events” of so-called ”noisy calcium events” regardless the observed neuron. Because
the decision of being a calcium event is strongly linked to this coefficient cf and will deeply influence the
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Figure 1. Neuronal trajectory from biological data: complete trajectory at left, first 100
values at right.

synchronization analysis, we want to have a robust method to decide whether a peak is an event or not and
that could take in account the variability in the fluorescence response. Therefore we proposed a model for the
calcium signal and two tests to determine the pics and we will compare them in Section 4.

Inspired by continuous Integrate-And-Fire models (see [5] or [13]), we propose a discrete stochastic model
for single recording trajectories. Such a discretization procedure allows us to identify the model with an
autoregressive process of order 1 (AR(1)) with a linear trend. Such a model can also be viewed as a linear
trend with autoregressive errors and we can use main results developed for time series [3] and especially AR(1)
processes. Spiking times are then described through the innovation process.

Several results were proposed to estimate the linear or autoregressive coefficients [22, 24]. We compare
here the two main strategies: the first one based on a global contrast function and the second one (called
two step estimation) based on a first estimation of the trend followed by the regression coefficient estimate
on the detrended series in the spirit of [23]. Then this allows us to get access to estimated innovations, cor-
responding to a Gaussian mixture with two components with identical standard deviation. Therefore we can
use classical mixture estimation [19] and devoted package (fitgmdist in Matlab and Mclust in R [10]) to
estimate parameters and the two classes of times: those that are spiking times and those that are not. Hence
we propose several tests for spiking times and compare their sensitivity/specificity on simulated trajectories
and show their relevance compared to the initial strategy.

The paper is organized as follows. In Section 2 we describe the parametric model and explain the role of
each parameters in link with our biological context. We set and study estimators in Section 3. We obtain
explicit asymptotic variance and compare two strategies on some numerical simulations. Section 4 is devoted
to our different test strategies, whose efficiency is compared using ROC curves on simulated data. We conclude
this paper by several examples from biological experiments. Some numerical illustrations and technical proofs
are postponed to an Appendix section.

2. Model

2.1. Discrete model. In our biological context, the fluctuation of the calcium concentration is due on one
hand to natural clearance and on this other to sudden supplies released from the Reticulum. But ionic
channels near the membrane of neurons can provided puffs of calcium and one has to consider also that
indirect measurement can provide experimental noise. Moreover, a lot of experiments exhibit a more or less
linear tendency (see Section 5) probably due to the response fatigue of the fluorescence.
In a continuous setting, several models for spiking neurons like stochastic leaky integrate-and-fire models [5]
have been proposed. In their simplest form are solutions of the diffusion equation (see [15]):

dXt =
1

τ
(µ(t)−Xt)dt+ λdNt + σdWt,

where µ is a time inhomogeneous input, W a Brownian motion and N an homogeneous Poisson process
indepedent from W . Since our observed data are recording in a discrete sampling with a constant step time
and in order to take every phenomenon in account, we consider a kind of discrete version obtained from an
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infill scheme for this model (see Section 6.1 for more details). Hence we assume to observe the n ≥ 1 points of
the following autoregressive process with linear trend:

(1) ∀k ∈ {0, ..., n− 1}, Xn,k+1 = φXn,k + a+ bk/n+ λUk+1 + σεk+1

where

• φ ∈ [0, 1) is the coefficient of the autoregressive process, linked to the clearance of the calcium;
• a ∈ R and b ∈ R correspond to the coefficients of the linear drift.
• (Uk)k∈{1,...,n} represents the jump times (instants of release from the Reticulum) : it is a family of iid

random variables with common distribution B(ν) for some ν ∈ [0, 1), the jump rate; the jump size is
given by λ ∈ (0,+∞).

• (εk)k∈{1,...,n} represents the experimental noise or stochastic flux from the channels at the membrane

with ratio given by σ ∈ (0,+∞): it is a family of iid random variables with common distribution
N (0, 1).

Let us remark that we have simplified the Poisson process giving spiking times by a simple Bernoulli sequence.
This approximation may be justify when the lapse time of acquisition is very short. Actually, considering an
homogeneous Poisson point process of intensity µ > 0, the interspiking duration is given by iid exponential
random variables of parameter µ such that their entire upper part is given by iid geometrical random variables
of parameter ν = 1− e−µ.

We give an illustration of a typical realization of this sequence in Figure 2. In order to understand the
effect of the parameters in the the final trajectory we have also plotted the purely jumps one (case without
noise nor drift) and the drifted jumps ones (only noise is removed). The initial value X0 has been chosen as
the experimental one observed in Figure 1. Let us emphasize that due to both regression coefficient and noise
contributions jumps are not necessarily local maxima of the sample paths.

Figure 2. One simulation of a trajectory for ν = 0.15, λ = 10, φ = 0.5, n = 100, X0 = 520.
From left to right: only the jumps innovations (σ = a = b = 0), the same jumps innovations
with a drift (a = 1200, b = −30, σ = 0) the same jumps innovations with a drift and a
gaussian noise (a = 1200, b = −30, σ = 5): the jumps times are marked with a cross.

The introduction of a and b in the regression equation contributes to a linear tendency of the sequence. It
will therefore be convenient to assume furthermore that

(2) ∀k ∈ {0, ..., n}, Xn,k = Yk + cn + dk/n

with (Yk)k a stationary centered solution of the AR(1) equation

(3) Yk+1 = φYk + Zk+1,

where (Zk)k corresponds to the centered innovation that we assume given by

Zk = λ (Uk − ν) + σεk,

in such a way that (Zk)k is an iid sequence of centered random variables with common variance σ2
Z = λ2ν(1−

ν) + σ2. It follows that the relation between a, b, cn and d is given by

(4) cn(1− φ) + d/n = a+ λν, d(1− φ) = b iff cn = c− b

n(1− φ)2
, with c =

a+ λν

1− φ
and d =

b

1− φ
.
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Actually, it follows that

Xn,k+1 = cn + d
k + 1

n
+ Yk+1

= cn + d
k + 1

n
+ φYk + Zk+1 by (3)

= φXn,k + (1− φ)cn + (1− φ)d
k

n
+ d

1

n
+ Zk+1 by (2)

= φXn,k + (a+ λν) + b
k

n
+ Zk+1,

so that we get (1). Moreover, denoting m = a+ λν we may simply rewrite (1) as

(5) Xn,k+1 = φXn,k +m+ bk/n+ Zk+1.

The unknown parameters are therefore given by (a, b, φ, λ, ν, σ) or equivalently by (c, d, φ, λ, ν, σ).
Our strategy will consist in first estimating the innovation process (Zk)k through the estimation of (m, b, φ)

and then working on the estimated innovations in order to complete the estimation of the whole parameters
and detect times of jumps simply defined as Jn = {k ∈ {1, . . . , n} ; Uk = 1}.

3. Parameter Estimation

3.1. Preliminary useful results concerning AR(1) processes. In this section we first give some useful
theoretical results when considering (Yk)k a stationary centered solution of the AR(1) equation (3) (see [3]
for instance). Assuming that (Zk)k is an iid sequence with E(Zk) = 0 and Var(Zk) = σ2

Z < +∞, one can
represent (Yk)k as a causal MA(∞) process:

(6) Yk =

+∞∑
n=0

φnZk−n,

where the convergence of the series holds in L2(Ω). In particular, it follows that (Yk)k is a stationary centered
second order process with covariance function given by

ρY (k) = Cov(Yk, Y0) =
φ|k|

1− φ2
σ2
Z .

In order to compute asymptotic variances for the proposed estimators we will need the following results, that
we give under general assumptions on innovations since it may be usefull for other settings.

Theorem 1. Let (Zk)k be a sequence of iid centered random variables with E(Z4+δ
0 ) < +∞, for some δ > 0,

and (Yk) its associated AR(1) process with autoregression coefficient φ ∈ (−1, 1) given by (6). Then we have
the following asymptotic normality

1√
n

(
n−1∑
k=0

Yk,

n−1∑
k=0

k

n
Yk,

n−1∑
k=0

(Y 2
k − ρY (0)),

n−1∑
k=0

YkZk+1

)
d−→

n→+∞
N (0,Σ1) .

with

Σ1 =
σ2
Z

(1− φ)2


1 1

2

E(Z3
0)

(1+φ)σ2
Z

0

1
2

1
3

E(Z3
0)

2(1+φ)σ2
Z

0

E(Z3
0)

(1+φ)σ2
Z

E(Z3
0)

2(1+φ)σ2
Z

(E(Z4
0 )−3σ4

Z)

(1+φ)2σ2
Z

+ 2σ2
Z

(1+φ2)
(1−φ)(1+φ)3

2σ2
Zφ

(1+φ)2

0 0
2σ2
Zφ

(1+φ)2
1−φ
1+φE(Z2

0 )

 .

Let us note that, since our innovations have moments of any order, our assumption on E(Z4+δ
0 ) < +∞ is

clearly satisfied. It allows us to use a Central Limit result of [2] for mn-dependent random variables but it may
be weakened with E(Z4

0 ) < +∞. Therefore, we can state the following result under this weaker assumption.

Corollary 1. Let (Zk)k be a sequence of iid centered rv with E(Z4
0 ) < +∞ and (Yk) its associated AR(1)

process with autoregression coefficient φ ∈ (−1, 1) given by (6). Then we have the following convergence in L2:

i) 1
n

n−1∑
k=0

Yk → 0 and 1
n

n−1∑
k=0

k
nYk → 0;

ii) 1
n

n−1∑
k=0

Y 2
k → ρY (0) = 1

1−φ2σ
2
Z ;
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iii) 1
n

n−1∑
k=0

YkYk+1 → ρY (1) = φ
1−φ2σ

2
Z with, denoting Y n = 1

n

n−1∑
k=0

Yk,

1√
n

(
n−1∑
k=0

[(
Yk − Y n

)2 − ρY (0)
]
,

n−1∑
k=0

[(
Yk − Yn

) (
Yk−1 − Y n

))
− ρY (1)

]
d−→

n→+∞
N (0,Σρ) ,

with

Σρ = ρY (0)2

 (η − 3) + 2 1+φ2

1−φ2 φ
(

(η − 3) + 2 1+φ2

1−φ2

)
φ
(

(η − 3) + 2 1+φ2

1−φ2

)
(η − 3)φ2 + 2 1+φ2

1−φ2 − (1 + φ2)

 ,

where η =
E(Z4

0 )

σ4
Z

. Hence, for φ̂n :=

n−1∑
k=0

(Yk−Yn)(Yk+1−Y n)
n−1∑
k=0

(Yk−Y n)
2

we have

√
n
(
φ̂n − φ

)
d−→

n→+∞
N
(
0, 1− φ2

)
.

Proof. In view of the proof of Theorem 1, as soon as E(Z4
0 ) < +∞, we can obtain the convergence of

√
nΣn(Y )

to Σ1 where Σn(Y ) is the covariance matrix of

(
1
n

n−1∑
k=0

Yk,
1
n

n−1∑
k=0

k
nYk,

1
n

n−1∑
k=0

(Y 2
k − ρY (0)), 1

n

n−1∑
k=0

YkZk+1

)
. Then,

it implies the corresponding L2 convergence. Moreover, using the AR(1) equation (3) we write

1

n

n−1∑
k=0

YkYk+1 = φ
1

n

n−1∑
k=0

Y 2
k +

1

n

n−1∑
k=0

YkZk+1
L2

−→
n→+∞

φρY (0) = ρY (1).

The following central limit theorem and φ-estimator are classical results (see [3] for instance). Under the

assumption that E(Z4+δ
0 ) < +∞, we can recover them thanks to Theorem 1. Actually, since Y n = OP

(
1√
n

)
the asymptotic normality follows from the fact that(

n−1∑
k=0

[
Y 2
k − ρY (0)

]
,

n−1∑
k=0

[YkYk−1 − ρY (1)]

)

is just a linear transformation of

(
n−1∑
k=0

[
Y 2
k − ρY (0)

]
,
n−1∑
k=0

YkZk−1

)
with corresponding matrix given by A =(

1 0
φ 1

)
and we find Σρ = AΣ3,4

tA, where Σ3,4 denotes the extracted matrix of Σ1 corresponding to lines

and rows number 3 and 4, that corresponds to the asymptotic covariance matrix obtained in Proposition 7.3.4.

of [3]. Then using delta-method for g(x, y) = y
x we may prove the asymptotic normality of φ̂n with asymptotic

variance given by Dg(ρY (0), ρY (1))Σρ
tDg(ρY (0), ρY (1)) where Dg(ρY (0), ρY (1)) = 1

ρY (0)

(
−φ 1

)
. �

Remark 1. Let us mention that these convergence may be strengthen using ergodic properties of (Yk)k.
Actually, according to [1], since the innovation Z0 has a non trivial absolutely continuous component and
E(log(Z0))+) < +∞, the AR(1) process (Yk)k is strong mixing and hence ergodic. Therefore, by the er-
godic theorem (see Corollary 9.1.3 of [9] for instance), for any measurable function g : R → R such that
E(g(Y0)2) < +∞ we have

1

n

n−1∑
k=0

g(Yk)→ E(g(Y0)), almost surely and in L2.

Let us also note that these results may be extended to non stationary solutions of the AR(1) equation whatever
the initial solution is.

3.2. Estimation of the innovations (Zk)k∈{1,...,n}.

3.2.1. Estimation of m = a + λν, b and φ. In view of (5), we first derive an estimator for θ := (m, b, φ) =
(a − λν, b, φ) as a contrast based estimator. To this end let us consider the contrast function, defined for

θ̃ = (m̃, b̃, φ̃) ∈ R3 as

Mn(θ̃) =

n−1∑
k=0

(
Xn,k+1 − φ̃Xn,k − m̃− b̃

k

n

)2

.



6 HERMINE BIERMÉ, CAMILLE CONSTANT, ANNE DUITTOZ, AND CHRISTINE GEORGELIN

The minimizer of this quadratic functional is given by

(7) θ̂(1)
n := (tAn(X)An(X))−1 tAn(X)X = (m̂(1)

n , b̂(1)
n , φ̂(1)

n )

where An(X) =

 1 0 Xn,0

...
1 n−1

n Xn,n−1

 is the random matrix of coefficients. Adapting classical proofs for

M-estimators (see [25] for instance), we prove the following results (see Appendix).

Theorem 2. Let us assume that (Xn,k)0≤k≤n satisfies (5) for some θ = (m, b, φ), following from (2), with
(Zk) an iid sequence of centered random variables with E(Z4

k) < +∞. Then,

(8) θ̂(1)
n := (tAn(X)An(X))−1 tAn(X)X

P−→
n→+∞

θ

Moreover,
√
n
(
θ̂n − θ

)
d−→

n→+∞
N (0,Σ2) ,

where, for σ2
Z := Var(Z0), the matrix Σ2 is given by

Σ2 =

 m2 1+φ
1−φ + 4σ2

Z mb 1+φ
1−φ − 6σ2

Z −m(1 + φ)

mb 1+φ
1−φ − 6σ2

Z b2 1+φ
1−φ + 12σ2

Z −b(1 + φ)

−m(1 + φ) −b(1 + φ) 1− φ2

 .

or equivalently by

Σ2 =

 c2
(
1− φ2

)
+ 4σ2

Z cd
(
1− φ2

)
− 6σ2

Z −c
(
1− φ2

)
cd
(
1− φ2

)
− 6σ2

Z d2
(
1− φ2

)
+ 12σ2

Z −d
(
1− φ2

)
−c
(
1− φ2

)
−d
(
1− φ2

)
1− φ2

 ,

with c = m
1−φ and d = b

1−φ .

Remark 2. Let us note that for m and b be fixed, asymptotic variances of (m̂
(1)
n )n and (b̂

(1)
n )n are increasing

as φ increases to 1, while it is the opposite for c and d be fixed since in this case m = c(1−φ) and b = d(1−φ)
become smaller with φ.

We check empirically this result for different values of φ in Figure 14, postponed to Section 6.4. As expected,
in view of the asymptotic variance, the performances are better for φ not too close from 1.

3.2.2. Estimation of the tendency. Theorem 2 allows us to build an estimator of the parameters c = m
1−φ and

d = b
1−φ linked with the observed linear tendency driven by cn = c− d

n(1−φ) and d by considering

ĉ(1)
n =

m̂
(1)
n

1− φ̂(1)
n

− b̂
(1)
n

n(1− φ̂(1)
n )2

and d̂(1)
n =

b̂n

1− φ̂n
.

Since cn → c, as n→ +∞, we can deduce from Theorem 2 both consistency and asymptotic normality:

Proposition 1. Under the assumptions of Theorem 2
√
n
(

(ĉ(1)
n , d̂(1)

n , φ̂(1)
n )− (c, d, φ)

)
d−→

n→+∞
N (0,Σ3) ,

with

(9) Σ3 =


4σ2
Z

(1−φ)2 − 6σ2
Z

(1−φ)2 0

− 6σ2
Z

(1−φ)2
12σ2

Z

(1−φ)2 0

0 0 1− φ2


Proof. We consider the function from R3 to R3 defined ∀(x, y, z) ∈ R3 by:

g (x, y, z) =

(
x

1− z
,

y

1− z
, z

)
,

such that
√
n
((
ĉ(1)
n , d̂(1)

n , φ̂(1)
n

)
− (c, d, φ)

)
=
√
n
(
g(θ̂(1)

n )− g(θ)
)

d−→
n→+∞

N
(
0, Dg(θ)Σ2

tDg(θ)
)
.
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by Theorem 1 and the delta-method ([25]), with

Dg(θ) =
1

1− φ

 1 0 c
0 1 d
0 0 1− φ

 ,

�

Remark 3. Note that the asymptotic covariance does not depend on c, d and that we get an asymptotic

independence between
(
ĉ
(1)
n , d̂

(1)
n

)
and φ̂

(1)
n in contrast with previous results.

We illustrate this result in Figure 15 (see Section 6.4) and compare for several values of φ and σ in Figure
3 below.

Figure 3. Comparison with 1000 simulations, ν = 0.3, λ = 1, c = 15, d = −10, n = 100,
X0 = cn. On the left: with respect to φ ∈ {0, 0.1, . . . , 0.9, 0.95}, in red σ = 0.1, in black
σ = 0.3 and in blue σ = 0.5. On the right with respect to σ ∈ {0, 0.05, . . . , 0.5}, in red
φ = 0.1, in black φ = 0.5 and in blue φ = 0.9

We can notice that, as expected, φ̂(1) does not depend of the noise σ of the signal, but all the estimators

ĉ
(1)
n , d̂

(1)
n , φ̂(1) depend of φ.

Now, a classical way to treat with tendency consists in first estimating it and then removing it. When doing

so, we have a 2-step estimation procedure by first getting estimators ĉ
(2)
n and d̂

(2)
n given by linear regression of

(Xn,k)0≤k≤n and then computing the autoregression coefficient φ̂
(2)
n by considering the autocorrelation function

at lag 1 of the linear regression residuals given by

(10) Ŷn,k := Xn,k − ĉ(2)
n − d̂(2)

n k/n = Yk + (cn − ĉ(2)
n ) + (d− d̂(2)

n )k/n.

More precisely, by (2) together with the fact that 1
n+1

∑n
k=0

k
n = 1

2 and 1
n+1

∑n
k=0

(
k
n −

1
2

)2
= n+2

12n , we
have for n > 1,

d̂(2)
n =

12n

n+ 2
× 1

n+ 1

n∑
k=0

(
k

n
− 1

2
)
(
Xn,k −Xn

)
=

12n

n+ 2
× 1

n+ 1

n∑
k=0

(
k

n
− 1

2
)

(
Yk − Y n + d

(
k

n
− 1

2

))
where Xn = 1

n+1

∑n
k=0Xn,k and Y n = 1

n+1

∑n
k=0 Yk, while

ĉ(2)
n = Xn −

1

2
d̂(2)
n

= cn + Y n −
1

2
(d̂(2)
n − d).

It follows that

φ̂(2)
n =

n−1∑
k=0

(Ŷn,k+1 − Ŷ n)(Ŷn,k − Ŷ n)×

(
n∑
k=0

(Ŷn,k − Ŷ n)2

)−1

,

where Ŷ n = 1
n+1

∑n
k=0 Ŷn,k.

In order to compare with our first estimators we can check that they have the same asymptotic covariance
matrix.
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Proposition 2. Let us assume that (Xn,k)0≤k≤n satisfies (5) for some θ = (m, b, φ), following from (2), with

(Zk) an iid sequence of centered random variables with E(Z4δ

k ) < +∞ for some δ > 0. Then,

E
(
ĉ(2)
n

)
= cn and E

(
d̂(2)
n

)
= d.

Moreover,

√
n
(

(ĉ(2)
n , d̂(2)

n , φ̂(2)
n )− (c, d, φ)

)
d−→

n→+∞
N (0,Σ3) ,

with Σ3 given by (9) of Proposition 1.

Proof. We first remark that d̂
(2)
n − d = An · Sn+1(Y ), where

Sn(Y ) =
1

n

(
n−1∑
k=0

Yk,

n−1∑
k=0

k

n
Yk,

n−1∑
k=0

(Y 2
k − ρY (0)),

n−1∑
k=0

YkZk+1

)
,

have been introduced in Theorem 1 and An =
(
−6 n

n+2 , 12n+1
n+2 , 0, 0

)
→ A = (−6, 12, 0, 0). Therefore

√
n
(
d̂

(2)
n − d

)
d−→

n→+∞
N
(

0,
12σ2

Z

(1−φ)2

)
, since A · Σ1A =

12σ2
Z

(1−φ)2 (identifying vectors with column matrices) and

d̂
(2)
n − d = OP(1/

√
n). Then, one can remark that for h ∈ {0, 1} we have

1

n

n−1∑
k=0

[
(Ŷn,k+h − Ŷ n)(Ŷn,k − Ŷ n)− ρ(h)

]
=

1

n+ 1

n∑
k=0

Yk+hYk − ρ(h) +OP(1/n),

with

√
n

(
ĉ(2)
n , d̂(2)

n ,
1

n+ 1

n∑
k=0

Y 2
k ,

1

n+ 1

n∑
k=0

Yk+1Yk − (cn, d, ρ(0), ρ(1))

)
= Mn

√
nSn+1(Y ),

for Mn =


1 + 3 n

n+2 −6n+1
n+2 0 0

−6 n
n+2 12n+1

n+2 0 0

0 0 1 0
0 0 φ 1

 −→
n→+∞

M :=


4 −6 0 0
−6 12 0 0
0 0 1 0
0 0 φ 1

. Since cn = c+O(1/n), accord-

ing to Theorem 2 we obtain

√
n

((
ĉ(2)
n , d̂(2)

n ,
1

n

n−1∑
k=0

(Ŷn,k+1 − Ŷ n)(Ŷn,k − Ŷ n),
1

n

n−1∑
k=0

(Ŷn,k − Ŷ n)2

)
− (c, d, ρ(0), ρ(1))

)
d−→

n→+∞
N (0,MΣ1

tM),

and the stated result follows by the delta-method. �

We compare these two procedures in Figure 4. Its seems that even for n = 100 both behave relatively
similarly. We only remark that the global estimation seems less biased for φ as φ is increasing than the 2-Step
estimation but its standard deviation is a little bit higher. Let us emphasize that we chose initial conditions in
order to be close from the chosen line and we saw that the global estimation was more robust with the choice
of initial condition. Let us also remark that as the variance for estimation of φ is decreasing with respect
1− φ2, bias is increasing. Note also that the estimate of c is naturally biased (asymptotically not biased) but
the estimate for d seems not too biased.

For comparison we plot the theoretical values of the standard deviation in Figure 5.
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Figure 4. Comparison with 1000 simulations, ν = 0.3, λ = 1, c = 15, d = −10, n = 100,
X0 = cn with respect to φ ∈ {0, 0.1, . . . , 0.9, 0.95} on the left and to σ ∈ {0, 0.05, . . . , 0.5} on
the right. Straight line for the global estimation and dashed line for the 2-step estimation.
On the left in red σ = 0.1, in black σ = 0.3 and in blue σ = 0.5. On the right, in red φ = 0.1,
in black φ = 0.5 and in blue φ = 0.9.

Figure 5. Theoretical asymptotic standard deviation for ν = 0.3, λ = 1, n = 100, with
respect to φ ∈ {0, 0.1, . . . , 0.9, 0.95} on the left and to σ ∈ {0, 0.05, . . . , 0.5} on the right. On
the left in red σ = 0.1, in black σ = 0.3 and in blue σ = 0.5. On the right, in red φ = 0.1, in
black φ = 0.5 and in blue φ = 0.9.

3.2.3. Estimation of the innovations. Theorem 2 and the 2-step estimation of Proposition 2 provide us two
ways for the estimations of innovations (Zk)k∈{1,...,n}. Namely, we can consider for all k ∈ {1, ..., n}:

(11) Ẑ
(1)
k = Xn,k − φ̂(1)

n Xn,k−1 − m̂(1)
n − b̂(1)

n

k − 1

n

or

(12) Ẑ
(2)
k = Ŷn,k − φ̂(2)

n Ŷn,k−1 with Ŷn,k given in (10).

Note that, in view of previous results, for all fixed k we have

Ẑ
(i)
k

P−→
n→+∞

Zk.

Then, in the sequel, we will explicitly used our assumptions on the distribution of the innovations in order
to complete estimation of all the parameters.
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3.3. Estimation of λ, ν and σ2. Let us recall that we assume that Zk = λ(Uk − ν) +σεk, for U ∼ B(ν) and
εk ∼ N (0, σ2). This implies that Zk is a mixture between two Gaussian. More precisely, the density of Z0 is
given by

fZ0
(z;ψ) = (1− ν)γ−λν,σ2(z) + νγλ(1−ν),σ2(z), for z ∈ R

where ψ := (ν, λ, σ) and γm,ρ2 denotes the density of a normal variable of mean m and of variance ρ2.
It is classical to use the EM-algorithm to estimate the mixture parameters. We impose that the two

components share the same variance and we consider the estimated innovations for all k ∈ {1, ..., n}, Ẑ(i)
k , for

i = 1 or 2. We can use the R function Mclust on these estimated innovations [10] or the Matlab function
fitgmdist, and we impose it two components with the same variance: one for the peaks, the other one for the
innovations without peaks. This algorithm gives estimators of the model by iterations of two steps: expectation
of the completed log-likelihood of the estimated innovations and choice of parameters which maximize this
expectation. At each iteration, the log-likelihood of the estimated innovations increases, which enables us to
have a better estimation at a given iteration than at the previous one. We can refer to [21] for more details.
The algorithm stops when the log-likelihood increases by increments smaller than a tolerance. It gives us the
parameters of the clustering:

• the estimated mean of each gaussian (µ̂1, µ̂2): once sorted such that µ̂1 ≤ µ̂2 we should have µ̂1 that
estimates −λν and µ̂2 that estimates λ(1− ν) so we can use µ̂2 − µ̂1 as an estimator of λ;
• the estimated proportion of each gaussian (p̂1, p̂2): we keep p̂2 as an estimator of ν;
• the common estimated variance v̂ which estimates σ2.

Then we denote by ψ̂
(i)
n := (ν̂

(i)
n , λ̂

(i)
n , σ̂

(i)
n ) the corresponding estimators obtained by using (Ẑ

(i)
k )1≤k≤n. The

main problems of the EM-algorithms are that it not ensures to have the estimator of maximum likelihood
if there exist local maxima (importance of the initialization) and that the convergence can be slow. We can
refer to [19] to choose the initialization and to [16] to study different types of convergence. Here we use five
replicates for each estimation and apply this algorithm with the previous estimated innovation so that we

obtain two estimators ψ̂
(i)
n := (ν̂

(i)
n , λ̂

(i)
n , σ̂

(i)
n ) for i = 1, 2. We present bias as well as empirical 95% confidence

intervals in Figure 6, while a specific comparison between global estimation and 2-step estimation for bias and
standard deviation is presented in Figure 6.

Figure 6. Comparison with 1000 simulations, ν = 0.3, λ = 1, c = 15, d = −10, n = 100,
X0 = c for EM estimators using estimated innovations from Theorem 2. On the left: with
repect to φ ∈ {0, 0.1, . . . , 0.9, 0.95}, in red σ = 0.1, in black σ = 0.3 and in blue σ = 0.5. On
the right with repect to σ ∈ {0, 0.05, . . . , 0.5}, in red φ = 0.1, in black φ = 0.5 and in blue
φ = 0.9

Surprisingly, we notice that the estimators of ν, λ and σ seem not to depend on φ, whatever the estimation
of the innovations (global or 2-step) and both of them performs rather similarly. We can also remark that here
is a stronger bias for the λ estimation and as expected standard deviations increase with respect to σ.

Let us finally remark that we are therefore able to estimate the whole set of parameters since on can then
set

â(1)
n = m̂(1)

n − λ̂(1)
n ν̂(1)

n .
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Figure 7. Comparison with 1000 simulations, ν = 0.3, λ = 1, c = 15, d = −10, n = 100,
X0 = c with respect to φ ∈ {0, 0.1, . . . , 0.9, 0.95}. Straight line for the global estimation and
dashed line for the 2-Step estimation. On the left in red σ = 0.1, in black σ = 0.3 and in blue
σ = 0.5. On the right φ = 0.1, in black φ = 0.5 and in blue φ = 0.9.

4. Spike detection

Let us recall that the innovations of the process X are given by

∀k ∈ {1, ..., n}, Zk = λ (Uk − ν) + σεk = Xk − φXk−1 − a− λν − b
k − 1

n
,

which can be estimated through Ẑ
(i)
k where i = 1 or 2. We have already remarked that Zk is a mixture between

two gaussians (see Section 3.3). As we want to detect the spikes, we have to find the k ∈ {1, ..., n} such that
Uk+1 = 1. Therefore we can define two tests.
• T : we consider for a threshold s ∈ R the probabilities:

PF := PF (s, ν, λ, σ) = P (Zk > s|Uk+1 = 0) = 1− Φ

(
s+ λν

σ

)
PT := PT (s, ν, λ, σ) = P (Zk > s|Uk+1 = 1) = 1− Φ

(
s− λ(1− ν)

σ

)
,

where Φ is the cumulative distribution function of a standard normal variable. We consider also for a tolerance
α ∈ (0, 1):

sα = min {s ∈ R|PF ≤ α} = σq1−α − λν,
where q1−α denotes the quantile of order 1− α of a standard Gaussian random variable. The test T consists

in considering the instant k as a peak if Ẑ
(i)
k+1 > sα. Then PF is the false detection probability at each time k

and PT is the true detection probability at each time k.
• Tc: EM algorithm can provide us the a posteriori probabilities P (Uk = 0|Zk) which are the probabilities,

given Zk, that the instant k is not a peak. Then Tc consists in considering the instant k as a peak if
P (Uk = 0|Zk) < α, for a tolerance α. Let us quote that the clustering by default is usually given by choosing
α = 1

2 .

Then, for i ∈ {1, 2} we denote T (i) and T
(i)
c the tests T and Tc, used respectively with the estimations

(Ẑ
(i)
k )1≤k≤n.

In order to enlight performances of both tests we consider a trajectory of size n + 1 with n = 100. We
note (Jk)1≤k≤n the sequence of {0, 1}-valued variables with true spiking times given by 1 and, for a tolerance

α on false detection, (T
(i)
k (α))1≤k≤n, respectively (T

(i)
c,k(α))1≤k≤n, the sequence of {0, 1}-valued variables with

detected spiking times given by 1 using estimated innovations Ẑ
(i)
k and ψ̂

(i)
n = (ν̂

(i)
n , λ̂

(i)
n , σ̂

(i)
n ), described in the
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previous section. Then we can compute

τ
(i)
T (α) := #{1 ≤ k ≤ n; Jk = 1, T

(i)
k (α) = 1}/#{1 ≤ k ≤ n; Jk = 1},

τ
(i)
F (α) := #{1 ≤ k ≤ n; Jk = 0, T

(i)
k (α) = 1}/#{1 ≤ k ≤ n; Jk = 0},

and similarly we write τ
(i)
c,T (α) and τ

(i)
c,F (α) when T (i) is replaced by T

(i)
c .

We present in Figure 17 several realizations obtained considering fixed a, b and with the same jumps. The
different values of φ contribute to changes in the linear trend and sample paths are very different. In Figure 16
several realizations are obtained considering fixed c, d also with the same jumps. Hence the linear slope is now
identical for each realizations and the different values of φ only change a little the initial value. Let us emphasize
that we chose as initial conditions cn in order to have a point on the line. This choice corresponds to an ideal
case for the 2-step estimations and it performs very similarly than the first global way of estimation. However
we have remarked that the global estimation is more robust to changes with respect to initial conditions. We
give computed true and false positive rate in Table 1 and Table 2 for a fixed level chosen as α = 0.01. We
put in bold the minor changes between the two methods of estimation. Whatever the chosen test is, the
performances are getting worser as σ is increasing. However, tests T and Tc are not performing similarly for a
fixed level. The true and false positive rate for T are higher than for Tc. Despite we have chosen α = 0.01 we
can obtain up to 0.1 for false positive rate of T , in the worst case σ = 0.5, while false positive rate of Tc are
of the good order.

φ = 0.1 φ = 0.5 φ = 0.9

σ τ
(1)
T τ

(1)
F τ

(1)
c,T τ

(1)
c,F τ

(1)
T τ

(1)
F τ

(1)
c,T τ

(1)
c,F τ

(1)
T τ

(1)
F τ

(1)
c,T τ

(1)
c,F

0.1 1 0.014 1 0 1 0.014 1 0 1 0 1 0
0.3 0.889 0.027 0.519 0 1 0.027 0.667 0 0.704 0 0.296 0
0.5 0.667 0.041 0.111 0.014 0.370 0 0 0 0.630 0.041 0.148 0

σ τ
(2)
T τ

(2)
F τ

(2)
c,T τ

(2)
c,F τ

(2)
T τ

(2)
F τ

(2)
c,T τ

(2)
c,F τ

(2)
T τ

(2)
F τ

(2)
c,T τ

(2)
c,F

0.1 1 0.014 1 0 1 0.014 1 0 1 0 1 0
0.3 0.889 0.027 0.556 0 1 0.027 0.667 0 0.778 0 0.333 0
0.5 0.667 0.041 0.111 0.014 0.370 0 0 0 0.630 0.041 0.148 0

Table 1. Test over one simulation for ν = 0.3, λ = 1, a = 5, b = −5, d = b/(1 − φ),
cn = (a+λν)/(1−φ)− b/(n(1−φ)2), X0 = cn, n = 100, as shown in Figure 17 with tolerance
α = 0.01. The number of jumps is 27.

φ = 0.1 φ = 0.5 φ = 0.9

σ τ
(1)
T τ

(1)
F τ

(1)
c,T τ

(1)
c,F τ

(1)
T τ

(1)
F τ

(1)
c,T τ

(1)
c,F τ

(1)
T τ

(1)
F τ

(1)
c,T τ

(1)
c,F

0.1 1 0.013 1 0 1 0.013 1 0 1 0.013 1 0
0.3 0.840 0 0.640 0 0.920 0 0.440 0 0.760 0 0.600 0
0.5 0.320 0 0 0 0.480 0.105 0.280 0.013 0.760 0.118 0.600 0.053

σ τ
(2)
T τ

(2)
F τ

(2)
c,T τ

(2)
c,F τ

(2)
T τ

(2)
F τ

(2)
c,T τ

(2)
c,F τ

(2)
T τ

(2)
F τ

(2)
c,T τ

(2)
c,F

0.1 1 0.013 1 0 1 0.013 1 0 1 0.013 1 0
0.3 0.840 0 0.640 0 0.920 0 0.400 0 0.760 0 0.600 0
0.5 0.320 0 0 0 0.480 0.105 0.280 0.013 0.760 0.118 0.560 0.053

Table 2. Test over one simulation for ν = 0.3, λ = 1, c = 15, d = −10, b = d(1 − φ),
a = c(1− φ)− λν, X0 = cn, with cn = c− d/(n(1− φ)) and n = 100, as shown in Figure 16
with tolerance α = 0.01. The number of jumps is 25.

In order to confirm these first observations we estimate the true and false detection probabilities by consid-
ering N = 1000 independent simulations of sample paths and computing the empirical mean of the sample

(13) P̂
(i)
T (α) =

1

N

N∑
l=1

(
τ

(i)
T (α)

)(l)

and P̂
(i)
F (α) =

1

N

N∑
l=1

(
τ

(i)
F (α)

)(l)

,
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as well as

(14) P̂
(i)
c,T (α) =

1

N

N∑
l=1

(
τ

(i)
c,T (α)

)(l)

and P̂
(i)
c,F (α) =

1

N

N∑
l=1

(
τ

(i)
c,F (α)

)(l)

.

We first present numerical results when φ is varying in Figure 8 with also 95% confidence intervals for α = 0.01
as previously. Surprisingly, despite the values of φ near 1 affect the quality of the first estimated values, it
seems to have no consequence on the results of the different tests since their performances do not vary too
much with φ, as it was also the case for the second estimates using EM-algorithms. However the performances
are highly depending on the level of noise σ as we can see in Figure 9 where we have plotted results according
to σ varying between 0 and 0.5. As remarked previously, tests are performing similarly choosing the first or
the second method of innovations. However as σ is increasing the level of T is higher than α but not exceeding
0.1. In contrast Tc seems to have a lower false detection rate but it has also a lower true detection rate.

Figure 8. Comparison with 1000 simulations, ν = 0.3, λ = 1, c = 15, d = −10, n = 100,
X0 = c with respect to φ ∈ {0, 0.1, . . . , 0.9, 0.95}. Threshold given by α = 0.01. In red
σ = 0.1, in black σ = 0.3 and in blue σ = 0.5. First line: True positive rate according to the
different Tests. Second line: false positive rate

Mean of TP Mean of FP Std of TP Std of FP

Figure 9. Comparison with 1000 simulations, ν = 0.3, λ = 1, c = 15, d = −10, n = 100,
X0 = c with respect to σ ∈ {0, 0.05, . . . , 0.5}. Threshold given by α = 0.01. In red φ = 0.1,
in black φ = 0.3 and in blue φ = 0.5. Straigth line with dot for T (1), dashed line with plus

for T (2), dashed line with dot for T
(1)
c , dotted line with cross for T

(2)
c .

A usual way to compare tests is to use ROC curves (for Receiver Operating Characteristic) that enable to
measure a binary test’s sensitivity. We can refer to [18] for more details. Since our tests depend on a level

α ∈ (0, 1) we can compute empirical ROC curves defined as the location of the pairs (P̂
(i)
F (α), P̂

(i)
T (α)) given

by (13) for T or (P̂
(i)
c,F (α), P̂

(i)
c,T (α)) given by (14) for Tc when α is varying between 0 and 1. Let us quote that

we can also compute the theoretical ROC curve associated to T and in this case the pairs (PF , PT ) are related
through the fact that the measure d′ defined in [14] by

d′ = Φ−1(PT )− Φ−1(PF ),
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where Φ is the cumulative distribution function of a standard normal variable, is constant. With the expressions
of PT and PF and the symmetry of Φ we obtain d′ = λ

σ , so each theoretical curve can be associated to a value

of the ratio λ
σ (and each point of a curve is related to a tolerance α and a threshold sα). Note that d′ increases

when PT increases and when PF decreases, that is to say when the test is more sensitive and in our case it
corresponds to a decrease of σ when λ is constant. This is confirmed by Figure 10 where the area under curve
is decreasing with respect to σ increasing in {0.1, 0.3, 0.5}. The first ROC curve confirms that there is no

significant difference between T (1) and T (2) for this kind of simulations. We omit a similar result for T
(1)
c and

T
(2)
c . The second ROC curve shows that T (1) seems to be better than T

(1)
c and especially as σ is increasing

for a fixed φ = 0.5. It reveals that for a rate of false positive detection that we can tolerate, we can find a

threshold which provides a bigger rate of true positive detection with T (1) than with T
(1)
c . This is also true

for different values of φ since ROC curves completely coincide with φ for both tests as shown in the two last
figures.

Figure 10. ROC curves obtained with 1000 simulations, ν = 0.3, λ = 1, c = 15, d = −10,
n = 100, X0 = cn. In red σ = 0.1, in black σ = 0.3 and in blue σ = 0.5. First: φ = 0.5, solid
line with cross for T (1), dashed line with dot for T (2). Second: φ = 0.5, solid line with cross

for T (1), dashed line with dot for T
(1)
c . Third and Fourth: T (1) (left) and T

(1)
c (right) with

several values of φ, solid line with cross for φ = 0.1, dotted line for φ = 0.9, dashed with plus
for φ = 0.5.

5. Data analysis

A biological experience of Anne Duittoz, gives us 22 trajectories of neurons observed during 575 seconds.
For sake of conciseness we only present the two first ones (see Figure 11).

Figure 11. Whole trajectory of Neuron 1 and Neuron 2.

In order to apply our spike detection methodology we restrict the time domain to {150, . . . , 300}. We first
obtain estimations of the parameters given in the following table. The results are slightly different according
to the first or second estimation but they remain of the same order.
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Neuron φ̂(1) m̂(1) b̂(1) ĉ
(1)
n d̂(1) ν̂(1) λ̂(1) σ̂(1)

1 0.385 1010 −46.7 1650 −75.9 0.466 1.22 5.4
2 0.923 158 −10.3 2050 −133 0.157 1.47 3.55

φ̂(2) m̂(2) b̂(2) ĉ
(2)
n d̂(2) ν̂(2) λ̂(2) σ̂(2)

1 0.385 1020 −47.2 1650 −76.7 0.466 1.27 5.37
2 0.916 174 −12 2060 −143 0.137 1.58 3.61

In the whole experiment, we notice a high variability of the estimated parameters between the different
neurons, especially for φ, as it can be seen in table 3 where the mean value of the estimators, their minimum
and maximum obtained from all the neurons of the experience are given.

φ̂(1) m̂(1) b̂(1) ĉ
(1)
n d̂(1) ν̂(1) λ̂(1) σ̂(1)

mean 0.714 381 −15.1 1340 −59.4 0.455 3.37 3.77
min 0.363 50.4 −46.7 905 −133 0.0747 0.0234 0.966
max 0.946 1010 −1.62 2050 −15.8 0.903 9.3 7.63

φ̂(2) m̂(2) b̂(2) ĉ
(2)
n d̂(2) ν̂(2) λ̂(2) σ̂(2)

mean 0.709 388 −15.8 1350 −62.5 0.457 5.16 3.76
min 0.357 50.9 −47.2 906 −143 0.0747 0.511 0.872
max 0.946 1020 −1.98 2060 −15 0.905 18 7.62

Table 3. Mean, minimum and maximum of the estimators for the 22 neurons, observed on
the time interval {150, ..., 300}.

Let us emphasize that the signal- noise ratio λ̂(i)/σ̂(i) is very low compared to our simulation results and

we have therefore chosen a bigger tolerance α = 0.05 for the different tests T (1), T (2) ,T
(1)
c and T

(2)
c .

Figure 12. Detection of spikes with the different tests on the time interval {150, ..., 300} on
two parts of trajectories of neurons, with i = 150, j = 300 for Neuron 1 and 2. Threshold

given by α = 0.05. In red the test T (1), in blue T (2), in green T
(1)
c , and in black T

(2)
c .

For α = 0.05, we have a mean of 17.1% spikes per neuron on the whole time {150, ..., 300} with T (1), 15.3%

with T (2), 11.5% with T
(1)
c and 12.0% with T

(2)
c . For example, with T (1) we give the spike distribution by

time in Figure 13 over the 22 neurons of the experiment.
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Figure 13. Percentage of spiking neurons over the 22 neurons for each instant between 150
and 300 with T (1), in red for α = 0.05 and in black for α = 0.1

6. Appendix

6.1. From continuous time to discrete time. We assume to observe a process X over a time interval
[0, T ], T ∈ R+, satisfying

dXt =
1

τ
(µ(t)−Xt)dt+ λdNt + σdWt,

for a linear trend µ(t) = c + d
T t, c ∈ R+, d ∈ R, τ, σ, λ ∈ (0,+∞), and W a Brownian motion independent

from N a Poisson process of parameter ν ∈ (0, 1]. It follows, writing γ = 1/τ that

(15) d
(
eγtXt

)
= γeγt

(
c+

d

T
t

)
dt+ σeγtdWt + λeγtdNt.

Now, we assume to have (n + 1) observations uniformly distributed on [0, T ]: X0, XT
n

, ..., Xk Tn
, ..., XT .

For k ∈ {0, ..., n}, we will note Xk for Xk Tn
. Moreover, we introduce φ := e−γ

T
n . By integrating (1) over

[k Tn , (k + 1)Tn ], we have:

φ−(k+1)Xk+1 − φ−kXk = c
(
φ−(k+1) − φ−k

)
+
d

n

(
(k + 1)φ−(k+1) − kφ−k

)
− d

γT

(
φ−(k+1) − φ−k

)
+ σ

∫ (k+1)Tn

k Tn

eγtdWt + λ

∫ (k+1)Tn

k Tn

eγtdNt.

Or equivalently:

Xk+1 = φXk + c (1− φ) + d
k

n
(1− φ) +

d

n
− d

γT
(1− φ)

+ σ

∫ (k+1)Tn

k Tn

eγ(t−(k+1)Tn )dWt + λ

N
(k+1) T

N∑
j=N

k T
n

eγ(sj−(k+1)Tn ),

where (sj)j are the points of the Poisson process N . Assuming n is large enough:

d

n
− d

γT
(1− φ) =

d

n
− d

γT

(
1− e−γ Tn

)
=
d

n
− d

γT

(
−γ T

n
+ o

(
1

n

))
= o

(
1

n

)
;
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k Tn

eγ(t−(k+1)Tn )dWt =
T

n

(
W(k+1)Tn

−Wk Tn

)
+ o

(
1

n

)
,

with W(k+1)Tn
−Wk Tn

∼ N
(
0, Tn

)
and N(k+1)Tn

−Nk Tn ∼ P
(
ν Tn
)
. Then

P
(
N(k+1)Tn

−Nk Tn = 1
)

= ν
T

n
+ o

(
1

n

)
and P

(
N(k+1)Tn

−Nk Tn = 0
)

= 1− ν T
n

+ o

(
1

n

)
,

so we can consider the following approximation

Xk+1 = φXk + c (1− φ) + d
k

n
(1− φ) + σεk+1 + λUk+1,

where for all k ∈ {0, ..., n}, εk ∼ N
(
0, Tn

)
, Uk ∼ B

(
ν Tn
)

are independant variables. In this paper we have

assumed that T
n = 1.

6.2. Proof of Theorem 1. By Cramer-Wold device, it is sufficient to prove that for all u, v, w and x in R:

1√
n

n∑
k=0

∆n,k → N (0, l) ,

where we denote ∆n,k = (u+ v + wYk + xZk+1)Yk − wρY (0) for all n ≥ 1 and k ∈ {0, ...n} and

l =
(
u v w x

)
Σ1

t
(
u v w x

)
.

As usual for proving asymptotic normality in time series we consider and (mn)-dependent approximation of (Yk)

defined through Y
(mn)
k =

∑mn
j=0 φ

jZk−j and denote ∆
(mn)
n,k =

(
u+ v + wY

(mn)
k + xZk+1

)
Y

(mn)
k −wρY (mn)(0),

where ρY (mn)(0) = Var(Y
(mn)
k ). Let us remark that we may write

∆n,k = ∆
(mn)
n,k +

(
u+ v

k

n
+ xZk+1

)
Rmn,k + wR2

mn,k + 2wY
(mn)
k Rmn,k + w (ρY (mn)(0)− ρY (0))

where Rmn,k =
∑+∞
j=mn+1 φ

jZk−j . We first notice that for all α ≤ 4 + δ

||Rmn,k||Lα ≤ ||Z0||Lα
|φ|mn+1

1− |φ|
,

which implies that Rmn,k → 0 in Lα. Let us also remark that since Y
(mn)
k =

∑mn
j=0 φ

jZk−j , we have also

||Y (mn)
k ||Lα ≤ 1

1−φ ||Z0||Lα , by the Minkowski inequality. Moreover,

|ρY (0)− ρY (mn)(0)| ≤ σ2
Z

|φ|2(mn+1)

1− φ2
.

Then we can find c > 0 such that ‖∆n,k −∆
(mn)
n,k ‖L2 ≤ c|φ|mn , so that

‖ 1√
n

n∑
k=0

(∆n,k −∆
(mn)
n,k )‖L2 ≤

√
n|φ|mn .

Choosing mn such that
√
n|φ|mn → 0, by Slutsky theorem, it is sufficient to prove that

1√
n

n∑
k=0

∆
(mn)
n,k

d−→
n→+∞

N (0, l) .

For that, since now (∆
(mn)
n,k ) is a sequence of mn-dependent random variables, it is enough to check the four

points of the theorem from [2] concerning central limit theorem for mn dependent random variables. Namely,
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in our setting, choosing δ′ = δ
2 , it follows from

(i)
m

2+ 2
δ′

n

n
converges to 0

(ii)||∆(mn)
n,k ||L2+δ′ < +∞

(iii) for some C > 0, Var

(
j∑

k=i+1

∆
(mn)
n,k

)
≤ C(j − i)

(iv)
1

n
Var

(
n∑
k=0

∆
(mn)
n,k

)
converges to a non-zero limit l.

The first point (i) is simply obtained by choosing mn = nη for some η such as

η <
1

2
(
1 + 1

δ′

) ,
so we can take such a value for mn and remark that

√
n|φ|mn → 0. Then, for the second point (ii), we first

get ||Zk+1Y
(mn)
k ||L2+δ′ ≤ ||Zk+1||L4+δ ||Y (mn)

k ||L4+δ , by Cauchy-Schwarz inequality. On the other hand, using

again Cauchy-Schwarz inequality,
(
Y

(mn)
k

)2

≤ 1

1− |φ|

mn∑
j=0

|φ|jZ2
k−j so that

||Y (mn)
k

2
||L2+δ′ ≤

1

(1− |φ|)2
||Z2

0 ||L2+δ′

≤ 1

(1− |φ|)2
||Z0||2L4+δ

< +∞.

Hence, by triangular inequality,

||∆(mn)
n,k ||L2+δ′ =

∣∣∣∣∣∣∣∣(u+ v
k

n
+ xZk+1

)
Y

(mn)
k + wY

(mn)
k

2
∣∣∣∣∣∣∣∣
L2+δ′

≤ (|u|+ |v|)||Y (mn)
k ||L2+δ′ + |x|||Zk||L4+δ ||Y (mn)

k ||L4+δ + |w|||Y (mn)
k

2
||L2+δ′

< +∞,

that proves point (ii).

For the last two points and in order to get an explicite covariance matrix we need the following intermediate
results.

Lemma 1. Let (Zk)k be a sequence of iid centered rv with E(Z4
0 ) < +∞ and (Yk) its associated AR(1) process

with autoregression coefficient φ ∈ (−1, 1). Then, for all n ≥ 1 and k, l ∈ {0, ..., n− 1} we have

(1) Cov
(
Yk, Y

2
l

)
=

E
(
Z3

0

)
1− φ3

φ
1
2 (l−k)+ 3

2 |l−k|,

(2) Cov (Yk, YlZl+1) = 0,

(3) Cov (YkZk+1, YlZl+1) =
σ2
Z

1− φ2
E
(
Z2

0

)
1{k=l},

(4) Cov
(
Y 2
k , YlZl+1

)
= 2

σ4
Z

1− φ2
φ2(k−l)−11{k≥l+1},

(5) Cov
(
Y 2
k , Y

2
l

)
= Cov

(
Y 2
k , Y

2
l

)
=

σ4
Z

1− φ2

(
φ2|l−k|(E(Z4

0 )− 3σ4
Z)

σ4
Z(1 + φ2)

+
2φ2|l−k|

1− φ2

)
.

It follows that one can find a constant c > 0 such that

|Cov(∆n,k,∆n,k)| ≤ c|φ||k−l|.

Moreover, one can choose c > 0 such that we also have

|Cov(∆
(mn)
n,k ,∆

(mn)
n,k )| ≤ c|φ||k−l|.
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Proof. We first consider k and l such that 0 ≤ k ≤ l ≤ n− 1:

(1) Cov
(
Yk, Y

2
l

)
=

+∞∑
m,n,p=0

φm+n+pE (Zk−mZl−nZl−p) .

Since the centered variables Zk are i.i.d., the terms of this sum are equal to zero except if the indices k −m,
l − n and l − p are equal then if p = n = l − k +m. So we have:

Cov
(
Yk, Y

2
l

)
=

+∞∑
m=0

φ3m+2(l−k)E
(
Z3
k−l
)

=
E
(
Z3

0

)
1− φ3

φ2(l−k),

and we note that
∣∣Cov

(
Y mnk , (Y mnl )2

)∣∣ ≤ E(|Z0|3)
1−|φ|3 |φ|

2(l−k).

(2) Since Zl+1 is independant of YkYl, we get Cov(Yk, YlZl+1) = 0 and similarly Cov(Y mnk , Y mnl Zl+1) = 0.
(3) Since Zl+1 is independant of YkYlZk+1 if k < l, we have

Cov (YkZk+1, YlZl+1) = E (YkZk+1YlZl+1)1{k=l}

= E
(
Y 2
k Z

2
k+1

)
1{k=l}

= E
(
Y 2
k

)
E
(
Z2
k+1

)
1{k=l}

=
σ4
Z

1− φ2
1{k=l},

and similarly |Cov (Y mnk Zk+1, Y
mn
l Zl+1) | ≤ σ4

Z

1−|φ|21{k=l}.

(4) Since Zl+1 is independant of Y 2
k Yl, we obtain Cov

(
Y 2
k , YlZl+1

)
= 0 = Cov

(
(Y mnk )2, Y

(mn)
l Zl+1

)
.

(5) We have

Cov
(
Y 2
k , Y

2
l

)
=

+∞∑
m,n,p,q=0

φm+n+p+qE (Zk−mZk−nZl−pZl−q)− ρY (0)2.

The terms of this sum are equal to zero except if the indices k−m, k− n, l− p, l− q are all equal or equal in
twos, then we deduce that

Cov
(
Y 2
k , Y

2
l

)
=

σ4
Z

1− φ2

(
φ2(l−k)(E(Z4

0 )− 3σ4
Z)

σ4
Z(1 + φ2)

+
2φ2(l−k)

1− φ2

)
,

and similarly, one can find c > 0 such that |Cov
(
(Y mnk )2, (Y mnl )2

)
| ≤ c|φ|2(l−k).

Now if we have 0 ≤ l < k ≤ n− 1, we can check the equalities (3) and (5) using symetric property. For the
other ones:
(1)

Cov
(
Yk, Y

2
l

)
=

+∞∑
m,n,p=0

φm+n+pE (Zk−mZl−nZl−p) .

The terms of this sum are equal to zero except if the indices k−m, l−n and l− p are equal then if p = n and
m = n+ k − l.

Cov
(
Yk, Y

2
l

)
=

+∞∑
n=0

φ3n+k−lE
(
Z3
k−l
)

=
E
(
Z3

0

)
1− φ3

φk−l,

while |Cov
(
Y mnk , (Y mnl )2

)
| ≤ E(|Z0|3)

1−|φ|3 |φ|
k−l.

(2)

Cov (Yk, YlZl+1) =

+∞∑
m,n=0

φm+nE (Zk−mZl−nZl+1)

= 0
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since the centered variables Zk−m, Zl−n and Zl+1 cannot be all equal and we have the same for Cov (Y mnk , Y mnl Zl+1).
(4) We can prove by induction that

Cov
(
Y 2
k , YlZl+1

)
= 2

σ4
Z

1− φ2
φ2(k−l)−1.

Actually, for k = l + 1

Cov
(
Y 2
l+1, YlZl+1

)
= Cov

(
(φYl + Zl+1)

2
, YlZl+1

)
= φ2Cov

(
Y 2
l , YlZl+1

)
+ Cov(Z2

l+1, YlZl+1) + 2φVar (YlZl+1)

= 0 + 0 + 2φVar(Yl)Var(Zl+1)

= 2
φ

1− φ2
σ4
Z

which proves the property for k = l + 1. Now assuming that the result holds for k > l we get

Cov
(
Y 2
k+1, YlZl+1

)
= Cov

(
(φYk + Zk+1)

2
, YlZl+1

)
= φ2Cov

(
Y 2
k , YlZl+1

)
+ Cov(Z2

k+1, YlZl+1) + 2φCov (YkZk+1, YlZl+1)

As k > l, the two last terms are equal to zero and

Cov
(
Y 2
k+1, YlZl+1

)
= φ2Cov

(
Y 2
k , YlZl+1

)
= 2

σ4
Z

1− φ2
φ2(k+1−l)−1,

which proves using induction that (4) holds for any k ≥ l + 1. Finally, let us quote that expanding

Cov
(

(Y
(mn)
k )2, Y

(mn)
l Zl+1

)
=

mn∑
m,n,p,q=0

φm+n+pE(Zk−mZk−nZl−pZl+1),

we also obtain that for k > l,∣∣∣Cov
(

(Y
(mn)
k )2, Y

(mn)
l Zl+1

)∣∣∣ ≤ 2
σ4
Z

1− |φ|2
|φ|2(k−l)−1.

Hence, one can find a constant c > 0 such that∣∣∣Cov
(

∆
(mn)
n,k ,∆

(mn)
n,l

)∣∣∣ ≤ c|φ||k−l| and |Cov (∆n,k,∆n,l)| ≤ c|φ||k−l|.

�

It follows that

Var

(
j∑

k=i+1

∆
(mn)
n,k

)
≤ c

j∑
k,l=i+1

|φ||k−l| ≤ c

1− |φ|
(j − i),

that proves the point (iii).

For the last point (iv), since 1√
n

∑n
k=0

(
∆

(mn)
n,k −∆n,k

)
→ 0 in L2 when n → +∞, it is enough to prove

that 1
nVar (

∑n
k=0 ∆n,k) →

n→+∞
l. Hence, we compute

Var

(
n∑
k=0

∆n,k

)
= Var

(
n−1∑
k=0

(
u+ v

k

n
+ wYk + xZk+1

)
Yk

)

=

n−1∑
k,l=0

Cov

((
u+ v

k

n
+ wYk + xZk+1

)
Yk,

(
u+ v

l

n
+ wYl + xZl+1

)
Yl

)
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=
1

n

n−1∑
k,l=0

(
u2n+ uv(k + l) + v2 kl

n

)
Cov(Yk, Yl) + (uwn+ vwk) Cov

(
Yk, Y

2
l

)
+ (uwn+ vwl)Cov

(
Y 2
k , Yl

)
+

1

n

n−1∑
k,l=0

(uxn+ vkx)Cov (Yk, YlZl+1) + (uxn+ vlx)Cov (YkZk+1, Yl) + nx2Cov (YkZk+1, YlZl+1)

+
1

n

n−1∑
k,l=0

xwnCov
(
Y 2
k , YlZl+1

)
+ xwnCov

(
YkZk+1, Y

2
l

)
+ nw2Cov

(
Y 2
k , Y

2
l

)
.

Now in order to get an explicit asymptotic variance we need the following computations.

Lemma 2. For |φ| < 1, we have the following behaviors when n tends to +∞:

(1)

n∑
i=0

n∑
j=0

φ|j−i| = n
1 + φ

1− φ
+ o(n);

(2)

n∑
i=0

n∑
j=0

iφ|j−i| =
n2

2

1 + φ

1− φ
+ o(n2);

(3)

n∑
i=0

n∑
j=0

ijφ|j−i| =
n3

3

1 + φ

1− φ
+ o(n3);

(4)

n∑
i=0

n∑
j=0

φ
1
2 (j−i)+ 3

2 |j−i| = n
1 + φ+ φ2

1− φ2
+ o(n);

(5)

n∑
i=0

n∑
j=i+1

φ2(j−i)−1 = n
φ

1− φ2
+ o(n);

(6)

n∑
i=0

n∑
j=0

iφ
1
2 (j−i)+ 3

2 |j−i| =
n2

2

1 + φ+ φ2

1− φ2
+ o(n2).

Then we obtain that 1
nVar

(
n−1∑
k=0

∆n,k

)
→

n→∞
l, where

l = u2 σ2
Z

1− φ2

1− φ
1 + φ

+ uv
σ2
Z

1− φ2

1 + φ

1− φ
+ v2 σ2

Z

1− φ2

1 + φ

3(1− φ)
+ 2uw

E
(
Z3

0

)
σ2
Z(1− φ3)

1 + φ+ φ2

1− φ2

+ vw
E
(
Z3

0

)
1− φ3

1 + φ+ φ2

2(1− φ2)
+ w2 σ4

Z

1− φ2

1 + φ2

1− φ2

(
E
(
Z4

0

)
− 3σ4

Z

σ4
Z(1 + φ2)

+
2

1− φ2

)

+ 4wx
σ4
Z

1− φ2

φ

1− φ2
+ x2 σ4

Z

1− φ2

=
σ2
Z

(1− φ)2

(
u2 + uv + 2uw

E(Z3
0 )

σ2
Z(1 + φ)

+
v2

3
+

E
(
Z3

0

)
σ2
Z(1 + φ)

vw

)

+
σ2
Z

(1− φ)2

(
w2

(
(E
(
Z4

0

)
− 3σ4

Z)

σ2
Z(1 + φ)2

+ 2
σ2
Z

(
1 + φ2

)
(1− φ)(1 + φ)3

)
+ 4wz

σ2
Zφ

(1 + φ)2
+ z2σ2

Z

1− φ
1 + φ

)
=

(
u v w x

)
Σ1

t
(
u v w x

)
6= 0.

6.3. Proof of Theorem 2. Let us write

Hn(X) = tAn(X)An(X) =


n

n−1∑
k=0

k
n

n−1∑
k=0

Xk

n−1∑
k=0

k
n

n−1∑
k=0

(
k
n

)2 n−1∑
k=0

k
nXk

n−1∑
k=0

Xk

n−1∑
k=0

k
nXk

n−1∑
k=0

X2
k

 .

In view of (2), if (Xn,k) satisfies (5) for some θ = (m, b, φ) ∈ R2×]− 1, 1[, we can write Xn,k = cn + d kn + Yk
with Y a stationary centered solution of the AR(1) equation (3), namely

Yk+1 = φYk + Zk+1,
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and cn, d are given by (4) ie cn = c− b
n(1−φ)2 , d = b

1−φ and c = m
1−φ .

Hence, according to Corollary 1,

1

n

n−1∑
k=0

Xn,k = cn + d
1

n

n−1∑
k=0

k

n
+

1

n

n−1∑
k=0

Yk
L2

−→
n→+∞

c+ d/2,

1

n

n−1∑
k=0

k

n
Xn,k = cn

1

n

n−1∑
k=0

k

n
+ d

1

n

n−1∑
k=0

(
k

n

)2

+
1

n

n−1∑
k=0

k

n
Yk

L2

−→
n→+∞

c/2 + d/3,

1

n

n−1∑
k=0

X2
n,k = c2n + 2cnd

1

n

n−1∑
k=0

k

n
+ d2 1

n

n−1∑
k=0

(
k

n
)2 +

1

n

n−1∑
k=0

Y 2
k + +2cn

1

n

n−1∑
k=0

Yk + 2d
1

n

n−1∑
k=0

k

n
Yk

L2

−→
n→+∞

c2 + d2/3 + cd+ ρY (0),

with ρY (0) = σ2
Z/(1− φ2) as the stationary solution of the AR(1) equation. Therefore

1

n
Hn(X)

L2

−→
n→+∞

H :=

 1 1/2 c+ d/2
1/2 1/3 c/2 + d/3
c+ d/2 c/2 + d/3 c2 + d2/3 + cd+ ρY (0)

 .

Now let us consider for θ̃ = (m̃, b̃, φ̃) ∈ R3, the contrast function

Mn(θ̃) = t(Xn −An(X)θ̃)(Xn −An(X)θ) =
n−1∑
k=0

(
Xn,k+1 − φ̃Xn,k − m̃− b̃

k

n

)2

,

where Xn := (Xn,k+1)0≤k≤n−1. Let us write θ = (m, b, φ) the true parameter such that

Xn,k+1 − φXn,k −m− b
k

n
= Zk+1,

meaning that Xn −An(X)θ0 = Z for Z := (Zk+1)0≤k≤n−1. Then θ̂n = argminθ̃∈R3Mn(θ̃) satisfies Jn(θ̂n) = 0

for Jn = ∇Mn. But Jn(θ̃) = −2tAn(X)(Xn −An(X)θ̃) and Jn(θ) = Jn(θ)− Jn(θ̂n) = −2Hn(X)(θ − θ̂n). On
the other hand, since Xn −An(X)θ = Z, we get

Jn(θ) = −2



n−1∑
k=0

Zk+1

n−1∑
k=0

k
nZk+1

n−1∑
k=0

Xn,kZk+1

 .

We will prove that −1
2
√
n
Jn(θ)

d−→
n→
N (0,Σ), with Σ = σ2

ZH. To this end we use again the Cramer-Wold

device (see Proposition 6.3.1 of [3] for instance) and consider for u, v, w ∈ R3

1√
n

n−1∑
k=0

(
u+ v

k

n
+ wXn,k

)
Zk+1 =

1√
n

n−1∑
k=0

(
(u+ cnw) + (v + dw)

k

n
+ wYk

)
Zk+1,

when (Xn,k) satisfies (2) for some fixed θ.
The convergence will follow from a Lindeberg condition for triangular array of martingales [4]. Ac-

tually, let us write ∆n,k+1 =
(
(u+ cnw) + (v + dw) kn + wYk

)
Zk+1 and Sn,l =

∑l
k=0 ∆n,k+1. We may

consider the filtration Fn,l = σ(Zk, k ≤ l) = Fl. It follows that E(∆n,k+1|Fn,k) = E(∆n,k+1|Fk) =(
(u+ cnw) + (v + dw) kn + wYk

)
E(Zk+1) = 0 a.s. since Zk+1 is centered and independent from Fk and (Sn,l)

is a martingale triangular array. Then let us write Sn
sn

:=
Sn,n−1

sn
, where s2

n = Var(Sn,n−1). Hence according to

Theorem 2 of [4] or [11] if

1

s2
n

n−1∑
k=1

E(∆2
n,k+1|Fk)

P−→
n→+∞

1,(16)

and
1

s2
n

n−1∑
k=1

E(∆2
n,k+11|∆n,k+1|>εsn |Fk)

P−→
n→+∞

0, for all ε > 0,(17)
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we have Sn
sn

d−→
n→+∞

N (0, 1).

So let us first compute the asymptotic variance. We write 〈S〉n =
∑n−1
k=1 E(∆2

n,k+1|Fk) and note that s2
n =

E(〈S〉n). In our setting, it is clear that

E(∆2
n,k+1|Fk) = σ2

Z

(
(u+ cnw) + (v + dw)

k

n
+ wYk

)2

.

By Corollary 1 we have 1
n

n−1∑
k=0

Yk → 0, 1
n

n−1∑
k=0

k
nYk → 0 and 1

n

n−1∑
k=0

Y 2
k → ρY (0) in L2 and we may deduce that

1

n

n−1∑
k=0

E(∆2
n,k+1|Fk)

L2

−→
n→+∞

s2 := σ2
Z

(
(u+ cw)2 +

1

3
(v + dw)2 + w2ρY (0) + (u+ cw)(v + dw)

)
.

Hence,
s2
n

n
−→

n→+∞
s2,

and (16) follows writting

1

s2
n

n−1∑
k=0

E(∆2
n,k+1|Fk) =

n

s2
n

× 1

n

n−1∑
k=0

E(∆2
n,k+1|Fk).

Note that we may deduce from these lines that the asymptotic covariance matrix is given by

Σ = σ2
Z

 1 1
2 c+ d

2
1
2

1
3

c
2 + d

3

c+ d
2

c
2 + d

3 c2 + d2

3 + ρY (0) + cd

 = σ2
ZH.

Now it remains to prove the Lindenberg condition (17). So let us fix N ∈ N∗ large enough such that for all

n ≥ 2N we have sn > s2
√
N , choose C > 0 such that |∆n,k+1| ≤ C(1 + |Yk|)|Zk+1| and remark that for

n ≥ 2N , we have

1

n

n−1∑
k=0

E(∆2
n,k+11|∆n,k+1|>εsn |Fk) ≤ 1

n

n−1∑
k=0

E(∆2
n,k+11|∆n,k+1|>εs

√
N |Fk)

≤ C2

n

n−1∑
k=0

E((1 + |Yk|)2Z2
k+11|C(1+|Yk|)|Zk+1|>εs

√
N |Fk).

Hence, by stationarity, we get

E

(
1

n

n−1∑
k=0

E(∆2
n,k+11|∆n,k+1|>εsn |Fk)

)
= C2E((1 + |Y0|)2Z2

11|(1+|Y0|)|Z1|>εs
√
N/C) −→

N→+∞
0,

since E((1 + |Y0|)2Z2
1 ) < +∞, and allows to get (17). We have therefore Sn

sn

d−→
n→+∞

N (0, 1) and consequently,

by Slutsky’s theorem, −1
2
√
n
Jn(θ) = sn√

n
Sn
sn

d−→
n→+∞

N (0, s2). But −1
2
√
n
Jn(θ) = 1

nHn(X)
√
n(θ − θ̂n), and we can

write
√
n(θ − θ̂n) =

(
1

n
Hn(X)

)−1 −1

2
√
n
Jn(θ).

Again, by Slutsky’s theorem, we may deduce that
√
n(θ − θ̂n) −→ H−1N (0,Σ) = N

(
0, H−1ΣtH−1

)
= N

(
0, σ2

ZH
−1
)
.

Note that det(H) = ρY (0)
12 , so

Σ2 = σ2
ZH
−1 = (1− φ2)

 c2 + 4ρY (0) cd− 6ρY (0) −c
cd− 6ρY (0) d2 + 12ρY (0) −d
−c −d 1

 ,

with c = m
1−φ , d = b

1−φ and ρY (0) = 1
1−φ2σ

2
Z .

6.4. Numerical results.
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φ = 0.1 φ = 0.5 φ = 0.9

Figure 14. Histogramms with 1000 simulations, ν = 0.3, λ = 1, σ = 0.2, a = 5, b = −5,

n = 1000. First row: (m̂
(1)
n −m). Second row: (̂b

(1)
n − b). Third row: (φ̂

(1)
n − φ). The red

lines correspond to the theoretical gaussian distribution with variance computed according to
Theorem 2.

φ = 0.1 φ = 0.5 φ = 0.9

Figure 15. Histogramms with 1000 simulations, ν = 0.3, λ = 1, σ = 0.2, c = 5, d = −5,

n = 1000. First row: (ĉ
(1)
n − c). Second row: (d̂

(1)
n − d). The red lines correspond to the

theoretical gaussian distribution.
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φ = 0.1 φ = 0.5 φ = 0.9

Figure 16. Test over one simulation, ν = 0.3, λ = 1, c = 15, d = −10, b = d(1 − φ),
a = c(1 − φ) − λν, X0 = cn, with cn = c − d/(n(1 − φ)) and n = 100. In red star, the

true jumps, in blue cross detected jumps with T (1), in black plus T
(1)
c , in blue circle with

T (2) and in black circle with T
(2)
c with level α = 0.01. The red line, respectively green line,

is the estimated line with the first, respectively the second, estimators. The dot black line
corresponds to the straight line with parameters (cn, d). First line: σ = 0.1, second line:
σ = 0.3, third line: σ = 0.5.
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φ = 0.1 φ = 0.5 φ = 0.9

Figure 17. Test over one simulation, ν = 0.3, λ = 1, a = 5, b = −5, d = b/(1 − φ),
cn = (a+ λν)/(1− φ)− b/(n(1− φ)2), X0 = cn, n = 100. In red star, the true jumps, in blue

cross detected jumps with T (1), in black plus T
(1)
c , in blue circle with T (2) and in black circle

with T
(2)
c with level α = 0.01. The red line, respectively green line, is the estimated line with

the first, respectively the second, estimators. The dot black line corresponds to the straight
line with parameters (cn, d). First line: σ = 0.1, second line: σ = 0.3, third line: σ = 0.5.
The jumps are the same for all realizations.
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